1
|
Dynamic Changes in the Endocannabinoid System during the Aging Process: Focus on the Middle-Age Crisis. Int J Mol Sci 2022; 23:ijms231810254. [PMID: 36142165 PMCID: PMC9499672 DOI: 10.3390/ijms231810254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Endocannabinoid (eCB) signaling is markedly decreased in the hippocampus (Hip) of aged mice, and the genetic deletion of the cannabinoid receptor type 1 (CB1) leads to an early onset of cognitive decline and age-related histological changes in the brain. Thus, it is hypothesized that cognitive aging is modulated by eCB signaling through CB1. In the present study, we detailed the changes in the eCB system during the aging process using different complementary techniques in mouse brains of five different age groups, ranging from adolescence to old age. Our findings indicate that the eCB system is most strongly affected in middle-aged mice (between 9 and 12 months of age) in a brain region-specific manner. We show that 2-arachidonoylglycerol (2-AG) was prominently decreased in the Hip and moderately in caudate putamen (CPu), whereas anandamide (AEA) was decreased in both CPu and medial prefrontal cortex along with cingulate cortex (mPFC+Cg), starting from 6 months until 12 months. Consistent with the changes in 2-AG, the 2-AG synthesizing enzyme diacylglycerol lipase α (DAGLα) was also prominently decreased across the sub-regions of the Hip. Interestingly, we found a transient increase in CB1 immunoreactivity across the sub-regions of the Hip at 9 months, a plausible compensation for reduced 2-AG, which ultimately decreased strongly at 12 months. Furthermore, quantitative autoradiography of CB1 revealed that [3H]CP55940 binding markedly increased in the Hip at 9 months. However, unlike the protein levels, CB1 binding density did not drop strongly at 12 months and at old age. Furthermore, [3H]CP55940 binding was significantly increased in the lateral entorhinal cortex (LEnt), starting from the middle age until the old age. Altogether, our findings clearly indicate a middle-age crisis in the eCB system, which could be a potential time window for therapeutic interventions to abrogate the course of cognitive aging.
Collapse
|
2
|
Takemura Y, Sudo Y, Saeki T, Kurata S, Suzuki T, Mori T, Uezono Y. Involvement of spinal G-protein inwardly rectifying potassium (GIRK) channels in the enhanced antinociceptive effects of the activation of both μ-opioid and cannabinoid CB1 receptors. J Pharmacol Sci 2022; 149:85-92. [DOI: 10.1016/j.jphs.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
|
3
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Parkinson's disease related alterations in cannabinoid transmission. Brain Res Bull 2021; 178:82-96. [PMID: 34808322 DOI: 10.1016/j.brainresbull.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNc) by neurodegeneration. Recent findings in animal models of PD propose tonic inhibition of the remaining DA neurons through GABA release from reactive glial cells. Movement dysfunctions could be ameliorated by promotion of activity in dormant DA cells. The endocannabinoid system (ECS) is extensively present in basal ganglia (BG) and is known as an indirect modulator of DAergic neurotransmission, thus drugs designed to target this system have shown promising therapeutic potential in PD patients. Interestingly, down/up-regulation of cannabinoid receptors (CBRs) varies across the different stages of PD, suggesting that some of the motor/ non-motor deficits may be related to changes in CBRs. Determination of the profile of changes of these receptors across the different stages of PD as well as their neural distribution within the BG could improve understanding of PD and identify pathways important in disease pathobiology. In this review, we focus on temporal and spatial alterations of CBRs during PD in the BG. At present, as inconclusive, but suggestive results have been obtained, future investigations should be conducted to extend preclinical studies examining CBRs changes within each stage in controlled clinical trials in order to determine the potential of targeting CBRs in management of PD.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Abbasi-Habashi S, Ghasemzadeh Z, Rezayof A. Morphine improved stress-induced amnesia and anxiety through interacting with the ventral hippocampal endocannabinoid system in rats. Brain Res Bull 2020; 164:407-414. [PMID: 32937186 DOI: 10.1016/j.brainresbull.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
The present study aimed to investigate the possible role of the ventral hippocampal (VH) cannabinoid CB1 receptors in the improving effect of morphine on stress-induced memory formation impairment and anxiety. A step-through type passive avoidance task and a hole-board test were used to measure memory formation and anxiety-like exploratory behavior, respectively. The results showed that the exposure to 10-min stress immediately after the successful training phase impaired memory formation and also produced anxiogenic-like exploratory behaviour in adult male Wistar rats. Moreover, morphine administration before stress exposure improved the adverse effects of stress on memory formation and exploratory behaviour. After training, intra-VH microinjection of cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.01-0.05 μg/rat) enhanced the response of an ineffective dose of morphine (0.5 mg/kg for memory; 5 mg/kg for anxiety, i.p.) on memory impairment and anxiogenic-like exploratory behaviour induced by acute stress. Intra-VH microinjection of the higher dose of WIN 55,212-2 alone impaired memory formation. Post-training microinjection of a cannabinoid CB1 receptor antagonist/inverse agonist, AM-251 (100-150 ng/rat) into the VH attenuated the response of an effective dose of morphine (5 mg/kg for memory; 6 mg/kg for anxiety, i.p.) in stress-exposed rats. Taken together, the present results showed that morphine administration could improve stress-induced memory impairment and anxiety in the rats exposed to the inescapable acute stress. Interestingly, the improving effect of morphine on the adverse effect of stress on memory formation and anxiety-like exploratory behaviour may be mediated through the VH endocannabinoid CB1/CB2 receptors mechanism.
Collapse
Affiliation(s)
- Sima Abbasi-Habashi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Zádor F, Nagy-Grócz G, Dvorácskó S, Bohár Z, Cseh EK, Zádori D, Párdutz Á, Szűcs E, Tömböly C, Borsodi A, Benyhe S, Vécsei L. Long-term systemic administration of kynurenic acid brain region specifically elevates the abundance of functional CB 1 receptors in rats. Neurochem Int 2020; 138:104752. [PMID: 32445659 DOI: 10.1016/j.neuint.2020.104752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
Kynurenic acid (KYNA) is one of the most significant metabolite of the kynurenine pathway both in terms of functional and potential therapeutic value. It is an N-methyl-D-aspartate (NMDA) receptor antagonist, but it can also activate the G-protein coupled receptor 35 (GPR35), which shares several structural and functional properties with cannabinoid receptors. Previously our group demonstrated that systemic chronic KYNA treatment altered opioid receptor G-protein activity. Opioid receptors also overlap in many features with cannabinoid receptors. Thus, our aim was to examine the direct in vitro and systemic, chronic in vivo effect of KYNA on type 1 cannabinoid receptor (CB1R) binding and G-protein activity. Based on competition and [35S]GTPγS G-protein binding assays in rat brain, KYNA alone did not show significant binding towards the CB1R, nor did it alter CB1R ligand binding and agonist activity in vitro. When rats were chronically treated with KYNA (single daily, i.p., 128 mg/kg for 9 days), the KYNA plasma and cerebrospinal fluid levels significantly increased compared to vehicle treated group. Furthermore, in G-protein binding assays, in the whole brain the amount of G-proteins in basal and in maximum activity coupled to the CB1R also increased due to the treatment. At the same time, the overall stimulatory properties of the receptor remained unaltered in vehicle and KYNA treated samples. Similar observations were made in rat hippocampus, but not in the cortex and brainstem. In saturation binding assays the density of CB1Rs in rat whole brain and hippocampus were also significantly enhanced after the same treatment, without significantly affecting ligand binding affinity. Thus, KYNA indirectly and brain region specifically increases the abundance of functional CB1Rs, without modifying the overall binding and activity of the receptor. Supposedly, this can be a compensatory mechanism on the part of the endocannabinoid system induced by the long-term KYNA exposure.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary.
