1
|
Machaalani R, Thawley M, Huang J, Chen H. Effects of prenatal cigarette smoke exposure on BDNF, PACAP, microglia and gliosis expression in the young male mouse brainstem. Neurotoxicology 2019; 74:40-46. [PMID: 31121239 DOI: 10.1016/j.neuro.2019.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 01/17/2023]
Abstract
Cigarette smoke exposure during pregnancy into infancy affects brain growth and development in both short and long term (into adulthood). Using a mouse model of pre- into post- natal cigarette smoke exposure (SE), we aimed to determine the effects on brain derived neurotrophic factor (BDNF) and its receptor TrkB, neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor PAC1, and astrocyte (GFAP) and microglia (Iba-1) immunohistochemical expression, in seven nuclei of the medulla and the facial (FAC) nucleus of the pons. Male pups of dams exposed to two cigarettes (nicotine <1.2 mg, CO <15 mg) twice daily for six weeks prior to mating, during gestation and lactation (n = 5; SE), were compared to pups exposed to air under the same condition (n = 5; SHAM) at postnatal day 20. Expression changes were only evident for BDNF, TrkB and PAC1 and included decreased BDNF in the hypoglossal (XII) nucleus and nucleus of the solitary tract (NTS), increased TrkB in XII but decreased TrkB in the FAC, and increased PAC1 in 4 nuclei of the medulla including the NTS. These results suggest that the effect of SE on the brainstem are region and marker selective, affecting regions of respiratory control (XII and NTS), and restricted to the BDNF system and PAC1, with no effect on activation states of astrocytes or microglia.
Collapse
Affiliation(s)
- Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School (Central), Medical Foundation Building, K25, University of Sydney, NSW, 2006, Australia.
| | - Melisande Thawley
- SIDS and Sleep Apnea Laboratory, Sydney Medical School (Central), Medical Foundation Building, K25, University of Sydney, NSW, 2006, Australia
| | - Jessica Huang
- SIDS and Sleep Apnea Laboratory, Sydney Medical School (Central), Medical Foundation Building, K25, University of Sydney, NSW, 2006, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
2
|
Ojala J, Tooke K, Hsiang H, Girard BM, May V, Vizzard MA. PACAP/PAC1 Expression and Function in Micturition Pathways. J Mol Neurosci 2018; 68:357-367. [PMID: 30259317 DOI: 10.1007/s12031-018-1170-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022]
Abstract
Neural injury, inflammation, or diseases commonly and adversely affect micturition reflex function that is organized by neural circuits in the CNS and PNS. One neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1), and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the lower urinary tract. PACAP and associated receptors are expressed in the LUT and exhibit changes in expression, distribution, and function in preclinical animal models of bladder pain syndrome (BPS)/interstitial cystitis (IC), a chronic, visceral pain syndrome characterized by pain, and LUT dysfunction. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency and somatic (e.g., hindpaw, pelvic) sensitivity in preclinical animal models and a transgenic mouse model that mirrors some clinical symptoms of BPS/IC. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction following urinary bladder inflammation.
Collapse
Affiliation(s)
- Jacqueline Ojala
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Katharine Tooke
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Harrison Hsiang
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Beatrice M Girard
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA.
| |
Collapse
|
3
|
Alteration of the PAC1 Receptor Expression in the Basal Ganglia of MPTP-Induced Parkinsonian Macaque Monkeys. Neurotox Res 2017; 33:702-715. [PMID: 29230633 DOI: 10.1007/s12640-017-9841-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-known neuropeptide with strong neurotrophic and neuroprotective effects. PACAP exerts its protective actions via three G protein-coupled receptors: the specific Pac1 receptor (Pac1R) and the Vpac1/Vpac2 receptors, the neuroprotective effects being mainly mediated by the Pac1R. The protective role of PACAP in models of Parkinson's disease and other neurodegenerative diseases is now well-established in both in vitro and in vivo studies. PACAP and its receptors occur in the mammalian brain, including regions associated with Parkinson's disease. PACAP receptor upregulation or downregulation has been reported in several injury models or human diseases, but no data are available on alterations of receptor expression in Parkinson's disease. The model closest to the human disease is the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced macaque model. Therefore, our present aim was to evaluate changes in Pac1R expression in basal ganglia related to Parkinson's disease in a macaque model. Monkeys were rendered parkinsonian with MPTP, and striatum, pallidum, and cortex were evaluated for Pac1R immunostaining. We found that Pac1R immunosignal was markedly reduced in the caudate nucleus, putamen, and internal and external parts of the globus pallidus, while the immunoreactivity remained unchanged in the cortex of MPTP-treated parkinsonian monkey brains. This decrease was attenuated in some brain areas in monkeys treated with L-DOPA. The strong, specific decrease of the PACAP receptor immunosignal in the basal ganglia of parkinsonian macaque monkey brains suggests that the PACAP/Pac1R system may play an important role in the development/progression of the disease.
