1
|
Yamada R, Takada S. Postsynaptic protein assembly in three and two dimensions studied by mesoscopic simulations. Biophys J 2023; 122:3395-3410. [PMID: 37496268 PMCID: PMC10465727 DOI: 10.1016/j.bpj.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Recently, cellular biomolecular condensates formed via phase separation have received considerable attention. While they can be formed either in cytosol (denoted as 3D) or beneath the membrane (2D), the underlying difference between the two has not been well clarified. To compare the phase behaviors in 3D and 2D, postsynaptic density (PSD) serves as a model system. PSD is a protein condensate located under the postsynaptic membrane that influences the localization of glutamate receptors and thus contributes to synaptic plasticity. Recent in vitro studies have revealed the formation of droplets of various soluble PSD proteins via liquid-liquid phase separation. However, it is unclear how these protein condensates are formed beneath the membrane and how they specifically affect the localization of glutamate receptors in the membrane. In this study, focusing on the mixture of a glutamate receptor complex, AMPAR-TARP, and a ubiquitous scaffolding protein, PSD-95, we constructed a mesoscopic model of protein-domain interactions in PSD and performed comparative molecular simulations. The results showed a sharp contrast in the phase behaviors of protein assemblies in 3D and those under the membrane (2D). A mixture of a soluble variant of the AMPAR-TARP complex and PSD-95 in the 3D system resulted in a phase-separated condensate, which was consistent with the experimental results. However, with identical domain interactions, AMPAR-TARP embedded in the membrane formed clusters with PSD-95, but did not form a stable separated phase. Thus, the cluster formation behaviors of PSD proteins in the 3D and 2D systems were distinct. The current study suggests that, more generally, stable phase separation can be more difficult to achieve in and beneath the membrane than in 3D systems.
Collapse
Affiliation(s)
- Risa Yamada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Inouye MO, Colameo D, Ammann I, Winterer J, Schratt G. miR-329- and miR-495-mediated Prr7 down-regulation is required for homeostatic synaptic depression in rat hippocampal neurons. Life Sci Alliance 2022; 5:5/12/e202201520. [PMID: 36150742 PMCID: PMC9510147 DOI: 10.26508/lsa.202201520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
In rat hippocampal neurons, miRNA-dependent regulation of the synaptic Prr7 protein is required for the homeostatic synaptic depression of excitatory synapses upstream of the CDK5-SPAR pathway. Homeostatic synaptic depression (HSD) in excitatory neurons is a cell-autonomous mechanism which protects excitatory neurons from over-excitation as a consequence of chronic increases in network activity. In this process, excitatory synapses are weakened and eventually eliminated, as evidenced by a reduction in synaptic AMPA receptor expression and dendritic spine loss. Originally considered a global, cell-wide mechanism, local forms of regulation, such as the local control of mRNA translation in dendrites, are being increasingly recognized in HSD. Yet, identification of excitatory proteins whose local regulation is required for HSD is still limited. Here, we show that proline-rich protein 7/transmembrane adapter protein 3 (Prr7) down-regulation in dendrites of rat hippocampal neurons is necessary for HSD induced by chronic increase in network activity resulting from a blockade of inhibitory synaptic transmission by picrotoxin (PTX). We further identify two activity-regulated miRNAs, miR-329-3p and miR-495-3p, which inhibit Prr7 mRNA translation and are required for HSD. Moreover, we found that Prr7 knockdown reduces expression of the synaptic scaffolding protein SPAR, which is rescued by pharmacological inhibition of CDK5, indicating a role of Prr7 protein in the maintenance of excitatory synapses via protection of SPAR from degradation. Together, our findings highlight a novel HSD mechanism in which chronic activity leads to miR-329– and miR-495–mediated Prr7 reduction upstream of the CDK5-SPAR pathway.
Collapse
Affiliation(s)
- Michiko O Inouye
- Department of Health Science and Technology, Laboratory of Systems Neuroscience, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zürich, Switzerland
| | - David Colameo
- Department of Health Science and Technology, Laboratory of Systems Neuroscience, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zürich, Switzerland
| | - Irina Ammann
- Department of Health Science and Technology, Laboratory of Systems Neuroscience, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zürich, Switzerland
| | - Jochen Winterer
- Department of Health Science and Technology, Laboratory of Systems Neuroscience, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zürich, Switzerland
| | - Gerhard Schratt
- Department of Health Science and Technology, Laboratory of Systems Neuroscience, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zürich, Switzerland
| |
Collapse
|
3
|
Parcerisas A, Ortega-Gascó A, Pujadas L, Soriano E. The Hidden Side of NCAM Family: NCAM2, a Key Cytoskeleton Organization Molecule Regulating Multiple Neural Functions. Int J Mol Sci 2021; 22:10021. [PMID: 34576185 PMCID: PMC8471948 DOI: 10.3390/ijms221810021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Although it has been over 20 years since Neural Cell Adhesion Molecule 2 (NCAM2) was identified as the second member of the NCAM family with a high expression in the nervous system, the knowledge of NCAM2 is still eclipsed by NCAM1. The first studies with NCAM2 focused on the olfactory bulb, where this protein has a key role in axonal projection and axonal/dendritic compartmentalization. In contrast to NCAM1, NCAM2's functions and partners in the brain during development and adulthood have remained largely unknown until not long ago. Recent studies have revealed the importance of NCAM2 in nervous system development. NCAM2 governs neuronal morphogenesis and axodendritic architecture, and controls important neuron-specific processes such as neuronal differentiation, synaptogenesis and memory formation. In the adult brain, NCAM2 is highly expressed in dendritic spines, and it regulates synaptic plasticity and learning processes. NCAM2's functions are related to its ability to adapt to the external inputs of the cell and to modify the cytoskeleton accordingly. Different studies show that NCAM2 interacts with proteins involved in cytoskeleton stability and proteins that regulate calcium influx, which could also modify the cytoskeleton. In this review, we examine the evidence that points to NCAM2 as a crucial cytoskeleton regulation protein during brain development and adulthood. This key function of NCAM2 may offer promising new therapeutic approaches for the treatment of neurodevelopmental diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
4
|
Parcerisas A, Ortega-Gascó A, Hernaiz-Llorens M, Odena MA, Ulloa F, de Oliveira E, Bosch M, Pujadas L, Soriano E. New Partners Identified by Mass Spectrometry Assay Reveal Functions of NCAM2 in Neural Cytoskeleton Organization. Int J Mol Sci 2021; 22:ijms22147404. [PMID: 34299022 PMCID: PMC8304497 DOI: 10.3390/ijms22147404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Neuronal cell adhesion molecule 2 (NCAM2) is a membrane protein with an important role in the morphological development of neurons. In the cortex and the hippocampus, NCAM2 is essential for proper neuronal differentiation, dendritic and axonal outgrowth and synapse formation. However, little is known about NCAM2 functional mechanisms and its interactive partners during brain development. Here we used mass spectrometry to study the molecular interactome of NCAM2 in the second postnatal week of the mouse cerebral cortex. We found that NCAM2 interacts with >100 proteins involved in numerous processes, including neuronal morphogenesis and synaptogenesis. We validated the most relevant interactors, including Neurofilaments (NEFs), Microtubule-associated protein 2 (MAP2), Calcium/calmodulin kinase II alpha (CaMKIIα), Actin and Nogo. An in silico analysis of the cytosolic tail of the NCAM2.1 isoform revealed specific phosphorylation site motifs with a putative affinity for some of these interactors. Our results expand the knowledge of NCAM2 interactome and confirm the key role of NCAM2 in cytoskeleton organization, neuronal morphogenesis and synaptogenesis. These findings are of interest in explaining the phenotypes observed in different pathologies with alterations in the NCAM2 gene.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, University of Barcelona and Institute of Neurosciences, 08028 Barcelona, Spain; (A.O.-G.); (M.H.-L.); (F.U.); (L.P.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain;
- Correspondence: (A.P.); (E.S.)