| | - Gábor Nagy-Grócz
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Temesvári krt. 31, H-6726, Hungary; Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary; Department of Medical Chemistry University of Szeged, Szeged, Dóm tér 8, H-6720, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary; MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725, Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary; Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary; MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725, Szeged, Hungary
| |
Collapse
|
6
|
Cannabinoid signalling in embryonic and adult neurogenesis: possible implications for psychiatric and neurological disorders. Acta Neuropsychiatr 2019; 31:1-16. [PMID: 29764526 DOI: 10.1017/neu.2018.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cannabinoid signalling modulates several aspects of brain function, including the generation and survival of neurons during embryonic and adult periods. The present review intended to summarise evidence supporting a role for the endocannabinoid system on the control of neurogenesis and neurogenesis-dependent functions. Studies reporting participation of cannabinoids on the regulation of any step of neurogenesis and the effects of cannabinoid compounds on animal models possessing neurogenesis-dependent features were selected from Medline. Qualitative evaluation of the selected studies indicated that activation of cannabinoid receptors may change neurogenesis in embryonic or adult nervous systems alongside rescue of phenotypes in animal models of different psychiatric and neurological disorders. The text offers an overview on the effects of cannabinoids on central nervous system development and the possible links with psychiatric and neurological disorders such as anxiety, depression, schizophrenia, brain ischaemia/stroke and Alzheimer's disease. An understanding of the mechanisms by which cannabinoid signalling influences developmental and adult neurogenesis will help foster the development of new therapeutic strategies for neurodevelopmental, psychiatric and neurological disorders.
Collapse
|
7
|
Barrett FS, Schlienz NJ, Lembeck N, Waqas M, Vandrey R. "Hallucinations" Following Acute Cannabis Dosing: A Case Report and Comparison to Other Hallucinogenic Drugs. Cannabis Cannabinoid Res 2018; 3:85-93. [PMID: 29682608 PMCID: PMC5908416 DOI: 10.1089/can.2017.0052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Cannabis has been historically classified as a hallucinogen. However, subjective cannabis effects do not typically include hallucinogen-like effects. Empirical reports of hallucinogen-like effects produced by cannabis in controlled settings, particularly among healthy research volunteers, are rare and have mostly occurred after administration of purified Δ-9 tetrahydrocannabinol (THC) rather than whole plant cannabis. Methods: The case of a healthy 30-year-old male who experienced auditory and visual hallucinations in a controlled laboratory study after inhaling vaporized cannabis that contained 25 mg THC (case dose) is presented. Ratings on the Hallucinogen Rating Scale (HRS) following the case dose are compared with HRS ratings obtained from the participant after other doses of cannabis and with archival HRS data from laboratory studies involving acute doses of cannabis, psilocybin, dextromethorphan (DXM), and salvinorin A. Results: Scores on the Volition subscale of the HRS were greater for the case dose than for the maximum dose administered in any other comparison study. Scores on the Intensity and Perception subscales were greater for the case dose than for the maximum dose of cannabis, psilocybin, or salvinorin A. Scores on the Somaesthesia subscale were greater for the case dose than for the maximum dose of DXM, salvinorin A, or cannabis. Scores on the Affect and Cognition subscales for the case dose were significantly lower than for the maximum doses of psilocybin and DXM. Conclusion: Acute cannabis exposure in a healthy adult male resulted in self-reported hallucinations that rated high in magnitude on several subscales of the HRS. However, the hallucinatory experience in this case was qualitatively different than that typically experienced by participants receiving classic and atypical hallucinogens, suggesting that the hallucinatory effects of cannabis may have a unique pharmacological mechanism of action. This type of adverse event needs to be considered in the clinical use of cannabis.
Collapse
Affiliation(s)
- Frederick S Barrett
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicolas J Schlienz
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Natalie Lembeck
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muhammad Waqas
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryan Vandrey
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Social Factors and Animal Models of Cannabis Use. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:171-200. [DOI: 10.1016/bs.irn.2018.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Roeckel LA, Massotte D, Olmstead MC, Befort K. CB1 Agonism Alters Addiction-Related Behaviors in Mice Lacking Mu or Delta Opioid Receptors. Front Psychiatry 2018; 9:630. [PMID: 30542301 PMCID: PMC6277797 DOI: 10.3389/fpsyt.2018.00630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
Opioids are powerful analgesics but the clinical utility of these compounds is reduced by aversive outcomes, including the development of affective and substance use disorders. Opioid systems do not function in isolation so understanding how these interact with other neuropharmacological systems could lead to novel therapeutics that minimize withdrawal, tolerance, and emotional dysregulation. The cannabinoid system is an obvious candidate as anatomical, pharmacological, and behavioral studies point to opioid-cannabinoid interactions in the mediation of these processes. The aim of our study is to uncover the role of specific cannabinoid and opioid receptors in addiction-related behaviors, specifically nociception, withdrawal, anxiety, and depression. To do so, we tested the effects of a selective CB1 agonist, arachidonyl-2-chloroethylamide (ACEA), on mouse behavior in tail immersion, naloxone-precipitated withdrawal, light-dark, and splash tests. We examined cannabinoid-opioid interactions in these tests by comparing responses of wildtype (WT) mice to mutant lines lacking either Mu or Delta opioid receptors. ACEA, both acute or repeated injections, had no effect on nociceptive thresholds in WT or Mu knockout (KO) mice suggesting that analgesic properties of CB1 agonists may be restricted to chronic pain conditions. The opioid antagonist, naloxone, induced similar levels of withdrawal in all three genotypes following ACEA treatment, confirming an opioidergic contribution to cannabinoid withdrawal. Anxiety-like responses in the light-dark test were similar across WT and KO lines; neither acute nor repeated ACEA injections modified this behavior. Similarly, administration of the Delta opioid receptor antagonist, naltrindole, alone or in combination with ACEA, did not alter responses of WT mice in the light-dark test. Thus, there may be a dissociation in the effect of pharmacological blockade vs. genetic deletion of Delta opioid receptors on anxiety-like behavior in mice. Finally, our study revealed a biphasic effect of ACEA on depressive-like behavior in the splash test, with a prodepressive state induced by acute exposure, followed by a shift to an anti-depressive state with repeated injections. The initial pro-depressive effect of ACEA was absent in Mu KO mice. In sum, our findings confirm interactions between opioid and cannabinoid systems in withdrawal and reveal reduced depressive-like symptoms with repeated CB1 receptor activation.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, Université de Strasbourg Faculté de Psychologie, Strasbourg, France
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France
| | - Mary C Olmstead
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, Université de Strasbourg Faculté de Psychologie, Strasbourg, France
| |
Collapse
|
10
|
Mollica A, Pelliccia S, Famiglini V, Stefanucci A, Macedonio G, Chiavaroli A, Orlando G, Brunetti L, Ferrante C, Pieretti S, Novellino E, Benyhe S, Zador F, Erdei A, Szucs E, Samavati R, Dvrorasko S, Tomboly C, Ragno R, Patsilinakos A, Silvestri R. Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors. J Enzyme Inhib Med Chem 2017; 32:444-451. [PMID: 28097916 PMCID: PMC6009935 DOI: 10.1080/14756366.2016.1260565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.