Collapse
|
4
|
Girard BM, Tooke K, Vizzard MA. PACAP/Receptor System in Urinary Bladder Dysfunction and Pelvic Pain Following Urinary Bladder Inflammation or Stress. Front Syst Neurosci 2017; 11:90. [PMID: 29255407 PMCID: PMC5722809 DOI: 10.3389/fnsys.2017.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex organization of CNS and PNS pathways is necessary for the coordinated and reciprocal functions of the urinary bladder, urethra and urethral sphincters. Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways and target organs can produce lower urinary tract (LUT) dysfunction. Numerous neuropeptide/receptor systems are expressed in the neural pathways of the LUT and non-neural components of the LUT (e.g., urothelium) also express peptides. One such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder dysfunction and altered somatic sensation. PACAP and associated receptors are expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation, and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency in preclinical animal models and transgenic mouse models that mirror some clinical symptoms of bladder dysfunction. A change in the balance of the expression and resulting function of the PACAP/receptor system in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including symptoms of urinary urgency, increased voiding frequency, and visceral pain. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction.
Collapse
Affiliation(s)
| | | | - Margaret A. Vizzard
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
5
|
Girard BM, Malley SE, Mathews MM, May V, Vizzard MA. Intravesical PAC1 Receptor Antagonist, PACAP(6-38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in NGF-OE Mice. J Mol Neurosci 2016; 59:290-9. [PMID: 27146136 DOI: 10.1007/s12031-016-0764-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Chronic NGF overexpression (OE) in the urothelium, achieved through the use of a highly urothelium-specific uroplakin II promoter, stimulates neuronal sprouting in the urinary bladder, produces increased voiding frequency and non-voiding contractions, and referred somatic sensitivity. Additional NGF-mediated pleiotropic changes might contribute to increased voiding frequency and pelvic hypersensitivity in NGF-OE mice such as neuropeptide/receptor systems including PACAP(Adcyap1) and PAC1 receptor (Adcyap1r1). Given the presence of PAC1-immunoreactive fibers and the expression of PAC1 receptor expression in bladder tissues, and PACAP-facilitated detrusor contraction, whether PACAP/receptor signaling contributes to increased voiding frequency and somatic sensitivity was evaluated in NGF-OE mice. Intravesical administration of the PAC1 receptor antagonist, PACAP(6-38) (300 nM), significantly (p ≤ 0.01) increased intercontraction interval (2.0-fold) and void volume (2.5-fold) in NGF-OE mice. Intravesical instillation of PACAP(6-38) also decreased baseline bladder pressure in NGF-OE mice. PACAP(6-38) had no effects on bladder function in WT mice. Intravesical administration of PACAP(6-38) (300 nM) significantly (p ≤ 0.01) reduced pelvic sensitivity in NGF-OE mice but was without effect in WT mice. PACAP/receptor signaling contributes to the increased voiding frequency and pelvic sensitivity observed in NGF-OE mice.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Susan E Malley
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Morgan M Mathews
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA.
| |
Collapse
|
6
|
Castorina A, Waschek JA, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS One 2015; 10:e0117799. [PMID: 25658447 PMCID: PMC4319891 DOI: 10.1371/journal.pone.0117799] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/31/2014] [Indexed: 12/13/2022] Open
Abstract
Regeneration of peripheral nerves depends on the abilities of rejuvenating axons to migrate at the injury site through cellular debris and altered extracellular matrix, and then grow along the residual distal nerve sheath conduit and reinnervate synaptic targets. Considerable evidence suggest that glial cells participate in this process, although the mechanisms remain to be clarified. In cell culture, regenerating neurites secrete PACAP, a peptide shown to induce the expression of the protease tissue plasminogen activator (tPA) in neural cell types. In the present studies, we tested the hypothesis that PACAP can stimulate peripheral glial cells to produce tPA. More specifically, we addressed whether or not PACAP promoted the expression and activity of tPA in the Schwann cell line RT4-D6P2T, which shares biochemical and physical properties with Schwann cells. We found that PACAP dose- and time-dependently stimulated tPA expression both at the mRNA and protein level. Such effect was mimicked by maxadilan, a potent PAC1 receptor agonist, but not by the PACAP-related homolog VIP, suggesting a PAC1-mediated function. These actions appeared to be mediated at least in part by the Akt/CREB signaling cascade because wortmannin, a PI3K inhibitor, prevented peptide-driven CREB phosphorylation and tPA increase. Interestingly, treatment with BDNF mimicked PACAP actions on tPA, but acted through both the Akt and MAPK signaling pathways, while causing a robust increase in PACAP and PAC1 expression. PACAP6-38 totally blocked PACAP-driven tPA expression and in part hampered BDNF-mediated effects. We conclude that PACAP, acting through PAC1 receptors, stimulates tPA expression and activity in a Akt/CREB-dependent manner to promote proteolytic activity in Schwann-cell like cultures.
