1
|
Peng Q, Qian Y, Xiao X, Gao F, Ren G, Pennisi CP. Advancing Chronic Wound Healing through Electrical Stimulation and Adipose-Derived Stem Cells. Adv Healthc Mater 2025; 14:e2403777. [PMID: 40025921 PMCID: PMC12004429 DOI: 10.1002/adhm.202403777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Indexed: 03/04/2025]
Abstract
Chronic cutaneous wounds are a major clinical challenge worldwide due to delayed healing, recurrent infections, and resistance to conventional therapies. Adipose-derived stem cells (ASCs) have shown promise as a cell-based therapy, but their therapeutic efficacy is often compromised by the harsh microenvironment of chronic wounds. Recent advances in bioengineering, particularly the application of electrical stimulation (ES), offer an innovative approach to enhancing the regenerative properties of ASCs. By restoring the natural electrical current in the wound, ES provides a strong stimulus to the cells involved in healing, thereby accelerating the overall wound-healing process. Recent studies show that ASCs can be significantly activated by ES, which increases their viability, proliferation, migration, and secretory capacity, all of which are crucial for the proper healing of chronic wounds. This review examines the synergistic effects of ES and ASCs on wound healing, focusing on the biological mechanisms involved. The review also highlights novel self-powered systems and other emerging technologies such as advanced conductive materials and devices that promise to improve the clinical translation of ES-based treatments. By summarizing the current state of knowledge, this review aims to provide a framework for future research and clinical application of ES and ASCs in wound care.
Collapse
Affiliation(s)
- Qiuyue Peng
- Department of Health Science and TechnologyAalborg UniversityGistrup9260Denmark
| | - Yu Qian
- Department of Health Science and TechnologyAalborg UniversityGistrup9260Denmark
| | - Xinxin Xiao
- Department of Chemistry and BioscienceAalborg UniversityGistrup9260Denmark
| | - Fengdi Gao
- Department of Health Science and TechnologyAalborg UniversityGistrup9260Denmark
| | - Guoqiang Ren
- The Affiliated Lihuili Hospital of Ningbo University, Department of DermatologyNingbo315046China
| | | |
Collapse
|
2
|
Hou Y, Xu X, Zhou Y, Li Q, Zhu L, Liu C, Chen S, Pang J. Versatile Bioactive Glass/Zeolitic Imidazolate Framework-8-Based Skin Scaffolds toward High-Performance Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8228-8237. [PMID: 38343190 DOI: 10.1021/acsami.3c14529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Designing a novel biomaterial for wound healing is based on biocompatibility and excellent mechanical strength. In this study, bioactive glass (BG) and zeolitic imidazolate framework-8 (ZIF-8) have been incorporated into poly(ε-caprolactone)/poly(vinyl alcohol) (PCL/PVA) composite skin scaffolds via microfluidic electrospinning. Interestingly, the addition of ZIF-8 further strengthens the BG stability and demonstrates better antibacterial effects. Utilizing the slow release of Zn, Ca, and Si ions, it also significantly promotes growth factor expression and skin regeneration. In addition, it is further demonstrated by in vitro and in vivo studies that the prepared composite skin scaffolds possess excellent biocompatibility, antibacterial capabilities, and mechanical properties. The prepared BG/ZIF-8-loaded scaffold possesses high tensile strength (26 MPa) and excellent antibacterial properties (achieves 89.64 and 78.8% inhibition of E. coli and S. aureus, respectively), and cell viability increased by 51.2%. More importantly, the wound shrinkage of the BG/ZIF-8-loaded scaffold is better than that of an unloaded scaffold, and the shrinkage rates of PCL/PVA@BG/ZIF-8(1 wt %) group is 95% with 2.2 mm granulation growth thickness within 12 days. Thus, the composite skin scaffold loaded with BG/ZIF-8 prepared by microfluidic electrospinning provides a new perspective for accelerating wound healing and is a potential novel therapeutic strategy for efficient wound healing.
Collapse
Affiliation(s)
- Yongchun Hou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Xiaowei Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Yaqin Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| |
Collapse
|
3
|
Pavlenko A, Lasota S, Wnuk D, Paw M, Czyż J, Michalik M, Madeja Z. Bronchial Fibroblasts from Asthmatic Patients Display Impaired Responsiveness to Direct Current Electric Fields (dcEFs). Biomedicines 2023; 11:2138. [PMID: 37626635 PMCID: PMC10452584 DOI: 10.3390/biomedicines11082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Accumulating evidence suggests that an important role is played by electric signals in modifying cell behaviour during developmental, regenerative and pathological processes. However, their role in asthma has not yet been addressed. Bronchial fibroblasts have recently been identified having important roles in asthma development. Therefore, we adapted an experimental approach based on the lineages of human bronchial fibroblasts (HBF) derived from non-asthmatic (NA) donors and asthmatic (AS) patients to elucidate whether their reactivity to direct current electric fields (dcEF) could participate in the asthmatic process. The efficient responsiveness of NA HBF to an electric field in the range of 2-4 V/cm was illustrated based on the perpendicular orientation of long axes of the cells to the field lines and their directional movement towards the anode. These responses were related to the activity of TGF-β signalling, as the electrotaxis and re-orientation of NA HBF polarity was impaired by the inhibitors of canonical and non-canonical TGF-β-dependent pathways. A similar tendency towards perpendicular cell-dcEF orientation was observed for AS HBF. However, their motility remained insensitive to the electric field applied at 2-4 V/cm. Collectively, these observations demonstrate the sensitivity of NA HBF to dcEF, as well as the inter-relations between this parameter and the canonical and non-canonical TGF-β pathways, and the differences between the electrotactic responses of NA and AS HBF point to the possible role of their dcEFs in desensitisation in the asthmatic process. This process may impair the physiologic behaviour of AS HBF functions, including cell motility, ECM deposition, and contractility, thus promoting bronchial wall remodelling, which is a characteristic of bronchial asthma.
Collapse
Affiliation(s)
| | - Sławomir Lasota
- Correspondence: (S.L.); (Z.M.); Tel.: +48-126-646-143 (S.L.); +48-126-646-142 (Z.M.)
| | | | | | | | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (A.P.); (D.W.); (M.P.); (J.C.); (M.M.)
| |
Collapse
|
4
|
Ouhaddi Y, Charbonnier B, Porge J, Zhang YL, Garcia I, Gbureck U, Grover L, Gilardino M, Harvey E, Makhoul N, Barralet J. Development of Neovasculature in Axially Vascularized Calcium Phosphate Cement Scaffolds. J Funct Biomater 2023; 14:jfb14020105. [PMID: 36826904 PMCID: PMC9966587 DOI: 10.3390/jfb14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7-3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials.
Collapse
Affiliation(s)
- Yassine Ouhaddi
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Baptiste Charbonnier
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Juliette Porge
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
| | - Yu-Ling Zhang
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Isadora Garcia
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Uwe Gbureck
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, D-97070 Würzburg, Germany
| | - Liam Grover
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Mirko Gilardino
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Edward Harvey
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Nicholas Makhoul
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
| | - Jake Barralet
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
5
|
Abdul Ghani N‘I, Razali RA, Chowdhury SR, Fauzi MB, Bin Saim A, Ruszymah BHI, Maarof M. Effect of Different Collection Times of Dermal Fibroblast Conditioned Medium (DFCM) on In Vitro Re-Epithelialisation Process. Biomedicines 2022; 10:biomedicines10123203. [PMID: 36551960 PMCID: PMC9775936 DOI: 10.3390/biomedicines10123203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
A key event in wound healing is re-epithelialisation, which is mainly regulated via paracrine signalling of cytokines, chemokines, and growth factors secreted by fibroblasts. Fibroblast-secreted factors can be collected from the used culture medium, known as dermal fibroblast conditioned medium (DFCM). The goal of this study was to optimise the culture condition to acquire DFCM and evaluate its effect on keratinocyte attachment, proliferation, migration, and differentiation. Confluent fibroblasts were cultured with serum-free keratinocyte-specific (DFCM-KM) and fibroblast-specific (DFCM-FM) medium at different incubation times (Days 1, 2, and 3). DFCM collected after 3 days of incubation (DFCM-KM-3 and DFCM-FM-3) contained a higher protein concentration compared to other days. Supplementation of DFCM-KM-3 enhanced keratinocyte attachment, while DFCM-FM-3 significantly increased the keratinocyte wound-healing rate, with an increment of keratinocyte area and collective cell migration, which was distinctly different from DFCM-KM-3 or control medium. Further analysis confirmed that the presence of calcium at higher concentrations in DFCM-FM facilitated the changes. The confluent dermal fibroblasts after 3 days of incubation with serum-free culture medium produced higher proteins in DFCM, resulting in enhanced in vitro re-epithelialisation. These results suggest that the delivery of DFCM could be a potential treatment strategy for wound healing.
