1
|
Armenta-Resendiz M, Carter JS, Hunter Z, Taniguchi M, Reichel CM, Lavin A. Sex differences in behavior, cognitive, and physiological recovery following methamphetamine administration. Psychopharmacology (Berl) 2024; 241:2331-2345. [PMID: 38953940 PMCID: PMC11513735 DOI: 10.1007/s00213-024-06638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Intact executive functions are required for proper performance of cognitive tasks and relies on balance of excitatory and inhibitory (E/I) transmission in the medial prefrontal cortex (mPFC). Hypofrontality is a state of decreased activity in the mPFC and is seen in several neuropsychiatric conditions, including substance use disorders. People who chronically use methamphetamine (meth) develop hypofrontality and concurrent changes in cognitive processing across several domains. Despite the fact that there are sex difference in substance use disorders, few studies have considered sex as a biological variable regarding meth-mediated hypoactivity in mPFC and concurrent cognitive deficits. Hypofrontality along with changes in cognition are emulated in rodent models following repeated meth administration. Here, we used a meth sensitization regimen to study sex differences in a Temporal Order Memory (TOM) task following short (7 days) or prolonged (28 days) periods of abstinence. GABAergic transmission, GABAA receptor (GABAAR) and GABA Transporter (GAT) mRNA expression in the mPFC were evaluated with patch-clamp recordings and RT-qPCR, respectively. Both sexes sensitized to the locomotor activating effects of meth, with the effect persisting in females. After short abstinence, males and females had impaired TOM and increased GABAergic transmission. Female rats recovered from these changes after prolonged abstinence, whereas male rats showed enduring changes. In general, meth appears to elicit an overall decrease in GABAAR expression after short abstinence; whereas GABA transporters are decreased in meth female rats after prolonged abstinence. These results show sex differences in the long-term effects of repeated meth exposure and suggest that females have neuroprotective mechanisms that alleviate some of the meth-mediated cognitive deficits.
Collapse
Affiliation(s)
| | - Jordan S Carter
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Zachariah Hunter
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Makoto Taniguchi
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Antonieta Lavin
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA.
| |
Collapse
|
2
|
Gómez LCG, Medina NB, Blasco SS, Gravielle MC. Diazepam-Induced Down-Regulation of The Gaba a Receptor α1 Subunit, as Mediated by the Activation of L-Type Voltage-Gated Calcium Channel/Ca 2+/Protein Kinase A Signaling Cascade. Neurosci Lett 2023:137358. [PMID: 37356564 DOI: 10.1016/j.neulet.2023.137358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Benzodiazepines are among the most prescribed drug class worldwide to treat disorders such as anxiety, insomnia, muscle spasticity, and convulsive disorders, and to induce presurgical sedation. Although benzodiazepines exhibit a high therapeutic index and low toxicity in short-term treatments, prolonged administration induces tolerance to most of their therapeutic actions. The mechanism of this tolerance remains unclear. The central actions of benzodiazepines are mediated by binding to GABAA receptors, which mediate most fast inhibitory transmission in the brain. The majority of GABAA receptors are composed of two α-(1-6), two β-(1-3) and one γ-subunits (1-3). In a previous report, we demonstrated that the prolonged exposure of cerebrocortical neurons to diazepam produces a transcriptional repression of the GABAA receptor α1 subunit gene via a mechanism dependent on the activation of L-type voltage-gated calcium channels (L-VGCCs). The results reported here confirm that the diazepam-induced downregulation of the α1 subunit is contingent upon calcium influx from extracellular space. In addition, this regulatory mechanism involves the activation of protein kinase A (PKA) and is accompanied by the activation of two transcription factors, the cAMP-response element-binding protein (CREB) and the inducible cAMP early repressor (ICER). Together, our results suggest that diazepam's activation of an L-VGCC/Ca2+/PKA/CREB-ICER signaling pathway is responsible for the regulation of GABAA receptors. This elucidation of the intracellular signaling cascade activated by a prolonged benzodiazepine exposure, itself potentially involved in the development of tolerance, may contribute to locating molecular targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Leydi Carolina González Gómez
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Nelsy Beatriz Medina
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Sara Sanz Blasco
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - María Clara Gravielle
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina.
| |
Collapse
|
3
|
Gabrielsson J, Hjorth S. Turn On, Tune In, Turnover! Target Biology Impacts In Vivo Potency, Efficacy, and Clearance. Pharmacol Rev 2023; 75:416-462. [PMID: 36627211 DOI: 10.1124/pharmrev.121.000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 01/11/2023] Open
Abstract
Even though significant efforts have been spent in recent years to understand and define the determinants of in vivo potency and clearance, important pieces of information are still lacking. By introducing target turnover into the reasoning, we open up to further the understanding of central factors important to the optimization of translational dose-concentration-response predictions. We describe (i) new (open model) expressions of the in vivo potency and efficacy parameters, which embody target turnover, binding, and complex kinetics, also capturing full, partial, and inverse agonism and antagonism; (ii) a detailed examination of open models to show what potency and efficacy parameters have in common and how they differ; and (iii) a comprehensive literature review showing that target turnover rate varies with age, species, tissue/subregion, treatment, disease state, hormonal and nutritional state, and day-night cycle. The new open model expression, which integrates system and drug properties, shows the following. Fractional turnover rates rather than the absolute target or ligand-target complex expression determine necessary drug exposure via in vivo potency. Absolute ligand-target expression determines the need of a drug, based on the transduction ρ and in vivo efficacy parameters. The free enzyme concentration determines clearance and maximum metabolic rate. The fractional turnover rate determines time to equilibrium between substrate, free enzyme, and complex.The properties of substrate, target, and the complex demonstrate nonsaturable metabolic behavior at equilibrium. Nonlinear processes, previously referred to as capacity- and time-dependent kinetics, may occasionally have been disequilibria. Finally, the open model may pinpoint why some subjects differ in their demand of drug. SIGNIFICANCE STATEMENT: Understanding the target turnover is a central tenet in many translational dose-concentration-response predictions. New open model expressions of in vivo potency, efficacy parameter, and clearance are derived and anchored onto a comprehensive literature review showing that target turnover rate varies with age, species, tissue/subregion, treatment, disease, hormonal and nutritional state, day-night cycle, and more. Target turnover concepts will therefore significantly impact fundamental aspects of pharmacodynamics and pharmacokinetics, thereby also the basics of drug discovery, development, and optimization of clinical dosing.