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, University of Barcelona and Institute of Neurosciences, 08028 Barcelona, Spain; (A.O.-G.); (M.H.-L.); (F.U.); (L.P.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, University of Barcelona and Institute of Neurosciences, 08028 Barcelona, Spain; (A.O.-G.); (M.H.-L.); (F.U.); (L.P.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Maria Antonia Odena
- Plataforma de Proteòmica, Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain; (M.A.O.); (E.d.O.)
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, University of Barcelona and Institute of Neurosciences, 08028 Barcelona, Spain; (A.O.-G.); (M.H.-L.); (F.U.); (L.P.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eliandre de Oliveira
- Plataforma de Proteòmica, Parc Científic de Barcelona (PCB), 08028 Barcelona, Spain; (M.A.O.); (E.d.O.)
| | - Miquel Bosch
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain;
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, University of Barcelona and Institute of Neurosciences, 08028 Barcelona, Spain; (A.O.-G.); (M.H.-L.); (F.U.); (L.P.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, University of Barcelona and Institute of Neurosciences, 08028 Barcelona, Spain; (A.O.-G.); (M.H.-L.); (F.U.); (L.P.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Correspondence: (A.P.); (E.S.)
| |
Collapse
|
5
|
Suzuki T, Terada N, Higashiyama S, Kametani K, Shirai Y, Honda M, Kai T, Li W, Tabuchi K. Non-microtubule tubulin-based backbone and subordinate components of postsynaptic density lattices. Life Sci Alliance 2021; 4:4/7/e202000945. [PMID: 34006534 PMCID: PMC8326785 DOI: 10.26508/lsa.202000945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/28/2022] Open
Abstract
This study proposes a postsynaptic density (PSD) lattice model comprising a non-microtubule tubulin-based backbone structure and its associated proteins, including various PSD scaffold/adaptor proteins and other PSD proteins. A purification protocol was developed to identify and analyze the component proteins of a postsynaptic density (PSD) lattice, a core structure of the PSD of excitatory synapses in the central nervous system. “Enriched”- and “lean”-type PSD lattices were purified by synaptic plasma membrane treatment to identify the protein components by comprehensive shotgun mass spectrometry and group them into minimum essential cytoskeleton (MEC) and non-MEC components. Tubulin was found to be a major component of the MEC, with non-microtubule tubulin widely distributed on the purified PSD lattice. The presence of tubulin in and around PSDs was verified by post-embedding immunogold labeling EM of cerebral cortex. Non-MEC proteins included various typical scaffold/adaptor PSD proteins and other class PSD proteins. Thus, this study provides a new PSD lattice model consisting of non-microtubule tubulin-based backbone and various non-MEC proteins. Our findings suggest that tubulin is a key component constructing the backbone and that the associated components are essential for the versatile functions of the PSD.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto, Nagano, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, To-on, Ehime, Japan
| | - Kiyokazu Kametani
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan
| | - Mamoru Honda
- Bioscience Group, Center for Precision Medicine Supports, Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, INC, Kyoto, Japan
| | - Tsutomu Kai
- Bioscience Group, Center for Precision Medicine Supports, Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, INC, Kyoto, Japan
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research Shinshu University, Matsumoto, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research Shinshu University, Matsumoto, Japan
| |
Collapse
|
6
|
A unified resource and configurable model of the synapse proteome and its role in disease. Sci Rep 2021; 11:9967. [PMID: 33976238 PMCID: PMC8113277 DOI: 10.1038/s41598-021-88945-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein-protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.
Collapse
|
7
|
van Gelder CAGH, Altelaar M. Neuroproteomics of the Synapse: Subcellular Quantification of Protein Networks and Signaling Dynamics. Mol Cell Proteomics 2021; 20:100087. [PMID: 33933679 PMCID: PMC8167277 DOI: 10.1016/j.mcpro.2021.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
One of the most fascinating features of the brain is its ability to adapt to its surroundings. Synaptic plasticity, the dynamic mechanism of functional and structural alterations in synaptic strength, is essential for brain functioning and underlies a variety of processes such as learning and memory. Although the molecular mechanisms underlying such rapid plasticity are not fully understood, a consensus exists on the important role of proteins. The study of these neuronal proteins using neuroproteomics has increased rapidly in the last decades, and advancements in MS-based proteomics have broadened our understanding of neuroplasticity exponentially. In this review, we discuss the trends in MS-based neuroproteomics for the study of synaptic protein-protein interactions and protein signaling dynamics, with a focus on sample types, different labeling and enrichment approaches, and data analysis and interpretation. We highlight studies from the last 5 years, with a focus on synapse structure, composition, functioning, or signaling and finally discuss some recent developments that could further advance the field of neuroproteomics.
Collapse
Affiliation(s)
- Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
8
|
ADAP1/Centaurin-α1 Negatively Regulates Dendritic Spine Function and Memory Formation in the Hippocampus. eNeuro 2021; 8:ENEURO.0111-20.2020. [PMID: 33139322 PMCID: PMC7808333 DOI: 10.1523/eneuro.0111-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
ADAP1/Centaurin-α1 (CentA1) functions as an Arf6 GTPase-activating protein highly enriched in the brain. Previous studies demonstrated the involvement of CentA1 in brain function as a regulator of dendritic differentiation and a potential mediator of Alzheimer’s disease (AD) pathogenesis. To better understand the neurobiological functions of CentA1 signaling in the brain, we developed Centa1 knock-out (KO) mice. The KO animals showed neither brain development nor synaptic ultrastructure deficits in the hippocampus. However, they exhibited significantly higher density and enhanced structural plasticity of dendritic spines in the CA1 region of the hippocampus compared with non-transgenic (NTG) littermates. Moreover, the deletion of Centa1 improved performance in the object-in-place (OIP) spatial memory task. These results suggest that CentA1 functions as a negative regulator of spine density and plasticity, and of hippocampus-dependent memory formation. Thus, CentA1 and its downstream signaling may serve as a potential therapeutic target to prevent memory decline associated with aging and brain disorders.
Collapse
|
9
|
Ahmad F, Liu P. Synaptosome as a tool in Alzheimer's disease research. Brain Res 2020; 1746:147009. [PMID: 32659233 DOI: 10.1016/j.brainres.2020.147009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/29/2022]
Abstract
Synapse dysfunction is an integral feature of Alzheimer's disease (AD) pathophysiology. In fact, prodromal manifestation of structural and functional deficits in synapses much prior to appearance of overt pathological hallmarks of the disease indicates that AD might be considered as a degenerative disorder of the synapses. Several research instruments and techniques have allowed us to study synaptic function and plasticity and their alterations in pathological conditions, such as AD. One such tool is the biochemically isolated preparations of detached and resealed synaptic terminals, the "synaptosomes". Because of the preservation of many of the physiological processes such as metabolic and enzymatic activities, synaptosomes have proved to be an indispensable ex vivo model system to study synapse physiology both when isolated from fresh or cryopreserved tissues, and from animal or human post-mortem tissues. This model system has been tremendously successful in the case of post-mortem tissues because of their accessibility relative to acute brain slices or cultures. The current review details the use of synaptosomes in AD research and its potential as a valuable tool in furthering our understanding of the pathogenesis and in devising and testing of therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Of Molecules and Mechanisms. J Neurosci 2019; 40:81-88. [PMID: 31630114 DOI: 10.1523/jneurosci.0743-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
Without question, molecular biology drives modern neuroscience. The past 50 years has been nothing short of revolutionary as key findings have moved the field from correlation toward causation. Most obvious are the discoveries and strategies that have been used to build tools for visualizing circuits, measuring activity, and regulating behavior. Less flashy, but arguably as important are the myriad investigations uncovering the actions of single molecules, macromolecular structures, and integrated machines that serve as the basis for constructing cellular and signaling pathways identified in wide-scale gene or RNA studies and for feeding data into informational networks used in systems biology. This review follows the pathways that were opened in neuroscience by major discoveries and set the stage for the next 50 years.