Collapse
Affiliation(s)
- Nurul ‘Izzah Abdul Ghani
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Shiplu Roy Chowdhury
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Binti Haji Idrus Ruszymah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: or ; Tel.: +603-91457685; Fax: +603-91457678
| |
Collapse
|
6
|
Walker JC, Jorgensen AM, Sarkar A, Gent SP, Messerli MA. Anionic polymers amplify electrokinetic perfusion through extracellular matrices. Front Bioeng Biotechnol 2022; 10:983317. [PMID: 36225599 PMCID: PMC9548625 DOI: 10.3389/fbioe.2022.983317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Electrical stimulation (ES) promotes healing of chronic epidermal wounds and delays degeneration of articular cartilage. Despite electrotherapeutic treatment of these non-excitable tissues, the mechanisms by which ES promotes repair are unknown. We hypothesize that a beneficial role of ES is dependent on electrokinetic perfusion in the extracellular space and that it mimics the effects of interstitial flow. In vivo, the extracellular space contains mixtures of extracellular proteins and negatively charged glycosaminoglycans and proteoglycans surrounding cells. While these anionic macromolecules promote water retention and increase mechanical support under compression, in the presence of ES they should also enhance electro-osmotic flow (EOF) to a greater extent than proteins alone. To test this hypothesis, we compare EOF rates between artificial matrices of gelatin (denatured collagen) with matrices of gelatin mixed with anionic polymers to mimic endogenous charged macromolecules. We report that addition of anionic polymers amplifies EOF and that a matrix comprised of 0.5% polyacrylate and 1.5% gelatin generates EOF with similar rates to those reported in cartilage. The enhanced EOF reduces mortality of cells at lower applied voltage compared to gelatin matrices alone. We also use modeling to describe the range of thermal changes that occur during these electrokinetic experiments and during electrokinetic perfusion of soft tissues. We conclude that the negative charge density of native extracellular matrices promotes electrokinetic perfusion during electrical therapies in soft tissues and may promote survival of artificial tissues and organs prior to vascularization and during transplantation.
Collapse
Affiliation(s)
- Joseph C. Walker
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Ashley M. Jorgensen
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD, United States
| | - Anyesha Sarkar
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Stephen P. Gent
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD, United States
| | - Mark A. Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
- *Correspondence: Mark A. Messerli,
| |
Collapse
|
7
|
Verdes M, Mace K, Margetts L, Cartmell S. Status and challenges of electrical stimulation use in chronic wound healing. Curr Opin Biotechnol 2022; 75:102710. [DOI: 10.1016/j.copbio.2022.102710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
8
|
Yue Y, Yokota Y, Matsuba G. Polyelectrolyte-Layered Hydrogels with Electrically Tunable Toughness, Viscoelasticity, Hysteresis, and Crack Resistance. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Youfeng Yue
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Yoshiko Yokota
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
9
|
Abe Y, Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng 2021; 5:041509. [PMID: 34849444 PMCID: PMC8604566 DOI: 10.1063/5.0064529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Skin is one of the indispensable organs for life. The epidermis at the outermost surface provides a permeability barrier to infectious agents, chemicals, and excessive loss of water, while the dermis and subcutaneous tissue mechanically support the structure of the skin and appendages, including hairs and secretory glands. The integrity of the integumentary system is a key for general health, and many techniques have been developed to measure and control this protective function. In contrast, the effective skin barrier is the major obstacle for transdermal delivery and detection. Changes in the electrical properties of skin, such as impedance and ionic activity, is a practical indicator that reflects the structures and functions of the skin. For example, the impedance that reflects the hydration of the skin is measured for quantitative assessment in skincare, and the current generated across a wound is used for the evaluation and control of wound healing. Furthermore, the electrically charged structure of the skin enables transdermal drug delivery and chemical extraction. This paper provides an overview of the electrical aspects of the skin and summarizes current advances in the development of devices based on these features.
Collapse
Affiliation(s)
- Yuina Abe
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
10
|
Subramaniam T, Fauzi MB, Lokanathan Y, Law JX. The Role of Calcium in Wound Healing. Int J Mol Sci 2021; 22:6486. [PMID: 34204292 PMCID: PMC8235376 DOI: 10.3390/ijms22126486] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (T.S.); (M.B.F.); (Y.L.)
| |
Collapse
|
11
|
Korupalli C, Li H, Nguyen N, Mi F, Chang Y, Lin Y, Sung H. Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives. Adv Healthc Mater 2021; 10:e2001384. [PMID: 33274846 DOI: 10.1002/adhm.202001384] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The use of conductive materials to promote the activity of electrically responsive cells is an effective means of accelerating wound healing. This article focuses on recent advancements in conductive materials, with emphasis on overviewing their incorporation with non-conducting polymers to fabricate electroactive wound dressings. The characteristics of these electroactive dressings are deliberated, and the mechanisms on how they accelerate the wound healing process are discussed. Potential directions for the future development of electroactive wound dressings and their potential in monitoring the course of wound healing in vivo concomitantly are also proposed.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Hui Li
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Nhien Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Fwu‐Long Mi
- Department of Biochemistry and Molecular Cell Biology School of Medicine College of Medicine Taipei Medical University Taipei Taiwan 110 ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation and School of Medicine Tzu Chi University Hualien Taiwan 970 ROC
| | - Yu‐Jung Lin
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
- Research Center for Applied Sciences Academia Sinica Taipei Taiwan 11529 ROC
| | - Hsing‐Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| |
Collapse
|
12
|
Abstract
As the leading cause of death in cancer, there is an urgent need to develop treatments to target the dissemination of primary tumor cells to secondary organs, known as metastasis. Bioelectric signaling has emerged in the last century as an important controller of cell growth, and with the development of current molecular tools we are now beginning to identify its role in driving cell migration and metastasis in a variety of cancer types. This review summarizes the currently available research for bioelectric signaling in solid tumor metastasis. We review the steps of metastasis and discuss how these can be controlled by bioelectric cues at the level of a cell, a population of cells, and the tissue. The role of ion channel, pump, and exchanger activity and ion flux is discussed, along with the importance of the membrane potential and the relationship between ion flux and membrane potential. We also provide an overview of the evidence for control of metastasis by external electric fields (EFs) and draw from examples in embryogenesis and regeneration to discuss the implications for endogenous EFs. By increasing our understanding of the dynamic properties of bioelectric signaling, we can develop new strategies that target metastasis to be translated into the clinic.
Collapse
Affiliation(s)
- Samantha L. Payne
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
13
|
High Voltage Monophasic Pulsed Current (HVMPC) for stage II-IV pressure ulcer healing. A systematic review and meta-analysis. J Tissue Viability 2018; 27:274-284. [DOI: 10.1016/j.jtv.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/07/2018] [Accepted: 08/10/2018] [Indexed: 01/02/2023]
|
14
|
Babona-Pilipos R, Liu N, Pritchard-Oh A, Mok A, Badawi D, Popovic MR, Morshead CM. Calcium influx differentially regulates migration velocity and directedness in response to electric field application. Exp Cell Res 2018; 368:202-214. [PMID: 29729231 DOI: 10.1016/j.yexcr.2018.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 11/15/2022]
Abstract
Neural precursor cells (NPCs) respond to externally applied direct current electrical fields (DCEFs) by undergoing rapid and directed migration toward the cathode in a process known as galvanotaxis. It is unknown if the underlying mechanisms of galvanotactic migration is common to non-electrosensitive cells and if so, how NPCs and other galvanotactic cells sense and transduce electrical fields into cellular motility. In this study, we show that distinct aspects of NPC galvanotactic migration: motility (quantified through |velocity|) and directedness, are differentially regulated by calcium. We use low-Ca2+ culture conditions; an intracellular Ca2+ chelator; and voltage gated calcium channel (VGCC) inhibitors to specific channels expressed on NPCs, to demonstrate the role of Ca2+ influx in DCEF-induced NPC migration. Consistent with existing literature, we show Ca2+ is involved in F-actin polymerization that lengthens NPC membrane protrusions necessary for cellular motility. However, inhibiting Ca2+ results in reduced velocity but has no effect on DCEF-induced directedness. This dissociation between velocity and directedness reveal that these migration parameters can be independently regulated, thus suggesting a parallel process of sensing DCEFs by NPCs.