Collapse
Affiliation(s)
- Johan Gabrielsson
- MedDoor AB, Gothenburg, Sweden (J.G.) and Pharmacilitator AB, Vallda, Sweden (S.H.)
| | - Stephan Hjorth
- MedDoor AB, Gothenburg, Sweden (J.G.) and Pharmacilitator AB, Vallda, Sweden (S.H.)
| |
Collapse
|
4
|
Regulation of GABA A Receptors Induced by the Activation of L-Type Voltage-Gated Calcium Channels. MEMBRANES 2021; 11:membranes11070486. [PMID: 34209589 PMCID: PMC8304739 DOI: 10.3390/membranes11070486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
GABAA receptors are pentameric ion channels that mediate most synaptic and tonic extrasynaptic inhibitory transmissions in the central nervous system. There are multiple GABAA receptor subtypes constructed from 19 different subunits in mammals that exhibit different regional and subcellular distributions and distinct pharmacological properties. Dysfunctional alterations of GABAA receptors are associated with various neuropsychiatric disorders. Short- and long-term plastic changes in GABAA receptors can be induced by the activation of different intracellular signaling pathways that are triggered, under physiological and pathological conditions, by calcium entering through voltage-gated calcium channels. This review discusses several mechanisms of regulation of GABAA receptor function that result from the activation of L-type voltage gated calcium channels. Calcium influx via these channels activates different signaling cascades that lead to changes in GABAA receptor transcription, phosphorylation, trafficking, and synaptic clustering, thus regulating the inhibitory synaptic strength. These plastic mechanisms regulate the interplay of synaptic excitation and inhibition that is crucial for the normal function of neuronal circuits.
Collapse
|
5
|
Field M, Dorovykh V, Thomas P, Smart TG. Physiological role for GABA A receptor desensitization in the induction of long-term potentiation at inhibitory synapses. Nat Commun 2021; 12:2112. [PMID: 33837214 PMCID: PMC8035410 DOI: 10.1038/s41467-021-22420-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
GABAA receptors (GABAARs) are pentameric ligand-gated ion channels distributed throughout the brain where they mediate synaptic and tonic inhibition. Following activation, these receptors undergo desensitization which involves entry into long-lived agonist-bound closed states. Although the kinetic effects of this state are recognised and its structural basis has been uncovered, the physiological impact of desensitization on inhibitory neurotransmission remains unknown. Here we describe an enduring form of long-term potentiation at inhibitory synapses that elevates synaptic current amplitude for 24 h following desensitization of GABAARs in response to agonist exposure or allosteric modulation. Using receptor mutants and allosteric modulators we demonstrate that desensitization of GABAARs facilitates their phosphorylation by PKC, which increases the number of receptors at inhibitory synapses. These observations provide a physiological relevance to the desensitized state of GABAARs, acting as a signal to regulate the efficacy of inhibitory synapses during prolonged periods of inhibitory neurotransmission.
Collapse
Affiliation(s)
- Martin Field
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Valentina Dorovykh
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK
| | - Philip Thomas
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK.
| |
Collapse
|
6
|
Recurrent seizures cause immature brain injury and changes in GABA a receptor α1 and γ2 subunits. Epilepsy Res 2020; 163:106328. [DOI: 10.1016/j.eplepsyres.2020.106328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
|
7
|
Gravielle MC. Regulation of GABAA receptors by prolonged exposure to endogenous and exogenous ligands. Neurochem Int 2018; 118:96-104. [DOI: 10.1016/j.neuint.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
|
8
|
GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila. Proc Natl Acad Sci U S A 2018; 115:E2115-E2124. [PMID: 29440493 PMCID: PMC5834679 DOI: 10.1073/pnas.1713869115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Inhibition is an important feature of the neuronal circuit, and in walking, it aids in controlling coordinated movement of legs, leg segments, and joints. Recent studies in Drosophila report the role of premotor inhibitory interneurons in regulation of larval locomotion. However, in adult walking, the identity and function of premotor interneurons are poorly understood. Here, we use genetic methods for targeted knockdown of inhibitory neurotransmitter receptors in leg motoneurons, combined with automated video recording methods we have developed for quantitative analysis of fly leg movements and walking parameters, to reveal the resulting slower walking speed and defects in walking parameters. Our results indicate that GABAergic premotor inhibition to leg motoneurons is required to control the normal walking behavior in adult Drosophila. Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila. Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila.
Collapse
|
9
|
Chagraoui A, Skiba M, Thuillez C, Thibaut F. To what extent is it possible to dissociate the anxiolytic and sedative/hypnotic properties of GABAA receptors modulators? Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:189-202. [PMID: 27495357 DOI: 10.1016/j.pnpbp.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 01/16/2023]
Abstract
The relatively common view indicates a possible dissociation between the anxiolytic and sedative/hypnotic properties of benzodiazepines (BZs). Indeed, GABAA receptor (GABAAR) subtypes have specific cerebral distribution in distinct neural circuits. Thus, GABAAR subtype-selective drugs may be expected to perform distinct functions. However, standard behavioral test assays provide limited direction towards highlighting new action mechanisms of ligands targeting GABAARs. Automated behavioral tests, lack sensitivity as some behavioral characteristics or subtle behavioral changes of drug effects or that are not considered in the overall analysis (Ohl et al., 2001) and observation-based analyses are not always performed. In addition, despite the use of genetically engineered mice, any possible dissociation between the anxiolytic and sedative properties of BZs remains controversial. Moreover, the involvement the different subtypes of GABAAR subtypes in the anxious behavior and the mechanism of action of anxiolytic agents remains unclear since there has been little success in the pharmacological investigations so far. This raises the question of the involvement of the different subunits in anxiolytic-like and/or sedative effects; and the actual implication of these subunits, particularly, α-subunits in the modulation of sedation and/or anxiety-related disorders. This present review was prompted by several conflicting studies on the degree of involvement of these subunits in anxiolytic-like and/or sedative effects. To this end, we explored the GABAergic system, particularly, the role of different subunits containing synaptic GABAARs. We report herein the targeting gene encoding the different subunits and their contribution in anxiolytic-like and/or sedative actions, as well as, the mechanism underlying tolerance to BZs.
Collapse
Affiliation(s)
- A Chagraoui
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - M Skiba
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France
| | - C Thuillez
- Department of Pharmacology, Rouen University Hospital, Rouen, and INSERM U1096, Laboratory of New Pharmacological Targets for Endothelial Protection and Heart Failure, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| |
Collapse
|
10
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
11
|
Gravielle MC. Activation-induced regulation of GABAA receptors: Is there a link with the molecular basis of benzodiazepine tolerance? Pharmacol Res 2015; 109:92-100. [PMID: 26733466 DOI: 10.1016/j.phrs.2015.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/01/2022]
Abstract
Benzodiazepines have been used clinically for more than 50 years to treat disorders such as insomnia, anxiety, and epilepsy, as well as to aid muscle relaxation and anesthesia. The therapeutic index for benzodiazepines if very high and the toxicity is low. However, their usefulness is limited by the development of either or both tolerance to most of their pharmacological actions and dependence. Tolerance develops at different rates depending on the pharmacological action, suggesting the existence of distinct mechanisms for each behavioral parameter. Alternatively, multiple mechanisms could coexist depending on the subtype of GABAA receptor expressed and the brain region involved. Because most of the pharmacological actions of benzodiazepines are mediated through GABAA receptor binding, adaptive alterations in the number, structure, and/or functions of these receptors may play an important role in the development of tolerance. This review is focused on the regulation of GABAA receptors induced by long-term benzodiazepine exposure and its relationship with the development of tolerance. Understanding the mechanisms behind benzodiazepine tolerance is critical for designing drugs that could maintain their efficacy during long-term treatments.