Collapse
Affiliation(s)
- Adriano Mollica
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Sveva Pelliccia
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Valeria Famiglini
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Azzurra Stefanucci
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giorgia Macedonio
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Annalisa Chiavaroli
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giustino Orlando
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Luigi Brunetti
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Claudio Ferrante
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Stefano Pieretti
- c Dipartimento del Farmaco , Istituto Superiore di Sanità , Rome , Italy
| | - Ettore Novellino
- d Dipartimento di Farmacia , Università di Napoli "Federico II" , Naples , Italy
| | - Sandor Benyhe
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Ferenc Zador
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Anna Erdei
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Edina Szucs
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Reza Samavati
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Szalbolch Dvrorasko
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Csaba Tomboly
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Rino Ragno
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Alexandros Patsilinakos
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Romano Silvestri
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| |
Collapse
|
11
|
CB1 Cannabinoid Agonist (WIN55,212-2) Within the Basolateral Amygdala Induced Sensitization to Morphine and Increased the Level of μ-Opioid Receptor and c-fos in the Nucleus Accumbens. J Mol Neurosci 2016; 58:446-55. [DOI: 10.1007/s12031-016-0716-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
|
12
|
Zádor F, Wollemann M. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors. Pharmacol Res 2015; 102:254-63. [PMID: 26520391 DOI: 10.1016/j.phrs.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Maria Wollemann
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
13
|
Fujita W, Gomes I, Devi LA. Revolution in GPCR signalling: opioid receptor heteromers as novel therapeutic targets: IUPHAR review 10. Br J Pharmacol 2015; 171:4155-76. [PMID: 24916280 DOI: 10.1111/bph.12798] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/27/2014] [Accepted: 04/16/2014] [Indexed: 12/24/2022] Open
Abstract
GPCRs can interact with each other to form homomers or heteromers. Homomers involve interactions with the same receptor type while heteromers involve interactions between two different GPCRs. These receptor-receptor interactions modulate not only the binding but also the signalling and trafficking properties of individual receptors. Opioid receptor heteromerization has been extensively investigated with the objective of identifying novel therapeutic targets that are as potent as morphine but without the side effects associated with chronic morphine use. In this context, studies have described heteromerization between the different types of opioid receptors and between opioid receptors and a wide range of GPCRs including adrenoceptors, cannabinoid, 5-HT, metabotropic glutamate and sensory neuron-specific receptors. Recent advances in the field involving the generation of heteromer-specific reagents (antibodies or ligands) or of membrane-permeable peptides that disrupt the heteromer interaction are helping to elucidate the physiological role of opioid receptor heteromers and the contribution of the partner receptor to the side effects associated with opioid use. For example, studies using membrane-permeable peptides targeting the heteromer interface have implicated μ and δ receptor heteromers in the development of tolerance to morphine, and heteromers of μ and gastrin-releasing peptide receptors in morphine-induced itch. In addition, a number of ligands that selectively target opioid receptor heteromers exhibit potent antinociception with a decrease in the side effects commonly associated with morphine use. In this review, we summarize the latest findings regarding the biological and functional characteristics of opioid receptor heteromers both in vitro and in vivo.
Collapse
Affiliation(s)
- Wakako Fujita
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
14
|
Befort K. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Front Pharmacol 2015; 6:6. [PMID: 25698968 PMCID: PMC4318341 DOI: 10.3389/fphar.2015.00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins). The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.
Collapse
Affiliation(s)
- Katia Befort
- CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives - UMR7364, Faculté de Psychologie, Neuropôle de Strasbourg - Université de Strasbourg, Strasbourg France
| |
Collapse
|
15
|
Gomes I, Gupta A, Bushlin I, Devi LA. Antibodies to probe endogenous G protein-coupled receptor heteromer expression, regulation, and function. Front Pharmacol 2014; 5:268. [PMID: 25520661 PMCID: PMC4253664 DOI: 10.3389/fphar.2014.00268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/16/2014] [Indexed: 11/13/2022] Open
Abstract
Over the last decade an increasing number of studies have focused on the ability of G protein-coupled receptors to form heteromers and explored how receptor heteromerization modulates the binding, signaling and trafficking properties of individual receptors. Most of these studies were carried out in heterologous cells expressing epitope tagged receptors. Very little information is available about the in vivo physiological role of G protein-coupled receptor heteromers due to a lack of tools to detect their presence in endogenous tissue. Recent advances such as the generation of mouse models expressing fluorescently labeled receptors, of TAT based peptides that can disrupt a given heteromer pair, or of heteromer-selective antibodies that recognize the heteromer in endogenous tissue have begun to elucidate the physiological and pathological roles of receptor heteromers. In this review we have focused on heteromer-selective antibodies and describe how a subtractive immunization strategy can be successfully used to generate antibodies that selectively recognize a desired heteromer pair. We also describe the uses of these antibodies to detect the presence of heteromers, to study their properties in endogenous tissues, and to monitor changes in heteromer levels under pathological conditions. Together, these findings suggest that G protein-coupled receptor heteromers represent unique targets for the development of drugs with reduced side-effects.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Achla Gupta
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Ittai Bushlin
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai New York, NY, USA ; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
16
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
17
|
Zádor F, Kocsis D, Borsodi A, Benyhe S. Micromolar concentrations of rimonabant directly inhibits delta opioid receptor specific ligand binding and agonist-induced G-protein activity. Neurochem Int 2014; 67:14-22. [PMID: 24508403 DOI: 10.1016/j.neuint.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 12/16/2022]
Abstract