Collapse
Affiliation(s)
- Alessandro Castorina
- Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - James A. Waschek
- Semel Institute/Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rubina Marzagalli
- Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical Sciences and Biotechnologies, Section of Physiology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical Sciences and Biotechnologies, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Souza TML, Temerozo JR, Giestal-de-Araujo E, Bou-Habib DC. The effects of neurotrophins and the neuropeptides VIP and PACAP on HIV-1 infection: histories with opposite ends. Neuroimmunomodulation 2014; 21:268-82. [PMID: 24603065 DOI: 10.1159/000357434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
The nerve growth factor (NGF) and other neurotrophins, and the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are largely present in human tissue and can exert modulatory activities on nervous, endocrine and immune system functions. NGF, VIP and PACAP receptors are expressed systemically in organisms, and thus these mediators exhibit pleiotropic natures. The human immunodeficiency virus type 1 (HIV-1), the causal agent of the acquired immunodeficiency syndrome (AIDS), infects immune cells, and its replication is modulated by a number of endogenous factors that interact with HIV-1-infected cells. NGF, VIP and PACAP can also affect HIV-1 virus particle production upon binding to their receptors on the membranes of infected cells, which triggers cell signaling pathways that modify the HIV-1 replicative cycle. These molecules exert opposite effects on HIV-1 replication, as NGF and other neurotrophins enhance and VIP and PACAP reduce viral production in HIV-1-infected human primary macrophages. The understanding of AIDS pathogenesis should consider the mechanisms by which the replication of HIV-1, a pathogen that causes chronic morbidity, is influenced by neurotrophins, VIP and PACAP, i.e. molecules that exert a broad spectrum of physiological activities on the neuroimmunoendocrine axis. In this review, we will present the main effects of these two groups of mediators on the HIV-1 replicative cycle, as well as the mechanisms that underlie their abilities to modulate HIV-1 production in infected immune cells, and discuss the possible repercussion of the cross talk between NGF and both neuropeptides on the pathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Thiago Moreno L Souza
- Laboratory of Respiratory Viruses, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
8
|
Castorina A, Scuderi S, D'Amico AG, Drago F, D'Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res 2013; 322:108-21. [PMID: 24246222 DOI: 10.1016/j.yexcr.2013.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
PACAP and its cognate peptide VIP participate in various biological functions, including myelin maturation and synthesis. However, defining whether these peptides affect peripheral expression of myelin proteins still remains unanswered. To address this issue, we assessed whether PACAP or VIP contribute to regulate the expression of three myelin proteins (MAG, MBP and MPZ, respectively) using the rat schwannoma cell line (RT4-P6D2T), a well-established model to study myelin gene expression. In addition, we endeavored to partly unravel the underlying molecular mechanisms involved. Expression of myelin-specific proteins was assessed in cells grown either in normal serum (10% FBS) or serum starved and treated with or without 100 nM PACAP or VIP. Furthermore, through pharmacological approach using the PACAP/VIP receptor antagonist (PACAP6-38) or specific pathway (MAPK or PI3K) inhibitors we defined the relative contribution of receptors and/or signaling pathways on the expression of myelin proteins. Our data show that serum starvation (24h) significantly increased both MAG, MBP and MPZ expression. Concurrently, we observed increased expression of endogenous PACAP and related receptors. Treatment with PACAP or VIP further exacerbated starvation-induced expression of myelin markers, suggesting that serum withdrawal might sensitize cells to peptide activity. Stimulation with either peptides increased phosphorylation of Akt at Ser473 residue but had no effect on phosphorylated Erk-1/2. PACAP6-38 (10 μM) impeded starvation- or peptide-induced expression of myelin markers. Similar effects were obtained after pretreatment with the PI3K inhibitor (wortmannin, 10 μM) but not the MAPKK inhibitor (PD98059, 50 μM). Together, the present finding corroborate the hypothesis that PACAP and VIP might contribute to the myelinating process preferentially via the canonical PI3K/Akt signaling pathway, providing the basis for future studies on the role of these peptides in demyelinating diseases.
Collapse
Affiliation(s)
- Alessandro Castorina
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy.
| | - Soraya Scuderi
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy
| | - Agata Grazia D'Amico
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy
| | - Filippo Drago
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Via A. Doria, 6, QJ;95123 Catania, Italy
| | - Velia D'Agata
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy
| |
Collapse
|
9
|
Antiproliferative effects of PACAP and VIP in serum-starved glioma cells. J Mol Neurosci 2013; 51:503-13. [PMID: 23900722 DOI: 10.1007/s12031-013-0076-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/15/2013] [Indexed: 01/20/2023]
Abstract
Emerging evidence have suggested that calorie restriction (CR) is a reliable method to decrease cancer development since it produces changes in tumor microenvironment that interfere with cell proliferation, tissue invasion, and formation of metastases. Studies on the role of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) in cancer cells indicate that their influence on cell growth is either cell type specific or dependent on culture conditions. Evidence showing the effect of PACAP and VIP in glioma cells grown under conditions mimicking CR are currently unavailable. Therefore, we explored the effects of both PACAP and VIP in C6 glioma cells either grown in a normal growth medium or exposed to serum starvation, to resemble an acute condition of CR. Cell viability, expression of proteins related to cell proliferation (cyclin D1), apoptosis (Bcl2, p53, and cleaved caspase-3), and cell malignancy (GFAP and nestin) were assessed by MTT assay, immunoblot, and immunolocalization, respectively. Results demonstrated that CR significantly decreased cell proliferation, reduced levels of cyclin D1 and Bcl2, and increased the expression of p53 and cleaved caspase-3. Surprisingly, all of these CR-driven effects were further exacerbated by PACAP or VIP treatment. We also found that PACAP or VIP prevented GFAP decrease caused by CR and further reduced the expression of nestin, a prognostic marker of malignancy. In conclusion, these data demonstrate that PACAP and VIP possess antiproliferative properties against glioma cells that depend on the specific culture settings, further supporting the idea that CR might offer new avenues to improve peptide-oriented glioma cancer treatment.