Collapse
Affiliation(s)
- R Babona-Pilipos
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - N Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Pritchard-Oh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - A Mok
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - D Badawi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - M R Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - C M Morshead
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Kobylkevich BM, Sarkar A, Carlberg BR, Huang L, Ranjit S, Graham DM, Messerli MA. Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity. Phys Biol 2018; 15:036005. [PMID: 29412191 DOI: 10.1088/1478-3975/aaad91] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.
Collapse
Affiliation(s)
- Brian M Kobylkevich
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States of America. Brian Kobylkevich and Anyesha Sarkar contributed equally to this work
| | | | | | | | | | | | | |
Collapse
|
16
|
Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2017; 150:60-86. [PMID: 29032331 DOI: 10.1016/j.biomaterials.2017.10.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Electric field (EF) stimulation can play a vital role in eliciting appropriate stem cell response. Such an approach is recently being established to guide stem cell differentiation through osteogenesis/neurogenesis/cardiomyogenesis. Despite significant recent efforts, the biophysical mechanisms by which stem cells sense, interpret and transform electrical cues into biochemical and biological signals still remain unclear. The present review critically analyses the variety of EF stimulation approaches that can be employed to evoke appropriate stem cell response and also makes an attempt to summarize the underlying concepts of this notion, placing special emphasis on stem cell based tissue engineering and regenerative medicine. This review also discusses the major signaling pathways and cellular responses that are elicited by electric stimulation, including the participation of reactive oxygen species and heat shock proteins, modulation of intracellular calcium ion concentration, ATP production and numerous other events involving the clustering or reassembling of cell surface receptors, cytoskeletal remodeling and so on. The specific advantages of using external electric stimulation in different modalities to regulate stem cell fate processes are highlighted with explicit examples, in vitro and in vivo.
Collapse
|
17
|
Thomas B, Kurien JS, Jose T, Ulahannan SE, Varghese SA. Topical timolol promotes healing of chronic leg ulcer. J Vasc Surg Venous Lymphat Disord 2017; 5:844-850. [PMID: 29037357 DOI: 10.1016/j.jvsv.2017.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/18/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic ulcers are a common problem, with chronic diabetic and venous ulcers forming a large proportion. This is the first case-control study to assess the effect of topical timolol on healing of chronic venous and chronic diabetic ulcers. METHODS The study included 60 patients with chronic leg ulcers. The ulcers in the study group (n = 30) were treated with topical 0.5% timolol maleate solution along with antibiotics and dressings; those in the control group (n = 30) received only antibiotics and dressings. The ulcers in both groups were evaluated at 4, 8, and 12 weeks, and ulcer area was calculated. Healing rate was assessed by calculating the percentage change in ulcer area. RESULTS The mean percentage change in area at 4, 8, and 12 weeks was 25.29, 43.77, and 61.79 in the study group and 11.92, 22.40, and 29.62 in the control group. Analysis showed that there were significant differences in percentage change in ulcer of the study and control groups at all three time points and also within the groups. The type of ulcer, history of alcohol consumption, and smoking did not affect the healing rates in the study group. CONCLUSIONS Topical β-blockade using timolol improves the healing of chronic leg ulcers.
Collapse
Affiliation(s)
- Bindhiya Thomas
- Department of General Surgery, Government Medical College, Kottayam, Kerala, India
| | - John Sajan Kurien
- Department of General Surgery, Government Medical College, Kottayam, Kerala, India
| | - Toney Jose
- Department of General Surgery, Government Medical College, Kottayam, Kerala, India.
| | | | | |
Collapse
|
18
|
Frederich BJ, Timofeyev V, Thai PN, Haddad MJ, Poe AJ, Lau VC, Moshref M, Knowlton AA, Sirish P, Chiamvimonvat N. Electrotaxis of cardiac progenitor cells, cardiac fibroblasts, and induced pluripotent stem cell-derived cardiac progenitor cells requires serum and is directed via PI3'K pathways. Heart Rhythm 2017; 14:1685-1692. [PMID: 28668623 DOI: 10.1016/j.hrthm.2017.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The limited regenerative capacity of cardiac tissue has long been an obstacle to treating damaged myocardium. Cell-based therapy offers an enormous potential to the current treatment paradigms. However, the efficacy of regenerative therapies remains limited by inefficient delivery and engraftment. Electrotaxis (electrically guided cell movement) has been clinically used to improve recovery in a number of tissues but has not been investigated for treating myocardial damage. OBJECTIVE The purpose of this study was to test the electrotactic behaviors of several types of cardiac cells. METHODS Cardiac progenitor cells (CPCs), cardiac fibroblasts (CFs), and human induced pluripotent stem cell-derived cardiac progenitor cells (hiPSC-CPCs) were used. RESULTS CPCs and CFs electrotax toward the anode of a direct current electric field, whereas hiPSC-CPCs electrotax toward the cathode. The voltage-dependent electrotaxis of CPCs and CFs requires the presence of serum in the media. Addition of soluble vascular cell adhesion molecule to serum-free media restores directed migration. We provide evidence that CPC and CF electrotaxis is mediated through phosphatidylinositide 3-kinase signaling. In addition, very late antigen-4, an integrin and growth factor receptor, is required for electrotaxis and localizes to the anodal edge of CPCs in response to direct current electric field. The hiPSC-derived CPCs do not express very late antigen-4, migrate toward the cathode in a voltage-dependent manner, and, similar to CPCs and CFs, require media serum and phosphatidylinositide 3-kinase activity for electrotaxis. CONCLUSION The electrotactic behaviors of these therapeutic cardiac cells may be used to improve cell-based therapy for recovering function in damaged myocardium.
Collapse
Affiliation(s)
- Bert J Frederich
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Valeriy Timofeyev
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Phung N Thai
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Michael J Haddad
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Adam J Poe
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Victor C Lau
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Maryam Moshref
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Anne A Knowlton
- Division of Cardiovascular Medicine, University of California, Davis, California; US Department of Veterans Affairs, Northern California Health Care System, Mather, California
| | - Padmini Sirish
- Division of Cardiovascular Medicine, University of California, Davis, California.
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, University of California, Davis, California; US Department of Veterans Affairs, Northern California Health Care System, Mather, California.
| |
Collapse
|
19
|
Snyder S, DeJulius C, Willits RK. Electrical Stimulation Increases Random Migration of Human Dermal Fibroblasts. Ann Biomed Eng 2017; 45:2049-2060. [PMID: 28488217 DOI: 10.1007/s10439-017-1849-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Exogenous electrical stimulation (ES) has been investigated as a therapy for chronic wounds, as the skin produces currents and electrical fields (EFs) during wound healing. ES therapies operate by applying small EFs to the skin to mimic the transepithelial potentials that occur during the granulation phase of wound healing. Here, we investigated the effect of short duration (10 min) ES on the migration of HDFs using various magnitudes of physiologically relevant EFs. We modeled cutaneous injury by culturing HDFs in custom chambers that allowed the application of ES and then performed timelapse microscopy on a standard wound model. Using MATLAB to process cell coordinate data, we determined that the cells were migrating randomly and fit mean squared displacement data to the persistent random walk equation using nonlinear least squares regression analysis. Results indicated that application of 25-100 mV/mm DC EFs to HDFs on either uncoated or FN-coated surfaces demonstrated no significant changes in viability or proliferation. Of significance is that the HDFs increased random migration behavior under some ES conditions even after 10 min, providing a mechanism to enhance wound healing.