WHAT IS KNOWN There is a growing number of evidence showing, that the cannabinoid receptor 1 (CB1) antagonist rimonabant has many non-cannabimimetic actions, such as affecting the opioid system. The direct effect of rimonabant on opioid receptors has been studied so far mainly on μ-opioid receptors. However recently the δ-opioid receptor (DOR) receives much more attention as before, due to its potential therapeutic applications, such as nociception or treatment for psychiatric disorders. OBJECTIVES To investigate the direct effect of rimonabant on DOR specific ligand binding and on the DOR mediated G-protein activation. RESULTS Micromolar concentrations of rimonabant directly inhibited the DOR specific agonist binding in radioligand competition binding experiments using Chinese hamster ovary cells stably transfected with mouse DOR (CHO-mDOR). However the inhibition occurred also in the subnanomolar range during DOR specific antagonist binding in similar experimental conditions. In functional [(35)S]GTPγS binding assays rimonabant significantly decreased the basal receptor activity in CHO-mDOR but also in parental CHO cell membranes. During DOR agonist stimulation, micromolar concentration of rimonabant attenuated the DOR G-protein activation and the potency of the activator ligand in [(35)S]GTPγS binding assays performed in CHO-mDOR, in wild type and also in CB1/CB2 double knock-out mouse forebrain membranes. Yet again this inhibitory action was DOR specific, since it did not occur during other specific GPCR agonist mediated G-protein activation. CONCLUSION Rimonabant directly inhibited DOR function in the micromolar concentrations. The inhibitory actions indicate an antagonistic behavior towards DOR which was established by the followings: (i) rimonabant inhibited DOR antagonist binding more effectively than agonist binding, (ii) the inverse agonistic, agonistic effect of the compound can be excluded, and (iii) additionally according to previous findings the allosteric mechanism can also be foreclosed.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Ligands
- Mice
- Piperidines/pharmacology
- Protein Binding
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB2/genetics
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Rimonabant
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Dóra Kocsis
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
18
|
Gomes I, Fujita W, Chandrakala MV, Devi LA. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:207-65. [PMID: 23663971 DOI: 10.1016/b978-0-12-386931-9.00009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | | | | | | |
Collapse
|
19
|
Bushlin I, Gupta A, Stockton SD, Miller LK, Devi LA. Dimerization with cannabinoid receptors allosterically modulates delta opioid receptor activity during neuropathic pain. PLoS One 2012; 7:e49789. [PMID: 23272051 PMCID: PMC3522681 DOI: 10.1371/journal.pone.0049789] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/11/2012] [Indexed: 11/20/2022] Open
Abstract
The diversity of receptor signaling is increased by receptor heteromerization leading to dynamic regulation of receptor function. While a number of studies have demonstrated that family A G-protein-coupled receptors are capable of forming heteromers in vitro, the role of these heteromers in normal physiology and disease has been poorly explored. In this study, direct interactions between CB(1) cannabinoid and delta opioid receptors in the brain were examined. Additionally, regulation of heteromer levels and signaling in a rodent model of neuropathic pain was explored. First we examined changes in the expression, function and interaction of these receptors in the cerebral cortex of rats with a peripheral nerve lesion that resulted in neuropathic pain. We found that, following the peripheral nerve lesion, the expression of both cannabinoid type 1 receptor (CB(1)R) and the delta opioid receptor (DOR) are increased in select brain regions. Concomitantly, an increase in CB(1)R activity and decrease in DOR activity was observed. We hypothesize that this decrease in DOR activity could be due to heteromeric interactions between these two receptors. Using a CB(1)R-DOR heteromer-specific antibody, we found increased levels of CB(1)R-DOR heteromer protein in the cortex of neuropathic animals. We subsequently examined the functionality of these heteromers by testing whether low, non-signaling doses of CB(1)R ligands influenced DOR signaling in the cortex. We found that, in cortical membranes from animals that experienced neuropathic pain, non-signaling doses of CB(1)R ligands significantly enhanced DOR activity. Moreover, this activity is selectively blocked by a heteromer-specific antibody. Together, these results demonstrate an important role for CB(1)R-DOR heteromers in altered cortical function of DOR during neuropathic pain. Moreover, they suggest the possibility that a novel heteromer-directed therapeutic strategy for enhancing DOR activity, could potentially be employed to reduce anxiety associated with chronic pain.
Collapse
Affiliation(s)
- Ittai Bushlin
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Achla Gupta
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Steven D. Stockton
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lydia K. Miller
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lakshmi A. Devi
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
20
|
Abstract
Opiates such as morphine and fentanyl, a major class of analgesics used in the clinical management of pain, exert their effects through the activation of opioid receptors. Opioids are among the most commonly prescribed and frequently abused drugs in the USA; however, the prolonged use of opiates often leads to the development of tolerance and addiction. Although blockade of opioid receptors with antagonists such as naltrexone and naloxone can lessen addictive impulses and facilitate recovery from overdose, systemic disruption of endogenous opioid receptor signalling through the use of these antagonistic drugs can have severe side effects. In the light of these challenges, current efforts have focused on identifying new therapeutic targets that selectively and specifically modulate opioid receptor signalling and function so as to achieve analgesia without the adverse effects associated with chronic opiate use. We have previously reported that opioid receptors interact with each other to form heteromeric complexes and that these interactions affect morphine signalling. Since chronic morphine administration leads to an enhanced level of these heteromers, these opioid receptor heteromeric complexes represent novel therapeutic targets for the treatment of pain and opiate addiction. In this review, we discuss the role of heteromeric opioid receptor complexes with a focus on mu opioid receptor (MOR) and delta opioid receptor (DOR) heteromers. We also highlight the evidence for altered pharmacological properties of opioid ligands and changes in ligand function resulting from the heteromer formation.
Collapse
|
21
|
Involvement of opioid system in cognitive deficits induced by ∆⁹-tetrahydrocannabinol in rats. Psychopharmacology (Berl) 2012; 219:1111-8. [PMID: 21858449 DOI: 10.1007/s00213-011-2442-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/02/2011] [Indexed: 02/02/2023]
Abstract
RATIONALE Cannabis is a widely used illicit substance. ∆(9)-Tetrahydrocannabinol (THC), the major psychoactive component of cannabis, is known to induce cognitive deficits that closely resemble the impairment observed in schizophrenic patients. We previously reported that THC (6 mg/kg) impairs spatial memory in the eight-arm radial maze, and that this memory disturbance was reversed by the cannabinoid CB(1) receptor antagonist rimonabant (0.1 mg/kg), suggesting that the effect of THC is mediated through cannabinoid CB(1) receptors. OBJECTIVES The present study was designed to examine the possible involvement of opioid receptors in the THC-induced impairment of spatial memory. METHODS The effects of treatment with the nonselective opioid receptor antagonist naloxone (0.3 and 1 mg/kg), the μ-opioid receptor antagonist β-funaltrexamine (0.3 and 1 mg/kg), the δ-opioid receptor antagonist naltrindole (1 and 3 mg/kg), and the κ-opioid receptor antagonist nor-binaltorphimine (0.03 and 0.1 mg/kg) on the impairment of spatial memory induced by THC were evaluated using the eight-arm radial maze. RESULTS The nonselective opioid receptor antagonist naloxone, the μ-opioid receptor antagonist β-funaltrexamine, and the κ-opioid receptor antagonist nor-binaltorphimine, but not the δ-opioid receptor antagonist naltrindole, attenuated THC-induced cognitive deficits, suggesting an involvement of μ- and κ-opioid receptors in this behavioral response. CONCLUSIONS These results demonstrate that the endogenous opioid system is involved in the regulation of the acute short-term and working memory deficits induced by cannabis.