Collapse
|
11
|
Karbowski J. Metabolic constraints on synaptic learning and memory. J Neurophysiol 2019; 122:1473-1490. [PMID: 31365284 DOI: 10.1152/jn.00092.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic spines, the carriers of long-term memory, occupy a small fraction of cortical space, and yet they are the major consumers of brain metabolic energy. What fraction of this energy goes for synaptic plasticity, correlated with learning and memory? It is estimated here based on neurophysiological and proteomic data for rat brain that, depending on the level of protein phosphorylation, the energy cost of synaptic plasticity constitutes a small fraction of the energy used for fast excitatory synaptic transmission, typically 4.0-11.2%. Next, this study analyzes a metabolic cost of new learning and its memory trace in relation to the cost of prior memories, using a class of cascade models of synaptic plasticity. It is argued that these models must contain bidirectional cyclic motifs, related to protein phosphorylation, to be compatible with basic thermodynamic principles. For most investigated parameters longer memories generally require proportionally more energy to store. The exceptions are the parameters controlling the speed of molecular transitions (e.g., ATP-driven phosphorylation rate), for which memory lifetime per invested energy can increase progressively for longer memories. Furthermore, in general, a memory trace decouples dynamically from a corresponding synaptic metabolic rate such that the energy expended on new learning and its memory trace constitutes in most cases only a small fraction of the baseline energy associated with prior memories. Taken together, these empirical and theoretical results suggest a metabolic efficiency of synaptically stored information.NEW & NOTEWORTHY Learning and memory involve a sequence of molecular events in dendritic spines called synaptic plasticity. These events are physical in nature and require energy, which has to be supplied by ATP molecules. However, our knowledge of the energetics of these processes is very poor. This study estimates the empirical energy cost of synaptic plasticity and considers theoretically a metabolic rate of learning and its memory trace in a class of cascade models of synaptic plasticity.
Collapse
Affiliation(s)
- Jan Karbowski
- Institute of Applied Mathematics and Mechanics, University of Warsaw, Warsaw, Poland.,Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Formicola N, Vijayakumar J, Besse F. Neuronal ribonucleoprotein granules: Dynamic sensors of localized signals. Traffic 2019; 20:639-649. [PMID: 31206920 DOI: 10.1111/tra.12672] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
Membrane-less organelles, because of their capacity to dynamically, selectively and reversibly concentrate molecules, are very well adapted for local information processing and rapid response to environmental fluctuations. These features are particularly important in the context of neuronal cells, where synapse-specific activation, or localized extracellular cues, induce signaling events restricted to specialized axonal or dendritic subcompartments. Neuronal ribonucleoprotein (RNP) particles, or granules, are nonmembrane bound macromolecular condensates that concentrate specific sets of mRNAs and regulatory proteins, promoting their long-distance transport to axons or dendrites. Neuronal RNP granules also have a dual function in regulating the translation of associated mRNAs: while preventing mRNA translation at rest, they fuel local protein synthesis upon activation. As revealed by recent work, rapid and reversible switches between these two functional modes are triggered by modifications of the networks of interactions underlying RNP granule assembly. Such flexible properties also come with a cost, as neuronal RNP granules are prone to transition into pathological aggregates in response to mutations, aging, or cellular stresses, further emphasizing the need to better understand the mechanistic principles governing their dynamic assembly and regulation in living systems.
Collapse
|
13
|
Li J, Sekine‐Aizawa Y, Ebrahimi S, Tanaka S, Okabe S. Tumor suppressor protein
CYLD
regulates morphogenesis of dendrites and spines. Eur J Neurosci 2019; 50:2722-2739. [DOI: 10.1111/ejn.14421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jun Li
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Yoko Sekine‐Aizawa
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Saman Ebrahimi
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| |
Collapse
|
14
|
Zhu F, Cizeron M, Qiu Z, Benavides-Piccione R, Kopanitsa MV, Skene NG, Koniaris B, DeFelipe J, Fransén E, Komiyama NH, Grant SGN. Architecture of the Mouse Brain Synaptome. Neuron 2018; 99:781-799.e10. [PMID: 30078578 PMCID: PMC6117470 DOI: 10.1016/j.neuron.2018.07.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022]
Abstract
Synapses are found in vast numbers in the brain and contain complex proteomes. We developed genetic labeling and imaging methods to examine synaptic proteins in individual excitatory synapses across all regions of the mouse brain. Synapse catalogs were generated from the molecular and morphological features of a billion synapses. Each synapse subtype showed a unique anatomical distribution, and each brain region showed a distinct signature of synapse subtypes. Whole-brain synaptome cartography revealed spatial architecture from dendritic to global systems levels and previously unknown anatomical features. Synaptome mapping of circuits showed correspondence between synapse diversity and structural and functional connectomes. Behaviorally relevant patterns of neuronal activity trigger spatiotemporal postsynaptic responses sensitive to the structure of synaptome maps. Areas controlling higher cognitive function contain the greatest synapse diversity, and mutations causing cognitive disorders reorganized synaptome maps. Synaptome technology and resources have wide-ranging application in studies of the normal and diseased brain.
Collapse
Affiliation(s)
- Fei Zhu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Mélissa Cizeron
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Institut NeuroMyoGène, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, 69008 Lyon, France
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ruth Benavides-Piccione
- Instituto Cajal (CSIC) 28002 Madrid, Centro de Tecnología Biomédica (UPM) 28223 Madrid; CIBERNED, ISCIII, 28031 Madrid, Spain
| | - Maksym V Kopanitsa
- Synome Ltd, Babraham Research Campus, Cambridge CB22 3AT, UK; UK Dementia Research Institute, Imperial College London, London W12 0NN, UK
| | - Nathan G Skene
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK; Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Babis Koniaris
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Javier DeFelipe
- Instituto Cajal (CSIC) 28002 Madrid, Centro de Tecnología Biomédica (UPM) 28223 Madrid; CIBERNED, ISCIII, 28031 Madrid, Spain
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
15
|
Roy M, Sorokina O, McLean C, Tapia-González S, DeFelipe J, Armstrong JD, Grant SGN. Regional Diversity in the Postsynaptic Proteome of the Mouse Brain. Proteomes 2018; 6:proteomes6030031. [PMID: 30071621 PMCID: PMC6161190 DOI: 10.3390/proteomes6030031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
The proteome of the postsynaptic terminal of excitatory synapses comprises over one thousand proteins in vertebrate species and plays a central role in behavior and brain disease. The brain is organized into anatomically distinct regions and whether the synapse proteome differs across these regions is poorly understood. Postsynaptic proteomes were isolated from seven forebrain and hindbrain regions in mice and their composition determined using proteomic mass spectrometry. Seventy-four percent of proteins showed differential expression and each region displayed a unique compositional signature. These signatures correlated with the anatomical divisions of the brain and their embryological origins. Biochemical pathways controlling plasticity and disease, protein interaction networks and individual proteins involved with cognition all showed differential regional expression. Combining proteomic and connectomic data shows that interconnected regions have specific proteome signatures. Diversity in synapse proteome composition is key feature of mouse and human brain structure.
Collapse
Affiliation(s)
- Marcia Roy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Oksana Sorokina
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Colin McLean
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Silvia Tapia-González
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | | | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
16
|
Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci 2018; 91:122-130. [PMID: 30004015 DOI: 10.1016/j.mcn.2018.07.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent plasticity of synaptic structure and function plays an essential role in neuronal development and in cognitive functions including learning and memory. The formation, maintenance and modulation of dendritic spines are mainly controlled by the dynamics of actin filaments (F-actin) through interaction with various actin-binding proteins (ABPs) and postsynaptic signaling messengers. Induction of long-term potentiation (LTP) triggers a cascade of events involving Ca2+ signaling, intracellular pathways such as cAMP and cGMP, and regulation of ABPs such as CaMKII, Cofilin, Aip1, Arp2/3, α-actinin, Profilin and Drebrin. We review here how these ABPs modulate the rate of assembly, disassembly, stabilization and bundling of F-actin during LTP induction. We highlight the crucial role that CaMKII exerts in both functional and structural plasticity by directly coupling Ca2+ signaling with F-actin dynamics through the β subunit. Moreover, we show how cAMP and cGMP second messengers regulate postsynaptic structural potentiation. Brain disorders such as Alzheimer's disease, schizophrenia or autism, are associated with alterations in the regulation of F-actin dynamics by these ABPs and signaling messengers. Thus, a better understanding of the molecular mechanisms controlling actin cytoskeleton can provide cues for the treatment of these disorders.