Collapse
Affiliation(s)
- Sarah Snyder
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325-0302, USA.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Carlisle DeJulius
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325-0302, USA
| | - Rebecca Kuntz Willits
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325-0302, USA.
| |
Collapse
|
20
|
Sato E, Zhang LJ, Dorschner RA, Adase CA, Choudhury BP, Gallo RL. Activation of Parathyroid Hormone 2 Receptor Induces Decorin Expression and Promotes Wound Repair. J Invest Dermatol 2017; 137:1774-1783. [PMID: 28454729 DOI: 10.1016/j.jid.2017.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023]
Abstract
In this study, we report that TIP39, a parathyroid hormone ligand family member that was recently identified to be expressed in the skin, can induce decorin expression and enhance wound repair. Topical treatment of mice with TIP39 accelerated wound repair, whereas TIP39-deficient mice had delayed repair that was associated with formation of abnormal collagen bundles. To study the potential mechanism responsible for the action of TIP39 in the dermis, fibroblasts were cultured in three-dimensional collagen gels, a process that results in enhanced decorin expression unless activated to differentiate to adipocytes, whereupon these cells reduce expression of several proteoglycans, including decorin. Small interfering RNA-mediated silencing of parathyroid hormone 2 receptor (PTH2R), the receptor for TIP39, suppressed the expression of extracellular matrix-related genes, including decorin, collagens, fibronectin, and matrix metalloproteases. Skin wounds in TIP39-/- mice had decreased decorin expression, and addition of TIP39 to cultured fibroblasts induced decorin and increased phosphorylation and nuclear translocation of CREB. Fibroblasts differentiated to adipocytes and treated with TIP39 also showed increased decorin and production of chondroitin sulfate. Furthermore, the skin of PTH2R-/- mice showed abnormal extracellular matrix structure, decreased decorin expression, and skin hardness. Thus, the TIP39-PTH2R system appears to be a previously unrecognized mechanism for regulation of extracellular matrix formation and wound repair.
Collapse
Affiliation(s)
- Emi Sato
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Ling-Juan Zhang
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Robert A Dorschner
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Christopher A Adase
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Biswa P Choudhury
- Glycotechnology Core Resource, University of California-San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA.
| |
Collapse
|
21
|
Smith LE, Bryant C, Krasowska M, Cowin AJ, Whittle JD, MacNeil S, Short RD. Haptotatic Plasma Polymerized Surfaces for Rapid Tissue Regeneration and Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32675-32687. [PMID: 27934156 DOI: 10.1021/acsami.6b11320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Skin has a remarkable capacity for regeneration; however, with an ever aging population, there is a growing burden to the healthcare system from chronic wounds. Novel therapies are required to address the problems associated with nonhealing chronic wounds. Novel wound dressings that can encourage increased reepithelialization could help to reduce the burden of chronic wounds. A suite of chemically defined surfaces have been produced using plasma polymerization, and the ability of these surfaces to support the growth of primary human skin cells has been assessed. Additionally, the ability of these surfaces to modulate cell migration and morphology has also been investigated. Keratinocytes and endothelial cells were extremely sensitive to surface chemistry showing increased viability and migration with an increased number of carboxylic acid functional groups. Fibroblasts proved to be more tolerant to changes in surface chemistry; however, these cells migrated fastest over amine-functionalized surfaces. The novel combination of comprehensive chemical characterization coupled with the focus on cell migration provides a unique insight into how a material's physicochemical properties affect cell migration.
Collapse
Affiliation(s)
- Louise E Smith
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
- Future Industries Institute, University of South Australia , Adelaide 5095, South Australia, Australia
| | - Christian Bryant
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
| | - Marta Krasowska
- Future Industries Institute, University of South Australia , Adelaide 5095, South Australia, Australia
- School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide, 5095, South Australia, Australia
| | - Allison J Cowin
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
- Future Industries Institute, University of South Australia , Adelaide 5095, South Australia, Australia
| | - Jason D Whittle
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
- School of Engineering, University of South Australia , Adelaide 5095, South Australia, Australia
| | - Sheila MacNeil
- Kroto Research Institute, University of Sheffield , Sheffield S3 7HQ, South Yorkshire, United Kingdom
| | - Robert D Short
- Wound Management Innovation Cooperative Research Centre , Brisbane 4059, Queensland, Australia
- Future Industries Institute, University of South Australia , Adelaide 5095, South Australia, Australia
| |
Collapse
|
22
|
Electric field as a potential directional cue in homing of bone marrow-derived mesenchymal stem cells to cutaneous wounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:267-279. [PMID: 27864076 DOI: 10.1016/j.bbamcr.2016.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 02/02/2023]
Abstract
Bone marrow-derived cells are thought to participate and enhance the healing process contributing to skin cells or releasing regulatory cytokines. Directional cell migration in a weak direct current electric field (DC-EF), known as electrotaxis, may be a way of cell recruitment to the wound site. Here we examined the influence of electric field on bone marrow adherent cells (BMACs) and its potential role as a factor attracting mesenchymal stem cells to cutaneous wounds. We observed that in an external EF, BMAC movement was accelerated and highly directed with distinction of two cell populations migrating toward opposite poles: mesenchymal stem cells migrated toward the cathode, whereas macrophages toward the anode. Analysis of intracellular pathways revealed that macrophage electrotaxis mostly depended on Rho family small GTPases and calcium ions, but interruption of PI3K and Arp2/3 had the most pronounced effect on electrotaxis of MSCs. However, in all cases we observed only a partial decrease in directionality of cell movement after inhibition of certain proteins. Additionally, although we noticed the accumulation of EGFR at the cathodal side of MSCs, it was not involved in electrotaxis. Moreover, the cell reaction to EF was very dynamic with first symptoms occurring within <1min. In conclusion, the physiological DC-EF may act as a factor positioning bone marrow cells within a wound bed and the opposite direction of MSC and macrophage movement did not result either from utilizing different signalling or redistribution of investigated cell surface receptors.
Collapse
|
23
|
Effects of insulin on the skin: possible healing benefits for diabetic foot ulcers. Arch Dermatol Res 2016; 308:677-694. [PMID: 27655635 DOI: 10.1007/s00403-016-1686-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/04/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Diabetic foot ulcers affect 15-20 % of all diabetic patients and remain an important challenge since the available therapies have limited efficacy and some of the novel therapeutic approaches, which include growth factors and stem cells, are highly expensive and their safety remains to be evaluated. Despite its low cost and safety, the interest for topical insulin as a healing agent has increased only in the last 20 years. The molecular mechanisms of insulin signaling and its metabolic effects have been well studied in its classical target tissues. However, little is known about the specific effects of insulin in healthy or even diabetic skin. In addition, the mechanisms involved in the effects of insulin on wound healing have been virtually unknown until about 10 years ago. This paper will review the most recent advances in the cellular and molecular mechanisms that underlie the beneficial effects of insulin on skin wound healing in diabetes. Emerging evidence that links dysfunction of key cellular organelles, namely the endoplasmic reticulum and the mitochondria, to changes in the autophagy response, as well as the impaired wound healing in diabetic patients will also be discussed along with the putative mechanisms whereby insulin could regulate/modulate these alterations.
Collapse
|
24
|
Zhang G, Gu Y, Begum R, Chen H, Gao X, McGrath JA, Parsons M, Song B. Kindlin-1 Regulates Keratinocyte Electrotaxis. J Invest Dermatol 2016; 136:2229-2239. [PMID: 27427485 PMCID: PMC5756539 DOI: 10.1016/j.jid.2016.05.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/18/2016] [Accepted: 05/10/2016] [Indexed: 12/05/2022]
Abstract
Kindler syndrome (KS) is an autosomal recessive blistering skin disease resulting from pathogenic mutations in FERMT1. This gene encodes kindlin-1, a focal adhesion protein involved in activation of the integrin family of extracellular matrix receptors. Most cases of KS show a marked reduction or complete absence of the kindlin-1 protein in keratinocytes, resulting in defective cell adhesion and migration. Electric fields also act as intrinsic regulators of adhesion and migration in the skin, but the molecular mechanisms by which this occurs are poorly understood. Here we show that keratinocytes derived from KS patients are unable to undergo electrotaxis, and this defect is restored by overexpression of wild-type kindlin-1 but not a W612A mutation that prevents kindlin-integrin binding. Moreover, deletion of the pleckstrin homology domain of kindlin-1 also failed to rescue electrotaxis in KS cells, indicating that both integrin and lipid binding are required for this function. Kindlin-1 was also required for the maintenance of lamellipodial protrusions during electrotaxis via electric field-activated β1 integrin. Indeed, inhibition of β1 integrins also leads to loss of electrotaxis in keratinocytes. Our data suggest that loss of kindlin-1 function may therefore result in epithelial insensitivity to electric fields and contribute to KS disease pathology.