Collapse
Affiliation(s)
- María Clara Gravielle
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
12
|
Obradović ALJ, Scarpa J, Osuru HP, Weaver JL, Park JY, Pathirathna S, Peterkin A, Lim Y, Jagodic MM, Todorovic SM, Jevtovic-Todorovic V. Silencing the α2 subunit of γ-aminobutyric acid type A receptors in rat dorsal root ganglia reveals its major role in antinociception posttraumatic nerve injury. Anesthesiology 2015; 123:654-67. [PMID: 26164299 PMCID: PMC4568754 DOI: 10.1097/aln.0000000000000767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Neuropathic pain (NPP) is likely the result of repetitive high-frequency bursts of peripheral afferent activity leading to long-lasting changes in synaptic plasticity in the spinal dorsal horn. Drugs that promote γ-aminobutyric acid (GABA) activity in the dorsal horn provide partial relief of neuropathic symptoms. The authors examined how in vivo silencing of the GABA receptor type A (GABAA) α2 gene in dorsal root ganglia (DRG) controls NPP. METHODS After crush injury to the right sciatic nerve of female rats, the α2 GABAA antisense and mismatch oligodeoxynucleotides or NO-711 (a GABA uptake inhibitor) were applied to the L5 DRG. In vivo behavioral assessment of nociception was conducted before the injury and ensuing 10 days (n = 4 to 10). In vitro quantification of α2 GABAA protein and electrophysiological studies of GABAA currents were performed on acutely dissociated L5 DRG neurons at relevant time points (n = 6 to 14). RESULTS NPP postcrush injury of a sciatic nerve in adult female rats coincides with significant down-regulation of the α2 subunit expression in the ipsilateral DRG (approximately 30%). Selective down-regulation of α2 expression in DRGs significantly worsens mechanical (2.55 ± 0.75 to 5.16 ± 1.16) and thermal (7.97 ± 0.96 to 5.51 ± 0.75) hypersensitivity in crush-injured animals and causes development of significant mechanical (2.33 ± 0.40 to 5.00 ± 0.33) and thermal (10.80 ± 0.29 to 7.34 ± 0.81) hypersensitivity in sham animals (data shown as mean ± SD). Conversely, up-regulation of endogenous GABA via blockade of its uptake in DRG alleviates NPP. CONCLUSION The GABAA receptor in the DRG plays an important role in pathophysiology of NPP caused by sciatic nerve injury and represents promising target for novel pain therapies.
Collapse
Affiliation(s)
- Aleksandar LJ Obradović
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Physiology, University of Belgrade School of Pharmacy, Belgrade, Serbia
| | - Joseph Scarpa
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hari P Osuru
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Janelle L Weaver
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ji-Yong Park
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Anesthesiology and Pain Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sriyani Pathirathna
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Alexander Peterkin
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Yunhee Lim
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Republic of Korea
| | - Miljenko M Jagodic
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
13
|
Gutiérrez ML, Ferreri MC, Farb DH, Gravielle MC. GABA-induced uncoupling of GABA/benzodiazepine site interactions is associated with increased phosphorylation of the GABAA receptor. J Neurosci Res 2014; 92:1054-61. [PMID: 24723313 DOI: 10.1002/jnr.23387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 11/08/2022]
Abstract
The use-dependent regulation of the GABAA receptor occurs under physiological, pathological, and pharmacological conditions. Tolerance induced by prolonged administration of benzodiazepines is associated with changes in GABAA receptor function. Chronic exposure of neurons to GABA for 48 hr induces a downregulation of the GABAA receptor number and an uncoupling of the GABA/benzodiazepine site interactions. A single brief exposure ((t1/2) = 3 min) of rat neocortical neurons to the neurotransmitter initiates a process that results in uncoupling hours later (t(1/2) = 12 hr) without alterations in the number of GABAA receptors and provides a paradigm to study the uncoupling mechanism selectively. Here we report that uncoupling induced by a brief GABAA receptor activation is blocked by the coincubation with inhibitors of protein kinases A and C, indicating that the uncoupling is mediated by the activation of a phosphorylation cascade. GABA-induced uncoupling is accompanied by subunit-selective changes in the GABAA receptor mRNA levels. However, the GABA-induced downregulation of the α3 subunit mRNA level is not altered by the kinase inhibitors, suggesting that the uncoupling is the result of a posttranscriptional regulatory process. GABA exposure also produces an increase in the serine phosphorylation on the GABAA receptor γ2 subunit. Taken together, our results suggest that the GABA-induced uncoupling is mediated by a posttranscriptional mechanism involving an increase in the phosphorylation of GABAA receptors. The uncoupling of the GABAA receptor may represent a compensatory mechanism to control GABAergic neurotransmission under conditions in which receptors are persistently activated.
Collapse
Affiliation(s)
- María L Gutiérrez
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
Gutiérrez M, Ferreri M, Gravielle M. GABA-induced uncoupling of GABA/benzodiazepine site interactions is mediated by increased GABAA receptor internalization and associated with a change in subunit composition. Neuroscience 2014; 257:119-29. [DOI: 10.1016/j.neuroscience.2013.10.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/11/2023]
|
15
|
Expression of the γ2-subunit distinguishes synaptic and extrasynaptic GABA(A) receptors in NG2 cells of the hippocampus. J Neurosci 2013; 33:12030-40. [PMID: 23864689 DOI: 10.1523/jneurosci.5562-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NG2 cells are equipped with transmitter receptors and receive direct synaptic input from glutamatergic and GABAergic neurons. The functional impact of these neuron-glia synapses is still unclear. Here, we combined functional and molecular techniques to analyze properties of GABA(A) receptors in NG2 cells of the juvenile mouse hippocampus. GABA activated slowly desensitizing responses in NG2 cells, which were mimicked by muscimol and inhibited by bicuculline. To elucidate the subunit composition of the receptors we tested its pharmacological properties. Coapplication of pentobarbital, benzodiazepines, and zolpidem all significantly increased the GABA-evoked responses. The presence of small tonic currents indicated the presence of extrasynaptic GABA(A) receptors. To further analyze the subunit expression, single cell transcript analysis was performed subsequent to functional characterization of NG2 cells. The subunits α1, α2, β3, γ1, and γ2 were most abundantly expressed, matching properties resulting from pharmacological characterization. Importantly, lack of the γ2-subunit conferred a high Zn²⁺ sensitivity to the GABA(A) receptors of NG2 cells. Judging from the zolpidem sensitivity, postsynaptic GABA(A) receptors in NG2 cells contain the γ2-subunit, in contrast to extrasynaptic receptors, which were not modulated by zolpidem. To determine the effect of GABA(A) receptor activation on membrane potential, perforated patch recordings were obtained from NG2 cells. In the current-clamp mode, GABA depolarized the cells to approximately -30 mV, indicating a higher intracellular Cl⁻ concentration (∼50 mM) than previously reported. GABA-induced depolarization in NG2 cells might trigger Ca²⁺ influx through voltage-activated Ca²⁺ channels.