Collapse
|
10
|
Giunta S, Castorina A, Bucolo C, Magro G, Drago F, D'Agata V. Early changes in pituitary adenylate cyclase-activating peptide, vasoactive intestinal peptide and related receptors expression in retina of streptozotocin-induced diabetic rats. Peptides 2012; 37:32-9. [PMID: 22721946 DOI: 10.1016/j.peptides.2012.06.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 11/26/2022]
Abstract
The retinal expression and distribution of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) and their receptors was investigated in early streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in rats by STZ injection (60 mg/kg i.p.). PACAP, VIP and their receptors in nondiabetic control and diabetic retinas were assayed by quantitative real-time PCR and Western blot 1 and 3 weeks after STZ injection. Effects of intravitreal treatment with PACAP38 on the expression of the two apoptotic-related genes Bcl-2 and p53 were also evaluated. PACAP and VIP, as well as VPAC1 and VPAC2 receptors, but not PAC1 mRNA levels, were transiently induced in retinas 1 week following STZ. These findings were confirmed by immunoblot analyses. Three weeks after the induction of diabetes, significant decreases in the expression of peptides and their receptors were observed, Bcl-2 expression decreased and p53 expression increased. Intravitreal injection of PACAP38 restored STZ-induced changes in retinal Bcl-2 and p53 expression to nondiabetic levels. The initial upregulation of PACAP, VIP and related receptors and the subsequent downregulation in retina of diabetic rats along with the protective effects of PACAP38 treatment, suggest a role for both peptides in the pathogenesis of diabetic retinopathy.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blood Glucose
- DNA Primers/genetics
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Gene Expression/drug effects
- Intravitreal Injections
- Male
- Pituitary Adenylate Cyclase-Activating Polypeptide/administration & dosage
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats, Sprague-Dawley
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Retina/metabolism
- Streptozocin
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Vasoactive Intestinal Peptide/metabolism
Collapse
|
11
|
Miura A, Odahara N, Tominaga A, Inoue K, Kambe Y, Kurihara T, Miyata A. Regulatory mechanism of PAC1 gene expression via Sp1 by nerve growth factor in PC12 cells. FEBS Lett 2012; 586:1731-5. [PMID: 22609358 DOI: 10.1016/j.febslet.2012.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/02/2012] [Accepted: 05/03/2012] [Indexed: 11/26/2022]
Abstract
In addition to VPAC1 and VPAC2, PAC1 is involved in the pleiotropic action of pituitary adenylate cyclase activating polypeptide (PACAP) in the CNS. A luciferase reporter assay for the human PAC1 gene (-2160/+268) revealed that NGF treatment significantly augments the promoter activity of the PAC1 gene. Moreover, the Sp1 site at -282/-273 was shown to be essential for the NGF-augmented promoter activity of the PAC1 gene. Treatment with U0126, an MEK inhibitor, or Mithramycin A, an Sp1 inhibitor, significantly attenuated promoter activity. These results indicate that activation of Sp1 by the Ras/MAPK pathway might participate in neuron specific expression of the PAC1 gene.
Collapse
Affiliation(s)
- Ayako Miura
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Castorina A, Giunta S, Mazzone V, Cardile V, D'Agata V. Effects of PACAP and VIP on hyperglycemia-induced proliferation in murine microvascular endothelial cells. Peptides 2010; 31:2276-2283. [PMID: 20800633 DOI: 10.1016/j.peptides.2010.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 12/12/2022]
Abstract
Hyperglycemia is implicated both in micro- and macro-vascular complications in diabetes mellitus. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two known nonclassic regulators of angiogenesis, although their biological role on endothelial cell proliferation remains poorly defined. In the present study we hypothesized that either peptides might play an inhibitory role on hyperglycemia-induced cell growth. To this end, we investigated the effect of both PACAP and VIP on cell proliferation in murine microvascular endothelial cells (H5V) cultured both under euglycemic and hyperglycemic conditions (5 and 25 mM glucose, respectively) for 24, 48 h, 7 and 15 days. Results demonstrated that high glucose treatment induced a time-dependent increase in cell viability after 48 h (p<0.05), which was much more evident after 7 and 15 days (p<0.001). Similar effects were observed in cell proliferation, although significant changes were obtained after prolonged exposures to high glucose (7 and 15 days; p<0.001). The proliferative response to the glucose-enriched environment was correlated to changes in the expression of PAC1 and, to a minor extent, to VPAC2, but not VPAC1 receptors, as measured by quantitative real-time PCR. These results were further confirmed by Western blot and immunofluorescence analyses. Interestingly, 10⁻⁷ M PACAP or VIP treatment significantly attenuated hyperglycemia-induced increase in cell viability and proliferation after 7 and 15 days. Taken together, our findings demonstrate that both PACAP and VIP peptides exert an inhibitory activity on hyperglycemia-induced endothelial cell proliferation, thus suggesting that the effect might be mediated by PAC1 and VPAC2 receptors.