Collapse
Affiliation(s)
- Gaofeng Zhang
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China; School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Yu Gu
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Rumena Begum
- Randall Division of Cell and Molecular Biophysics, Kings College London, London, UK
| | - Hongduo Chen
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China
| | - John A McGrath
- St. Johns Institute of Dermatology, King's College London, Guys Campus, London, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, Kings College London, London, UK.
| | - Bing Song
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China; School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
25
|
Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis. Biochim Biophys Acta Gen Subj 2016; 1860:1551-9. [DOI: 10.1016/j.bbagen.2016.03.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/26/2016] [Accepted: 03/20/2016] [Indexed: 02/06/2023]
|
26
|
Banerjee J, Das Ghatak P, Roy S, Khanna S, Sequin EK, Bellman K, Dickinson BC, Suri P, Subramaniam VV, Chang CJ, Sen CK. Improvement of human keratinocyte migration by a redox active bioelectric dressing. PLoS One 2014; 9:e89239. [PMID: 24595050 PMCID: PMC3940438 DOI: 10.1371/journal.pone.0089239] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 01/25/2023] Open
Abstract
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Piya Das Ghatak
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Savita Khanna
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Emily K. Sequin
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Karen Bellman
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Bryan C. Dickinson
- Department of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Prerna Suri
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Vish V. Subramaniam
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher J. Chang
- Department of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Chandan K. Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
27
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
28
|
Tandon N, Cimetta E, Villasante A, Kupferstein N, Southall MD, Fassih A, Xie J, Sun Y, Vunjak-Novakovic G. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway. Exp Cell Res 2013; 320:79-91. [PMID: 24113575 DOI: 10.1016/j.yexcr.2013.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/03/2013] [Accepted: 09/21/2013] [Indexed: 12/13/2022]
Abstract
Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing.
Collapse
Affiliation(s)
- Nina Tandon
- Columbia University, Department of Biomedical Engineering, 622 West 168th Street, MC 104B, New York 10027, NY, USA; The Cooper Union for the Advancement of Science and Art, Department of Electrical Engineering, 41 Cooper Square, New York 10003, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One 2013; 8:e71660. [PMID: 23990967 PMCID: PMC3747189 DOI: 10.1371/journal.pone.0071660] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/01/2013] [Indexed: 01/15/2023] Open
Abstract
Electrical stimulation (ES) has long been used as an alternative clinical treatment and an effective approach to modulate cellular behaviours. In this work we investigated the effects of ES on human skin fibroblast activity, myofibroblast transdifferentiation and the consequence on wound healing. Normal human fibroblasts were seeded on heparin-bioactivated PPy/PLLA conductive membranes, cultured for 24 h, and then exposed to ES of 50 or 200 mV/mm for 2, 4, or 6 h. Following ES, the cells were either subjected to various analyses or re-seeded to investigate their healing capacity. Our findings show that ES had no cytotoxic effect on the fibroblasts, as demonstrated by the similar LDH activity levels in the ES-exposed and non-exposed cultures, and by the comparable cell viability under both conditions. Furthermore, the number of viable fibroblasts was higher following exposure to 6 h of ES than in the non-exposed culture. This enhanced cell growth was likely due to the ES up-regulated secretion of FGF-1 and FGF-2. In an in vitro scratch-wound assay where cell monolayer was used as a healing model, the electrically stimulated dermal fibroblasts migrated faster following exposure to ES and recorded a high contractile behaviour toward the collagen gel matrix. This enhanced contraction was supported by the high level of α-smooth muscle actin expressed by the fibroblasts following exposure to ES, indicating the characteristics of myofibroblasts. Remarkably, the modulation of fibroblast growth continued long after ES. In conclusion, this work demonstrates for the first time that exposure to ES promoted skin fibroblast growth and migration, increased growth factor secretion, and promoted fibroblast to myofibroblast transdifferentiation, thus promoting wound healing.
Collapse
Affiliation(s)
- Mahmoud Rouabhia
- Faculty of Dentistry, Research Group on Oral Ecology, Laval University, Quebec City, Quebec, Canada
| | - Hyunjin Park
- Faculty of Dentistry, Research Group on Oral Ecology, Laval University, Quebec City, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Laval University, Saint-François d’Assise Hospital Research Center, CHU, Quebec City, Quebec, Canada
| | - Shiyun Meng
- College of Environment and Biotechnology, Chongqing Technology and Business University, Chongqing, China
| | - Habib Derbali
- Faculty of Dentistry, Research Group on Oral Ecology, Laval University, Quebec City, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Laval University, Saint-François d’Assise Hospital Research Center, CHU, Quebec City, Quebec, Canada
| | - Ze Zhang
- Faculty of Medicine, Department of Surgery, Laval University, Saint-François d’Assise Hospital Research Center, CHU, Quebec City, Quebec, Canada
| |
Collapse
|
30
|
Graham DM, Huang L, Robinson KR, Messerli MA. Epidermal keratinocyte polarity and motility require Ca²⁺ influx through TRPV1. J Cell Sci 2013; 126:4602-13. [PMID: 23943873 DOI: 10.1242/jcs.122192] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ca(2+) has long been known to play an important role in cellular polarity and guidance. We studied the role of Ca(2+) signaling during random and directed cell migration to better understand whether Ca(2+) directs cell motility from the leading edge and which ion channels are involved in this function by using primary zebrafish keratinocytes. Rapid line-scan and time-lapse imaging of intracellular Ca(2+) (Ca(2+)i) during migration and automated image alignment enabled us to characterize and map the spatiotemporal changes in Ca(2+)i. We show that asymmetric distributions of lamellipodial Ca(2+) sparks are encoded in frequency, not amplitude, and that they correlate with cellular rotation during migration. Directed migration during galvanotaxis increases the frequency of Ca(2+) sparks over the entire lamellipod; however, these events do not give rise to asymmetric Ca(2+)i signals that correlate with turning. We demonstrate that Ca(2+)-permeable channels within these cells are mechanically activated and include several transient receptor potential family members, including TRPV1. Last, we demonstrate that cell motility and Ca(2+)i activity are affected by pharmacological agents that target TRPV1, indicating a novel role for this channel during cell migration.
Collapse
Affiliation(s)
- David M Graham
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | | |
Collapse
|
31
|
Tsai HF, Huang CW, Chang HF, Chen JJW, Lee CH, Cheng JY. Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation. PLoS One 2013; 8:e73418. [PMID: 23951353 PMCID: PMC3739739 DOI: 10.1371/journal.pone.0073418] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Physiological electric field (EF) plays a pivotal role in tissue development and regeneration. In vitro, cells under direct-current electric field (dcEF) stimulation may demonstrate directional migration (electrotaxis) and long axis reorientation (electro-alignment). Although the biophysical models and biochemical signaling pathways behind cell electrotaxis have been investigated in numerous normal cells and cancer cells, the molecular signaling mechanisms in CL1 lung adenocarcinoma cells have not been identified. Two subclones of CL1 cells, the low invasive CL1-0 cells and the highly invasive CL 1-5 cells, were investigated in the present study. CL1-0 cells are non-electrotactic while the CL 1-5 cells are anodally electrotactic and have high expression level of epidermal growth factor receptor (EGFR), in this study, we investigated the generally accepted hypothesis of receptor tyrosine kinase (RTK) activation in the two cell lines under dcEF stimulation. Erbitux, a therapeutic drug containing an anti-EGFR monoclonal antibody, cetuximab, was used to investigate the EGFR signaling in the electrotaxis of CL 1-5 cells. To investigate RTK phosphorylation and intracellular signaling in the CL1 cells, large amount of cellular proteins were collected in an airtight dcEF stimulation device, which has advantages of large culture area, uniform EF distribution, easy operation, easy cell collection, no contamination, and no medium evaporation. Commercial antibody arrays and Western blotting were used to study the phosphorylation profiles of major proteins in CL1 cells under dcEF stimulation. We found that electrotaxis of CL 1-5 cells is serum independent and EGFR independent. Moreover, the phosphorylation of Akt and S6 ribosomal protein (rpS6) in dcEF-stimulated CL1 cells are different from that in EGF-stimulated cells. This result suggests that CL1 cells' response to dcEF stimulation is not through EGFR-triggered pathways. The new large-scale dcEF stimulation device developed in the present work will aid the sample preparation for protein-based experiments.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Wen Huang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Fang Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeremy J. W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chau-Hwang Lee
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ji-Yen Cheng
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Borys P. The role of passive calcium influx through the cell membrane in galvanotaxis. Cell Mol Biol Lett 2013; 18:187-99. [PMID: 23468381 PMCID: PMC6275758 DOI: 10.2478/s11658-013-0082-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 02/20/2013] [Indexed: 12/02/2022] Open
Abstract
Passive calcium influx is one of the theories to explain the cathodal galvanotaxis of cells that utilize the electric field to guide their motion. When exposed to an electric field, the intracellular fluid becomes polarized, leading to positive charge accumulation on the cathodal side and negative charge accumulation on the anodal side. The negative charge on the anodal side attracts extracellular calcium ions, increasing the anodal calcium concentration, which is supposed to decrease the mobile properties of this side. Unfortunately, this model does not capture the Ca(2+) dynamics after its presentation to the intracellular fluid. The ions cannot permanently accumulate on the anodal side because that would build a potential drop across the cytoplasm leading to an ionic current, which would carry positive ions (not only Ca(2+)) from the anodal to the cathodal part through the cytoplasm. If the cytoplasmic conductance for Ca(2+) is low enough compared to the membrane conductance, the theory could correctly predict the actual behavior. If the ions move through the cytoplasm at a faster rate, compensating for the passive influx, this theory may fail. This paper contains a discussion of the regimes of validity for this theory.
