1
|
Mesa-Herrera F, Marín R, Torrealba E, Santos G, Díaz M. Neuronal ER-Signalosome Proteins as Early Biomarkers in Prodromal Alzheimer's Disease Independent of Amyloid-β Production and Tau Phosphorylation. Front Mol Neurosci 2022; 15:879146. [PMID: 35600079 PMCID: PMC9119323 DOI: 10.3389/fnmol.2022.879146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
There exists considerable interest to unveil preclinical period and prodromal stages of Alzheimer's disease (AD). The mild cognitive impairment (MCI) is characterized by significant memory and/or other cognitive domains impairments, and is often considered the prodromal phase of AD. The cerebrospinal fluid (CSF) levels of β-amyloid (βA), total tau (t-tau), and phosphorylated tau (p-tau) have been used as biomarkers of AD albeit their significance as indicators during early stages of AD remains far from accurate. The new biomarkers are being intensively sought as to allow identification of pathological processes underlying early stages of AD. Fifty-three participants (75.4 ± 8.3 years) were classified in three groups as cognitively normal healthy controls (HC), MCI, and subjective memory complaints (SMC). The subjects were subjected to a battery of neurocognitive tests and underwent lumbar puncture for CSF extraction. The CSF levels of estrogen-receptor (ER)-signalosome proteins, βA, t-tau and p-tau, were submitted to univariate, bivariate, and multivariate statistical analyses. We have found that the components of the ER-signalosome, namely, caveolin-1, flotilin-1, and estrogen receptor alpha (ERα), insulin growth factor-1 receptor β (IGF1Rβ), prion protein (PrP), and plasmalemmal voltage dependent anion channel 1 (VDAC) could be detected in the CSF from all subjects of the HC, MCI, and SMC groups. The six proteins appeared elevated in MCI and slightly increased in SMC subjects compared to HC, suggesting that signalosome proteins undergo very early modifications in nerve cells. Using a multivariate approach, we have found that the combination of ERα, IGF-1Rβ, and VDAC are the main determinants of group segregation with resolution enough to predict the MCI stage. The analyses of bivariate relationships indicated that collinearity of ER-signalosome proteins vary depending on the stage, with some pairs displaying opposed relationships between HC and MCI groups, and the SMC stage showing either no relationships or behaviors similar to either HC or MCI stages. The multinomial logistic regression models of changes in ER-signalosome proteins provide reliable predictive criteria, particularly for the MCI. Notably, most of the statistical analyses revealed no significant relationships or interactions with classical AD biomarkers at either disease stage. Finally, the multivariate functions were highly correlated with outcomes from neurocognitive tests for episodic memory. These results demonstrate that alterations in ER-signalosome might provide useful diagnostic information on preclinical stages of AD, independently from classical biomarkers.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Biology Section, Science School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Medicine Section, Health Sciences School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Associate Research Unit ULL-CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases”, University of La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Eduardo Torrealba
- Department of Neurology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Guido Santos
- Systems Biology and Mathematical Modelling Group, Department of Department of Biochemistry, Microbiology, Cell Biology and Genetics Biology Section, Science School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Mario Díaz
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Department of Physics, Faculty of Sciences, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
2
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
3
|
Herrera JL, Ordoñez-Gutierrez L, Fabrias G, Casas J, Morales A, Hernandez G, Acosta NG, Rodriguez C, Prieto-Valiente L, Garcia-Segura LM, Wandosell FG, Alonso R. Ovarian Hormone-Dependent Effects of Dietary Lipids on APP/PS1 Mouse Brain. Front Aging Neurosci 2019; 11:346. [PMID: 31920626 PMCID: PMC6930904 DOI: 10.3389/fnagi.2019.00346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
The formation of senile plaques through amyloid-β peptide (Aβ) aggregation is a hallmark of Alzheimer’s disease (AD). Irrespective of its actual role in the synaptic alterations and cognitive impairment associated with AD, different therapeutic approaches have been proposed to reduce plaque formation. In rodents, daily intake of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs) is required for neural development, and there is experimental and epidemiological evidence that their inclusion in the diet has positive effects on several neurodegenerative diseases. Similarly, estradiol appears to reduce senile plaque formation in primary mouse cell cultures, human cortical neurons and mouse AD models, and it prevents Aβ toxicity in neural cell lines. We previously showed that differences in dietary n-6/n-3 LC-PUFAs ratios modify the lipid composition in the cerebral cortex of female mice and the levels of amyloid precursor protein (APP) in the brain. These effects depended in part on the presence of circulating estradiol. Here we explored whether this potentially synergistic action between diet and ovarian hormones may influence the progression of amyloidosis in an AD mouse model. Our results show that a diet with high n-3 LC-PUFA content, especially DHA (22:6n-3), reduces the hippocampal accumulation of Aβ1–40, but not amyloid Aβ1–42 in female APPswe/PS1 E9A mice, an effect that was counteracted by the loss of the ovaries and that depended on circulating estradiol. In addition, this interaction between dietary lipids and ovarian function also affects the composition of the brain lipidome as well as the expression of certain neuronal signaling and synaptic proteins. These findings provide new insights into how ovarian hormones and dietary composition affect the brain lipidome and amyloid burden. Furthermore, they strongly suggest that when designing dietary or pharmacological strategies to combat human neurodegenerative diseases, hormonal and metabolic status should be specifically taken into consideration as it may affect the therapeutic response.
Collapse
Affiliation(s)
- Jose Luis Herrera
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Gemma Fabrias
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Josefina Casas
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Araceli Morales
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Guadalberto Hernandez
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Nieves G Acosta
- Departamento de Biología Animal, Edafología y Geología, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Covadonga Rodriguez
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Luis M Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Rafael Alonso
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
4
|
Cheboub A, Regouat N, Djidjik R, Slimani A, Hadj-Bekkouche F. Short-term aromatase inhibition induces prostatic alterations in adult wistar rat: A biochemical, histopathological and immunohistochemical study. Acta Histochem 2019; 121:151441. [PMID: 31522738 DOI: 10.1016/j.acthis.2019.151441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to evaluate the effects of estrogen reduction on amyloid deposition, some lipid metabolism and oxidative stress markers, PSA-like production and p63 expression in the prostate of the adult rat. METHODS Aromatase inhibitor: Formestane (4-OHA), was administrated to male rats, at a dose of 0.1 mg/kg b.w./day, for 10 days. The control group (CONT) received the same volume of placebo injection (NaCl 0.9%). RESULTS 4-OHA treatment induced a significant accumulation of intraprostatic cholesterol (138.90 ± 17.64 vs 85.12 ± 2.87, p = 0.01); against an insignificant diminution of malondialdehyde (412.6 ± 54.35 vs 842.70 ± 336.50, p > 0.05) and glutathione (2.40 ± 0.23 vs 3.65 ± 0.88, p > 0.05). This was associated with a significant decrease of nitric oxide (31.76 ± 7.07 vs 179.40 ± 58.35, p = 0.024). Additionally, 4-OHA significantly increased the intraprostatic production of PSA-like (11.12 ± 2.78 vs 3.91 ± 0.43, p = 0.043). The prostatic histology revealed an amyloid deposition, in all prostatic lobes and a smooth muscle layer growth (p < 0.05); especially significant in the dorsal and lateral lobes. Theses lobes manifested a basal cells proliferation, with a 3-fold increase of p63 expression (p < 0.001). The ventral lobe presented epithelial atrophy (37.80 ± 16.20 vs 167.60 ± 5.16, p < 0.05); with occasional and significant proliferative foci (247.00 ± 9.573 vs 167.60 ± 5.16 p < 0.05). DISCUSSION AND CONCLUSION Aromatase inhibition, in the adult male rat, alters the prostatic function by reducing nitric oxide availability and inducing amyloid deposition along with limiting the differentiation of basal cells, through a lobe-specific p63-overexpression.