Collapse
Affiliation(s)
- Alessandro Castorina
- Department of Anatomy, Diagnostic Pathology, Legal Medicine, Hygiene and Public Health, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
13
|
PACAP/VIP and receptor characterization in micturition pathways in mice with overexpression of NGF in urothelium. J Mol Neurosci 2010; 42:378-89. [PMID: 20449688 DOI: 10.1007/s12031-010-9384-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/23/2010] [Indexed: 12/11/2022]
Abstract
Urothelium-specific overexpression of nerve growth factor (NGF) in the urinary bladder of transgenic mice stimulates neuronal sprouting or proliferation in the urinary bladder, produces urinary bladder hyperreflexia, and results in increased referred somatic hypersensitivity. Additional NGF-mediated changes might contribute to the urinary bladder hyperreflexia and pelvic hypersensitivity observed in these transgenic mice such as upregulation of neuropeptide/receptor systems. Chronic overexpression of NGF in the urothelium was achieved through the use of a highly urothelium-specific, uroplakin II promoter. In the present study, we examined pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), and associated receptor (PAC1, VPAC1, VPAC2) transcripts or protein expression in urothelium and detrusor smooth muscle and lumbosacral dorsal root ganglia in NGF-overexpressing and littermate wildtype mice using real-time quantitative reverse transcription-polymerase chain reaction and immunohistochemical approaches. Results demonstrate upregulation of PAC1 receptor transcript and PAC1-immunoreactivity in urothelium of NGF-OE mice whereas PACAP transcript and PACAP-immunoreactivity were decreased in urothelium of NGF-OE mice. In contrast, VPAC1 receptor transcript was decreased in both urothelium and detrusor smooth muscle of NGF-OE mice. VIP transcript expression and immunostaining was not altered in urinary bladder of NGF-OE mice. Changes in PACAP, VIP, and associated receptor transcripts and protein expression in micturition pathways resemble some, but not all, changes observed after induction of urinary bladder inflammation known to involve NGF production.
Collapse
|
14
|
Giunta S, Castorina A, Adorno A, Mazzone V, Carnazza ML, D'Agata V. PACAP and VIP affect NF1 expression in rat malignant peripheral nerve sheath tumor (MPNST) cells. Neuropeptides 2010; 44:45-51. [PMID: 19919880 DOI: 10.1016/j.npep.2009.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/14/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
In our previous study we have identified PACAP, VIP and their receptors in rat malignant peripheral nerve sheath tumor (MPNST) cells, thus showing anti-apoptotic roles. Recently it has been shown that the tumor suppressor neurofibromin, encoded by the Neurofibromatosis type I (NF1) gene, promotes MPNST cells sensitivity to apoptosis after serum withdrawal. In the present study we investigated whether PACAP or VIP negatively regulate NF1 expression under normal or serum-dependent pro-apoptotic culture conditions. Results indicated that serum itself significantly influenced gene and protein levels. In fact, the low NF1 levels of cells cultured in normal serum-containing medium were remarkably increased in cells switched to low- or no-serum after 24h and 48 h. Treatment with 100 nM PACAP or VIP did not affect NF1 expression when using normal amounts of serum, whereas it significantly inhibited transcript and protein levels both in low- or no-serum cultured cells. In particular, PACAP reduced NF1 levels already after 24h in low-serum cultured cells, while VIP showed a similar effect only after serum deprivation. However, both PACAP and VIP downregulated gene and protein levels within 48 h either in low-dose and serum-starved cells. Results were confirmed by fluorescence microscopy, showing that 100 nM PACAP or VIP attenuated neurofibromin cytoplasmic localization only in low- or no-serum cultured cells. The present study provides a comprehensive analysis of both neuropeptides effect on NF1 expression in normal, low- or serum-starved MPNST cells, ameliorating the hypothesis that resistance to apoptosis in serum-deprived cells might be correlated to PACAP-/VIP-induced NF1 inhibition.
Collapse
Affiliation(s)
- Salvatore Giunta
- Department of Anatomy, Diagnostic Pathology, Legal Medicine, Hygiene and Public Health, University of Catania, Catania, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 860] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Castorina A, Tiralongo A, Giunta S, Carnazza ML, Rasi G, D'Agata V. PACAP and VIP prevent apoptosis in schwannoma cells. Brain Res 2008; 1241:29-35. [DOI: 10.1016/j.brainres.2008.09.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/20/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
17
|
Implication of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) for Neuroprotection of Nicotinic Acetylcholine Receptor Signaling in PC12 Cells. J Mol Neurosci 2008; 36:73-8. [DOI: 10.1007/s12031-008-9127-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
|
18
|
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that was first isolated from an ovine hypothalamus in 1989. Since its discovery, more than 2,000 papers have reported on the tissue and cellular distribution and functional significance of PACAP. A number of papers have reported that PACAP but not the vasoactive intestinal peptide suppressed neuronal cell death or decreased infarct volume after global and focal ischemia in rodents, even if PACAP was administered several hours after ischemia induction. In addition, recent studies using PACAP gene-deficient mice demonstrated that endogenous PACAP also contributes greatly to neuroprotection similarly to exogenously administered PACAP. The studies suggest that neuroprotection by PACAP might extend the therapeutic time window for treatment of ischemia-related conditions, such as stroke. This review summarizes the effects of PACAP on ischemic neuronal cell death, and the mechanism clarified in vivo ischemic studies. In addition, the prospective mechanism of PACAP on ischemic neuroprotection from in vitro neuronal and neuronal-like cell cultures with injured stress model is reviewed. Finally, the development of PACAP and/or receptor agonists for human therapy is discussed.