Collapse
|
16
|
Dionisio L, Arias V, Bouzat C, Esandi MDC. GABAA receptor plasticity in Jurkat T cells. Biochimie 2013; 95:2376-84. [PMID: 24012548 DOI: 10.1016/j.biochi.2013.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/25/2013] [Indexed: 11/16/2022]
Abstract
GABAA receptors (GABAAR) mediate inhibitory neurotransmission in the human brain. Neurons modify subunit expression, cellular distribution and function of GABAAR in response to different stimuli, a process named plasticity. Human lymphocytes have a functional neuronal-like GABAergic system with GABAAR acting as inhibitors of proliferation. We here explore if receptor plasticity occurs in lymphocytes. To this end, we analyzed human T lymphocyte Jurkat cells exposed to different physiological stimuli shown to mediate plasticity in neurons: GABA, progesterone and insulin. The exposure to 100 μM GABA differently affected the expression of GABAAR subunits measured at both the mRNA and protein level, showing an increase of α1, β3, and γ2 subunits but no changes in δ subunit. Exposure of Jurkat cells to different stimuli produced different changes in subunit expression: 0.1 μM progesterone decreased δ and 0.5 μM insulin increased β3 subunits. To identify the mechanisms underlying plasticity, we evaluated the Akt pathway, which is involved in the phosphorylation of β subunits and receptor translocation to the membrane. A significant increase of phosphorylated Akt and on the expression of β3 subunit in membrane occurred in cells exposed 15 h to GABA. To determine if plastic changes are translated into functional changes, we performed whole cell recordings. After 15 h GABA-exposure, a significantly higher percentage of cells responded to GABA application when compared to 0 and 40 h exposure, thus indicating that the detected plastic changes may have a role in GABA-modulated lymphocyte function. Our results reveal that lymphocyte GABAAR are modified by different stimuli similarly and by similar mechanisms to those in neurons. This property is of significance for the development of future therapies involving pharmacological modulation of the immune response.
Collapse
Affiliation(s)
- Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Camino La Carrindanga Km7, 8000 Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
17
|
Dionisio L, José De Rosa M, Bouzat C, Esandi MDC. An intrinsic GABAergic system in human lymphocytes. Neuropharmacology 2010; 60:513-9. [PMID: 21093461 DOI: 10.1016/j.neuropharm.2010.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 11/01/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
γ-amino butyric acid (GABA) is an ubiquitous neurotransmitter in the central nervous system and it is also present in non-neuronal cells. In this study we investigated the presence of neuronal components of the GABAergic system in lymphocytes and its functional significance. By using RT-PCR we detected mRNA expression of different components of the GABAergic system in resting and mitogen-activated lymphocytes: i) GAD67, an isoform of the enzyme that synthetizes GABA; ii) VIAAT, the vesicular protein involved in GABA storage; iii) GABA transporters (GAT-1 and GAT-2); iv) GABA-T, the enzyme that catabolizes GABA; and v) subunits that conform ionotropic GABA receptors. The presence of VIAAT protein in resting and activated cells was confirmed by immunocytochemistry. The functionality of GABA transporters was evaluated by measuring the uptake of radioactive GABA. The results show that [(3)H]GABA uptake is 5-fold higher in activated than in resting lymphocytes. To determine if GABA subunits assemble into functional channels, we performed whole-cell recordings in activated lymphocytes. GABA and muscimol, a specific agonist of ionotropic GABA receptors, elicit macroscopic currents in about 10-15% of the cells. Finally, by using [(3)H]thymidine incorporation assays, we determined that the presence of agonists of GABA receptor during activation inhibits lymphocyte proliferation. Our results reveal that lymphocytes have a functional GABAergic system, similar to the neuronal one, which may operate as a modulator of T-cell activation. Pharmacological modulation of this system may provide new approaches for regulation of T-cell response.
Collapse
Affiliation(s)
- Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Camino La, Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
18
|
Uusi-Oukari M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010; 62:97-135. [PMID: 20123953 DOI: 10.1124/pr.109.002063] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gamma-aminobutyric acid (GABA) type A receptor system, the main fast-acting inhibitory neurotransmitter system in the brain, is the pharmacological target for many drugs used clinically to treat, for example, anxiety disorders and epilepsy, and to induce and maintain sedation, sleep, and anesthesia. These drugs facilitate the function of pentameric GABA(A) receptors that exhibit widespread expression in all brain regions and large structural and pharmacological heterogeneity as a result of composition from a repertoire of 19 subunit variants. One of the main problems in clinical use of GABA(A) receptor agonists is the development of tolerance. Most drugs, in long-term use and during withdrawal, have been associated with important modulations of the receptor subunit expression in brain-region-specific manner, participating in the mechanisms of tolerance and dependence. In most cases, the molecular mechanisms of regulation of subunit expression are poorly known, partly as a result of neurobiological adaptation to altered neuronal function. More knowledge has been obtained on the mechanisms of GABA(A) receptor trafficking and cell surface expression and the processes that may contribute to tolerance, although their possible pharmacological regulation is not known. Drug development for neuropsychiatric disorders, including epilepsy, alcoholism, schizophrenia, and anxiety, has been ongoing for several years. One key step to extend drug development related to GABA(A) receptors is likely to require deeper understanding of the adaptational mechanisms of neurons, receptors themselves with interacting proteins, and finally receptor subunits during drug action and in neuropsychiatric disease processes.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itainen Pitkakatu 4, 20014 Turku, Finland.
| | | |
Collapse
|
19
|
Cupello A, Balestrino M, Gatta E, Pellistri F, Siano S, Robello M. Activation of cerebellar granule cells GABA(A) receptors by guanidinoacetate. Neuroscience 2008; 152:65-9. [PMID: 18222046 DOI: 10.1016/j.neuroscience.2007.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/04/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
Abstract
The extracellular concentration of guanidinoacetate (GAA) in the brain increases in guanidino acetate methyl transferase (GAMT) deficiency, an inherited disorder. We tested whether the levels which this substance can reach in the brain in GAMT deficiency are able to activate GABA(A) receptors in key cerebellar neurons such as the cerebellar granules. GAA in fact activates these receptors in rat cerebellar granules in culture although at quite high concentrations, in the millimolar range. However, these millimolar GAA levels are not reached extracellularly in the brain in GAMT deficiency. In addition, GAA does not act as a partial agonist on granules' GABA(A) receptors. This appears to deny an effect by this molecule on cerebellar function in the disease via interference with granule cells' GABA(A) receptors. Study of partial blockage by furosemide of chloride currents activated by GABA and GAA in granule cells allowed us to distinguish two populations of GABA(A) receptors presumably involved in granule cells' tonic inhibition. One is devoid of alpha6 subunit and another one contains it. The latter when activated by GABA has a decay kinetics much slower than the former. GAA does not distinguish between these two populations. In any case, the very high extracellular GAA concentrations able to activate them are not likely to be reached in GAMT deficiency.