Collapse
Affiliation(s)
- Amina Cheboub
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria.
| | - Nadia Regouat
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria
| | - Reda Djidjik
- Immunology Service of Isaad Hassani-Beni Messous Hospital, Algiers, Algeria
| | - Assia Slimani
- Pathological Anatomy Service of Isaad Hassani-Beni Messous Hospital, Algiers, Algeria
| | - Fatima Hadj-Bekkouche
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria
| |
Collapse
|
5
|
Herrera JL, Ordoñez-Gutierrez L, Fabrias G, Casas J, Morales A, Hernandez G, Acosta NG, Rodriguez C, Prieto-Valiente L, Garcia-Segura LM, Alonso R, Wandosell FG. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex. Front Cell Neurosci 2018; 12:103. [PMID: 29740285 PMCID: PMC5928148 DOI: 10.3389/fncel.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
Different dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs.
Collapse
Affiliation(s)
- Jose L Herrera
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Gemma Fabrias
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Josefina Casas
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Araceli Morales
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Guadalberto Hernandez
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Nieves G Acosta
- Departamento de Biología Animal, Edafología y Geología, and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Covadonga Rodriguez
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain.,Departamento de Biología Animal, Edafología y Geología, and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | | | - Luis M Garcia-Segura
- Instituto Cajal (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Rafael Alonso
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
6
|
Kwakowsky A, Milne MR, Waldvogel HJ, Faull RL. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease. Int J Mol Sci 2016; 17:E2122. [PMID: 27999310 PMCID: PMC5187922 DOI: 10.3390/ijms17122122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Michael R Milne
- School of Biomedical Sciences, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Morán J, Garrido P, Cabello E, Alonso A, González C. Effects of estradiol and genistein on the insulin signaling pathway in the cerebral cortex of aged female rats. Exp Gerontol 2014; 58:104-12. [PMID: 25086228 DOI: 10.1016/j.exger.2014.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 01/29/2023]
Abstract
Menopause leads to a decrease in estrogen production that increases central insulin resistance, contributing to the development of neurodegenerative diseases. We have evaluated the influence of aging and estradiol or genistein treatments on some key stages of the insulin signaling pathway in the cerebral cortex. Young and aged female Wistar rats were ovariectomized and treated acutely with 17β-estradiol (1.4μg/kg body weight), two doses of genistein (10 or 40mg/kg body weight), or vehicle. The cortical expression of several key insulin signaling pathway components was analyzed by western blotting. Our results showed an age-related deterioration in the interactions between the regulatory subunit of phosphatidylinositol 3-kinase (p85α) and the activated form of insulin receptor substrate 1 (p-IRS1tyr612), as well as between p85α and the 46kDa isoform of the estrogen receptor α (ERα46). Moreover, aging also decreased the translocation of glucose transporter-4 (GLUT4) to the plasma membrane. 17β-Estradiol but not genistein reduced the negative impact of aging on central insulin sensitivity by favoring this GLUT4 translocation, and therefore could be neuroprotective against the associated neurodegenerative diseases. However, protein kinase B (Akt) activation by genistein suggests that other possible mechanisms are involved in the neuroprotective effects of this phytoestrogen during the aging process.
Collapse
Affiliation(s)
- Javier Morán
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Pablo Garrido
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Estefanía Cabello
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Ana Alonso
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Celestino González
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| |
Collapse
|
8
|
Marin R, Casañas V, Pérez JA, Fabelo N, Fernandez CE, Diaz M. Oestrogens as modulators of neuronal signalosomes and brain lipid homeostasis related to protection against neurodegeneration. J Neuroendocrinol 2013; 25:1104-15. [PMID: 23795744 DOI: 10.1111/jne.12068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 12/19/2022]
Abstract
Oestrogens trigger several pathways at the plasma membrane that exert beneficial actions against neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Part of these actions takes place in lipid rafts, which are membrane domains with a singular protein and lipid composition. These microdomains also represent a preferential site for signalling protein complexes, or signalosomes. A plausible hypothesis is that the dynamic interaction of signalosomes with different extracellular ligands may be at the basis of neuronal maintenance against different neuropathologies. Oestrogen receptors are localised in neuronal lipid rafts, taking part of macromolecular complexes together with a voltage-dependent anion channel (VDAC), and other molecules. Oestradiol binding to its receptor at this level enhances neuroprotection against amyloid-β degeneration through the activation of different signal transduction pathways, including VDAC gating modulation. Moreover, part of the stability and functionality of signalling platforms lays on the distribution of lipid hallmarks in these microstructures, which modulate membrane physicochemical properties, thus favouring molecular interactions. Interestingly, recent findings indicate a potential role of oestrogens in the preservation of neuronal membrane physiology related to lipid homeostasis. Thus, oestrogens and docosahexaenoic acid may act synergistically to stabilise brain lipid structure by regulating neuronal lipid biosynthetic pathways, suggesting that part of the neuroprotective effects elicited by oestrogens occur through mechanisms aimed at preserving lipid homeostasis. Overall, oestrogen mechanisms of neuroprotection may occur not only by its interaction with neuronal protein targets through nongenomic and genomic mechanisms, but also through its participation in membrane architecture stabilisation via 'lipostatic' mechanisms.
Collapse
Affiliation(s)
- R Marin
- Department of Physiology, Laboratory of Cellular Neurobiology, University of La Laguna, La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Navarro A, del Valle E, Ordóñez C, Martínez E, Pérez C, Alonso A, González C, Tolivia J. Aging and substitutive hormonal therapy influence in regional and subcellular distribution of ERα in female rat brain. AGE (DORDRECHT, NETHERLANDS) 2013; 35:821-37. [PMID: 22648398 PMCID: PMC3636381 DOI: 10.1007/s11357-012-9415-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/17/2012] [Indexed: 06/01/2023]
Abstract
Estrogens are not only critical for sexual differentiation it is well-known for the role of 17β-estradiol (E2) in the adult brain modulating memory, learning, mood and acts as a neuroprotector. E2 exerts its actions through two classical receptors: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). The distribution of both receptors changes from one brain area to another, E2 being able to modulate their expression. Among the classical features of aging in humans, we find cognitive impairment, dementia, memory loss, etc. As estrogen levels change with age, especially in females, it is important to know the effects of low E2 levels on ERα distribution; results from previous studies are controversial regarding this issue. In the present work, we have studied the effects of long-term E2 depletion as well as the ones of E2 treatment on ERα brain distribution of ovariectomized rats along aging in the diencephalon and in the telencephalon. We have found that ovariectomy causes downregulation and affects subcellular localization of ERα expression during aging, meanwhile prolonged estrogen treatment produces upregulation and overexpression of the receptor levels. Our results support the idea of the region-specific neuroprotection mechanisms mediated by estradiol.