Collapse
|
22
|
Rozenfeld R, Bushlin I, Gomes I, Tzavaras N, Gupta A, Neves S, Battini L, Gusella GL, Lachmann A, Ma'ayan A, Blitzer RD, Devi LA. Receptor heteromerization expands the repertoire of cannabinoid signaling in rodent neurons. PLoS One 2012; 7:e29239. [PMID: 22235275 PMCID: PMC3250422 DOI: 10.1371/journal.pone.0029239] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022] Open
Abstract
A fundamental question in G protein coupled receptor biology is how a single ligand acting at a specific receptor is able to induce a range of signaling that results in a variety of physiological responses. We focused on Type 1 cannabinoid receptor (CB1R) as a model GPCR involved in a variety of processes spanning from analgesia and euphoria to neuronal development, survival and differentiation. We examined receptor dimerization as a possible mechanism underlying expanded signaling responses by a single ligand and focused on interactions between CB1R and delta opioid receptor (DOR). Using co-immunoprecipitation assays as well as analysis of changes in receptor subcellular localization upon co-expression, we show that CB1R and DOR form receptor heteromers. We find that heteromerization affects receptor signaling since the potency of the CB1R ligand to stimulate G-protein activity is increased in the absence of DOR, suggesting that the decrease in CB1R activity in the presence of DOR could, at least in part, be due to heteromerization. We also find that the decrease in activity is associated with enhanced PLC-dependent recruitment of arrestin3 to the CB1R-DOR complex, suggesting that interaction with DOR enhances arrestin-mediated CB1R desensitization. Additionally, presence of DOR facilitates signaling via a new CB1R-mediated anti-apoptotic pathway leading to enhanced neuronal survival. Taken together, these results support a role for CB1R-DOR heteromerization in diversification of endocannabinoid signaling and highlight the importance of heteromer-directed signal trafficking in enhancing the repertoire of GPCR signaling.
Collapse
Affiliation(s)
- Raphael Rozenfeld
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ittai Bushlin
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience and The Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Nikos Tzavaras
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Achla Gupta
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Susana Neves
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
- Systems Biology Center of New York, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lorenzo Battini
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - G. Luca Gusella
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Alexander Lachmann
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
- Systems Biology Center of New York, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
- Systems Biology Center of New York, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Robert D. Blitzer
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
- Systems Biology Center of New York, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lakshmi A. Devi
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience and The Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- Systems Biology Center of New York, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 2011; 132:215-41. [PMID: 21798285 PMCID: PMC3209522 DOI: 10.1016/j.pharmthera.2011.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/12/2022]
Abstract
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed.
Collapse
Affiliation(s)
- Antonia Serrano
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
24
|
Abstract
As previous work has highlighted the significance of the cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes with respect to cannabis dependence (CD), this study sought to characterize the neural mechanisms that underlie these genetic effects. To this end, we collected DNA samples and fMRI data using a cue-elicited craving paradigm in thirty-seven 3-day-abstinent regular marijuana users. The participants were grouped according to their genotype on two single-nucleotide polymorphisms (SNPs) earlier associated with CD phenotypes: rs2023239 in CNR1 and rs324420 in FAAH. Between-group comparisons showed that carriers of the CNR1 rs2023239 G allele had significantly greater activity in reward-related areas of the brain, such as the orbitofrontal cortex (OFC), inferior frontal gyrus (IFG), and anterior cingulate gyrus (ACG), during exposure to marijuana cues, as compared with those with the A/A genotype for this SNP. The FAAH group contrasts showed that FAAH rs324420 C homozygotes also had greater activation in widespread areas within the reward circuit, specifically in the OFC, ACG, and nucleus accumbens (NAc), as compared with the FAAH A-allele carriers. Moreover, there was a positive correlation between neural response in OFC and NAc and the total number of risk alleles (cluster-corrected p<0.05). These findings are in accord with earlier reported associations between CNR1 and FAAH and CD intermediate phenotypes, and suggest that the underlying mechanism of these genetic effects may be enhanced neural response in reward areas of the brain in carriers of the CNR1 G allele and FAAH C/C genotype in response to marijuana cues.
Collapse
|
25
|
Cannabinoid CB1 receptors of the rat central amygdala mediate anxiety-like behavior: interaction with the opioid system. Behav Pharmacol 2008; 19:716-23. [DOI: 10.1097/fbp.0b013e3283123c83] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Ferré S, Goldberg SR, Lluis C, Franco R. Looking for the role of cannabinoid receptor heteromers in striatal function. Neuropharmacology 2008; 56 Suppl 1:226-34. [PMID: 18691604 DOI: 10.1016/j.neuropharm.2008.06.076] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/16/2008] [Accepted: 06/29/2008] [Indexed: 02/07/2023]
Abstract
The introduction of two concepts, "local module" and "receptor heteromer", facilitates the understanding of the role of interactions between different neurotransmitters in the brain. In artificial cell systems, cannabinoid CB(1) receptors form receptor heteromers with dopamine D2, adenosine A2A and mu opioid receptors. There is indirect but compelling evidence for the existence of the same CB1 receptor heteromers in striatal local modules centered in the dendritic spines of striatal GABAergic efferent neurons, particularly at a postsynaptic location. Their analysis provides new clues for the role of endocannabinoids in striatal function, which cannot only be considered as retrograde signals that inhibit neurotransmitter release. Recent studies using a new method to detect heteromerization of more than two proteins, which consists of sequential BRET-FRET (SRET) analysis, has demonstrated that CB1, D2 and A2A receptors can form heterotrimers in transfected cells. It is likely that functional CB1-A2A-D2 receptor heteromers can be found where they are highly co-expressed, in the dendritic spines of GABAergic enkephalinergic neurons. The functional properties of these multiple receptor heteromers and their role in striatal function need to be determined.
Collapse
Affiliation(s)
- Sergi Ferré
- National Institute on Drug Abuse, Intramural Research Program, Biomedical Research Center, National Institutes of Health, Department of Health and Human Services, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
27
|
Shafaroodi H, Ghasemi M, Dehpour AR. Elevation of pentylenetetrazole-induced seizure threshold in cholestatic mice: interaction between opioid and cannabinoid systems. J Gastroenterol Hepatol 2008; 23:e251-7. [PMID: 17764531 DOI: 10.1111/j.1440-1746.2007.05101.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Several studies have reported that endogenous opioid and cannabinoid systems may be involved in some pathophysiological changes occurring in cholestatic liver disease. It is well known that endogenous opioids and cannabinoids alter the susceptibility of experimental animals to different models of seizure. METHODS The alterations in pentylenetetrazole-induced clonic seizure thresholds were evaluated from 1 to 6 days after bile duct ligation in mice. Whether the pretreatment of cholestatic mice with different doses of opioid receptor antagonist naltrexone or cannabinoid CB(1) receptor antagonist AM251 (AM251) would have changed the clonic seizure threshold was also examined. RESULTS Although the clonic seizure threshold was similar between sham-operated and unoperated mice, there was a time-dependent increase in the threshold in cholestatic mice, reaching a peak on day 3 after bile duct ligation and declining partially after day 4. Chronic pretreatment with naltrexone (2, 5, and 10 mg/kg) reversed the increased threshold in cholestatic mice on day 3 after operation in a dose-dependent manner with the highest doses used restoring the threshold to that of the control animals. A similar reversal of the increased threshold was observed after acute (0.5, 0.75, and 1 mg/kg) or chronic (0.5 mg/kg for 4 days) pretreatment with AM251. Moreover, concurrent administration of doses of AM251 and naltrexone that each separately induced a partial reversal of increased seizure threshold in cholestasis caused a complete restoring of the threshold to the control level. CONCLUSIONS Both opioid and cannabinoid CB(1) receptors may be involved in the dramatic increase in pentylenetetrazole-induced seizure threshold in cholestasis.