Collapse
Affiliation(s)
- Jelena Borovac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
17
|
McQueen J, Ryan TJ, McKay S, Marwick K, Baxter P, Carpanini SM, Wishart TM, Gillingwater TH, Manson JC, Wyllie DJA, Grant SGN, McColl BW, Komiyama NH, Hardingham GE. Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of Dapk1. eLife 2017; 6:e17161. [PMID: 28731405 PMCID: PMC5544426 DOI: 10.7554/elife.17161] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
Aberrant NMDA receptor (NMDAR) activity contributes to several neurological disorders, but direct antagonism is poorly tolerated therapeutically. The GluN2B cytoplasmic C-terminal domain (CTD) represents an alternative therapeutic target since it potentiates excitotoxic signaling. The key GluN2B CTD-centred event in excitotoxicity is proposed to involve its phosphorylation at Ser-1303 by Dapk1, that is blocked by a neuroprotective cell-permeable peptide mimetic of the region. Contrary to this model, we find that excitotoxicity can proceed without increased Ser-1303 phosphorylation, and is unaffected by Dapk1 deficiency in vitro or following ischemia in vivo. Pharmacological analysis of the aforementioned neuroprotective peptide revealed that it acts in a sequence-independent manner as an open-channel NMDAR antagonist at or near the Mg2+ site, due to its high net positive charge. Thus, GluN2B-driven excitotoxic signaling can proceed independently of Dapk1 or altered Ser-1303 phosphorylation.
Collapse
Affiliation(s)
- Jamie McQueen
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Sean McKay
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Marwick
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Baxter
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah M Carpanini
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas M Wishart
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas H Gillingwater
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean C Manson
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Seth G N Grant
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Barry W McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Noboru H Komiyama
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Baucum AJ. Proteomic Analysis of Postsynaptic Protein Complexes Underlying Neuronal Plasticity. ACS Chem Neurosci 2017; 8:689-701. [PMID: 28211672 DOI: 10.1021/acschemneuro.7b00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Normal neuronal communication and synaptic plasticity at glutamatergic synapses requires dynamic regulation of postsynaptic molecules. Protein expression and protein post-translational modifications regulate protein interactions that underlie this organization. In this Review, we highlight data obtained over the last 20 years that have used qualitative and quantitative proteomics-based approaches to identify postsynaptic protein complexes. Herein, we describe how these proteomics studies have helped lay the foundation for understanding synaptic physiology and perturbations in synaptic signaling observed in different pathologies. We also describe emerging technologies that can be useful in these analyses. We focus on protein complexes associated with the highly abundant and functionally critical proteins: calcium/calmodulin-dependent protein kinase II, the N-methyl-d-aspartate, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors, and postsynaptic density protein of 95 kDa.
Collapse
Affiliation(s)
- Anthony J. Baucum
- Department of Biology, Stark Neurosciences
Research Institute, Indiana University-Purdue University Indianapolis, 723 W. Michigan St., Indianapolis, Indiana 46202, United States
| |
Collapse
|
19
|
Shao G, Wang Y, Guan S, Burlingame AL, Lu F, Knox R, Ferriero DM, Jiang X. Proteomic Analysis of Mouse Cortex Postsynaptic Density following Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2017; 39:66-81. [PMID: 28315865 PMCID: PMC5519436 DOI: 10.1159/000456030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Proteomics of the synapses and postsynaptic densities (PSDs) have provided a deep understanding of protein composition and signal networks in the adult brain, which underlie neuronal plasticity and neurodegenerative or psychiatric disorders. However, there is a paucity of knowledge about the architecture and organization of PSDs in the immature brain, and how it is modified by brain injury in an early developing stage. Mass spectrometry (MS)-based proteomic analysis was performed on PSDs prepared from cortices of postnatal day 9 naïve mice or pups which had suffered hypoxic-ischemic (HI) brain injury. 512 proteins of different functional groups were identified from PSDs collected 1 h after HI injury, among which 60 have not been reported previously. Seven newly identified proteins involved in neural development were highlighted. HI injury increased the yield of PSDs at early time points upon reperfusion, and multiple proteins were recruited into PSDs following the insult. Quantitative analysis was performed using spectral counting, and proteins whose relative expression was more than 50% up- or downregulated compared to the sham animals 1 h after HI insult were reported. Validation with Western blotting demonstrated changes in expression and phosphorylation of the N-methyl-D-aspartate receptor, activation of a series of postsynaptic protein kinases and dysregulation of scaffold and adaptor proteins in response to neonatal HI insult. This work, along with other recent studies of synaptic protein profiling in the immature brain, builds a foundation for future investigation on the molecular mechanisms underlying developing plasticity. Furthermore, it provides insights into the biochemical changes of PSDs following early brain hypoxia-ischemia, which is helpful for understanding not only the injury mechanisms, but also the process of repair or replenishment of neuronal circuits during recovery from brain damage.
Collapse
Affiliation(s)
- Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Alexander GM, Huang YZ, Soderblom EJ, He XP, Moseley MA, McNamara JO. Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex. J Neurochem 2017; 140:629-644. [PMID: 27973753 DOI: 10.1111/jnc.13931] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/13/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
Abstract
Vagal Nerve Stimulation (VNS) Therapy® is a United States Food and Drug Administration approved neurotherapeutic for medically refractory partial epilepsy and treatment-resistant depression. The molecular mechanisms underlying its beneficial effects are unclear. We hypothesized that one mechanism involves neuronal activity-dependent modifications of central nervous system excitatory synapses. To begin to test this hypothesis, we asked whether VNS modifies the activity of neurons in amygdala and hippocampus. Neuronal recordings from adult, freely moving rats revealed that activity in both amygdala and hippocampus was modified by VNS immediately after its application, and changes were detected following 1 week of stimulation. To investigate whether VNS modifies the proteome of excitatory synapses, we established a label-free, quantitative liquid chromatography-tandem mass spectrometry workflow that enables global analysis of the constituents of the postsynaptic density (PSD) proteome. PSD proteins were biochemically purified from amygdala/piriform cortex of VNS- or dummy-treated rats following 1-week stimulation, and individual PSD protein levels were quantified by liquid chromatography-tandem mass spectrometry analysis. We identified 1899 unique peptides corresponding to 425 proteins in PSD fractions, of which expression levels of 22 proteins were differentially regulated by VNS with changes greater than 150%. Changes in a subset of these proteins, including significantly increased expression of neurexin-1α, cadherin 13 and voltage-dependent calcium channel α2δ1, the primary target of the antiepileptic drug gabapentin, and decreased expression of voltage-dependent calcium channel γ3, were confirmed by western blot analysis of PSD samples. These results demonstrate that VNS modulates excitatory synapses through regulating a subset of the PSD proteome. Our study reveals molecular targets of VNS and point to possible mechanisms underlying its beneficial effects, including activity-dependent formation of excitatory synapses.