Collapse
Affiliation(s)
- Ana Navarro
- />Department of Morphology, Cellular Biology Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Eva del Valle
- />Department of Morphology, Cellular Biology Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Cristina Ordóñez
- />Área de Neurociencias, CIMA, Avda. Pío XII, 55 31008 Pamplona, Spain
| | - Eva Martínez
- />Área de Neurociencias, CIMA, Avda. Pío XII, 55 31008 Pamplona, Spain
| | - Cristina Pérez
- />Department of Morphology, Cellular Biology Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Ana Alonso
- />Department of Functional Biology–Physiology Area, University of Oviedo, Oviedo, Spain
| | - Celestino González
- />Department of Functional Biology–Physiology Area, University of Oviedo, Oviedo, Spain
| | - Jorge Tolivia
- />Department of Morphology, Cellular Biology Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
- />Dpto. Morfología y Biología Celular, 8ª Planta Facultad de Medicina, Universidad de Oviedo, c/Julián Clavería s/n, Oviedo, 33006 Spain
| |
Collapse
|
10
|
Morán J, Garrido P, Alonso A, Cabello E, González C. 17β-Estradiol and genistein acute treatments improve some cerebral cortex homeostasis aspects deteriorated by aging in female rats. Exp Gerontol 2013; 48:414-21. [PMID: 23419687 DOI: 10.1016/j.exger.2013.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 11/29/2022]
Abstract
Aging is associated with decreased insulin sensitivity and impaired cerebral glucose homeostasis. These changes increase neural sensitivity to metabolic damage contributing to cognitive decline, being the decrease in plasma estrogen following menopause one of the main factors involved in aged females. Phytoestrogens as genistein are structurally similar to 17β-estradiol, bind to estrogen receptors, and can evoke both estrogenic and anti-estrogenic effects. Estrogens and phytoestrogens have neuroprotective potential, but the physiological mechanisms are not fully understood. Young and aged female Wistar rats were ovariectomized and treated acutely with 17β-estradiol (1.4μg/kg body weight), genistein (10 or 40 mg/kg body weight), or vehicle. Cortical expression of glucose transporter-3 (GLUT-3) and -4 (GLUT-4), cytochrome c oxidase (CO), estrogen receptor-α (ERα) and -β (ERβ) was measured by Western blotting. There was an age-related decline in GLUT-4, CO and ERβ levels. Both drugs, estradiol and genistein, were able to reverse GLUT-3 downregulation in the cortex following late ovariectomy. However, genistein was the only treatment able to restore completely GLUT-4 levels in aged rats. In contrast, estradiol was more potent than genistein at increasing CO, a marker of cerebral oxidative metabolism. As regards ER levels, estradiol increased the ERα67 quantity diminished by late ovariectomy, while genistein did the same with the other ERα isoform, ERα46, highlighting drug-specific differences in expression changes for both isoforms. On the other hand, no treatment-related differences were found regarding ERβ levels. Therefore, genistein like estradiol could be suitable treatments against cortical metabolic dysfunction caused by aging. These treatments may hold promise as neuroprotective strategies against diabetes and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Javier Morán
- Department of Functional Biology, Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain.
| | | | | | | | | |
Collapse
|
11
|
Shi H, Kumar SPDS, Liu X. G protein-coupled estrogen receptor in energy homeostasis and obesity pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:193-250. [PMID: 23317786 PMCID: PMC3632385 DOI: 10.1016/b978-0-12-386933-3.00006-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states.
Collapse
Affiliation(s)
- Haifei Shi
- Department of Biology, Center for Physiology and Neuroscience, Miami University, Oxford, Ohio, USA
| | | | | |
Collapse
|
12
|
Marin R, Marrero-Alonso J, Fernández C, Cury D, Díaz M. Membrane-initiated signaling of estrogen related to neuroprotection. "Social networks" are required. Horm Mol Biol Clin Investig 2011; 7:393-401. [PMID: 25961340 DOI: 10.1515/hmbci.2011.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/06/2011] [Indexed: 11/15/2022]
Abstract
Numerous studies indicate that estrogens are crucial in normal brain functioning and preservation against different injuries. At the neuronal membrane, estrogens, binding to estrogen receptors (ERs) or other surface targets, exert rapid actions involving a plethora of signaling pathways that may converge in neuronal survival. Emerging work reveals that at least part of these actions may require the compartmentalization of ERs in signaling platforms, composed of macromolecular signaling proteins and particular lipid composition integrated in lipid rafts. These particular microstructures may provide the optimal microenvironment to trigger multiple ER interactions that may be crucial for neuroprotection against different brain impairments, such as Alzheimer's disease (AD). In this order of ideas, recent evidence has demonstrated that a membrane ER (mER) physically interacts with a voltage-dependent anion channel (VDAC) in lipid rafts from septal, hippocampal and cortical neurons, and these interactions may have important consequences in the alternative mechanisms developed by estrogens to achieve neuroprotection against amyloid beta (Aβ)-induced toxicity. This review includes a survey of some of the rapid mechanisms developed by estrogen to prevent neuronal death, and the ER interactions that are involved in the structural maintenance and signal transduction mechanisms important for neuronal survival against AD neuro-pathology. A special emphasis is put on the biological relevance of neuronal membrane VDAC in Aβ-related neurotoxicity, and the potential modulation of this channel as a part of a signaling complex with mER, which may be modified in AD brains.
Collapse
|
13
|
Herrera JL, Fernandez C, Diaz M, Cury D, Marin R. Estradiol and tamoxifen differentially regulate a plasmalemmal voltage-dependent anion channel involved in amyloid-beta induced neurotoxicity. Steroids 2011; 76:840-4. [PMID: 21354436 DOI: 10.1016/j.steroids.2011.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/09/2011] [Accepted: 02/16/2011] [Indexed: 01/06/2023]
Abstract
There is a wealth of information indicating that estradiol exerts rapid actions involved in neuroprotection and cognitive-enhancing effects. Some of these effects appear to delay onset, or even ameliorate, the neuropathology of Alzheimer's disease (AD), although some controversy exists about the beneficial brain effects of estrogen therapies. Therefore, it is crucial to better understand the mechanisms developed by 17β-estradiol to signal in the brain. At the neuronal membrane, the hormone can rapidly interact with estrogen receptors (mERs) or activate other receptors, such as G protein-coupled and ionotropic receptors. And the list of membrane signalling molecules modulated by estradiol in neurons is increasing. VDAC is a voltage-dependent anion channel, known as a mitochondrial porin which is also found at the neuronal membrane, where it appears to be involved in redox regulation, extrinsic apoptosis and amyloid beta neurotoxicity. Moreover, VDAC is present in neuronal lipid rafts, where it is associated with estrogen receptor α-like (mER), forming part of a macromolecular complex together with caveolin-1 and other signalling proteins related to neuronal preservation. Interestingly, we have recently found that 17β-estradiol rapidly promotes VDAC phosphorylation through the activation of protein kinase A (PKA) and Src-kinase, which may be relevant to maintain this channel inactivated. On the contrary, tamoxifen, a selective estrogen receptor modulator (SERM), provokes the dephosphorylation of VDAC, and eventually its opening, by activating a cascade of phosphatases, including protein phosphatase 2 (PP2A). This review will focus on the relevance of these novel findings in the alternative estrogen mechanisms to achieve neuroprotection related to AD.