Collapse
Affiliation(s)
- Hamed Shafaroodi
- Department of Pharmacology, Tehran Medical Unit, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
28
|
Abstract
Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.
Collapse
|
29
|
Trezza V, Cuomo V, Vanderschuren LJMJ. Cannabis and the developing brain: insights from behavior. Eur J Pharmacol 2008; 585:441-52. [PMID: 18413273 DOI: 10.1016/j.ejphar.2008.01.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 12/20/2007] [Accepted: 01/22/2008] [Indexed: 02/05/2023]
Abstract
The isolation and identification, in 1964, of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, opened the door to a whole new field of medical research. The exploration of the therapeutic potential of THC and other natural and synthetic cannabinoid compounds was paralleled by the discovery of the endocannabinoid system, comprising cannabinoid receptors and their endogenous ligands, which offered exciting new insights into brain function. Besides its well-known involvement in specific brain functions, such as control of movement, memory and emotions, the endocannabinoid system plays an important role in fundamental developmental processes such as cell proliferation, migration and differentiation. For this reason, changes in its activity during stages of high neuronal plasticity, such as the perinatal and the adolescent period, can have long-lasting neurobehavioral consequences. Here, we summarize human and animal studies examining the behavioral and neurobiological effects of in utero and adolescent exposure to cannabis. Since cannabis preparations are widely used and abused by young people, including pregnant women, understanding how cannabinoid compounds affect the developing brain, leading to neurobehavioral alterations or neuropsychiatric disorders later in life, is a serious health issue. In addition, since the endocannabinoid system is emerging as a novel therapeutic target for the treatment of several neuropsychiatric diseases, a detailed investigation of possible adverse effects of cannabinoid compounds on the central nervous system (CNS) of immature individuals is warranted.
Collapse
Affiliation(s)
- Viviana Trezza
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
30
|
Zani A, Braida D, Capurro V, Sala M. Delta9-tetrahydrocannabinol (THC) and AM 404 protect against cerebral ischaemia in gerbils through a mechanism involving cannabinoid and opioid receptors. Br J Pharmacol 2007; 152:1301-11. [PMID: 17965746 PMCID: PMC2189998 DOI: 10.1038/sj.bjp.0707514] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/07/2007] [Accepted: 09/18/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE It has been suggested that the endocannabinoid system elicits neuroprotection against excitotoxic brain damage. In the present study the therapeutic potential of AM 404 on ischaemia-induced neuronal injury was investigated in vivo and compared with that of the classical cannabinoid receptor type 1 (CB1) agonist, delta 9-tetraydrocannabinol (THC), using a model of transient global cerebral ischaemia in the gerbil. EXPERIMENTAL APPROACH The effects of AM 404 (0.015-2 mg kg(-1)) and THC (0.05-2 mg kg(-1)), given 5 min after ischaemia, were measured from 1 h to 7 days in terms of electroencephalographic (EEG) total spectral power, spontaneous motor activity, memory function, rectal temperature and hippocampal CA1 neuronal count. KEY RESULTS Over the dose range tested, AM 404 (2 mg kg(-1)) and THC (1 mg kg(-1)) completely reversed the ischaemia-induced behavioural, EEG and histological damage. Only THC (1 and 2 mg kg(-1)) induced a decrease of body temperature. Pretreatment with the selective CB1 receptor antagonist, AM 251 (1 mg kg(-1)) and the opioid antagonist, naloxone (2 mg kg(-1)) reversed the protective effect induced by both AM 404 and THC while the TRPV1 vanilloid antagonist, capsazepine (0.01 mg kg(-1)), was ineffective. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate that AM 404 and THC reduce neuronal damage caused by bilateral carotid occlusion in gerbils and that this protection is mediated through an interaction with CB1 and opioid receptors. Endocannabinoids might form the basis for the development of new neuroprotective drugs useful for the treatment of stroke and other neurodegenerative pathologies.
Collapse
Affiliation(s)
- A Zani
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Faculty of Sciences, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
31
|
Endocannabinoid system involvement in brain reward processes related to drug abuse. Pharmacol Res 2007; 56:393-405. [PMID: 17936009 DOI: 10.1016/j.phrs.2007.09.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/21/2007] [Accepted: 09/05/2007] [Indexed: 02/07/2023]
Abstract
Cannabis is the most commonly abused illegal drug in the world and its main psychoactive ingredient, delta-9-tetrahydrocannabinol (THC), produces rewarding effects in humans and non-human primates. Over the last several decades, an endogenous system comprised of cannabinoid receptors, endogenous ligands for these receptors and enzymes responsible for the synthesis and degradation of these endogenous cannabinoid ligands has been discovered and partly characterized. Experimental findings strongly suggest a major involvement of the endocannabinoid system in general brain reward functions and drug abuse. First, natural and synthetic cannabinoids and endocannabinoids can produce rewarding effects in humans and laboratory animals. Second, activation or blockade of the endogenous cannabinoid system has been shown to modulate the rewarding effects of non-cannabinoid psychoactive drugs. Third, most abused drugs alter brain levels of endocannabinoids in the brain. In addition to reward functions, the endocannabinoid cannabinoid system appears to be involved in the ability of drugs and drug-related cues to reinstate drug-seeking behavior in animal models of relapse. Altogether, evidence points to the endocannadinoid system as a promising target for the development of medications for the treatment of drug abuse.