Collapse
Affiliation(s)
- Przemysław Borys
- Department of Chemistry, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
33
|
Arai KY, Nakamura Y, Hachiya Y, Tsuchiya H, Akimoto R, Hosoki K, Kamiya S, Ichikawa H, Nishiyama T. Pulsed electric current induces the differentiation of human keratinocytes. Mol Cell Biochem 2013; 379:235-41. [PMID: 23564189 DOI: 10.1007/s11010-013-1645-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/28/2013] [Indexed: 11/30/2022]
Abstract
Although normal human keratinocytes are known to migrate toward the cathode in a direct current (DC) electric field, other effects of the electric stimulation on keratinocyte activities are still unclear. We have investigated the keratinocyte differentiation under monodirectional pulsed electric stimulation which reduces the electrothermal and electrochemical hazards of a DC application. When cultured keratinocytes were exposed to the electric field of 3 V (ca. 100 mV/mm) or 5 V (ca. 166 mV/mm) at a frequency of 4,800 Hz for 5 min a day for 5 days, cell growth under the 5-V stimulation was significantly suppressed as compared with the control culture. Expression of mRNAs encoding keratinocyte differentiation markers such as keratin 10, involucrin, transglutaminase 1, and filaggrin was significantly increased in response to the 5-V stimulation, while the 3-V stimulation induced no significant change. After the 5-V stimulation, enhanced immunofluorescent stainings of involucrin and filaggrin were observed. These results indicate that monodirectional pulsed electric stimulation induces the keratinocyte differentiation with growth arrest.
Collapse
Affiliation(s)
- Koji Y Arai
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang HY, Charles RP, Hummler E, Baines DL, Isseroff RR. The epithelial sodium channel mediates the directionality of galvanotaxis in human keratinocytes. J Cell Sci 2013; 126:1942-51. [PMID: 23447677 DOI: 10.1242/jcs.113225] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Collapse
Affiliation(s)
- Hsin-Ya Yang
- Department of Dermatology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
35
|
Polefka TG, Bianchini RJ, Shapiro S. Interaction of mineral salts with the skin: a literature survey. Int J Cosmet Sci 2012; 34:416-23. [PMID: 22712689 DOI: 10.1111/j.1468-2494.2012.00731.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 11/30/2022]
Abstract
There is growing scientific evidence that the health, well-being and the attractiveness of the skin are strongly influenced by nutrition. Consumers recognize this and have supported the creation of a global cosmeceuticals market estimated in 2010 at $27.2 billion. Early in 2011, the US Department of Health and Human Services and Department of Agriculture issued the Dietary Guidelines for Americans, 2010. Twelve vitamins and nine minerals were recognized as essential. The minerals include calcium, copper, iron, magnesium, phosphorus, selenium, zinc, potassium and sodium. Although the topical benefits of several minerals such as zinc, magnesium and iron are recognized and, in some cases, approved by the FDA, the topical benefits of the others to the skin are largely unexplored and unexploited. This review attempts to summarize what has been published in the literature on the interactions of the eight of the nine essential elements with the skin.
Collapse
Affiliation(s)
- T G Polefka
- Life Science Solutions, LLC, Somerset, NJ 08873, USA.
| | | | | |
Collapse
|
36
|
Dubé J, Rochette-Drouin O, Lévesque P, Gauvin R, Roberge CJ, Auger FA, Goulet D, Bourdages M, Plante M, Moulin VJ, Germain L. Human keratinocytes respond to direct current stimulation by increasing intracellular calcium: Preferential response of poorly differentiated cells. J Cell Physiol 2012; 227:2660-7. [DOI: 10.1002/jcp.23008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Tsai HF, Peng SW, Wu CY, Chang HF, Cheng JY. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field. BIOMICROFLUIDICS 2012; 6:34116. [PMID: 24009650 PMCID: PMC3448594 DOI: 10.1063/1.4749826] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/20/2012] [Indexed: 05/21/2023]
Abstract
We report a new design of microfluidic chip (Multiple electric Field with Uniform Flow chip, MFUF chip) to create multiple electric field strengths (EFSs) while providing a uniform flow field simultaneously. MFUF chip was fabricated from poly-methyl methacrylates (PMMA) substrates by using CO2 laser micromachining. A microfluidic network with interconnecting segments was utilized to de-couple the flow field and the electric field (EF). Using our special design, different EFSs were obtained in channel segments that had an identical cross-section and therefore a uniform flow field. Four electric fields with EFS ratio of 7.9:2.8:1:0 were obtained with flow velocity variation of only 7.8% CV (coefficient of variation). Possible biological effect of shear force can therefore be avoided. Cell behavior under three EFSs and the control condition, where there is no EF, was observed in a single experiment. We validated MFUF chip performance using lung adenocarcinoma cell lines and then used the chip to study the electrotaxis of HSC-3, an oral squamous cell carcinoma cell line. The MFUF chip has high throughput capability for studying the EF-induced cell behavior under various EFSs, including the control condition (EFS = 0).
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan ; Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan ; Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Gunja NJ, Dujari D, Chen A, Luengo A, Fong JV, Hung CT. Migration responses of outer and inner meniscus cells to applied direct current electric fields. J Orthop Res 2012; 30:103-11. [PMID: 21710605 PMCID: PMC3387281 DOI: 10.1002/jor.21489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/30/2011] [Indexed: 02/04/2023]
Abstract
Injuries to the inner regions of the knee meniscus do not heal and can result in degenerative changes to the articular surface, ultimately leading to osteoarthritis. A possible stimulus to enhance meniscus healing is to use electric fields that induce galvanotaxis. In this study, a novel characterization of the effects of direct current electric fields on migration characteristics of meniscus cells was performed. Primary and passaged inner and outer meniscus cells were exposed to varying electric field strengths from 0 to 6 V/cm. Cell migration was tracked using time lapse digital photography, and cell displacement and cathodal direct velocity were quantified. Cytoskeletal staining was performed to examine actin distribution and nuclear content. Cell adhesion strength was quantified as a function of wall shear stress. Meniscus cells exhibited cathodal migration and cell elongation perpendicular to the applied electric field accompanied by actin reorganization. Outer meniscus cells migrated quicker and exhibited lower adhesion strengths when compared to inner meniscus cells. Passaged cells exhibited higher migration characteristics when compared to primary cells. Overall, this study demonstrated that electric fields can significantly enhance and direct meniscus cell migration and suggests the potential for their incorporation in strategies of meniscus repair and tissue engineering.
Collapse
Affiliation(s)
- Najmuddin J Gunja
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
39
|
Agha R, Ogawa R, Pietramaggiori G, Orgill DP. A Review of the Role of Mechanical Forces in Cutaneous Wound Healing. J Surg Res 2011; 171:700-8. [DOI: 10.1016/j.jss.2011.07.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022]
|
40
|
Meng X, Arocena M, Penninger J, Gage FH, Zhao M, Song B. PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp Neurol 2010; 227:210-7. [PMID: 21092738 DOI: 10.1016/j.expneurol.2010.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 09/28/2010] [Accepted: 11/04/2010] [Indexed: 01/17/2023]
Abstract
Correct guidance of the migration of neural progenitor cells (NPCs) is essential for the development and repair of the central nervous system (CNS). Electric field (EF)-guided migration, electrotaxis, has been observed in many cell types. We report here that, in applied EFs of physiological magnitude, embryonic and adult NPCs show marked electrotaxis, which is dependent on the PI3K/Akt pathway. The electrotaxis was also evidenced by ex vivo investigation that transplanted NPCs migrated directionally towards cathode in organotypic spinal cord slice model when treated with EFs. Genetic disruption or pharmacological inhibition of phosphoinositide 3-kinase (PI3K) impaired electrotaxis, whereas EF exposure increased Akt phosphorylation in a growth factor-dependent manner and increased phosphatidylinositol-3,4,5-trisphosphate (PIP3) levels. EF treatments also induced asymmetric redistribution of PIP3, growth factor receptors, and actin cytoskeleton. Electrotaxis in both embryonic and adult NPCs requires epidermal growth factor (EGF) and fibroblast growth factor (FGF). Our results demonstrate the importance of the PI3K/Akt pathway in directed migration of NPCs driven by EFs and growth factors and highlight the potential of EFs to enhance the guidance of various NPC populations in CNS repair therapies.