Collapse
Affiliation(s)
- Jose Luis Herrera
- Laboratory of Cellular Neurobiology, Department of Physiology & Institute of Biomedical Technologies, University of La Laguna, School of Medicine, Santa Cruz de Tenerife, Spain
| | | | | | | | | |
Collapse
|
14
|
Marin R. Signalosomes in the brain: relevance in the development of certain neuropathologies such as Alzheimer's disease. Front Physiol 2011; 2:23. [PMID: 21852974 PMCID: PMC3151622 DOI: 10.3389/fphys.2011.00023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/10/2011] [Indexed: 11/13/2022] Open
Abstract
Emerging data suggest that compartmentalization of signaling molecules into particular membrane compartments, or lipid rafts, may be at the basis of numerous activities related to neuronal preservation against different pathologies. These signaling platforms (signalosomes) are formed by complex lipid and protein that may interact to develop a plethora of different physiological responses upon activation by different extracellular stimuli, thereby contributing to neuroprotection. One of the first studied signalosomes involved in neuroprotection against Alzheimer's disease (AD) is constituted by estrogen receptor (ER), in association with scaffolding caveolin-1 and a voltage-dependent anion channel (VDAC). In this complex, ER plays a neuroprotective role partially through the modulation of VDAC activation, a porin involved in amyloid-beta-induced toxicity. Interestingly, ER and VDAC interactions appear to be altered in lipid rafts of AD brains, a phenomenon that may contribute to neuronal impairment. Alterations in lipid components of these subdomains may contribute to destabilization of this macrocomplex. These recent advances in the relevance of signaling platforms related to brain preservation, in particular against AD, are discussed in this work.
Collapse
Affiliation(s)
- Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Physiology, School of Medicine, La Laguna University Tenerife, Spain
| |
Collapse
|
15
|
Herrera JL, Diaz M, Hernández-Fernaud JR, Salido E, Alonso R, Fernández C, Morales A, Marin R. Voltage-dependent anion channel as a resident protein of lipid rafts: post-transductional regulation by estrogens and involvement in neuronal preservation against Alzheimer's disease. J Neurochem 2011; 116:820-7. [PMID: 21214547 DOI: 10.1111/j.1471-4159.2010.06987.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The voltage-dependent anion channel, VDAC, is present at the neuronal membrane, where it appears to participate, among others, in the extrinsic apoptotic pathway and in the modulation of amyloid-beta induced injury, suggesting the involvement of this channel in Alzheimer's disease (AD) neurotoxicity. VDAC is also highly concentrated in neuronal lipid raft microdomains of different mouse and human cognitive areas, where it has been shown associated with estrogen receptor alpha (ERα), as a part of a `signalosome' that may activate some intracellular signal transduction. At the plasma membrane level, estrogens and antiestrogens (tamoxifen) have been demonstrated to exert rapid antagonist effects on the activation of VDAC, through their distinct effects on the channel post-transductional modulation. Therefore, part of the alternative mechanisms of estrogen related to neuroprotection against amyloid-beta may involve VDAC phosphorylation, in order to maintain the channel in an unactivated (closing) state. Interestingly, VDAC-ERα association has been shown to be disrupted in neuronal lipid rafts of AD brains, in correlation with the aberrant lipid composition observed in these microstructures, suggesting that disturbance of protein interactions may be related to variation in the physico-chemical properties of these microdomains.
Collapse
Affiliation(s)
- Jose Luis Herrera
- Department of Physiology, School of Medicine, La Laguna University, Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Action of estrogen on survival of basal forebrain cholinergic neurons: promoting amelioration. Psychoneuroendocrinology 2009; 34 Suppl 1:S104-12. [PMID: 19560872 DOI: 10.1016/j.psyneuen.2009.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/30/2009] [Accepted: 05/30/2009] [Indexed: 11/23/2022]
Abstract
Extensive studies during the past two decades provide compelling evidence that the gonadal steroid, estrogen, has the potential to affect the viability of basal forebrain cholinergic neurons. These observations reflect a unique ameliorative feature of estrogen as it restores and protects the cholinergic neurons against noxious stimuli or neurodegenerative processes. Hence, we first address the ameliorative function of estrogen on basal forebrain cholinergic neurons such as the actions of estrogen on neuronal plasticity of cholinergic neurons, estrogen-induced memory enhancement and the ameliorative role of estrogen on cholinergic neuron related neurodegenerative processes such as Alzheimer's disease. Second, we survey recent data as to possible mechanisms underlying the ameliorative actions of estrogen; influencing the amyloid precursor protein processing, enhancement in neurotrophin receptor signaling and estrogen-induced non-classical actions on second messenger systems. In addition, clinical relevance, pitfalls and future aspects of estrogen therapy on basal forebrain cholinergic neurons will be discussed.
Collapse
|
17
|
Ramírez CM, González M, Díaz M, Alonso R, Ferrer I, Santpere G, Puig B, Meyer G, Marin R. VDAC and ERα interaction in caveolae from human cortex is altered in Alzheimer's disease. Mol Cell Neurosci 2009; 42:172-83. [DOI: 10.1016/j.mcn.2009.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/23/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022] Open
|
18
|
Marin R, Díaz M, Alonso R, Sanz A, Arévalo MA, Garcia-Segura LM. Role of estrogen receptor alpha in membrane-initiated signaling in neural cells: interaction with IGF-1 receptor. J Steroid Biochem Mol Biol 2009; 114:2-7. [PMID: 19167493 DOI: 10.1016/j.jsbmb.2008.12.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 12/31/2008] [Indexed: 12/25/2022]
Abstract
The mechanisms of action of estradiol in the nervous system involve nuclear-initiated steroid signaling and membrane-initiated steroid signaling. Estrogen receptors (ERs) are involved in both mechanisms. ERalpha interacts with the signaling of IGF-1 receptor in neural cells: ERalpha transcriptional activity is regulated by IGF-1 receptor signaling and estradiol regulates IGF-1 receptor signaling. The interaction between ERalpha and the IGF-1 receptor in the brain may occur at the plasma membrane of neurons and glial cells. Caveolin-1 may provide the scaffolding for the interaction of different membrane-associated molecules, including voltage-dependent anion channel, ERalpha and IGF-I receptor.
Collapse
Affiliation(s)
- Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Physiology & Institute of Biomedical Technologies, University of La Laguna, School of Medicine, Santa Cruz de Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Raz L, Khan MM, Mahesh VB, Vadlamudi RK, Brann DW. Rapid Estrogen Signaling in the Brain. Neurosignals 2008; 16:140-53. [DOI: 10.1159/000111559] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Alonso A, Moreno M, Ordóñez P, Fernández R, Pérez C, Díaz F, Navarro A, Tolivia J, González C. Chronic estradiol treatment improves brain homeostasis during aging in female rats. Endocrinology 2008; 149:57-72. [PMID: 17901235 DOI: 10.1210/en.2007-0627] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging is associated with a reduction in metabolic function, insulin resistance, increased incidence of neurodegenerative diseases, and memory or cognitive dysfunction. In aging females, loss of gonadal function determines the beginning of the period of reduced metabolic function. Estrogens have neuroprotective effects, but the mechanisms by which they exert these effects remain unclear. The effects of estradiol treatment on the activation of the insulin receptor substrate (IRS)-1 signaling pathway, the interactions between estrogen receptor (ER)-alpha and IRS-1 and the p85alpha subunit of phosphatidylinositol-3 kinase, together with the possible effects of estradiol treatment on glucose transporter-3 and -4 levels, were investigated in female rats. The level of expression of each glucose transporter was greater in control and estradiol-treated groups than in the ovariectomized group. Interactions of ERalpha46-IRS-1, ERalpha46-p85alpha, and p85alpha-IRS-1, as well as IRS-1 phosphorylation, appeared to increase with estradiol treatment. The results indicate that estradiol treatment improves some aspects of neuronal homeostasis that are affected by aging; this may indicate that estradiol has neuroprotective effects in female rats. Additional animal studies are required to clarify the neuroprotective role of estradiol in relation to other important molecules involved in the IRS-1-phosphatidylinositol-3 kinase signaling pathway.