Collapse
Affiliation(s)
- Georgia M Alexander
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yang Zhong Huang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Erik J Soderblom
- Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiao-Ping He
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - M Arthur Moseley
- Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina, USA
| | - James O McNamara
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
21
|
Schreiner D, Savas JN, Herzog E, Brose N, de Wit J. Synapse biology in the 'circuit-age'-paths toward molecular connectomics. Curr Opin Neurobiol 2017; 42:102-110. [PMID: 28033531 PMCID: PMC5316339 DOI: 10.1016/j.conb.2016.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/23/2022]
Abstract
The neural connectome is a critical determinant of brain function. Circuits of precisely wired neurons, and the features of transmission at the synapses connecting them, are thought to dictate information processing in the brain. While recent technological advances now allow to define the anatomical and functional neural connectome at unprecedented resolution, the elucidation of the molecular mechanisms that establish the precise patterns of connectivity and the functional characteristics of synapses has remained challenging. Here, we describe the power and limitations of genetic approaches in the analysis of mechanisms that control synaptic connectivity and function, and discuss how recent methodological developments in proteomics might be used to elucidate the molecular synaptic connectome that is at the basis of the neural connectome.
Collapse
Affiliation(s)
- Dietmar Schreiner
- Biozentrum, University of Basel, Klingelbergstraße 50-70, 4056 Basel, Switzerland; Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Etienne Herzog
- Univ. Bordeaux, IINS, UMR 5297, F-33000 Bordeaux, France; CNRS, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Joris de Wit
- VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
Chen J, Zhan L, Lu X, Xiao C, Sun N. The Alteration of ZiBuPiYin Recipe on Proteomic Profiling of Forebrain Postsynaptic Density of db/db Mice with Diabetes-Associated Cognitive Decline. J Alzheimers Dis 2017; 56:471-489. [PMID: 27886008 DOI: 10.3233/jad-160691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Libin Zhan
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, Liaoning, China
| | - Chi Xiao
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Nijing Sun
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
23
|
Martin-Vilchez S, Whitmore L, Asmussen H, Zareno J, Horwitz R, Newell-Litwa K. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development. PLoS One 2017; 12:e0170464. [PMID: 28114311 PMCID: PMC5256999 DOI: 10.1371/journal.pone.0170464] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development.
Collapse
Affiliation(s)
- Samuel Martin-Vilchez
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Leanna Whitmore
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Hannelore Asmussen
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jessica Zareno
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Karen Newell-Litwa
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
24
|
Arnold M, Cross R, Singleton KS, Zlatic S, Chapleau C, Mullin AP, Rolle I, Moore CC, Theibert A, Pozzo-Miller L, Faundez V, Larimore J. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin. Front Cell Neurosci 2016; 10:218. [PMID: 27713690 PMCID: PMC5031601 DOI: 10.3389/fncel.2016.00218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/06/2016] [Indexed: 11/13/2022] Open
Abstract
AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.
Collapse
Affiliation(s)
- Miranda Arnold
- Department of Biology, Agnes-Scott College Decatur, GA, USA
| | - Rebecca Cross
- Department of Biology, Agnes-Scott College Decatur, GA, USA
| | - Kaela S Singleton
- Interdisciplinary Program in Neuroscience, Georgetown University Washington, DC, USA
| | | | - Christopher Chapleau
- Department of Neurobiology, Civitan International Research Center, University of Alabama Birmingham, AL, USA
| | | | - Isaiah Rolle
- Heritage College of Osteopathic Medicine, The Medical School of Ohio University Athens, OH, USA
| | - Carlene C Moore
- Department of Neurobiology, Civitan International Research Center, University of Alabama Birmingham, AL, USA
| | - Anne Theibert
- Department of Neurobiology, Civitan International Research Center, University of Alabama Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama Birmingham, AL, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University Atlanta, GA, USA
| | | |
Collapse
|
25
|
Györffy BA, Gulyássy P, Gellén B, Völgyi K, Madarasi D, Kis V, Ozohanics O, Papp I, Kovács P, Lubec G, Dobolyi Á, Kardos J, Drahos L, Juhász G, Kékesi KA. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats. Brain Behav Immun 2016; 56:289-309. [PMID: 27058163 DOI: 10.1016/j.bbi.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which might underlie the pathological cortical functions that are characteristic of schizophrenia and ASD.
Collapse
Affiliation(s)
- Balázs A Györffy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Péter Gulyássy
- MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Pediatrics, Medical University of Vienna, Vienna A-1090, Austria
| | - Barbara Gellén
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Katalin Völgyi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Dóra Madarasi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Olivér Ozohanics
- MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | | | | | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna A-1090, Austria
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - József Kardos
- MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP B MS Neuroproteomics Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Katalin A Kékesi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary.
| |
Collapse
|
26
|
Kravchick DO, Karpova A, Hrdinka M, Lopez-Rojas J, Iacobas S, Carbonell AU, Iacobas DA, Kreutz MR, Jordan BA. Synaptonuclear messenger PRR7 inhibits c-Jun ubiquitination and regulates NMDA-mediated excitotoxicity. EMBO J 2016; 35:1923-34. [PMID: 27458189 DOI: 10.15252/embj.201593070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Elevated c-Jun levels result in apoptosis and are evident in neurodegenerative disorders such as Alzheimer's disease and dementia and after global cerebral insults including stroke and epilepsy. NMDA receptor (NMDAR) antagonists block c-Jun upregulation and prevent neuronal cell death following excitotoxic insults. However, the molecular mechanisms regulating c-Jun abundance in neurons are poorly understood. Here, we show that the synaptic component Proline rich 7 (PRR7) accumulates in the nucleus of hippocampal neurons following NMDAR activity. We find that PRR7 inhibits the ubiquitination of c-Jun by E3 ligase SCF(FBW) (7) (FBW7), increases c-Jun-dependent transcriptional activity, and promotes neuronal death. Microarray assays show that PRR7 abundance is directly correlated with transcripts associated with cellular viability. Moreover, PRR7 knockdown attenuates NMDAR-mediated excitotoxicity in neuronal cultures in a c-Jun-dependent manner. Our results show that PRR7 links NMDAR activity to c-Jun function and provide new insights into the molecular processes that underlie NMDAR-dependent excitotoxicity.
Collapse
Affiliation(s)
- Dana O Kravchick
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Matous Hrdinka
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dumitru A Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
27
|
Dieterich DC, Kreutz MR. Proteomics of the Synapse--A Quantitative Approach to Neuronal Plasticity. Mol Cell Proteomics 2016; 15:368-81. [PMID: 26307175 PMCID: PMC4739661 DOI: 10.1074/mcp.r115.051482] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The advances in mass spectrometry based proteomics in the past 15 years have contributed to a deeper appreciation of protein networks and the composition of functional synaptic protein complexes. However, research on protein dynamics underlying core mechanisms of synaptic plasticity in brain lag far behind. In this review, we provide a synopsis on proteomic research addressing various aspects of synaptic function. We discuss the major topics in the study of protein dynamics of the chemical synapse and the limitations of current methodology. We highlight recent developments and the future importance of multidimensional proteomics and metabolic labeling. Finally, emphasis is given on the conceptual framework of modern proteomics and its current shortcomings in the quest to gain a deeper understanding of synaptic plasticity.
Collapse
Affiliation(s)
- Daniela C Dieterich
- From the ‡Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Research Group Neuralomics, Leibniz Institute for Neurobiology Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Michael R Kreutz
- §RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
28
|
Sturgeon M, Davis D, Albers A, Beatty D, Austin R, Ferguson M, Tounsel B, Liebl FLW. The Notch ligand E3 ligase, Mind Bomb1, regulates glutamate receptor localization in Drosophila. Mol Cell Neurosci 2015; 70:11-21. [PMID: 26596173 DOI: 10.1016/j.mcn.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
The postsynaptic density (PSD) is a protein-rich network important for the localization of postsynaptic glutamate receptors (GluRs) and for signaling downstream of these receptors. Although hundreds of PSD proteins have been identified, many are functionally uncharacterized. We conducted a reverse genetic screen for mutations that affected GluR localization using Drosophila genes that encode homologs of mammalian PSD proteins. 42.8% of the mutants analyzed exhibited a significant change in GluR localization at the third instar larval neuromuscular junction (NMJ), a model synapse that expresses homologs of AMPA receptors. We identified the E3 ubiquitin ligase, Mib1, which promotes Notch signaling, as a regulator of synaptic GluR localization. Mib1 positively regulates the localization of the GluR subunits GluRIIA, GluRIIB, and GluRIIC. Mutations in mib1 and ubiquitous expression of Mib1 that lacks its ubiquitin ligase activity result in the loss of synaptic GluRIIA-containing receptors. In contrast, overexpression of Mib1 in all tissues increases postsynaptic levels of GluRIIA. Cellular levels of Mib1 are also important for the structure of the presynaptic motor neuron. While deficient Mib1 signaling leads to overgrowth of the NMJ, ubiquitous overexpression of Mib1 results in a reduction in the number of presynaptic motor neuron boutons and branches. These synaptic changes may be secondary to attenuated glutamate release from the presynaptic motor neuron in mib1 mutants as mib1 mutants exhibit significant reductions in the vesicle-associated protein cysteine string protein and in the frequency of spontaneous neurotransmission.