Collapse
Affiliation(s)
- Xiaoting Meng
- School of Dentistry, Cardiff Institute of Tissue Engineering & Repair, Cardiff University, Cardiff, CF14 4XY, UK
| | - Miguel Arocena
- School of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Josef Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Min Zhao
- Institute for Regenerative Cures, UC Davis School of Medicine, 2921, Stockton Blvd, Sacramento, CA 95817, USA
| | - Bing Song
- School of Dentistry, Cardiff Institute of Tissue Engineering & Repair, Cardiff University, Cardiff, CF14 4XY, UK.,School of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
41
|
Pickard A, Wong PP, McCance DJ. Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation. J Cell Sci 2010; 123:3718-26. [PMID: 20940255 DOI: 10.1242/jcs.068924] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although the retinoblastoma protein (Rb) functions as a checkpoint in the cell cycle, it also regulates differentiation. It has recently been shown that Rb is acetylated during differentiation; however, the role of this modification has not been identified. Depletion of Rb levels with short hairpin RNA resulted in inhibition of human keratinocyte differentiation, delayed cell cycle exit and allowed cell cycle re-entry. Restoration of Rb levels rescued defects in differentiation and cell cycle exit and re-entry; however, re-expression of Rb with the major acetylation sites mutated did not. During keratinocyte differentiation, acetylation of Rb is mediated by PCAF and it is further shown that PCAF acetyltransferase activity is also required for normal differentiation. The major acetylation sites in Rb are located within the nuclear localization sequence and, although mutation did not alter Rb localization in cycling cells, the mutant is mislocalized to the cytoplasm during differentiation. Studies indicate that acetylation is a mechanism for controlling Rb localization in human keratinocytes, with either reduction of the PCAF or exogenous expression of the deacetylase SIRT1, resulting in mislocalization of Rb. These findings identify PCAF-mediated acetylation of Rb as an event required to retain Rb within the nucleus during keratinocyte differentiation.
Collapse
Affiliation(s)
- Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | | |
Collapse
|
42
|
Guo A, Song B, Reid B, Gu Y, Forrester JV, Jahoda CA, Zhao M. Effects of physiological electric fields on migration of human dermal fibroblasts. J Invest Dermatol 2010; 130:2320-7. [PMID: 20410911 PMCID: PMC2952177 DOI: 10.1038/jid.2010.96] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenous electric currents generated instantly at skin wounds direct migration of epithelial cells and are likely to be important in wound healing. Migration of fibroblasts is critical in wound healing. It remains unclear how wound electric fields guide migration of dermal fibroblasts. We report here that mouse skin wounds generated endogenous electric currents for many hours. Human dermal fibroblasts of both primary and cell-line cultures migrated directionally but slowly toward the anode in an electric field of 50-100 mV mm(-1). This is different from keratinocytes, which migrate quickly to the cathode. It took more than 1 hour for dermal fibroblasts to manifest detectable directional migration. Larger field strength (400 mV mm(-1)) was required to induce directional migration within 1 hour after onset of the field. Phosphatidylinositol-3-OH kinase (PI3 kinase) mediates cathode-directed migration of keratinocytes. We tested the role of PI3 kinase in anode-directed migration of fibroblasts. An applied electric field activated PI3 kinase/Akt in dermal fibroblasts. Dermal fibroblasts from p110gamma (a PI3 kinase catalytic subunit) null mice showed significantly decreased directional migration. These results suggest that physiological electric fields may regulate motility of dermal fibroblasts and keratinocytes differently, albeit using similar PI3 kinase-dependent mechanisms.
Collapse
Affiliation(s)
- Aihua Guo
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Biological and Biomedical Science, Durham University, Durham, England, UK
| | - Bing Song
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Brian Reid
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Yu Gu
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
| | - John V. Forrester
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Colin A.B. Jahoda
- Department of Biological and Biomedical Science, Durham University, Durham, England, UK
| | - Min Zhao
- School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
- Department of Ophthalmology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
43
|
Jennings JA, Chen D, Feldman DS. Upregulation of chemokine (C-C motif) ligand 20 in adult epidermal keratinocytes in direct current electric fields. Arch Dermatol Res 2009; 302:211-20. [PMID: 19784662 DOI: 10.1007/s00403-009-0995-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/05/2009] [Accepted: 09/10/2009] [Indexed: 12/18/2022]
Abstract
Electric fields (EFs) of around 100 mV/mm are present in normal healing wounds and induce the directional migration of epithelial cells. Reepithelialization during wound healing thus may be controlled in part by this electrical signal. In this study, the early transcriptional response of human epidermal keratinocytes to EFs is examined using microarrays. Increased expression of various chemokines, interleukins, and other inflammatory response genes indicates that EFs stimulate keratinocyte activation and immune stimulatory activity. Gene expression activity further suggests that interleukin 1 is either released or activated in EFs. Expression of the chemokine CCL20 steadily increases at 100 mV/mm over time until around 8 h after exposure. This chemokine is also expressed at field strengths of 300 mV/mm-above the level of endogenous wound fields. The early effects of EFs on epithelial gene expression activity identified in these studies suggest the importance of naturally occurring EFs both in repair mechanisms and for the possibility of controlling these responses therapeutically.
Collapse
Affiliation(s)
- Jessica Amber Jennings
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1075 13th St. South, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
44
|
Han J, Yan XL, Han QH, Li Y, Zhu J, Hui YN. Electric Fields Contribute to Directed Migration of Human Retinal Pigment Epithelial Cells via Interaction between F-Actin and β1 Integrin. Curr Eye Res 2009; 34:438-46. [PMID: 19899978 DOI: 10.1080/02713680902879033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jing Han
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiao-Long Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Quan-Hong Han
- Tianjin Eye Hospital, Tianjin, People's Republic of China
| | - Yue Li
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie Zhu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan-Nian Hui
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
45
|
Noninvasive electromagnetic fields on keratinocyte growth and migration. J Surg Res 2009; 162:299-307. [PMID: 19592020 DOI: 10.1016/j.jss.2009.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/04/2009] [Accepted: 02/13/2009] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although evidence has shown that very small electrical currents produce a beneficial therapeutic result for wounds, noninvasive electromagnetic field (EMF) therapy has consisted mostly of anecdotal clinical reports, with very few well-controlled laboratory mechanistic studies. In this study, we evaluate the effects and potential mechanisms of a noninvasive EMF device on skin wound repair. MATERIALS AND METHODS The effects of noninvasive EMF on keratinocytes and fibroblasts were assessed via proliferation and incisional wound model migration assays. cDNA microarray and RT-PCR were utilized to assess genetic expression changes in keratinocytes after noninvasive EMF treatment. RESULTS In vitro analyses with human skin keratinocyte cultures demonstrated that noninvasive EMFs have a strong effect on accelerating keratinocyte migration and a relatively weaker effect on promoting keratinocyte proliferation. The positive effects of noninvasive EMFs on cell migration and proliferation seem keratinocyte-specific without such effects seen on dermal fibroblasts. cDNA microarray and RT-PCR performed revealed increased expression of CRK7 and HOXC8 genes in treated keratinocytes. CONCLUSIONS This study suggests that a noninvasive EMF accelerates wound re-epithelialization through a mechanism of promoting keratinocyte migration and proliferation, possibly due to upregulation of CRK7 and HOXC8 genes.