Collapse
Affiliation(s)
- Ana Alonso
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
González M, Cabrera-Socorro A, Pérez-García CG, Fraser JD, López FJ, Alonso R, Meyer G. Distribution patterns of estrogen receptor alpha and beta in the human cortex and hippocampus during development and adulthood. J Comp Neurol 2007; 503:790-802. [PMID: 17570500 DOI: 10.1002/cne.21419] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of estrogen receptors (ERs) in the developing and adult human brain has not been clearly established, although estrogens are crucial for neuronal differentiation, synapse formation, and cognitive functions. By using immunohistochemistry, we have studied the distribution of ER alpha and ER beta in human cerebral cortex and hippocampus from early prenatal stages to adult life. ER alpha was detected in the cortex at 9 gestational weeks (GW), with a high expression in proliferating zones and the cortical plate. The staining intensity decreased gradually during prenatal development but increased again from birth to adulthood. In contrast, ER beta was first detected at 15 GW in proliferating zones, and at 16/17 GW, numerous ER beta immunopositive cells were also observed in the cortical plate. ER beta expression persisted in the adult cortex, being widely distributed throughout cortical layers II-VI. In addition, from around 15 GW to adulthood, ER alpha and ER beta were expressed in human hippocampus mainly in pyramidal cells of Ammon's horn and in the dentate gyrus. Western blotting and immunohistochemistry in the adult cerebral cortex and hippocampus revealed lower protein expression of ER alpha compared with ER beta. Double immunostaining showed that during fetal life both ERs are expressed in neurons as well as in radial glia, although only ER alpha is expressed in the Cajal-Retzius neurons of the marginal zone. These observations demonstrate that the expression of ER alpha and ER beta displays different spatial-temporal patterns during human cortical and hippocampal development and suggest that both ERs may play distinct roles in several processes related to prenatal brain development.
Collapse
Affiliation(s)
- Miriam González
- Department of Human Anatomy, University of La Laguna School of Medicine and Institute of Biomedical Technologies, Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Marin R, Ramírez CM, González M, González-Muñoz E, Zorzano A, Camps M, Alonso R, Díaz M. Voltage-dependent anion channel (VDAC) participates in amyloid beta-induced toxicity and interacts with plasma membrane estrogen receptor alpha in septal and hippocampal neurons. Mol Membr Biol 2007; 24:148-60. [PMID: 17453421 DOI: 10.1080/09687860601055559] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Voltage-dependent anion channel (VDAC) is a porin known by its role in metabolite transport across mitochondria and participation in apoptotic processes. Although traditionally accepted to be located within mitochondrial outer membrane, some data has also reported its presence at the plasma membrane level where it seems to participate in regulation of normal redox homeostasis and apoptosis. Here, exposure of septal SN56 and hippocampal HT22 cells to specific anti-VDAC antibodies prior to amyloid beta (Abeta) peptide was observed to prevent neurotoxicity. In these cell lines, we identified a VDAC form associated with the plasma membrane that seems to be particularly abundant in caveolae. The two membrane-related isoforms of estrogen receptor alpha (mERalpha) (80 and 67 kDa), known in SN56 cells to participate in estrogen-induced neuroprotection against Abeta injury, were also observed to be present in caveolae. Interestingly, we demonstrated for the first time that both VDAC and mERalpha interact at the plasma membrane of these neurons as well as in microsomal fractions of the corresponding murine septal and hippocampal tissues. These proteins were also shown to associate with caveolin-1, thereby corroborating their presence in caveolar microdomains. Taken together, these results suggest that VDAC-mERalpha association at the plasma membrane level may participate in the modulation of Abeta-induced cell death.
Collapse
Affiliation(s)
- Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Physiology & Institute of Biomedical Technologies, University of La Laguna, School of Medicine, Santa Cruz de Tenerife, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Alonso A, Fernández R, Ordóñez P, Moreno M, Patterson AM, González C. Regulation of estrogen receptor alpha by estradiol in pregnant and estradiol treated rats. Steroids 2006; 71:1052-61. [PMID: 17030051 DOI: 10.1016/j.steroids.2006.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 07/07/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
Estrogens play an important role in tissue metabolism through specific regulation of several intracellular pathways. We studied ERalpha regulation in muscle and adipose tissue from pregnant and estradiol treated rats. In both groups, we identified three different ERalpha inmunoreactive proteins (80, 67 and 46 kDa) using total protein extracts. Because it has been showed that estrogens are able to promote rapid effects in several cellular models, we looked for three ERalpha-related proteins at plasma membrane. In skeletal muscle of both groups, we positively identified the three ERalpha-related isoforms in plasma membrane, but in adipose tissue from pregnant we were not able to identify ERalpha67, and in estradiol treated animals ERalpha80 was absent. Taking together, our results showed a tissue-specific regulation of whole-cell ERalpha-related proteins and ERalpha located at plasma membrane, which should be involved in non-genomic actions of 17beta-estradiol. The role of the three ERalpha inmunoreactive proteins is unknown, however, seems probably related to rapid activation of signalling pathways.
Collapse
Affiliation(s)
- Ana Alonso
- Department of Functional Biology. Physiology Area, University of Oviedo, C/ Julián Clavería s/n, 33006 Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Bryant DN, Sheldahl LC, Marriott LK, Shapiro RA, Dorsa DM. Multiple pathways transmit neuroprotective effects of gonadal steroids. Endocrine 2006; 29:199-207. [PMID: 16785596 DOI: 10.1385/endo:29:2:199] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/30/1999] [Accepted: 10/25/2005] [Indexed: 12/27/2022]
Abstract
Numerous preclinical studies suggest that gonadal steroids, particularly estrogen, may be neuroprotective against insult or disease progression. This paper reviews the mechanisms contributing to estrogen-mediated neuroprotection. Rapid signaling pathways, such as MAPK, PI3K, Akt, and PKC, are required for estrogen's ability to provide neuroprotection. These rapid signaling pathways converge on genomic pathways to modulate transcription of E2-responsive genes via ERE-dependent and ERE-independent mechanisms. It is clear that both rapid signaling and transcription are important for estrogen's neuroprotective effects. A mechanistic understanding of estrogen-mediated neuroprotection is crucial for the development of therapeutic interventions that enhance quality of life without deleterious side effects.
Collapse
Affiliation(s)
- Damani N Bryant
- Department of Physiology and Pharmacology (L334), Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
25
|
Harrington WR, Kim SH, Funk CC, Madak-Erdogan Z, Schiff R, Katzenellenbogen JA, Katzenellenbogen BS. Estrogen Dendrimer Conjugates that Preferentially Activate Extranuclear, Nongenomic Versus Genomic Pathways of Estrogen Action. Mol Endocrinol 2006; 20:491-502. [PMID: 16306086 DOI: 10.1210/me.2005-0186] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Estrogenic hormones are classically thought to exert their effects by binding to nuclear estrogen receptors and altering target gene transcription, but estrogens can also have nongenomic effects through rapid activation of membrane-initiated kinase cascades. The development of ligands that selectively activate only the nongenomic pathways would provide useful tools to investigate the significance of these pathways. We have prepared large, abiotic, nondegradable poly(amido)amine dendrimer macromolecules that are conjugated to multiple estrogen molecules through chemically robust linkages. Because of their charge and size, these estrogen-dendrimer conjugates (EDCs) remain outside the nucleus. They stimulate ERK, Shc, and Src phosphorylation in MCF-7 breast cancer cells at low concentrations, yet they are very ineffective in stimulating transcription of endogenous estrogen target genes, being approximately 10,000-fold less potent than estradiol in genomic actions. In contrast to estradiol, EDC was not effective in stimulating breast cancer cell proliferation. Because these EDC ligands activate nongenomic activity at concentrations at which they do not alter the transcription of estrogen target genes, they should be useful in studying extranuclear initiated pathways of estrogen action in a variety of target cells.