Collapse
Affiliation(s)
- A Cupello
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16133 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ. Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor. J Biol Chem 2008; 283:9328-40. [PMID: 18180303 DOI: 10.1074/jbc.m705110200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulated expression of type A gamma-aminobutyric acid (GABA) receptor (GABA(A)R) subunit genes plays a critical role in neuronal maturation and synaptogenesis. It is also associated with a variety of neurological diseases. Changes in GABA(A) receptor alpha1 subunit gene (GABRA1) expression have been reported in animal models of epilepsy, alcohol abuse, withdrawal, and stress. Understanding the genetic mechanism behind such changes in alpha subunit expression will lead to a better understanding of the role that signal transduction plays in control over GABA(A)R function and brings with it the promise of providing new therapeutic tools for the prevention or cure of a variety of neurological disorders. Here we show that activation of protein kinase C increases alpha1 subunit levels via phosphorylation of CREB (pCREB) that is bound to the GABRA1 promoter (GABRA1p). In contrast, activation of protein kinase A decreases levels of alpha1 even in the presence of pCREB. Decrease of alpha1 is dependent upon the inducible cAMP early repressor (ICER) as directly demonstrated by ICER-induced down-regulation of endogenous alpha1-containing GABA(A)Rs at the cell surface of cortical neurons. Taken together with the fact that there are less alpha1gamma2-containing GABA(A)Rs in neurons after protein kinase A stimulation and that activation of endogenous dopamine receptors down-regulates alpha1 subunit mRNA levels subsequent to induction of ICER, our studies identify a transcriptional mechanism for regulating the cell surface expression of alpha1-containing GABA(A)Rs that is dependent upon the formation of CREB heterodimers.
Collapse
Affiliation(s)
- Yinghui Hu
- Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
21
|
Toscano CD, Prabhu VV, Langenbach R, Becker KG, Bosetti F. Differential gene expression patterns in cyclooxygenase-1 and cyclooxygenase-2 deficient mouse brain. Genome Biol 2007; 8:R14. [PMID: 17266762 PMCID: PMC1839133 DOI: 10.1186/gb-2007-8-1-r14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/09/2006] [Accepted: 01/31/2007] [Indexed: 12/30/2022] Open
Abstract
Microarray analysis of gene expression in the cerebral cortex and hippocampus of mice deficient in cyclooxygenase-1 or cyclooxygenase-2 reveals that the two enzymes differentially modulate brain gene expression. Background Cyclooxygenase (COX)-1 and COX-2 produce prostanoids from arachidonic acid and are thought to have important yet distinct roles in normal brain function. Deletion of COX-1 or COX-2 results in profound differences both in brain levels of prostaglandin E2 and in activation of the transcription factor nuclear factor-κB, suggesting that COX-1 and COX-2 play distinct roles in brain arachidonic acid metabolism and regulation of gene expression. To further elucidate the role of COX isoforms in the regulation of the brain transcriptome, microarray analysis of gene expression in the cerebral cortex and hippocampus of mice deficient in COX-1 (COX-1-/-) or COX-2 (COX-2-/-) was performed. Results A majority (>93%) of the differentially expressed genes in both the cortex and hippocampus were altered in one COX isoform knockout mouse but not the other. The major gene function affected in all genotype comparisons was 'transcriptional regulation'. Distinct biologic and metabolic pathways that were altered in COX-/- mice included β oxidation, methionine metabolism, janus kinase signaling, and GABAergic neurotransmission. Conclusion Our findings suggest that COX-1 and COX-2 differentially modulate brain gene expression. Because certain anti-inflammatory and analgesic treatments are based on inhibition of COX activity, the specific alterations observed in this study further our understanding of the relationship of COX-1 and COX-2 with signaling pathways in brain and of the therapeutic and toxicologic consequences of COX inhibition.
Collapse
Affiliation(s)
- Christopher D Toscano
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Rm. 1S126, 9 Memorial Drive, Bethesda, Maryland 20892, USA
| | - Vinaykumar V Prabhu
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, Maryland, 21224, USA
| | - Robert Langenbach
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, North Carolina, 27709, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, Maryland, 21224, USA
| | - Francesca Bosetti
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Rm. 1S126, 9 Memorial Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Volgin DV, Kubin L. Regionally selective effects of GABA on hypothalamic GABAA receptor mRNA in vitro. Biochem Biophys Res Commun 2006; 353:726-32. [PMID: 17188647 PMCID: PMC1805708 DOI: 10.1016/j.bbrc.2006.12.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
We tested whether GABAA receptor (R) subunit mRNA levels are homeostatically influenced by short-term exposure to GABA in two adjacent regions of the posterior hypothalamus. mRNA levels for seven GABAAR subunits and GABA-synthesizing enzyme (GAD) were quantified in the perifornical (PF) and dorsomedial (DM) hypothalamus following superfusion of slices for 90 min with a drug-free medium, GABA uptake blocker with or without GABAAR antagonist, gabazine, or GABAAR agonist with tetrodotoxin. Increasing endogenous GABA decreased mRNAs for all seven GABAAR subunits in the PF, and for three also in the DM, region; gabazine antagonized these effects in the PF region only and increased GAD-65 mRNA. Stimulation of GABAARs in the presence of tetrodotoxin decreased mRNA for one GABAAR subunit (beta1). We conclude that, in the PF region where GABA facilitates sleep, increased GABA release may limit GABAAR-mediated inhibition, whereas in the DM region, GABA-induced changes are mainly mediated by non-GABAA receptors.
Collapse
Affiliation(s)
- Denys V Volgin
- Department of Animal Biology, School of Veterinary Medicine and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Philadelphia, PA 19104-6046, USA.
| | | |
Collapse
|
23
|
Katz J, Nielsen KM, Soghomonian JJ. Comparative effects of acute or chronic administration of levodopa to 6-hydroxydopamine-lesioned rats on the expression of glutamic acid decarboxylase in the neostriatum and GABAA receptors subunits in the substantia nigra, pars reticulata. Neuroscience 2005; 132:833-42. [PMID: 15837143 DOI: 10.1016/j.neuroscience.2004.12.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2004] [Indexed: 10/25/2022]
Abstract
Current evidence suggests that behavioral sensitization to the chronic administration of levodopa (L-DOPA) to dopamine-depleted animals involves a plasticity of GABA-mediated signaling in output regions of the basal ganglia. The purpose of this study was to compare in adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion the effects of an acute or chronic (for 3 or 7 days) injection of L-DOPA on mRNA levels encoding for glutamic acid decarboxylase (GAD65 and GAD67) in the striatum and GABA(A) receptor alpha1, beta2 and gamma2 subunits in the substantia nigra, pars reticulata (SNr), by in situ hybridization histochemistry. In addition, immunostaining levels for the alpha1 subunit were examined in the SNr. In agreement with previous studies, we found that L-DOPA administration increased GAD mRNA levels in the striatum of 6-OHDA-lesioned rats. However, the magnitude of this effect increased with the number of injections of L-DOPA. On the other hand, we found that 6-OHDA lesions resulted in increases in alpha1, beta2 and gamma2 mRNA levels in the ipsilateral SNr, which were normalized or decreased compared with the contralateral side by the acute or chronic administration of L-DOPA. In addition, alpha1 immunostaining in the SNr was significantly decreased in rats injected for 7 days but not for 3 days or acutely with L-DOPA. Our results demonstrate that a chronic administration of L-DOPA results in a progressive increase in GAD and decrease in GABA(A) receptor expression in the striatum and SNr, respectively. They provide further evidence that behavioral sensitization and dyskinesia induced by a chronic administration of L-DOPA in an experimental model of Parkinson's disease is paralleled by a plasticity of GABA-mediated signaling in the SNr.