Collapse
|
19
|
Botia B, Basille M, Allais A, Raoult E, Falluel-Morel A, Galas L, Jolivel V, Wurtz O, Komuro H, Fournier A, Vaudry H, Burel D, Gonzalez BJ, Vaudry D. Neurotrophic effects of PACAP in the cerebellar cortex. Peptides 2007; 28:1746-52. [PMID: 17544170 DOI: 10.1016/j.peptides.2007.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/16/2007] [Accepted: 04/24/2007] [Indexed: 11/23/2022]
Abstract
In the rodent cerebellum, PACAP is expressed by Purkinje neurons and PAC1 receptors are present on granule cells during both the development period and in adulthood. Treatment of granule neurons with PACAP inhibits proliferation, slows migration, promotes survival and induces differentiation. PACAP also protects cerebellar granule cells against the deleterious effects of neurotoxic agents. Most of the neurotrophic effects of PACAP are mediated through the cAMP/PKA signaling pathway and often involve the ERK MAPkinase. Caspase-3 is one of the key enzymes implicated in the neuroprotective action of PACAP but PACAP also inhibits caspase-9 activity and increases Bcl-2 expression. PACAP and functional PAC1 receptors are expressed in the monkey and human cerebellar cortex with a pattern of expression very similar to that described in rodents, suggesting that PACAP could also exert neurodevelopmental and neuroprotective functions in the cerebellum of primates including human.
Collapse
Affiliation(s)
- Béatrice Botia
- Inserm U413, International Associated Laboratory Samuel de Champlain, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang W, Duan W, Cheung NS, Huang Z, Shao K, Li QT. Pituitary adenylate cyclase-activating polypeptide induces translocation of its G-protein-coupled receptor into caveolin-enriched membrane microdomains, leading to enhanced cyclic AMP generation and neurite outgrowth in PC12 cells. J Neurochem 2007; 103:1157-67. [PMID: 17680996 DOI: 10.1111/j.1471-4159.2007.04813.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagon/vasoactive intestinal peptide family expressed throughout the nervous system, binds to the PACAP-specific G-protein-coupled receptor family members to promote both neuronal differentiation and survival. Although the PACAP receptor is known to activate its effector protein, adenylate cyclase (AC), and thus enhance cAMP generation, the molecular mechanism utilized by the receptor to activate AC is lacking. Here, we show that PACAP induces neurite outgrowth in PC12 cells by induction of translocation of the PACAP type 1 receptor (PAC1R) into caveolin-enriched Triton X-100-insoluble microdomains, leading to stronger PAC1R-AC interaction and elevated cAMP production. Moreover, we demonstrate that translocation of PAC1R is blocked by various treatments that selectively disrupt caveolae. As a result, intracellular cAMP level is decreased and consequently the PACAP-induced neurite outgrowth retarded. In contrast, addition of exogenous ganglioside GM1 to the cells shows the opposite effects. These results therefore identify the PACAP-induced translocation of its G-protein-coupled receptor into caveolae, where both AC and the regulating G-proteins reside, as the key molecular event in activating AC and inducing cAMP-mediated differentiation of PC12 cells.
Collapse
Affiliation(s)
- Weishi Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
21
|
Obara Y, Horgan AM, Stork PJS. The requirement of Ras and Rap1 for the activation of ERKs by cAMP, PACAP, and KCl in cerebellar granule cells. J Neurochem 2007; 101:470-82. [PMID: 17254020 DOI: 10.1111/j.1471-4159.2006.04390.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In cerebellar granule cells, the mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) cascade mediates multiple functions, including proliferation, differentiation, and survival. In these cells, ERKs are activated by diverse stimuli, including cyclic adenosine monophosphate (cAMP), pituitary adenylate cyclase activating protein (PACAP), depolarization induced by elevated extracellular potassium (KCl), and the neurotrophin brain-derived neurotrophic factor. Extensive studies in neuronal cell lines have implicated the small G proteins Ras and Rap1 in the activation of ERKs by cAMP, PACAP, and KCl. However, the requirement of Ras and Rap1 in these pathways in cerebellar granule cells has not been addressed. In this study, we utilize multiple biochemical assays to determine the mechanisms of action and requirement of Ras and Rap1 in cultured cerebellar granule cells. We show that both Ras and Rap1 can be activated by cAMP or PACAP via protein kinase (PKA)-dependent mechanisms. KCl activation of Ras also required PKA. Using both adenoviral and transgenic approaches, we show that Ras plays a major role in ERK activation by cAMP, PACAP, and KCl, while Rap1 also mediates activation of a selective membrane-associated pool of ERKs. Furthermore, Rap1, but not Ras, activation by PKA appears to require the action of Src family kinases.
Collapse
Affiliation(s)
- Yutaro Obara
- Vollum Institute, L474, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
22
|
Ravni A, Bourgault S, Lebon A, Chan P, Galas L, Fournier A, Vaudry H, Gonzalez B, Eiden LE, Vaudry D. The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. J Neurochem 2006; 98:321-9. [PMID: 16805827 DOI: 10.1111/j.1471-4159.2006.03884.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are closely related members of the secretin superfamily of neuropeptides expressed in both the brain and peripheral nervous system, and they exhibit neurotrophic and neurodevelopmental effects in vivo. Like the index member of the Trk receptor ligand family, nerve growth factor (NGF), PACAP promotes the differentiation of PC12 cells, a well-established cell culture model, to investigate neuronal differentiation, survival and function. Stimulation of catecholamine secretion and enhanced neuropeptide biosynthesis are effects exerted by PACAP at the adrenomedullary synapse in vivo and on PC12 cells in vitro through stimulation of the specific PAC1 receptor. Induction of neuritogenesis, growth arrest, and promotion of cell survival are effects of PACAP that occur in developing cerebellar, hippocampal and cortical neurons, as well as in the more tractable PC12 cell model. Study of the mechanisms through which PACAP exerts its various effects on cell growth, morphology, gene expression and survival, i.e. its actions as a neurotrophin, in PC12 cells is the subject of this review. The study of neurotrophic signalling by PACAP in PC12 cells reveals that multiple independent pathways are coordinated in the PACAP response, some activated by classical and some by novel or combinatorial signalling mechanisms.