Collapse
Affiliation(s)
- William R Harrington
- University of Illinois, Department of Molecular and Integrative Physiology, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801-3704, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Marin R, Ramírez CM, González M, Alonso R, Díaz M. Alternative estrogen receptors homologous to classical receptor α in murine neural tissues. Neurosci Lett 2006; 395:7-11. [PMID: 16288833 DOI: 10.1016/j.neulet.2005.10.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 10/17/2005] [Accepted: 10/17/2005] [Indexed: 02/07/2023]
Abstract
Although it is widely accepted the existence of putative estrogen receptors (ERs) localized at extranuclear domains in the brain, their molecular identity is still unclear. We have previously demonstrated in a murine septal cell line the existence of a membrane-related ER (mER) that participates in estrogen-mediated neuroprotection. To investigate the molecular structure of mER, we have used a battery of antibodies raised against different domains of the classical ERalpha to immunoblot with plasma membrane fractions from septal SN56 and hippocampal HT22 cell lines, and microsomal fractions of mouse septal and hippocampal tissues. The results confirmed that mER is the homologue of its intracellular counterpart ERalpha, suggesting the possibility that both nuclear and extranuclear receptors may share a common origin.
Collapse
Affiliation(s)
- Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Physiology, School of Medicine, University of La Laguna, Sta. Cruz de Tenerife, Spain.
| | | | | | | | | |
Collapse
|
27
|
Chaban VV, Micevych PE. Estrogen receptor-alpha mediates estradiol attenuation of ATP-induced Ca2+ signaling in mouse dorsal root ganglion neurons. J Neurosci Res 2005; 81:31-7. [PMID: 15952176 DOI: 10.1002/jnr.20524] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A mechanism underlying gender-related differences in pain perception may be estrogen modulation of nociceptive signaling in the peripheral nervous system. In rat, dorsal root ganglion (DRG) neurons express estrogen receptors (ERs) and estrogen rapidly attenuates ATP-induced Ca2+ signaling. To determine which estrogen receptor mediates rapid actions of estrogen, we showed ERalpha and ERbeta expression in DRG neurons from wild-type (WT) female mice by RT-PCR. To study whether ERalpha or ERbeta mediates this response, we compared estradiol action mediating Ca2+ signaling in DRG neurons from WT, ERalpha knockout (ERalphaKO), and ERbetaKO mice in vitro. ATP, an algesic agent, induced [Ca2+]i transients in 48% of small DRG neurons from WT mice. 17beta-Estradiol (E2) inhibited ATP-induced intracellular Ca2+ concentration ([Ca2+]i) with an IC50 of 27 nM. The effect of E2 was rapid (5-min exposure) and stereo specific; 17alpha-estradiol had no effect. E2 action was blocked by the ER antagonist ICI 182,780 (1 microM) in WT mouse. Estradiol coupled to bovine serum albumin (E-6-BSA), which does not penetrate the plasma membrane, had the same effect as E2 did, suggesting that a membrane-associated ER mediated the response. In DRG neurons from ERbetaKO mice, E2 attenuated the ATP-induced [Ca2+]i flux as it did in WT mice, but in DRG neurons from ERalphaKO mice, E2 failed to inhibit the ATP-induced [Ca2+]i increase. These results show that mouse DRG neurons express ERs and the rapid attenuation of ATP-induced [Ca2+]i signaling is mediated by membrane-associated ERalpha.
Collapse
Affiliation(s)
- Victor V Chaban
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
28
|
Viso-León MC, Ripoll C, Nadal A. Oestradiol rapidly inhibits Ca2+ signals in ciliary neurons through classical oestrogen receptors in cytoplasm. Pflugers Arch 2005; 449:33-41. [PMID: 15258764 DOI: 10.1007/s00424-004-1308-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oestrogen plays a key role in a great variety of actions in the nervous system, either through classical or alternative pathways. The classical pathways are initiated after oestrogen binding to the oestrogen receptors ERalpha or ERbeta, which translocate from the cytoplasm to the nucleus and act there as transcription factors. Alternative pathways are initiated at the plasma membrane and cytoplasm, via binding to classical or non-classical ERs. Using isolated ciliary ganglion neurons from the chick embryo and Ca2+ imaging, we demonstrated that a 10-min exposure to 17beta-oestradiol reduces Ca2+ influx through the plasma membrane. This effect was not reproduced by oestradiol conjugated to bovine serum albumin, which does not cross the plasma membrane, indicating that 17beta-oestradiol was acting intracellularly. ERalpha was detected in the cytoplasm by immunostaining and its involvement in the regulation of Ca2+ influx by ICI182,780 inhibition. The phosphatidylinositol-3 kinase (Pi3-kinase) inhibitor wortmannin and the nitric oxide synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) both blocked the oestradiol effect. The oestradiol effect was reproduced by 8Br-cGMP and abolished in the presence of the cGMP-dependent protein kinase (PKG) inhibitor KT5823. Our study indicates that 17beta-oestradiol can regulate Ca2+ influx via PI3-kinase, NOS and PKG after activation of cytoplasmic ER.
Collapse
Affiliation(s)
- M Carmen Viso-León
- Institut de Bioenginyeria, Universitat Miguel Hernández d'Elx, Campus de Sant Joan, Carretera Alacant-Valéncia Km 87, 03550 Sant Joan d'Alacant, Spain
| | | | | |
Collapse
|
29
|
Pawlak J, Karolczak M, Krust A, Chambon P, Beyer C. Estrogen receptor-alpha is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway. Glia 2005; 50:270-5. [PMID: 15712205 DOI: 10.1002/glia.20162] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Estrogens influence CNS development and a broad spectrum of neural functions. Several lines of evidence also suggest a neuroprotective role for estrogen. Different modes of estrogen action have been described at the cellular level involving classical nuclear estrogen receptor (ER)-dependent and nonclassical membrane ER-mediated rapid signaling. We have previously shown that nonclassical estrogen signaling is implicated in the control of dopamine cell function and protection. Since nonclassical interactions between estrogens and glia may contribute to these effects, our aim was to demonstrate the presence of membrane-associated ERs and their putative coupling to intracellular signaling pathways in astrocytes. Confocal image analysis and fluorescence-activated cell sorting (FACS) studies indicated the attachment of ER-alpha but not ER-beta to the plasma membrane of astrocytes. ERs were located in the cell soma region and glial processes. FACS analysis revealed that only a subpopulation of midbrain astrocytes possesses membrane ER-alpha. In FACS studies on ER-alpha knockout astrocytes, only a few membrane ER-positive cells were detected. The activation of membrane ERs appears to be coupled to the MAP-kinase/Src signaling pathway as shown by Western blotting. In conclusion, our data provide good evidence that nonclassical estrogen action in astrocytes is mediated by membrane ER-alpha. The physiological consequence of this phenomenon is not yet understood, but it might have a pivotal role in estrogen-mediated protective effects on midbrain dopamine neurons.