Collapse
Affiliation(s)
- J Katz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
24
|
Gravielle MC, Faris R, Russek SJ, Farb DH. GABA induces activity dependent delayed-onset uncoupling of GABA/benzodiazepine site interactions in neocortical neurons. J Biol Chem 2005; 280:20954-60. [PMID: 15805111 DOI: 10.1074/jbc.m500131200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in the function of type A gamma-aminobutyric acid receptors (GABA(A)Rs) are associated with neuronal development and tolerance to the sedative-hypnotic effects of GABA(A)R positive modulators. Persistent activation of GABA(A)Rs by millimolar concentrations of GABA occurs under physiological conditions as GABAergic fast-spiking neurons in neocortex and cerebellum exhibit basal firing rates of 5 to 50 Hz and intermittent rates up to 250 Hz, leaving a substantial fraction of synaptic receptors occupied persistently by GABA. Persistent exposure of neurons to GABA has been shown to cause a down-regulation of receptor number and an uncoupling of GABA/benzodiazepine (BZD) site interactions with a half-life of approximately 24 h. Here, we report that a single brief exposure of neocortical neurons in primary culture to GABA for 5-10 min (t(1/2) = 3.2 +/- 0.2 min) initiates a process that results in uncoupling hours later (t(1/2) = 12.1 +/- 2.2 h). Initiation of delayed-onset uncoupling is blocked by co-incubation with picrotoxin or alpha-amanitin but is insensitive to nifedipine, indicating that uncoupling is contingent upon receptor activation and transcription but is not dependent on voltage-gated Ca2+ influx. Delayed-onset uncoupling occurs without a change in receptor number or a change in the proportion of alpha1 subunit pharmacology, as zolpidem binding affinity is unaltered. Such activity dependent latent modulation of GABA(A)R function that manifests as delayed-onset uncoupling may be relevant to physiological, pathophysiological, and pharmacological conditions where synaptic receptors are transiently exposed to GABA agonists for several minutes.
Collapse
Affiliation(s)
- María C Gravielle
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
25
|
Smith SS, Gong QH. Ethanol administration rapidly reverses alpha4 GABAA receptor subunit upregulation following steroid exposure. Neuropharmacology 2004; 47:9-16. [PMID: 15165830 DOI: 10.1016/j.neuropharm.2004.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 01/07/2004] [Accepted: 03/12/2004] [Indexed: 11/21/2022]
Abstract
Both short-term (48 h) exposure to the neuroactive steroid 3alpha,5alpha[beta]-THP and its withdrawal increase expression of the benzodiazepine (BDZ)-insensitive GABAA receptor (GABAR) alpha4 subunit in hippocampus. This increase in alpha4 subunit expression was associated with a relative insensitivity of CA1 hippocampal pyramidal cells to modulation of GABA-gated current by the BDZ lorazepam (LZM), assessed using whole cell patch clamp techniques. Chronic ethanol is also known to regulate expression of the alpha4 subunit. Thus, in the present study we investigated the capacity of ethanol, administered in low doses across a 2 h period (0.5 g/kg, i.p., 3x), to suppress alpha4 expression produced by 48 h exposure to 3alpha,5 beta-THP in adult female rats. We show here that 2 h ethanol administration reverses the increase in alpha4 expression normally observed following 48 h steroid treatment. This effect was correlated with a recovery of responses recorded from CA1 hippocampal pyramidal cells to the GABA-modulatory effects of LZM. Similar effects of ethanol in suppressing alpha4 expression and restoring LZM responsiveness were seen following steroid withdrawal when alpha4 expression is normally increased. These results suggest that increases in expression of the alpha4 subunit produced by steroid exposure or withdrawal are altered by other GABA-modulatory drugs, such as ethanol.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
26
|
Leroy C, Poisbeau P, Keller AF, Nehlig A. Pharmacological plasticity of GABA(A) receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. J Physiol 2004; 557:473-87. [PMID: 15034126 PMCID: PMC1665087 DOI: 10.1113/jphysiol.2003.059246] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the lithium-pilocarpine model (Li-pilocarpine) of temporal lobe epilepsy, GABA(A) receptor-mediated inhibitory postsynaptic currents (GABA(A) IPSCs) were recorded in dentate gyrus granule cells (GCs) from adult rat hippocampal slices. The properties of GABA(A) IPSCs were compared before and after superfusion of modulators in control conditions (Li-saline rats) and in Li-pilocarpine rats 24-48 h and 3-5 months (epileptic rats) after status epilepticus (SE). The mean peak amplitude of GABA(A) IPSCs increased by about 40% over Li-saline values in GCs 24-48 h after SE and remained higher in epileptic rats. In Li-pilocarpine rats, studied at 24-48 h after SE, diazepam (1 microm) lost 65% of its effectiveness at increasing the half-decay time (T(50%)) of GABA(A) miniature IPSCs (mIPSCs). Diazepam had no effects on mIPSC T(50%) in epileptic rats. The benzodiazepine ligand flumazenil (1 microm), acting as an antagonist in Li-saline rats, exhibited a potent inverse agonistic effect on GABA(A) mIPSCs of GCs from Li-pilocarpine rats 24-48 h and 3-5 months after SE. The neurosteroid allopregnanolone (100 nm), which considerably prolonged GABA(A) mIPSCs in Li-saline rats, totally lost its effect in rats studied 24-48 h after SE. However, this decrease in effectiveness was transient and was totally restored in epileptic rats. In addition to the up-regulation in the number of receptors at individual GC synapses, we propose that these 'epileptic' GABA(A) receptors possess benzodiazepine binding sites with altered allosteric properties. The failure of benzodiazepine and neurosteroid to potentiate inhibition early after SE may be a critical factor in the development of epileptogenesis and occurrence of seizures.