Collapse
Affiliation(s)
- Morgan Sturgeon
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Dustin Davis
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Amanda Albers
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Derek Beatty
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Rik Austin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Matt Ferguson
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Brittany Tounsel
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States.
| |
Collapse
|
29
|
Rodríguez-Fernández JL, de Lacoba MG. Plasma membrane-associated superstructure: Have we overlooked a new type of organelle in eukaryotic cells? J Theor Biol 2015; 380:346-58. [PMID: 26066286 DOI: 10.1016/j.jtbi.2015.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
A variety of intriguing plasma membrane-associated regions, including focal adhesions, adherens junctions, tight junctions, immunological synapses, neuromuscular junctions and the primary cilia, among many others, have been described in eukaryotic cells. Emphasizing their importance, alteration in their molecular structures induces or correlates with different pathologies. These regions display surface proteins connected to intracellular molecules, including cytoskeletal component, which maintain their cytoarchitecture, and signalling proteins, which regulate their organization and functions. Based on the molecular similarities and other common features observed, we suggest that, despite differences in external appearances, all these regions are just the same superstructure that appears in different locations and cells. We hypothesize that this superstructure represents an overlooked new type of organelle that we call plasma membrane-associated superstructure (PMAS). Therefore, we suggest that eukaryotic cells include classical organelles (e.g. mitochondria, Golgi and others) and also PMAS. We speculate that this new type of organelle might be an innovation associated to the emergence of eukaryotes. Finally we discuss the implications of the hypothesis proposed.
Collapse
Affiliation(s)
- José Luis Rodríguez-Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| | - Mario García de Lacoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid 28040, Spain
| |
Collapse
|
30
|
Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience 2015. [PMID: 26215919 DOI: 10.1016/j.neuroscience.2015.07.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron tomography and immunogold labeling were used to analyze similarities and differences in the morphology and protein composition of postsynaptic densities (PSDs) isolated from adult rat cerebella, hippocampi, and cortices. There were similarities in physical dimensions and gross morphology between cortical, hippocampal and most cerebellar PSDs, although the morphology among cerebellar PSDs could be categorized into three distinct groups. The majority of cerebellar PSDs were composed of dense regions of protein, similar to cortical and hippocampal PSDs, while others were either composed of granular or lattice-like protein regions. Significant differences were found in protein composition and organization across PSDs from the different brain regions. The signaling protein, βCaMKII, was found to be a major component of each PSD type and was more abundant than αCaMKII in both hippocampal and cerebellar PSDs. The scaffold molecule PSD-95, a major component of cortical PSDs, was found absent in a fraction of cerebellar PSDs and when present was clustered in its distribution. In contrast, immunogold labeling for the proteasome was significantly more abundant in cerebellar and hippocampal PSDs than cortical PSDs. Together, these results indicate that PSDs exhibit remarkable diversity in their composition and morphology, presumably as a reflection of the unique functional demands placed on different synapses.
Collapse
|
31
|
Han X, Shao W, Liu Z, Fan S, Yu J, Chen J, Qiao R, Zhou J, Xie P. iTRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression. Neuroscience 2015; 298:220-92. [DOI: 10.1016/j.neuroscience.2015.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/20/2015] [Accepted: 04/02/2015] [Indexed: 01/26/2023]
|
32
|
Merlo L, Cimino F, Angileri FF, La Torre D, Conti A, Cardali SM, Saija A, Germanò A. Alteration in synaptic junction proteins following traumatic brain injury. J Neurotrauma 2015; 31:1375-85. [PMID: 24661152 DOI: 10.1089/neu.2014.3385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. Synaptic junction proteins may be involved in post-TBI alterations, leading to synaptic loss or disrupted plasticity. A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.
Collapse
Affiliation(s)
- Lucia Merlo
- 1 Department of Neurosciences, University of Messina , Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Colangelo CM, Ivosev G, Chung L, Abbott T, Shifman M, Sakaue F, Cox D, Kitchen RR, Burton L, Tate SA, Gulcicek E, Bonner R, Rinehart J, Nairn AC, Williams KR. Development of a highly automated and multiplexed targeted proteome pipeline and assay for 112 rat brain synaptic proteins. Proteomics 2015; 15:1202-14. [PMID: 25476245 DOI: 10.1002/pmic.201400353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 12/01/2014] [Indexed: 11/09/2022]
Abstract
We present a comprehensive workflow for large scale (>1000 transitions/run) label-free LC-MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling that improves S/N by twofold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, normalized group area ratio, MLR normalization, weighted regression analysis, and data dissemination through the Yale protein expression database. As a proof of principle we developed a robust 90 min LC-MRM assay for mouse/rat postsynaptic density fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label-free and SIS analyses. Overall, our method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC-MRM assay.
Collapse
Affiliation(s)
- Christopher M Colangelo
- Yale/NIDA Neuroproteomics Center, New Haven, CT, USA; W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pocklington AJ, O'Donovan M, Owen MJ. The synapse in schizophrenia. Eur J Neurosci 2014; 39:1059-67. [PMID: 24712986 DOI: 10.1111/ejn.12489] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 02/06/2023]
Abstract
It has been several decades since synaptic dysfunction was first suggested to play a role in schizophrenia, but only in the last few years has convincing evidence been obtained as progress has been made in elucidating the genetic underpinnings of the disorder. In the intervening years much has been learned concerning the complex macromolecular structure of the synapse itself, and genetic studies are now beginning to draw upon these advances. Here we outline our current understanding of the genetic architecture of schizophrenia and examine the evidence for synaptic involvement. A strong case can now be made that disruption of glutamatergic signalling pathways regulating synaptic plasticity contributes to the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | | | | |
Collapse
|
35
|
Laßek M, Weingarten J, Volknandt W. The synaptic proteome. Cell Tissue Res 2014; 359:255-65. [PMID: 25038742 DOI: 10.1007/s00441-014-1943-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/04/2014] [Indexed: 11/29/2022]
Abstract
Synapses are focal hot spots for signal transduction and plasticity in the brain. A synapse comprises an axon terminus, the presynapse, the synaptic cleft containing extracellular matrix proteins as well as adhesion molecules, and the postsynaptic density as target structure for chemical signaling. The proteomes of the presynaptic and postsynaptic active zones control neurotransmitter release and perception. These tasks demand short- and long-term structural and functional dynamics of the synapse mediated by its proteinaceous inventory. This review addresses subcellular fractionation protocols and the related proteomic approaches to the various synaptic subcompartments with an emphasis on the presynaptic active zone (PAZ). Furthermore, it discusses major constituents of the PAZ including the amyloid precursor protein family members. Numerous proteins regulating the rearrangement of the cytoskeleton are indicative of the functional and structural dynamics of the pre- and postsynapse. The identification of protein candidates of the synapse provides the basis for further analyzing the interaction of synaptic proteins with their targets, and the effect of their deletion opens novel insights into the functional role of these proteins in neuronal communication. The knowledge of the molecular interactome is also a prerequisite for understanding numerous neurodegenerative diseases.