Collapse
Affiliation(s)
- Justyna Pawlak
- Anatomisches Institut, Universität Tübingen, D-72047 Tübingen, Germany
| | | | | | | | | |
Collapse
|
30
|
Karelson E, Fernaeus S, Reis K, Bogdanovic N, Land T. Stimulation of G-proteins in human control and Alzheimer's disease brain by FAD mutants of APP(714-723): implication of oxidative mechanisms. J Neurosci Res 2005; 79:368-74. [PMID: 15614786 DOI: 10.1002/jnr.20371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report the effects of amyloid precursor protein (APP) fragment 714-723 (APP(714-723); peptide P1) and its V717F and V717G mutants (peptides P2 and P3, respectively) on G-protein activity ([35S]GTPgammaS binding) in membranes from postmortem human control and Alzheimer's disease (AD) brains. The peptides P1, P2, and P3 revealed a significant stimulatory effect on [35S]GTPgammaS binding in control temporal cortex. The most potent stimulator, P3, at 10 microM concentration enhanced [35S]GTPgammaS binding by 500%. The effect was threefold stronger than that for wild-type P1 and twofold stronger than that for P2. In sporadic AD, the stimulatory effect of P1, P2, and P3 on G-proteins was reduced significantly whereas in Swedish familial AD (SFAD), only P1 elicited marked stimulation (at 10 microM by 50%). In control sensory postcentral cortex, the stimulation of G-proteins by P3 was 1.5-fold lower than that in control temporal cortex, whereas in AD and SFAD the effect showed no remarkable regional difference. Treatment of membranes with H2O2 produced 1.5-fold higher stimulation in [35S]GTPgammaS binding to temporal cortex than that in binding to sensory postcentral cortex. In AD and SFAD, the stimulation by H2O2 revealed no significant regional difference. Glutathione, desferrioxamine (DFO), and 17beta-estradiol markedly decreased the strong stimulatory effect by P3 on [35S]GTPgammaS binding to control temporal cortex, with the protective effect by DFO being most potent. The G(alphaO)-protein levels were not changed in AD or SFAD brain membranes as compared to levels in control membranes. We suggest that strong G-protein stimulation by P3 in the human brain implies the specific (per)oxidation mechanism that might be affected by regional content of peroxidizing substrates and antioxidants.
Collapse
Affiliation(s)
- Ello Karelson
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
31
|
Cordey M, Gundimeda U, Gopalakrishna R, Pike CJ. The synthetic estrogen 4-estren-3α,17β-diol (estren) induces estrogen-like neuroprotection. Neurobiol Dis 2005; 19:331-9. [PMID: 15837589 DOI: 10.1016/j.nbd.2005.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/10/2005] [Accepted: 01/12/2005] [Indexed: 11/24/2022] Open
Abstract
Estrogen has demonstrated neuroprotective properties, which may underlie the observed preventive effect of estrogen-based hormone therapy (HT) against the development of neurodegenerative disorders such as Alzheimer's disease. Deleterious side effects of HT have increased efforts to develop safer compounds that selectively reproduce beneficial estrogen actions. Recently, 4-estren-3 alpha,17 beta-diol (estren) was identified as having estrogen agonist properties in bone, without significantly stimulating growth of reproductive tissues. Here, we examined whether estren parallels the neuroprotective actions of estrogen against beta-amyloid (A beta) in cultured cerebrocortical neurons. Estren increased neuronal viability to a similar extent to that observed with 17 beta-estradiol (E2) and 17 alpha-estradiol. As we previously reported for E2, estren rapidly increased PKC activity, and PKC inhibition prevented estren neuroprotection. In contrast, the estrogen receptor antagonist ICI 182,780 blocked E2, but not estren neuroprotection. Our results indicate that estren-induced activation of rapid cell signaling pathways protects cultured neurons from A beta toxicity.
Collapse
Affiliation(s)
- Myriam Cordey
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | | | |
Collapse
|
32
|
Bryant DN, Bosch MA, Rønnekleiv OK, Dorsa DM. 17-Beta estradiol rapidly enhances extracellular signal-regulated kinase 2 phosphorylation in the rat brain. Neuroscience 2005; 133:343-52. [PMID: 15893655 DOI: 10.1016/j.neuroscience.2005.02.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/23/2005] [Accepted: 02/12/2005] [Indexed: 11/25/2022]
Abstract
Physiological doses of 17-beta Estradiol (E2) rapidly induce mitogen-activated protein kinase (MAPK) phosphorylation in a variety of cell culture and tissue explant preparations. Rapid MAPK phosphorylation has been implicated as a critical step in estrogen's effects on neuronal activity, gene transcription and neuroprotection. The present series of in vivo experiments were designed to determine whether acute administration of estrogen rapidly increased extracellular signal-regulated protein kinase (ERK) 2 phosphorylation. Brains were harvested 20 min after a single i.p. injection of 15 microg/kg of 17-beta or 17-alpha estradiol. Twelve brain structures were micro-dissected, homogenized and processed for Western blotting. E2-treated rats exhibited a statistically significant increase in ERK2 phosphorylation in the diagonal band of Broca, rostral nucleus accumbens, paraventricular nucleus, arcuate nucleus and anteromedial visual cortex. Administration of the same dose of 17-alpha estradiol did not enhance ERK phosphorylation in any of the brain regions examined. The in vivo data presented here extend previously published in vitro data indicating that E2 rapidly activates MAPK in primary neuronal cultures, explants and cell lines. These data also indicate that MAPK activation is a potential mediator of estrogens effects in some but not all estrogen receptor containing regions of the brain.
Collapse
Affiliation(s)
- D N Bryant
- Department of Physiology and Pharmacology (L334), Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
33
|
Cordey M, Pike CJ. Neuroprotective properties of selective estrogen receptor agonists in cultured neurons. Brain Res 2005; 1045:217-23. [PMID: 15910780 DOI: 10.1016/j.brainres.2005.03.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/12/2005] [Accepted: 03/15/2005] [Indexed: 11/21/2022]
Abstract
To investigate the role of the estrogen receptor (ER) in mediating neuroprotection, the neuroprotective profiles of selective ER agonists for ERalpha and ERbeta, propylpyrazole triol (PPT) and 2,3-bis(4-hydroxyphenyl) proprionitrile (DPN), respectively, were compared to that of 17beta-estradiol and 17alpha-estradiol in primary neuron cultures challenged by beta-amyloid toxicity. All compounds were found to be neuroprotective in an ER-dependent manner. However, protein kinase C (PKC) inhibition completely blocked the protective effects of 17beta-estradiol and 17alpha-estradiol and significantly attenuated PPT but not DPN neuroprotection. These data indicate that estrogen-mediated neuroprotection likely involves a variety of mechanisms and that protection due to PKC activation is more likely due to ERalpha compared to ERbeta.