Collapse
Affiliation(s)
- Claire Leroy
- Psychopathologie et Pharmacologie de la cognition, INSERM U405, Strasbourg, France
| | | | | | | |
Collapse
|
27
|
Costa LG, Steardo L, Cuomo V. Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: experimental and clinical aspects. Pharmacol Rev 2004; 56:103-47. [PMID: 15001664 DOI: 10.1124/pr.56.1.5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The advent of psychotherapeutic drugs has enabled management of mental illness and other neurological problems such as epilepsy in the general population, without requiring hospitalization. The success of these drugs in controlling symptoms has led to their widespread use in the vulnerable population of pregnant women as well, where the potential embryotoxicity of the drugs has to be weighed against the potential problems of the maternal neurological state. This review focuses on the developmental toxicity and neurotoxicity of five broad categories of widely available psychotherapeutic drugs: the neuroleptics, the antiepileptics, the antidepressants, the anxiolytics and mood stabilizers, and a newly emerging class of nonprescription drugs, the herbal remedies. A brief review of nervous system development during gestation and following parturition in mammals is provided, with a description of the development of neurochemical pathways that may be involved in the action of the psychotherapeutic agents. A thorough discussion of animal research and human clinical studies is used to determine the risk associated with the use of each drug category. The potential risks to the fetus, as demonstrated in well described neurotoxicity studies in animals, are contrasted with the often negative findings in the still limited human studies. The potential risk fo the human fetus in the continued use of these chemicals without more adequate research is also addressed. The direction of future research using psychotherapeutic drugs should more closely parallel the methodology developed in the animal laboratories, especially since these models have already been used extremely successfully in specific instances in the investigation of neurotoxic agents.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Pharmacology and Human Physiology, University of Bari Medical School, Italy
| | | | | |
Collapse
|
28
|
Steiger JL, Alexander MJ, Galler JR, Farb DH, Russek SJ. Effects of prenatal malnutrition on GABAA receptor α1, α3 and β2 mRNA levels. Neuroreport 2003; 14:1731-5. [PMID: 14512847 DOI: 10.1097/00001756-200309150-00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Exposure of pregnant rats to protein malnutrition throughout pregnancy alters the developing hippocampus, leading to increased inhibition and selective changes in hippocampal-mediated behaviors. Given that GABA mediates most inhibitory neurotransmission, we asked whether selective changes in the levels of GABA receptor subunit mRNAs might result. Quantitative RNase protection profiling of 12 GABAA and GABAB receptor subunit mRNAs show that alpha1 and beta2 decrease in the adult (P90) hippocampal formation of prenatally malnourished rats, while the levels of alpha3 are increased. Moreover, the distribution of alpha1, alpha3 and beta2 mRNAs remains unchanged in CA1 and CA3 hippocampal subfields relative to dentate gyrus. The data suggest that prenatal malnutrition produces global changes of certain GABAA, but not GABAB, receptor mRNAs in the hippocampal formation.
Collapse
Affiliation(s)
- Janine L Steiger
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
29
|
Jones DM, Esmaeil N, Maren S, Macdonald RL. Characterization of pharmacoresistance to benzodiazepines in the rat Li-pilocarpine model of status epilepticus. Epilepsy Res 2002; 50:301-12. [PMID: 12200221 DOI: 10.1016/s0920-1211(02)00085-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Status epilepticus is usually initially treated with a benzodiazepine such as diazepam. During prolonged seizures, however, patients often lose their sensitivity to benzodiazepines, thus developing pharmacoresistant seizures. In rats, administration of LiCl followed 20-24 h later by pilocarpine induces a continuous, self-sustained, and reproducible form of status epilepticus that can be terminated with diazepam when it is administered soon after the pilocarpine injection. However, when administered after a 45 min delay, diazepam is less effective. Previous findings have suggested that the development of pharmacoresistance is related to the stage of status epilepticus. In the present study, we characterized the seizure stage-dependence of diazepam pharmacoresistance. Following administration of different doses of diazepam at varying time intervals after specific behaviorally- and electrographically-defined seizure stages, stage-, time-, and dose-dependent pharmacoresistance to diazepam developed. We also studied two other antiepileptic drugs commonly used in the treatment of status epilepticus, phenobarbital and phenytoin. Consistent with previous studies, our results indicated a similar relationship between stage, time and dose for phenobarbital, but not for phenytoin. Our data are consistent with rapid modulation of GABA(A) receptors during status epilepticus that may result in pharmacoresistance to antiepileptic drugs that enhance GABA(A) receptor-mediated inhibition.
Collapse
Affiliation(s)
- Dorothy M Jones
- Neuroscience Program, University of Michigan, Ann Arbor 48104-1687, USA
| | | | | | | |
Collapse
|
30
|
Gernert M, Thompson KW, Löscher W, Tobin AJ. Genetically engineered GABA-producing cells demonstrate anticonvulsant effects and long-term transgene expression when transplanted into the central piriform cortex of rats. Exp Neurol 2002; 176:183-92. [PMID: 12093095 DOI: 10.1006/exnr.2002.7914] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Local application of GABA-potentiating agents can prevent or reduce the development and maintenance of behavioral seizures induced by limbic kindling in rats. Microinjection and lesion studies suggest that the transition zone between anterior and posterior piriform cortex (PC), termed here central PC, is a potential target for transplantation of GABA-producing cells. In the present study, we transplanted conditionally immortalized mouse cortical neurons, engineered with the GABA-synthesizing enzyme GAD(65), to the central PC of rats. Suspensions of 1.5 x 10(5) cells in 1 microl were transplanted bilaterally. Control animals received transplantation of beta-galactosidase (beta-gal)-expressing cells. All rats were subsequently kindled through a chronically implanted electrode placed in the basolateral amygdala. The pre- and postkindling threshold currents for eliciting behavioral seizures were determined before and after kindling. We found the prekindling partial seizure threshold to be significantly increased by about 200% in the rats that received the GABA-producing cells compared to rats receiving beta-gal-producing transplants. After kindling, the seizure threshold tended to be higher by 100% in rats that received GABA-producing cells, although the difference from controls was not statistically significant. GABA-producing transplants had no significant effect on the rate of amygdala kindling, but the latency to the first generalized seizure during kindling was significantly increased in animals receiving GABA-producing cells. The transplanted cells showed long-term GAD(65) expression as verified immunohistologically after termination of the experiments. The findings substantiate and extend previous findings that the central PC is part of the anatomical substrate that facilitates propagation from partial to generalized seizures. The data demonstrate that genetically engineered cells have the potential to raise seizure thresholds when transplanted to the central PC.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, School of Veterinary Medicine Hannover, Bünteweg 17, Hannover, Germany. manuela.gernert@tiho-hannover
| | | | | | | |
Collapse
|
31
|
Barnes EM. Assembly and intracellular trafficking of GABAA receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 48:1-29. [PMID: 11526736 DOI: 10.1016/s0074-7742(01)48012-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- E M Barnes
- Marrs McLean Department of Biochemistry and Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Casasola C, Bargas J, Arias-Montaño JA, Calixto E, Montiel T, Galarraga E, Brailowsky S. Hippocampal hyperexcitability induced by GABA withdrawal is due to down-regulation of GABA(A) receptors. Epilepsy Res 2001; 47:257-71. [PMID: 11738933 DOI: 10.1016/s0920-1211(01)00314-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sudden interruption of an intracortical instillation of exogenous gamma-aminobutyric acid (GABA) generates an epileptic focus in mammals. Seizures elicited by GABA withdrawal (GW) last for weeks. A similar withdrawal-induced hyperexcitability is also produced by several GABA(A) receptor agonists. This work reports a quantitative analysis of GW-induced hyperexcitability produced in the hippocampus in vitro. GW produced a left-ward displacement of the input/output (I/O) function, suggesting that the postsynaptic component is predominant to explain the hyperexcitability. A decrease in the inhibitory efficacy of the GABA(A) receptor agonist, muscimol, confirmed that inhibition was impaired. Binding saturation experiments demonstrated a decrease in [(3)H]-muscimol binding after GABA withdrawal showing a close correlation with the development of hyperexcitability. All these modifications coursed without changes in receptor affinity (K(D)) for muscimol or bicuculline as demonstrated by both binding studies and Schild analysis. It is concluded that, in the CA1 region of the hippocampus, it is the number of functional GABA(A) receptors, and not the affinity of the receptor, what is decreased during GW-induced hyperexcitability.