Collapse
Affiliation(s)
- Melanie Laßek
- Molecular and Cellular Neurobiology, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
36
|
Calabrese B, Saffin JM, Halpain S. Activity-dependent dendritic spine shrinkage and growth involve downregulation of cofilin via distinct mechanisms. PLoS One 2014; 9:e94787. [PMID: 24740405 PMCID: PMC3989342 DOI: 10.1371/journal.pone.0094787] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/19/2014] [Indexed: 01/09/2023] Open
Abstract
A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage, and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However, the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely, during activity-dependent spine growth, LIM kinase stimulates cofilin phosphorylation, which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity.
Collapse
Affiliation(s)
- Barbara Calabrese
- Division of Biological Sciences, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean-Michel Saffin
- Division of Biological Sciences, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shelley Halpain
- Division of Biological Sciences, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Li KW, Jimenez CR. Synapse proteomics: current status and quantitative applications. Expert Rev Proteomics 2014; 5:353-60. [DOI: 10.1586/14789450.5.2.353] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Stockton SD, Devi LA. An integrated quantitative proteomics and systems biology approach to explore synaptic protein profile changes during morphine exposure. Neuropsychopharmacology 2014; 39:88-103. [PMID: 24045585 PMCID: PMC3857660 DOI: 10.1038/npp.2013.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 12/20/2022]
Abstract
Morphine is a classic analgesic for the treatment of chronic pain. However, its repeated use is known to produce tolerance, physical dependence, and addiction; these properties limit its long-term therapeutic use and this has led to a quest for therapeutics without these unwanted side effects. Understanding the molecular changes in response to long-term use of morphine is likely to aid in the development of novel therapeutics for the treatment of pain. Studies examining the effects of chronic morphine administration have reported alterations in gene expression, synapse morphology, and synaptic transmission implying changes in synaptic protein profile. To fully understand the changes in protein profiles, proteomic techniques have been used. Studies using two-dimensional gel electrophoresis of various brain regions combined with mass spectrometry have found alterations in the levels of a number of proteins. However, neither the changes in brain regions relevant to morphine effects nor changes in the abundance of synaptic proteins have been clearly delineated. Recent studies employing subcellular fractionation to isolate the striatal synapse, combined with quantitative proteomics and graph theory-inspired network analyses, have begun to quantify morphine-regulated changes in synaptic proteins and facilitate the generation of networks that could serve as targets for the development of novel therapeutics for the treatment of chronic pain. Thus, an integrated quantitative proteomics and systems biology approach can be useful to identify novel targets for the treatment of pain and other disorders of the brain.
Collapse
Affiliation(s)
- Steven D Stockton
- Department of Pharmacology and Systems Therapeutics and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Xiong L, Wen Y, Miao X, Yang Z. NT5E and FcGBP as key regulators of TGF-1-induced epithelial-mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer. Cell Tissue Res 2013; 355:365-74. [PMID: 24310606 PMCID: PMC3921456 DOI: 10.1007/s00441-013-1752-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/31/2013] [Indexed: 11/28/2022]
Abstract
Epithelial–mesenchymal transitions (EMTs) are essential manifestations of epithelial cell plasticity during tumor progression. Transforming growth factor-β(TGF-β) modulates epithelial plasticity in tumor physiological contexts by inducing EMT, which is associated with the altered expression of genes. In the present study, we used DNA micro-array analysis to search for differentially expressed genes in the TGF-β1 induced gallbladder carcinoma cell line (GBC-SD cells), as compared with normal GBC-SD cells. We identified 225 differentially expressed genes, including 144 that were over-expressed and 81 that were under-expressed in the TGF-β1 induced GBC-SD cells. NT5E (CD73) is the most increased gene, while the Fc fragment of the IgG binding protein (FcGBP) is the most decreased gene. The expression patterns of these two genes in gallbladder adenocarcinoma and chronic cholecystitis tissue were consistent with the micro-array data. Immunochemistry and clinicopathological results showed that the expression of NT5E and FcGBP in gallbladder adenocarcinoma is an independent marker for evaluation of the disease progression, clinical biological behaviors and prognosis. The data from the current study indicate that differential NT5E and FcGBP expressions could be further evaluated as biomarkers for predicting survival of patients with gallbladder cancer and that NT5E and FcGBP could be promising targets in the control of gallbladder cancer progression.
Collapse
Affiliation(s)
- Li Xiong
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, 139# Middle Renmin road, Changsha, Hunan, 410011, China
| | | | | | | |
Collapse
|
40
|
Pozniak CD, Sengupta Ghosh A, Gogineni A, Hanson JE, Lee SH, Larson JL, Solanoy H, Bustos D, Li H, Ngu H, Jubb AM, Ayalon G, Wu J, Scearce-Levie K, Zhou Q, Weimer RM, Kirkpatrick DS, Lewcock JW. Dual leucine zipper kinase is required for excitotoxicity-induced neuronal degeneration. ACTA ACUST UNITED AC 2013; 210:2553-67. [PMID: 24166713 PMCID: PMC3832926 DOI: 10.1084/jem.20122832] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Loss of dual leucine zipper kinase results in attenuated JNK/c-Jun stress response pathway activation and reduced neuronal degeneration after kainic acid–induced excitotoxic seizures. Excessive glutamate signaling is thought to underlie neurodegeneration in multiple contexts, yet the pro-degenerative signaling pathways downstream of glutamate receptor activation are not well defined. We show that dual leucine zipper kinase (DLK) is essential for excitotoxicity-induced degeneration of neurons in vivo. In mature neurons, DLK is present in the synapse and interacts with multiple known postsynaptic density proteins including the scaffolding protein PSD-95. To examine DLK function in the adult, DLK-inducible knockout mice were generated through Tamoxifen-induced activation of Cre-ERT in mice containing a floxed DLK allele, which circumvents the neonatal lethality associated with germline deletion. DLK-inducible knockouts displayed a modest increase in basal synaptic transmission but had an attenuation of the JNK/c-Jun stress response pathway activation and significantly reduced neuronal degeneration after kainic acid–induced seizures. Together, these data demonstrate that DLK is a critical upstream regulator of JNK-mediated neurodegeneration downstream of glutamate receptor hyper-activation and represents an attractive target for the treatment of indications where excitotoxicity is a primary driver of neuronal loss.
Collapse
Affiliation(s)
- Christine D Pozniak
- Department of Neuroscience, 2 Department of Biomedical Imaging, 3 Department of Bioinformatics and Computational Biology, 4 Department of Protein Chemistry, 5 Department of Pathology, Genentech, Inc., South San Francisco, CA 94080
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Han MH, Jiao S, Jia JM, Chen Y, Chen CY, Gucek M, Markey SP, Li Z. The novel caspase-3 substrate Gap43 is involved in AMPA receptor endocytosis and long-term depression. Mol Cell Proteomics 2013; 12:3719-31. [PMID: 24023391 DOI: 10.1074/mcp.m113.030676] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cysteine protease caspase-3, best known as an executioner of cell death in apoptosis, also plays a non-apoptotic role in N-methyl-d-aspartate receptor-dependent long-term depression of synaptic transmission (NMDAR-LTD) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor endocytosis in neurons. The mechanism by which caspase-3 regulates LTD and AMPA receptor endocytosis, however, remains unclear. Here, we addressed this question by using an enzymatic N-terminal peptide enrichment method and mass spectrometry to identify caspase-3 substrates in neurons. Of the many candidates revealed by this proteomic study, we have confirmed BASP1, Dbn1, and Gap43 as true caspase-3 substrates. Moreover, in hippocampal neurons, Gap43 mutants deficient in caspase-3 cleavage inhibit AMPA receptor endocytosis and LTD. We further demonstrated that Gap43, a protein well-known for its functions in axons, is also localized at postsynaptic sites. Our study has identified Gap43 as a key caspase-3 substrate involved in LTD and AMPA receptor endocytosis, uncovered a novel postsynaptic function for Gap43 and provided new insights into how long-term synaptic depression is induced.