Collapse
|
32
|
Solinas M, Scherma M, Tanda G, Wertheim CE, Fratta W, Goldberg SR. Nicotinic facilitation of delta9-tetrahydrocannabinol discrimination involves endogenous anandamide. J Pharmacol Exp Ther 2007; 321:1127-34. [PMID: 17351107 DOI: 10.1124/jpet.106.116830] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemic administration of the main active ingredient in cannabis, Delta9-tetrahydrocannabinol (THC), alters extracellular levels of acetylcholine in several brain areas, suggesting an involvement of the cholinergic system in the psychotropic effects of cannabis. Here, we investigated whether drugs acting at either nicotinic or muscarinic receptors can modulate the discriminative effects of THC. In rats that had learned to discriminate effects of 3 mg/kg i.p. injections of THC from injections of vehicle, the nicotinic agonist nicotine (0.1-0.56 mg/kg subcutaneous) and the muscarinic agonist pilocarpine (0.3-3 mg/kg i.p.) did not produce THC-like effects, but they both potentiated the discriminative effects of low doses of THC (0.3-1 mg/kg). Neither the nicotinic antagonist mecamylamine (1-5.6 mg/kg i.p.) nor the muscarinic antagonist scopolamine (0.01-0.1 mg/kg i.p.) altered the discriminative effects of THC, but they blocked the potentiation of discriminative effects of THC by nicotine and pilocarpine, respectively. The cannabinoid CB(1) antagonist rimonabant (1 mg/kg i.p.) reversed nicotine- but not pilocarpine-induced potentiation of THC discrimination, suggesting that nicotine potentiation is, at least in part, mediated by release of endogenous cannabinoids in the brain. In addition, when metabolic degradation of the endogenous cannabinoid anandamide was blocked by the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3'-carbamoylbiphenil-3-yl-ester (URB-597; 0.3 mg/kg i.p.) nicotine, but not pilocarpine, produced significant THC-like discriminative effects that were antagonized by rimonabant. Our results suggest that nicotinic and muscarinic cholinergic receptors modulate the discriminative effects of THC by fundamentally different mechanisms. Nicotinic, but not muscarinic, modulation of THC discrimination involves elevations in endogenous levels of anandamide.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Discrimination, Psychological/drug effects
- Dose-Response Relationship, Drug
- Dronabinol/administration & dosage
- Dronabinol/pharmacology
- Drug Synergism
- Endocannabinoids
- Enzyme Inhibitors/pharmacology
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Male
- Mecamylamine/pharmacology
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Nicotine/administration & dosage
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Nicotinic Antagonists/pharmacology
- Pilocarpine/pharmacology
- Polyunsaturated Alkamides/metabolism
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Muscarinic/physiology
- Receptors, Nicotinic/physiology
- Reinforcement, Psychology
- Scopolamine/pharmacology
Collapse
Affiliation(s)
- Marcello Solinas
- Laboratoire de Biologie et Physiologie Cellulaires, Centre National de la Recherche Scientifique-VMR6187, University of Poitiers, 40 Avenue du Recteur Pineau, 86022, Poitiers, France.
| | | | | | | | | | | |
Collapse
|
33
|
Urigüen L, Berrendero F, Ledent C, Maldonado R, Manzanares J. Kappa- and delta-opioid receptor functional activities are increased in the caudate putamen of cannabinoid CB1 receptor knockout mice. Eur J Neurosci 2005; 22:2106-10. [PMID: 16262648 DOI: 10.1111/j.1460-9568.2005.04372.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to examine the functional interaction between endogenous opioid and cannabinoid receptor systems in the caudate putamen and nucleus accumbens. We therefore examined by autoradiography the functional activity and density of micro-, kappa- and delta-opioid receptors in both brain regions of cannabinoid CB1 receptor knockout mice. Functional activity was estimated by measuring agonist-stimulated [35S]GTPgammaS binding. Results showed that deletion of the CB1 cannabinoid receptor markedly increased kappa-opioid (50%) and delta-opioid (42%) receptor activities whereas no differences were found in micro-opioid receptor in the caudate putamen. In contrast, binding autoradiography showed a similar density of micro-, kappa- and delta-opioid receptors between mutant and wild-type mice. No differences were found in densities or activities of micro-, kappa- and delta-opioid receptors between mutant and wild-type mice in the nucleus accumbens. Taken together, our results revealed that deletion of CB1 cannabinoid receptors produced a pronounced increase in the activity of kappa- and delta-opioid receptors in the caudate putamen. This endogenous interaction between opioid and cannabinoid receptors may be relevant to further understand a variety of neuroadaptative processes involving the participation of opioid receptors, such as motor behaviour, emotional responses and drug dependence.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Autoradiography/methods
- Benzamides/pharmacology
- Competitive Bidding/methods
- Drug Interactions
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics
- Male
- Mice
- Mice, Knockout
- Neostriatum/drug effects
- Neostriatum/metabolism
- Piperazines/pharmacology
- Protein Binding/drug effects
- Receptor, Cannabinoid, CB1/deficiency
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/physiology
- Sulfur Isotopes/pharmacokinetics
Collapse
Affiliation(s)
- Leyre Urigüen
- Servicio de Psiquiatría y Unidad de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Pol O, Murtra P, Caracuel L, Valverde O, Puig MM, Maldonado R. Expression of opioid receptors and c-fos in CB1 knockout mice exposed to neuropathic pain. Neuropharmacology 2005; 50:123-32. [PMID: 16360182 DOI: 10.1016/j.neuropharm.2005.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/19/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
The development of neuropathic pain is associated with multiple changes in gene expression occurring in the dorsal root ganglia (DRG) and spinal cord. The goal of this study was to evaluate whether the disruption of CB1 cannabinoid receptor gene modulates the changes induced by neuropathic pain in the expression of mu- (MOR), delta- (DOR) and kappa-opioid receptors (KOR) mRNA levels in the DRG and spinal cord. The induction of c-fos expression in the lumbar and sacral regions of the spinal cord was also evaluated in these animals. Opioid receptors mRNA levels were determined by using real-time PCR and Fos protein levels by immunohistochemistry. Nerve injury significantly reduced the expression of MOR in the DRG and the lumbar section of the spinal cord from CB1 cannabinoid knockout (KO) mice and wild-type littermates (WT). In contrast, mRNA levels of DOR and KOR were not significantly changed in any of the different sections analysed. Furthermore, sciatic nerve injury evoked a similar increase of c-fos expression in lumbar and sacral regions of the spinal cord of both KO and WT. In all instances, no significant differences were observed between WT and KO mice. These data revealed specific changes induced by neuropathic pain in MOR expression and c-fos levels in the DRG and/or spinal cord that were not modified by the genetic disruption of CB1 cannabinoid receptors.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Cell Count
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiology
- Genes, fos/genetics
- Hyperalgesia/chemically induced
- Hyperalgesia/psychology
- Immunohistochemistry
- Male
- Mice
- Mice, Knockout
- Pain/etiology
- Pain/physiopathology
- Peripheral Nervous System Diseases/etiology
- Peripheral Nervous System Diseases/physiopathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Opioid/biosynthesis
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, kappa/biosynthesis
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spinal Cord/physiology
- Spinal Cord Injuries/genetics
- Spinal Cord Injuries/physiopathology
Collapse
Affiliation(s)
- Olga Pol
- Department of Anesthesiology, Hospital del Mar, IMIM, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Jardinaud F, Crété D, Canestrelli C, Ledent C, Roques BP, Noble F. CB1 receptor knockout mice show similar behavioral modifications to wild-type mice when enkephalin catabolism is inhibited. Brain Res 2005; 1063:77-83. [PMID: 16256959 DOI: 10.1016/j.brainres.2005.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/13/2005] [Accepted: 09/25/2005] [Indexed: 12/21/2022]
Abstract
Behavioral and biochemical studies have suggested a functional link between the endogenous cannabinoid and opioid systems. Different hypotheses have been proposed to explain the interactions between opioid and cannabinoid systems such as a common pathway stimulating the dopaminergic system, a facilitation of signal-transduction- and/or a cannabinoid-induced enhancement of opioid peptide release. However, at this time, all the studies have been performed with exogenous agonists (delta-9-tetrahydrocannabinol or morphine), leading to a generally excessive stimulation of receptors normally stimulated by endogenous effectors (anandamide or opioid peptides) in various brain structures. To overcome this problem, we have measured various behavioral responses induced by the stimulation of the endogenous opioid system using the dual inhibitor of enkephalin-degrading enzymes, RB101, in CB1 receptor knockout mice. Thus, analgesia, locomotor activity, anxiety and antidepressant-like effects were measured after RB101 administration (80 and 120 mg/kg i.p. or 10 mg/kg, i.v.) in CB1 receptor knockout mice and their wild-type littermates. In all the experiments, inhibition of enkephalin catabolism produced similar modifications in behavior observed in CB1 knockout and wild-type mice. These results suggest limited physiological interaction between cannabinoid and opioid systems.