Collapse
Affiliation(s)
- C Casasola
- Instituto de Fisiología Celular, UNAM, P.O. Box 70-253, Mexico City DF 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
33
|
Lyons HR, Land MB, Gibbs TT, Farb DH. Distinct signal transduction pathways for GABA-induced GABA(A) receptor down-regulation and uncoupling in neuronal culture: a role for voltage-gated calcium channels. J Neurochem 2001; 78:1114-26. [PMID: 11553685 DOI: 10.1046/j.1471-4159.2001.00501.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in GABA receptor (GABA(A)R) gene expression are detected in animal models of epilepsy, anxiety and in post-mortem schizophrenic brain, suggesting a role for GABA(A)R regulation in neurological disorders. Persistent (48 h) exposure of brain neurons in culture to GABA results in down-regulation of GABA(A)R number and uncoupling of GABA and benzodiazepine (BZD) binding sites. Given the central role of GABA(A)Rs in fast inhibitory synaptic transmission, GABA(A)R down-regulation and uncoupling are potentially important mechanisms of regulating neuronal excitability, yet the molecular mechanisms remain unknown. In this report we show that treatment of brain neurons in culture with tetrodotoxin, glutamate receptor antagonists, or depolarization with 25 mM K(+) fails to alter GABA(A)R number or coupling. Changes in neuronal activity or membrane potential are therefore not sufficient to induce either GABA(A)R down-regulation or uncoupling. Nifedipine, a voltage-gated Ca(2+) channel (VGCC) blocker, inhibits both GABA-induced increases in [Ca(2+)](i) and GABA(A)R down-regulation, suggesting that VGCC activation is required for GABA(A)R down-regulation. Depolarization with 25 mM K(+) produces a sustained increase in intracellular [Ca(2+)] without causing GABA(A)R down-regulation, suggesting that activation of VGCCs is not sufficient to produce GABA(A)R down-regulation. In contrast to GABA(A)R down-regulation, nifedipine and 25 mM K(+) fail to inhibit GABA-induced uncoupling, demonstrating that GABA-induced GABA(A)R down-regulation and uncoupling are mediated by independent molecular events. Therefore, GABA(A)R activation initiates at least two distinct signal transduction pathways, one of which involves elevation of intracellular [Ca(2+)] through VGCCs.
Collapse
Affiliation(s)
- H R Lyons
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
34
|
Gulinello M, Gong Q, Li X, Smith S. Short-term exposure to a neuroactive steroid increases alpha4 GABA(A) receptor subunit levels in association with increased anxiety in the female rat. Brain Res 2001; 910:55-66. [PMID: 11489254 PMCID: PMC4170586 DOI: 10.1016/s0006-8993(01)02565-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous work from this laboratory has demonstrated that withdrawal from the neuroactive steroid 3alpha,5alpha-THP (3alpha-hydroxy-5alpha-pregnan-20-one) after 3-week exposure to its parent compound, progesterone (P), increases anxiety and produces benzodiazepine (BDZ) insensitivity in female rats. These events were linked to upregulation of the alpha4 subunit of the GABA(A) receptor (GABAR) in the hippocampus [Brain Res. 507 (1998) 91; Nature 392 (1998) 926; J. Neurosci. 18 (1998) 5275]. The present study investigates the role of shorter term hormone treatment on alpha4 subunit levels as well as relevant behavioral and pharmacological end-points related to GABAR function. After 2-3 days of P exposure, two- to threefold increases in alpha4 protein levels were observed, which declined to control values after 5-6 days of hormone exposure. This effect was due to the GABA-modulatory metabolite of P, 3alpha,5alpha-THP. alpha4 upregulation was inversely correlated with BDZ potentiation of GABA-gated current, assessed using whole cell patch clamp techniques on acutely isolated hippocampal pyramidal cells. A near total BDZ insensitivity was observed by 2-3 days of hormone exposure in association with the maximal increase in alpha4 levels. Up-regulation of the alpha4 GABAR subunit was also reflected by an increase in anxiety in the elevated plus maze. A significant decrease in open arm entries was observed after 72-h exposure to P, an effect which recovered by 6 days of P treatment. As demonstrated in vitro, alpha4 upregulation also resulted in a relative insensitivity to the anxiolytic actions of BDZ. These results suggest that short-term exposure to 3alpha,5alpha-THP produces changes in GABAR subunit composition similar to those that occur after chronic exposure and withdrawal from the steroid.
Collapse
|
35
|
Russek SJ, Bandyopadhyay S, Farb DH. An initiator element mediates autologous downregulation of the human type A gamma -aminobutyric acid receptor beta 1 subunit gene. Proc Natl Acad Sci U S A 2000; 97:8600-5. [PMID: 10900018 PMCID: PMC26994 DOI: 10.1073/pnas.97.15.8600] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulated expression of type A gamma-aminobutyric acid receptor (GABA(A)R) subunit genes is postulated to play a role in neuronal maturation, synaptogenesis, and predisposition to neurological disease. Increases in GABA levels and changes in GABA(A)R subunit gene expression, including decreased beta1 mRNA levels, have been observed in animal models of epilepsy. Persistent exposure to GABA down-regulates GABA(A)R number in primary cultures of neocortical neurons, but the regulatory mechanisms remain unknown. Here, we report the identification of a TATA-less minimal promoter of 296 bp for the human GABA(A)R beta1 subunit gene that is neuron specific and autologously down-regulated by GABA. beta1 promoter activity, mRNA levels, and subunit protein are decreased by persistent GABA(A)R activation. The core promoter, 270 bp, contains an initiator element (Inr) at the major transcriptional start site. Three concatenated copies of the 10-bp Inr and its immediate 3' flanking sequence produce full neural specific activity that is down-regulated by GABA in transiently transfected neocortical neurons. Taking these results together with those of DNase I footprinting, electrophoretic mobility shift analysis, and 2-bp mutagenesis, we conclude that GABA-induced down-regulation of beta1 subunit mRNAs involves the differential binding of a sequence-specific basal transcription factor(s) to the Inr. The results support a transcriptional mechanism for the down-regulation of beta1 subunit GABA(A)R gene expression and raises the possibility that altered levels of sequence-specific basal transcription factors may contribute to neurological disorders such as epilepsy.
Collapse
Affiliation(s)
- S J Russek
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118, USA
| | | | | |
Collapse
|