Collapse
Affiliation(s)
- Aurélia Ravni
- Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Greene LA, Angelastro JM. You can't go home again: transcriptionally driven alteration of cell signaling by NGF. Neurochem Res 2006; 30:1347-52. [PMID: 16341597 DOI: 10.1007/s11064-005-8807-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/30/2022]
Abstract
Here we review findings indicating that neurotrophins such as NGF promote changes in gene transcription that in turn influence the ways that cells subsequently respond to trophic factors. As a result, initial responses of "naïve" cells to NGF and other trophic agents differ from those of cells with prior NGF exposure. We discuss specific examples based on reports in the literature as well as on data derived from a serial analysis of gene expression (SAGE) study of NGF-promoted transcriptional changes in PC12 pheochromocytoma cells.
Collapse
Affiliation(s)
- Lloyd A Greene
- Department of Pathology, Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
24
|
Pugh PC, Margiotta JF. PACAP support of neuronal survival requires MAPK- and activity-generated signals. Mol Cell Neurosci 2006; 31:586-95. [PMID: 16431129 DOI: 10.1016/j.mcn.2005.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 10/31/2005] [Accepted: 11/30/2005] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed in the parasympathetic ciliary ganglion (CG) and modulates nicotinic acetylcholine receptor function. PACAP also provides trophic support, promoting partial survival of CG neurons in culture and full survival when accompanied by membrane depolarization. We probed the adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP to determine their respective roles in supporting neuronal survival and examined their interaction with signals generated by membrane activity. While PLC-dependent signaling was dispensable, AC-generated signals proved critical for PACAP to support neuronal survival. Specifically, PACAP-supported survival was mimicked by 8Br-cAMP and blocked by inhibiting either PKA or the phosphorylation of mitogen-activated protein kinase (MAPK). The ability of PACAP to promote survival was additionally dependent on spontaneous activity as blocking Na+ or Ca2+ channel currents completely abrogated trophic effects. Our results underscore the importance of coordinated MAPK- and activity-generated signals in transducing neuropeptide-mediated parasympathetic neuronal survival.
Collapse
Affiliation(s)
- Phyllis C Pugh
- Department of Neurosciences, Medical University of Ohio, 3035 Arlington Avenue, Toledo, OH 43614, USA.
| | | |
Collapse
|
25
|
Chen YL, Law PY, Loh HH. Sustained activation of phosphatidylinositol 3-kinase/Akt/nuclear factor kappaB signaling mediates G protein-coupled delta-opioid receptor gene expression. J Biol Chem 2005; 281:3067-74. [PMID: 16316997 DOI: 10.1074/jbc.m506721200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Expression of the delta-opioid receptor gene (dor) is tightly controlled during neuronal differentiation and developmental stages. Such distinct temporal and spatial expression of dor during development suggests a role for the delta-opioid receptor in early developmental events. However, little is known about intracellular signaling pathways that control dor expression. A well established cell line model for the study of gene expression during neuronal differentiation is the rat adrenal pheochromocytoma PC12 cell line. Here we found that the constitutively activated TrkA/phosphatidylinositol 3-kinase/Akt (protein kinase B)/NF-kappaB survival cascade mediates dor expression during nerve growth factor (NGF)-induced differentiation of PC12h cells. Biochemical experiments showed that constitutive phosphorylation of Akt and IkappaBalpha correlates with NGF-induced dor expression. Overexpression of the transcriptional activator NF-kappaB/p65 increased dor promoter activity. Overexpression of the NF-kappaB signaling super inhibitor mutant IkappaBalpha (S32A/S36A) abolished the effect of p65 and blocked NGF-induced activation of NF-kappaB signaling, resulting in a significant reduction in dor promoter activity. Treatment with SN50, an NF-kappaB-specific nuclear translocation peptide inhibitor, inhibited the translocation of NF-kappaB, resulting in a reduction of dor mRNA. The gel shift assay supported the fact that there exists an NF-kappaB-binding site on the dor promoter. RNA interference experiments using NF-kappaB/p65 small interfering RNA confirmed that NF-kappaB signaling is required for dor expression. Our findings not only provide a new mechanistic explanation for NGF-induced dor expression but also shed some light on the molecular mechanism of the temporal and spatial expression of dor and the roles of the delta-opioid receptor during neuronal differentiation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Binding Sites
- Binding, Competitive
- Blotting, Western
- Cell Differentiation
- Cell Nucleus/metabolism
- Enzyme Activation
- Gene Expression Regulation, Enzymologic
- Genes, Reporter
- I-kappa B Proteins/metabolism
- Mutation
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Nerve Growth Factor/metabolism
- Neurons/metabolism
- Oligonucleotide Probes/chemistry
- PC12 Cells
- Peptides/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Plasmids/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, Opioid, delta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Transcription Factor RelA/metabolism
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Yulong L Chen
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
26
|
Wang G, Qi C, Fan GH, Zhou HY, Chen SD. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett 2005; 579:4005-11. [PMID: 16004991 DOI: 10.1016/j.febslet.2005.06.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 06/07/2005] [Indexed: 12/21/2022]
Abstract