Collapse
Affiliation(s)
- Fanny Jardinaud
- Université Paris Descartes, Neuropsychopharmacologie des Addictions, 4 avenue de l'Observatoire-75270 PARIS Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Solinas M, Panlilio LV, Tanda G, Makriyannis A, Matthews SA, Goldberg SR. Cannabinoid agonists but not inhibitors of endogenous cannabinoid transport or metabolism enhance the reinforcing efficacy of heroin in rats. Neuropsychopharmacology 2005; 30:2046-57. [PMID: 15870833 DOI: 10.1038/sj.npp.1300754] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accumulating evidence suggests that the endogenous cannabinoid system is involved in the reinforcing effects of heroin. In rats intravenously self-administering heroin, we investigated effects of cannabinoid CB1 receptor agonists and compounds that block transport or metabolism of the endogenous cannabinoid anandamide. The natural cannnabinoid CB1 receptor agonist delta-9-tetrahydrocannabinol (THC, 0.3-3 mg/kg i.p.) did not alter self-administration of heroin under a fixed-ratio one (FR1) schedule, except at a high 3 mg/kg dose which decreased heroin self-administration. Under a progressive-ratio schedule, however, THC dose-dependently increased the number of 50 mug/kg heroin injections self-administered per session and the maximal ratio completed (break-point), with peak increases at 1 mg/kg THC. In addition, 1 mg/kg THC increased break-points and injections self-administered over a wide range of heroin injection doses (25-100 microg/kg), indicating an increase in heroin's reinforcing efficacy and not its potency. The synthetic cannabinoid CB1 receptor agonist WIN55,212-2 (0.3-3 mg/kg i.p.) had effects similar to THC under the progressive-ratio schedule. In contrast, AM-404 (1-10 mg/kg i.p.), an inhibitor of transport of anandamide, and URB-597 (0.01-0.3 mg/kg i.p.), an inhibitor of the enzyme fatty acid amide hydrolase (FAAH) that degrades anandamide, or their combination, did not increase reinforcing efficacy of heroin at any dose tested. Thus, activation of cannabinoid CB1 receptors facilitates the reinforcing efficacy of heroin and this appears to be mediated by interactions between cannabinoid CB1 receptors and mu-opioid receptors and their signaling pathways, rather than by an opioid-induced release of endogenous cannabinoids.
Collapse
Affiliation(s)
- Marcello Solinas
- Preclinical Pharmacology Section, Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
37
|
Solinas M, Goldberg SR. Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology 2005; 30:2035-45. [PMID: 15812567 DOI: 10.1038/sj.npp.1300720] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Strong functional interactions exist between endogenous cannabinoid and opioid systems. Here, we investigated whether cannabinoid-opioid interactions modulate motivational effects of food reinforcement. In rats responding for food under a progressive-ratio schedule, the maximal effort (break point) expended to obtain 45 mg pellets depended on the level of food deprivation, with free-feeding reducing break points and food-deprivation increasing break points. Delta-9-tetrahydrocannabinol (THC; 0.3-5.6 mg/kg intrapeitoneally (i.p.)) and morphine (1-10 mg/kg i.p.) dose-dependently increased break points for food reinforcement, while the cannabinoid CB1 receptor antagonist rimonabant (SR-141716A; 0.3-3 mg/kg i.p.) and the preferential mu-opioid receptor antagonist naloxone (0.3-3 mg/kg i.p.) dose-dependently decreased break points. THC and morphine only increased break points when food was delivered during testing, suggesting that these treatments directly influenced reinforcing effects of food, rather than increasing behavior in a nonspecific manner. Effects of THC were blocked by rimonabant and effects of morphine were blocked by naloxone, demonstrating that THC's effects depended on cannabinoid CB1 receptor activation and morphine's effects depended on opioid-receptor activation. Furthermore, THC's effects were blocked by naloxone and morphine's effects were blocked by rimonabant, demonstrating that mu-opioid receptors were involved in the effects of THC and cannabinoid CB1 receptors were involved in the effects of morphine on food-reinforced behavior. Thus, activation of both endogenous cannabinoid and opioid systems appears to jointly facilitate motivational effects of food measured under progressive-ratio schedules of reinforcement and this facilitatory modulation appears to critically depend on interactions between these two systems. These findings support the proposed therapeutic utility of cannabinoid agonists and antagonists in eating disorders.
Collapse
Affiliation(s)
- Marcello Solinas
- Preclinical Pharmacology Section, Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA.
| | | |
Collapse
|
38
|
Solinas M, Zangen A, Thiriet N, Goldberg SR. β-Endorphin elevations in the ventral tegmental area regulate the discriminative effects of Δ-9-tetrahydrocannabinol. Eur J Neurosci 2004; 19:3183-92. [PMID: 15217374 DOI: 10.1111/j.0953-816x.2004.03420.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
beta-Endorphin is an endogenous opioid that produces behavioral effects similar to heroin and morphine and is released in the nucleus accumbens by cocaine, amphetamine and ethanol, suggesting a general involvement in the reinforcing effects of abused drugs. Here we show that, in rats, Delta-9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, produces large increases in extracellular levels of beta-endorphin in the ventral tegmental area and lesser increases in the shell of the nucleus accumbens. We then used a two-lever choice THC-discrimination procedure to investigate whether THC-induced changes in endogenous levels of beta-endorphin regulate the discriminative effects of THC. In rats that had learned to discriminate injections of THC from injections of vehicle, the opioid agonist morphine did not produce THC-like discriminative effects but markedly potentiated discrimination of THC. Conversely, the opioid antagonist naloxone reduced the discriminative effects of THC. Bilateral microinjections of beta-endorphin directly into the ventral tegmental area, but not into the shell of the nucleus accumbens, markedly potentiated the discriminative effects of ineffective threshold doses of THC but had no effect when given alone. This potentiation was blocked by naloxone. Together these results indicate that certain psychotropic effects of THC related to drug abuse liability are regulated by THC-induced elevations in extracellular beta-endorphin levels in brain areas involved in opiate reward and reinforcement processes.
Collapse
Affiliation(s)
- M Solinas
- Preclinical Pharmacology Section, Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|