Collapse
Affiliation(s)
- Meng-Hsuan Han
- National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Park CS, Rehrauer H, Mansuy IM. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice. BMC Genomics 2013; 14:539. [PMID: 23927422 PMCID: PMC3751108 DOI: 10.1186/1471-2164-14-539] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone acetylation has been implicated in learning and memory in the brain, however, its function at the level of the genome and at individual genetic loci remains poorly investigated. This study examines a key acetylation mark, histone H4 lysine 5 acetylation (H4K5ac), genome-wide and its role in activity-dependent gene transcription in the adult mouse hippocampus following contextual fear conditioning. RESULTS Using ChIP-Seq, we identified 23,235 genes in which H4K5ac correlates with absolute gene expression in the hippocampus. However, in the absence of transcription factor binding sites 150 bp upstream of the transcription start site, genes were associated with higher H4K5ac and expression levels. We further establish H4K5ac as a ubiquitous modification across the genome. Approximately one-third of all genes have above average H4K5ac, of which ~15% are specific to memory formation and ~65% are co-acetylated for H4K12. Although H4K5ac is prevalent across the genome, enrichment of H4K5ac at specific regions in the promoter and coding region are associated with different levels of gene expression. Additionally, unbiased peak calling for genes differentially acetylated for H4K5ac identified 114 unique genes specific to fear memory, over half of which have not previously been associated with memory processes. CONCLUSIONS Our data provide novel insights into potential mechanisms of gene priming and bookmarking by histone acetylation following hippocampal memory activation. Specifically, we propose that hyperacetylation of H4K5 may prime genes for rapid expression following activity. More broadly, this study strengthens the importance of histone posttranslational modifications for the differential regulation of transcriptional programs in cognitive processes.
Collapse
Affiliation(s)
- C Sehwan Park
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
43
|
Abstract
Neuronal nitric oxide synthase (nNOS) and p38MAPK are strongly implicated in excitotoxicity, a mechanism common to many neurodegenerative conditions, but the intermediary mechanism is unclear. NOS1AP is encoded by a gene recently associated with sudden cardiac death, diabetes-associated complications, and schizophrenia (Arking et al., 2006; Becker et al., 2008; Brzustowicz, 2008; Lehtinen et al., 2008). Here we find it interacts with p38MAPK-activating kinase MKK3. Excitotoxic stimulus induces recruitment of NOS1AP to nNOS in rat cortical neuron culture. Excitotoxic activation of p38MAPK and subsequent neuronal death are reduced by competing with the nNOS:NOS1AP interaction and by knockdown with NOS1AP-targeting siRNAs. We designed a cell-permeable peptide that competes for the unique PDZ domain of nNOS that interacts with NOS1AP. This peptide inhibits NMDA-induced recruitment of NOS1AP to nNOS and in vivo in rat, doubles surviving tissue in a severe model of neonatal hypoxia-ischemia, a major cause of neonatal death and pediatric disability. The highly unusual sequence specificity of the nNOS:NOS1AP interaction and involvement in excitotoxic signaling may provide future opportunities for generation of neuroprotectants with high specificity.
Collapse
|
44
|
Affiliation(s)
- Rafael Yuste
- HHMI, Departments of Biological Sciences and Neuroscience, and Kavli Institute for Brain Science, Columbia University, New York, NY 10027;
| |
Collapse
|
45
|
Kadakkuzha BM, Puthanveettil SV. Genomics and proteomics in solving brain complexity. MOLECULAR BIOSYSTEMS 2013; 9:1807-21. [PMID: 23615871 PMCID: PMC6425491 DOI: 10.1039/c3mb25391k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human brain is extraordinarily complex, composed of billions of neurons and trillions of synaptic connections. Neurons are organized into circuit assemblies that are modulated by specific interneurons and non-neuronal cells, such as glia and astrocytes. Data on human genome sequences predicts that each of these cells in the human brain has the potential of expressing ∼20 000 protein coding genes and tens of thousands of noncoding RNAs. A major challenge in neuroscience is to determine (1) how individual neurons and circuitry utilize this potential during development and maturation of the nervous system, and for higher brain functions such as cognition, and (2) how this potential is altered in neurological and psychiatric disorders. In this review, we will discuss how recent advances in next generation sequencing, proteomics and bioinformatics have transformed our understanding of gene expression and the functions of neural circuitry, memory storage, and disorders of cognition.
Collapse
Affiliation(s)
- Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458, USA
| | | |
Collapse
|
46
|
Shin E, Kashiwagi Y, Kuriu T, Iwasaki H, Tanaka T, Koizumi H, Gleeson JG, Okabe S. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Nat Commun 2013; 4:1440. [PMID: 23385585 PMCID: PMC4017031 DOI: 10.1038/ncomms2443] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022] Open
Abstract
Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.
Collapse
Affiliation(s)
- Euikyung Shin
- Department of Cellular Neurobiology, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Predicting protein-protein interactions in the post synaptic density. Mol Cell Neurosci 2013; 56:128-39. [PMID: 23628905 DOI: 10.1016/j.mcn.2013.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/09/2013] [Accepted: 04/19/2013] [Indexed: 12/27/2022] Open
Abstract
The post synaptic density (PSD) is a specialization of the cytoskeleton at the synaptic junction, composed of hundreds of different proteins. Characterizing the protein components of the PSD and their interactions can help elucidate the mechanism of long-term changes in synaptic plasticity, which underlie learning and memory. Unfortunately, our knowledge of the proteome and interactome of the PSD is still partial and noisy. In this study we describe a computational framework to improve the reconstruction of the PSD network. The approach is based on learning the characteristics of PSD protein interactions from a set of trusted interactions, expanding this set with data collected from large scale repositories, and then predicting novel interaction with proteins that are suspected to reside in the PSD. Using this method we obtained thirty predicted interactions, with more than half of which having supporting evidence in the literature. We discuss in details two of these new interactions, Lrrtm1 with PSD-95 and Src with Capg. The first may take part in a mechanism underlying glutamatergic dysfunction in schizophrenia. The second suggests an alternative mechanism to regulate dendritic spines maturation.
Collapse
|
48
|
Liu Q, Yao WD, Suzuki T. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes. J Neurogenet 2013; 27:43-58. [PMID: 23527882 DOI: 10.3109/01677063.2013.772175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.
Collapse
Affiliation(s)
- Qian Liu
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | |
Collapse
|
49
|
Abstract
The concept of the cytosol as a space that contains discrete zones of metabolites is discussed relative to the contribution of GAPDH. GAPDH is directed to very specific cell compartments. This chapter describes the utilization of GAPDH's enzymatic function for focal demands (i.e. ATP/ADP and NAD(+)/NADH), and offers a speculative role for GAPDH as perhaps moderating local concentrations of inorganic phosphate and hydrogen ions (i.e. co-substrate and co-product of the glycolytic reaction, respectively). Where known, the structural features of the binding between GAPDH and the compartment components are discussed. The nuances, which are associated with the intracellular distribution of GAPDH, appear to be specific to the cell-type, particularly with regards to the various plasma membrane proteins to which GAPDH binds. The chapter includes discussion on the curious observation of GAPDH being localized to the external surface of the plasma membrane in a human cell type. The default perspective has been that GAPDH localization is synonymous with compartmentation of glycolytic energy. The chapter discusses GAPDH translocation to the nucleus and to non-nuclear cellular structures, emphasizing its glycolytic function. Nevertheless, it is becoming clear that alternate functions of GAPDH play a role in compartmentation, particularly in the translocation to the nucleus.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
50
|
Smalla KH, Klemmer P, Wyneken U. Isolation of the Postsynaptic Density: A Specialization of the Subsynaptic Cytoskeleton. THE CYTOSKELETON 2013. [DOI: 10.1007/978-1-62703-266-7_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|