In vivo and in vitro studies have suggested a neuroprotective role for Pituitary adenylate cyclase activating polypeptide (PACAP) against neuronal insults. Here, we showed that PACAP27 protects against neurotoxicity induced by rotenone, a mitochondrial complex I inhibitor that has been implicated in the pathogenesis of Parkinson's disease (PD). The neuroprotective effect of PACAP27 was dose-dependent and blocked by its specific receptor antagonist, PACAP6-27. The effects of PACAP27 on rotenone-induced cell death were mimicked by dibutyryl-cAMP (db-cAMP), forskolin and prevented by the PKA inhibitor H89, the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PACAP27 administration blocked rotenone-induced increases in the level of caspase-3-like activity, whereas could not restore mitochondrial activity damaged by rotenone. Thus, our results demonstrate that PACAP27 has a neuroprotective role against rotenone-induced neurotoxicity in neuronal differentiated PC12 cells and the neuroprotective effects of PACAP are associated with activation of MAP kinase pathways by PKA and with inhibition of caspase-3 activity; the signaling mechanism appears to be mediated through mitochondrial-independent pathways.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Second Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
27
|
Kohama K, Tsukamoto Y, Furuya M, Okamura K, Tanaka H, Miki N, Taira E. Molecular cloning and analysis of the mouse gicerin gene. Neurochem Int 2005; 46:465-70. [PMID: 15769548 DOI: 10.1016/j.neuint.2004.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 11/15/2022]
Abstract
Gicerin is a cell adhesion molecule, which has five immunoglobulin-like loop structures in an extracellular domain followed by a single transmembrane domain and a short cytoplasmic tail. We have reported that gicerin participates in neurite extension and structural organization of the nervous system, and its expression in the nervous system is high during the development and dramatically decreased after birth. To elucidate the mechanism how the expression of gicerin is regulated, we performed a genomic cloning of a mouse gicerin. A fragment of 16 kbp genomic clone contained 8 kbp gicerin gene composed of 16 exons with 6 kbp upstream region. Genomic cloning revealed that two isoforms of gicerin were generated by an alternative splicing of exon 15 results in cytoplasmic domains composed of either 63 or 21 amino acids. As for an expressional regulation of gicerin, we found that the mRNA content of gicerin in PC12 cells was regulated by cAMP. Quantitative-PCR analysis revealed that forskolin induced four-fold increase of gicerin mRNA. To characterize the involvement of its promoter region, we examined the promoter activity in PC12 cells by a luciferase-reporter assay. We found that a CRE site located at 60 bp upstream of gicerin gene was responsible for the increase of its mRNA induced by forskolin.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Base Sequence
- CD146 Antigen
- Cloning, Molecular
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Exons/genetics
- Gene Expression Regulation, Developmental/genetics
- Genes/genetics
- Genes, Regulator/drug effects
- Genes, Regulator/genetics
- Genes, Reporter
- Integrases/genetics
- Mice
- Molecular Sequence Data
- Neural Cell Adhesion Molecules/biosynthesis
- Neural Cell Adhesion Molecules/chemistry
- Neural Cell Adhesion Molecules/genetics
- PC12 Cells
- Promoter Regions, Genetic
- Protein Structure, Tertiary/physiology
- RNA, Messenger/metabolism
- Rats
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Keiko Kohama
- Department of Pharmacology, Osaka University Medical School, Room# A6, 2-2 Yamada-oka Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Kimura H, Kawatani M, Ito E, Ishikawa K. Effects of pituitary adenylate cyclase-activating polypeptide on facial nerve recovery in the Guinea pig. Laryngoscope 2003; 113:1000-6. [PMID: 12782812 DOI: 10.1097/00005537-200306000-00016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS Pituitary adenylate cyclase-activating polypeptide (PACAP) has neurotrophic effects of neural regeneration and gives protection to the nervous system. We investigated whether PACAP had a neurotrophic effect on peripheral motoneurons and whether PACAP could facilitate glial cell line-derived neurotrophic factor (GDNF), a neurotrophin, in nerve regeneration. The presence and distribution of PACAP receptors following facial nerve transection were also investigated. STUDY DESIGN Animal experiment. METHODS Unilateral transection of the facial nerve was performed in male Hartley guinea pigs, and PACAP was injected at the site. Saline was substituted as a control. Compound muscle action potentials were recorded to measure the changes of latency. Glial cell line-derived neurotrophic factor (GDNF) content in facial target muscle was measured using enzyme-linked immunosorbent assay. The regenerating site was taken for histological studies. RESULTS Pituitary adenylate cyclase-activating polypeptide hastened the appearance of compound muscle action potentials and shortened the latency. Pituitary adenylate cyclase-activating polypeptide increased and prolonged the nerve transection-induced GDNF increase in the facial muscles. The number of myelinated fibers at 1 to 4 weeks after the transection was increased. PAC1 receptor or VPAC1 receptor or both were identified in the injury area at 2 to 4 weeks. CONCLUSIONS Pituitary adenylate cyclase-activating polypeptide facilitated the recovery of latency of compound muscle action potentials or the number of myelinated axons, or both. Pituitary adenylate cyclase-activating polypeptide prolonged the GDNF levels in target organs. These data indicated that PACAP promoted regeneration of the facial nerve.
Collapse
Affiliation(s)
- Hiromoto Kimura
- Department of Otolaryngology, Akita University School of Medicine, Japan.
| | | | | | | |
Collapse
|