Collapse
Affiliation(s)
- Myriam Cordey
- Neuroscience Graduate Program and Andrus Gerontology Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | | |
Collapse
|
34
|
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. After menopause, circulating levels of oestrogens decline markedly and oestrogen influences several brain processes predicted to modify AD risk. For example, oestrogen reduces the formation of beta-amyloid, a biochemical hallmark of AD. Oestrogen effects on oxidative stress and some effects on inflammation and the cerebral vasculature might also be expected to ameliorate risk. However, AD pathogenesis is incompletely understood and other oestrogen actions could be deleterious. Limited clinical trial evidence suggests that oestrogen therapy, begun after the onset of AD symptoms, is without substantial benefit or harm. Observational studies have associated oestrogen-containing hormone therapy with reduced AD risk. However, in the Women's Health Initiative Memory Study - a randomised, placebo-controlled trial of women 65 - 79 years of age - oral oestrogen plus progestin doubled the rate of dementia, with heightened risk appearing soon after treatment was initiated. Based on current evidence, hormone therapy is thus not indicated for the prevention of AD. Discrepancies between observational studies and the Women's Health Initiative clinical trial may reflect biases and unrecognised confounding factors in observational reports. Other explanations for divergent findings should be considered in future research, including effects of unopposed oestrogen or different hormone therapy preparations and the intriguing theoretical possibility that effects of hormone therapy on AD risk may be modified by the timing of use (e.g., initiation during the menopausal transition or early postmenopause versus initiation during the late postmenopause).
Collapse
Affiliation(s)
- Victor W Henderson
- Donald W Reynolda Center on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
35
|
Sortino MA, Chisari M, Merlo S, Vancheri C, Caruso M, Nicoletti F, Canonico PL, Copani A. Glia mediates the neuroprotective action of estradiol on beta-amyloid-induced neuronal death. Endocrinology 2004; 145:5080-6. [PMID: 15308615 DOI: 10.1210/en.2004-0973] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
17beta-Estradiol (17beta-E(2)) is known to exert neuroprotective activity against beta-amyloid, but its exact target and mechanism of action in this effect have not been elucidated. The involvement of astroglia in neuroprotection of 17beta-E(2) against the beta-amyloid fragment [betaAP((25-35))] has been evaluated using an experimental paradigm in which medium conditioned from rat astroglia pretreated with 17beta-E2 was transferred to pure rat cortical neurons challenged with 25 microm betaAP((25-35)) for 24 h. The toxicity of betaAP((25-35)) was assessed by flow cytometry, evaluating the ability of the peptide to induce an aberrant mitotic cell cycle in neurons. The results obtained indicate that conditioned medium from astrocytes preexposed to 17beta-E(2) for 4 h increased the viability of cortical neurons treated with betaAP((25-35)). This effect was not modified by treatment with the estrogen receptor antagonist ICI 182,780, added directly to neurons, nor was it mimicked by direct addition of 17beta-E(2) to neuronal cultures during exposure to betaAP((25-35)). A soluble factor stimulated by 17beta-E(2) seemed to be involved, and accordingly, the intracellular and released levels of TGF-beta1 were increased by 17beta-E(2) treatment, as established by Western blot analysis. In addition, the intracellular content of TGF-beta1 in immunopositive cells, as detected by flow cytometry, was reduced, suggesting that 17beta-E(2) stimulated mainly the release of the cytokine. In support of a role for TGF-beta1 in astrocyte-mediated 17beta-E(2) neuroprotective activity, incubation with a neutralizing anti-TGF-beta1 antibody significantly modified the reduction of neuronal death induced by 17beta-E(2)-treated astrocyte-conditioned medium.
Collapse
Affiliation(s)
- M A Sortino
- Department of Experimental and Clinical Pharmacology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Guerra B, Díaz M, Alonso R, Marin R. Plasma membrane oestrogen receptor mediates neuroprotection against beta-amyloid toxicity through activation of Raf-1/MEK/ERK cascade in septal-derived cholinergic SN56 cells. J Neurochem 2004; 91:99-109. [PMID: 15379891 DOI: 10.1111/j.1471-4159.2004.02695.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapid oestrogen neuroprotection against beta-amyloid peptide (Abeta)-induced toxicity, a main feature of Alzheimer's disease, may be partially initiated at the plasma membrane. However, the mechanism by which this oestrogen effect occurs is unknown. In a septal murine cell line (SN56), we observed that short exposures to either 17beta-oestradiol (E2) or membrane impermeant E2 bound to horseradish peroxidase (E-HRP) induced a biphasic stimulation of extracellular-signal regulated protein kinase (ERK1/2) phosphorylation, with peak inductions detected around 4-8 min in the early phase and a second maximum around 8 h after treatment. ERK1/2 phosphorylation was abolished by ERK1/2 kinase (MEK) inhibitors PD98059 and U0126. Interestingly, PD98059 was also shown to block rapid E2-related prevention of death in cells exposed to Abeta fragment 1-40 (Abeta1-40) for 24 h. In contrast, no neuroprotective effects were obtained when MEK inhibitor was used to selectively abolish the late phosphorylation phase. Furthermore, both ERK1/2 activation and E2-associated protection were blocked by an inhibitor of Raf-1 kinase. Raf-1 may be involved in these effects because oestrogen caused the rapid serine 338 (Ser338) phosphorylation of this protein. In addition, the oestrogen receptor (ER) antagonist ICI 182,780 was also observed to block ERK1/2 phosphorylation. We propose a novel mechanism in SN56 cells by which rapid effects of oestrogen leading to neuroprotection are signalled through Raf-1/MEK/ERK1/2 pathway, possibly by activation of a membrane-related ER.
Collapse
Affiliation(s)
- Borja Guerra
- Laboratory of Cellular Neurobiology, Department of Physiology, Faculty of Biology, University of La Laguna, Santa Cruz de Tenerife, Spain
| | | | | | | |
Collapse
|
37
|
Charalampopoulos I, Tsatsanis C, Dermitzaki E, Alexaki VI, Castanas E, Margioris AN, Gravanis A. Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proc Natl Acad Sci U S A 2004; 101:8209-14. [PMID: 15148390 PMCID: PMC419582 DOI: 10.1073/pnas.0306631101] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Indexed: 01/28/2023] Open
Abstract
The neuroactive steroids dehydroepiandrosterone (DHEA), its sulfate ester DHEA sulfate (DHEAS), and allopregnanolone (Allo), produced by the CNS and the adrenals, appear to exert a protective effect in hippocampal and cortical neuron ischemia- and excitotoxicity-induced injury. We hypothesized that they may also play a protective role on the adrenal medulla, an important part of the sympathetic nervous system, and the tissue adjacent to their primary site of production. DHEA, DHEAS, and Allo protected rat chromaffin cells and the rat pheochromocytoma PC12 cell line, an established model for the study of adrenomedullary cell apoptosis and survival, against serum deprivation-induced apoptosis. Their effects were time- and dose-dependent, with EC50 1.8, 1.1, and 1.5 nM, respectively. The antiapoptotic effect of DHEA DHEAS and Allo was compared to that of a long list of structurally related compounds and was found to be structure-specific, confined mainly to conformation 3beta-OH-Delta5 for androstenes and 3alpha-OH for pregnanes. Indeed, 3-keto, Delta4, or C7 hydroxylated androstenes and 3beta pregnanes were ineffective. The prosurvival effect of DHEA(S) and Allo was N-methyl-D-aspartate-, GABAA-, sigma1-, or estrogen receptor-independent. It involved the antiapoptotic Bcl-2 proteins, their role being sine qua non for their action because Bcl-2 antisense oligonucleotides reversed their effects. Finally, DHEA(S) and Allo activated cAMP response element-binding protein and NF-kappaB, upstream effectors of antiapoptotic Bcl-2 protein expression. They also activated the antiapoptotic kinase PKCalpha/beta, a posttranslational activator of Bcl-2 protein. Our findings suggest that decline of DHEA(S) and Allo during aging or stress may leave the adrenal medulla unprotected against proapoptotic challenges.
Collapse
|