Collapse
|
46
|
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol 2008; 20:674-82. [PMID: 19146969 DOI: 10.1016/j.semcdb.2008.12.009] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/07/2008] [Accepted: 12/14/2008] [Indexed: 01/09/2023]
Abstract
Injury that disrupts an epithelial layer instantaneously generates endogenous electric fields (EFs), which were detected at human skin wounds over 150 years ago. Recent researches combining molecular, genetic and imaging techniques have provided significant insights into cellular and molecular responses to this "unconventional" signal. One unexpected finding is that the EFs play an overriding guidance role in directing cell migration in epithelial wound healing. In experimental models where other directional cues (e.g., contact inhibition release, population pressure etc.) are present, electric fields of physiological strength override them and direct cell migration. The electrotaxis or galvanotaxis is mediated by polarized activation of multiple signaling pathways that include PI3 kinases/Pten, membrane growth factor receptors and integrins. Genetic manipulation of PI3 kinase/Pten (Phosphoinositide 3-kinases/phosphatase and tensin homolog) and integrin beta4 demonstrated the importance of those molecules. The electric fields are therefore a fundamental signal that directs cell migration in wound healing. One of the most challenging question is: How do cells sense the very weak electric signals? Clinically, it is highly desirable to develop practical and reliable technologies for wound healing management exploiting the electric signaling.
Collapse
Affiliation(s)
- Min Zhao
- Department of Dermatology, University of California Davis, School of Medicine, Center for Neurosciences, 1515 Newton Ct., Davis, CA 95618-4859, USA.
| |
Collapse
|
47
|
Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith PJS. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen 2008; 16:432-41. [PMID: 18471262 DOI: 10.1111/j.1524-475x.2008.00389.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have developed a noninvasive instrument called the bioelectric field imager (BFI) for mapping the electric field between the epidermis and the stratum corneum near wounds in both mouse and human skin. Rather than touching the skin, the BFI vibrates a small metal probe with a displacement of 180 mum in air above the skin to detect the surface potential of the epidermis through capacitative coupling. Here we describe our first application of the BFI measuring the electric field between the stratum corneum and epidermis at the margin of skin wounds in mice. We measured an electric field of 177+/-14 (61) mV/mm immediately upon wounding and the field lines pointed away from the wound in all directions around it. Because the wound current flows immediately upon wounding, this is the first signal indicating skin damage. This electric field is generated at the outer surface of the epidermis by the outward flow of the current of injury. An equal and opposite current must flow within the multilayered epidermis to generate an intraepidermal field with the negative pole at the wound site. Because the current flowing within the multilayered epidermis is spread over a larger area, the current density and subsequent E field generated in that region is expected to be smaller than that measured by the BFI beneath the stratum corneum. The field beneath the stratum corneum typically remained in the 150-200 mV/mm range for 3 days and then began to decline over the next few days, falling to zero once wound healing was complete. The mean wound field strength decreased by 64+/-7% following the application of the sodium channel blocker, amiloride, to the skin near the wound and increased by 82+/-21% following the application of the Cl- channel activator, prostaglandin E2.
Collapse
Affiliation(s)
- Richard Nuccitelli
- BioElectroMed Corporation, 849 Mitten Rd, Ste. 105, Burlingame, CA 94010, USA.
| | | | | | | | | |
Collapse
|
48
|
Finkelstein EI, Chao PHG, Hung CT, Bulinski JC. Electric field-induced polarization of charged cell surface proteins does not determine the direction of galvanotaxis. ACTA ACUST UNITED AC 2007; 64:833-46. [PMID: 17685443 DOI: 10.1002/cm.20227] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Galvanotaxis, that is, migration induced by DC electric fields, is thought to play a significant role in development and wound healing, however, the mechanisms by which extrinsic electric fields orchestrate intrinsic motility responses are unknown. Using mammalian cell lines (3T3, HeLa, and CHO cells), we tested one prevailing hypothesis, namely, that electric fields polarize charged cell surface molecules, and that these polarized molecules drive directional motility. Negatively charged sialic acids, which contribute the bulk of cell surface charge, redistribute preferentially to the surface facing the direction of motility, as measured by labeling with fluorescent wheat germ agglutinin. We treated cells with neuraminidase to remove sialic acids; as expected, this decreased total cell surface charge. We also changed cell surface charge independent of sialic acid moieties, by conjugating cationic avidin to the surface of live cells. Neuraminidase inhibited the electric field-induced directional polarization of membrane ruffling and alpha4 integrin, while avidin treatment actually reversed the directional polarization of sialic acids. Neuraminidase treatment inhibited directionality but did not alter speed of motility. Surprisingly, avidin treatment did not significantly alter either directionality or speed of motility. Thus, our results demonstrate that electric field-induced polarization of charged species indeed occurs. However, polarization of the bulk of charged cell surface proteins is neither necessary nor sufficient to cause motility, thus contradicting the second part of our hypothesis. Because neuraminidase inhibited directional motility, we also conclude that sialic acids are required constituents of some cell surface molecule(s) through which electric fields mount a polarized transmembrane response.
Collapse
Affiliation(s)
- Erik I Finkelstein
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
49
|
Shanley LJ, Walczysko P, Bain M, MacEwan DJ, Zhao M. Influx of extracellular Ca2+ is necessary for electrotaxis in Dictyostelium. J Cell Sci 2006; 119:4741-8. [PMID: 17077123 DOI: 10.1242/jcs.03248] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Intracellular free Ca2+ ([Ca2+](i)) is a pivotal signalling element in cell migration and is thought to be required for chemotaxis of Dictyostelium. Ca2+ signalling may also be important for electrotaxis. However this suggestion has been controversial. We show that electric fields direct Dictyostelium cells to migrate cathodally and increase [Ca2+](i) in Dictyostelium cells, as determined by Fluo-3 AM imaging and (45)Ca2+ uptake. Omission of extracellular Ca2+([Ca2+](e)) and incubation with EGTA abolished the electric-field-stimulated [Ca2+](i) rise and directional cell migration. This suggests a requirement for [Ca2+](e) in the electrotactic response. Deletion of iplA, a gene responsible for chemoattractant-induced [Ca2+](i) increase, had only a minor effect on the electric-field-induced [Ca2+](i) rise. Moreover, iplA-null Dictyostelium cells showed the same electrotactic response as wild-type cells. Therefore, iplA-independent Ca2+ influx is necessary for electrotactic cell migration. These results suggest that the [Ca2+](i) regulatory mechanisms induced by electric fields are different from those induced by cAMP and folic acid in Dictyostelium cells. Different roles of the iplA gene in chemoattractant-induced and electrically induced Ca2+ signalling, and different effects of [Ca2+](i) elevation on chemotaxis and electrotaxis indicate that the chemoattractant and electric cues activate distinctive initial signalling elements.
Collapse
Affiliation(s)
- Lynne J Shanley
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | |
Collapse
|
50
|
Li Y, Fan J, Chen M, Li W, Woodley DT. Transforming Growth Factor-Alpha: A Major Human Serum Factor that Promotes Human Keratinocyte Migration. J Invest Dermatol 2006; 126:2096-105. [PMID: 16691197 DOI: 10.1038/sj.jid.5700350] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In unwounded skin, human keratinocytes (HKs) are in contact with a plasma filtrate. In an acute wound, HKs come in contact with serum for the first time. Because human serum (HS), but not plasma, promotes HK migration, we speculated that a major HK pro-motility factor in vivo comes from serum. In this study, we compared all of the published growth factors (GFs), reported to promote HK migration, with HS. No single GF could duplicate the HK pro-motility activity in HS. Among these GFs, transforming growth factor-alpha [corrected] showed the highest HK pro-motility activity, reaching approximately 80% of the activity in HS. The order of potency was: TGFalpha > insulin > EGF > heparin binding (HB)-EGF > IGF-1 > basic fibroblast growth factor >IL-8 > HGF > IL-1 > KGF>TGFbeta. Interestingly, the combination of TGFalpha and insulin could duplicate the HK pro-motility activity in HS, although only the TGFalpha, but not insulin, levels increase in serum over plasma. Addition of neutralizing antibodies against TGFalpha to serum or depletion of TGFalpha from serum by immunoprecipitation significantly abolished its HK pro-motility activity. Plasma with added TGFalpha stimulated HK migration that reached more than 80% of the serum stimulation. Since insulin levels are identical between plasma and serum, we propose that TGFalpha is the physiologic HK pro-motility factor in HS.
Collapse
Affiliation(s)
- Yong Li
- Department of Dermatology and the USC/Norris Comprehensive Cancer Center, USC Laboratory for Investigative Dermatology, University of Southern California Keck School of Medicine, Los Angeles, USA
| | | | | | | | | |
Collapse
|