1
|
Akouchekian M, Alizadeh R, Beiranvandi F, Dehghan Manshadi M, Taherizadeh F, Hakim Shooshtari M. Evaluation of DNA repair capacity in parents of pediatric patients diagnosed with autism spectrum disorder using the comet assay procedure. IBRO Neurosci Rep 2023; 15:304-309. [PMID: 37885831 PMCID: PMC10598524 DOI: 10.1016/j.ibneur.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Background Autism Spectrum Disorder (ASD) is characterized by impairments in social communication, limited repetitive behaviors, impaired language development, and interest or activity patterns, which include a group complex neurodevelopmental syndrome with diverse phenotypes that reveal considerable etiological and clinical heterogeneity and are also considered one of the most heritable disorders (over 90%). Genetic, epigenetic, and environmental factors play a role in the development of ASD. Aim This study was designed to investigate the extent of DNA damage in parents of autistic children by treating peripheral blood mononuclear cells (PBMCs) with bleomycin and hydrogen peroxide (H2O2). Methods Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll method and treated with a specific concentration of bleomycin and H2O2 for 30 min and 5 min, respectively. Then, the degree of DNA damage was analyzed by the alkaline comet assay or single cell gel electrophoresis (SCGE), an effective way to measure DNA fragmentation in eukaryotic cells. Results Our findings revealed that there is a significant difference in the increase of DNA damage in parents with affected children compared to the control group, which can indicate the inability of the DNA molecule repair system. Furthermore, our study showed a significant association between fathers' occupational difficulties (exposed to the influence of environmental factors), as well as family marriage, and suffering from ASD in offspring. Conclusion Our results suggested that the influence of environmental factors on parents of autistic children may affect the development of autistic disorder in their offspring. Subsequently, based on our results, investigating the effect of environmental factors on the amount of DNA damage in parents with affected children requires more studies.
Collapse
Affiliation(s)
- Mansoureh Akouchekian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Alizadeh
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Beiranvandi
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taherizadeh
- Department of Information and Communication, Faculty 3, Hanover University of Applied Sciences and Arts, Hanover, Germany
| | - Mitra Hakim Shooshtari
- Mental Health Research Center, Tehran Institute of Psychiatry – School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Garcia-Moreno H, Langbehn DR, Abiona A, Garrood I, Fleszar Z, Manes MA, Morley AMS, Craythorne E, Mohammed S, Henshaw T, Turner S, Naik H, Bodi I, Sarkany RPE, Fassihi H, Lehmann AR, Giunti P. Neurological disease in xeroderma pigmentosum: prospective cohort study of its features and progression. Brain 2023; 146:5044-5059. [PMID: 38040034 PMCID: PMC10690019 DOI: 10.1093/brain/awad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 12/03/2023] Open
Abstract
Xeroderma pigmentosum (XP) results from biallelic mutations in any of eight genes involved in DNA repair systems, thus defining eight different genotypes (XPA, XPB, XPC, XPD, XPE, XPF, XPG and XP variant or XPV). In addition to cutaneous and ophthalmological features, some patients present with XP neurological disease. It is unknown whether the different neurological signs and their progression differ among groups. Therefore, we aim to characterize the XP neurological disease and its evolution in the heterogeneous UK XP cohort. Patients with XP were followed in the UK National XP Service, from 2009 to 2021. Age of onset for different events was recorded. Cerebellar ataxia and additional neurological signs and symptoms were rated with the Scale for the Assessment and Rating of Ataxia (SARA), the Inventory of Non-Ataxia Signs (INAS) and the Activities of Daily Living questionnaire (ADL). Patients' mutations received scores based on their predicted effects. Data from available ancillary tests were collected. Ninety-three XP patients were recruited. Thirty-six (38.7%) reported neurological symptoms, especially in the XPA, XPD and XPG groups, with early-onset and late-onset forms, and typically appearing after cutaneous and ophthalmological symptoms. XPA, XPD and XPG patients showed higher SARA scores compared to XPC, XPE and XPV. SARA total scores significantly increased over time in XPD (0.91 points/year, 95% confidence interval: 0.61, 1.21) and XPA (0.63 points/year, 95% confidence interval: 0.38, 0.89). Hyporeflexia, hypopallesthaesia, upper motor neuron signs, chorea, dystonia, oculomotor signs and cognitive impairment were frequent findings in XPA, XPD and XPG. Cerebellar and global brain atrophy, axonal sensory and sensorimotor neuropathies, and sensorineural hearing loss were common findings in patients. Some XPC, XPE and XPV cases presented with abnormalities on examination and/or ancillary tests, suggesting underlying neurological involvement. More severe mutations were associated with a faster progression in SARA total score in XPA (0.40 points/year per 1-unit increase in severity score) and XPD (0.60 points/year per 1-unit increase), and in ADL total score in XPA (0.35 points/year per 1-unit increase). Symptomatic and asymptomatic forms of neurological disease are frequent in XP patients, and neurological symptoms can be an important cause of disability. Typically, the neurological disease will be preceded by cutaneous and ophthalmological features, and these should be actively searched in patients with idiopathic late-onset neurological syndromes. Scales assessing cerebellar function, especially walking and speech, and disability can show progression in some of the groups. Mutation severity can be used as a prognostic biomarker for stratification purposes in clinical trials.
Collapse
Affiliation(s)
- Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Douglas R Langbehn
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Adesoji Abiona
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Isabel Garrood
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Zofia Fleszar
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Marta Antonia Manes
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ana M Susana Morley
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Department of Ophthalmology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Emma Craythorne
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Shehla Mohammed
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Tanya Henshaw
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Sally Turner
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Harsha Naik
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Istvan Bodi
- Clinical Neuropathology, Academic Neuroscience Building, King’s College Hospital, London SE5 9RS, UK
| | - Robert P E Sarkany
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Hiva Fassihi
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Alan R Lehmann
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK National Xeroderma Pigmentosum Service, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| |
Collapse
|
3
|
Clinical and Mutational Spectrum of Xeroderma Pigmentosum in Egypt: Identification of Six Novel Mutations and Implications for Ancestral Origins. Genes (Basel) 2021; 12:genes12020295. [PMID: 33672602 PMCID: PMC7924063 DOI: 10.3390/genes12020295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Xeroderma pigmentosum is a rare autosomal recessive skin disorder characterized by freckle-like dry pigmented skin, photosensitivity, and photophobia. Skin and ocular symptoms are confined to sun exposed areas of the body. Patients have markedly increased risk for UV-induced skin, ocular, and oral cancers. Some patients develop neurodegenerative symptoms, including diminished tendon reflexes and microcephaly. In this study, we describe clinical and genetic findings of 36 XP patients from Egypt, a highly consanguineous population from North Africa. Thorough clinical evaluation followed by Sanger sequencing of XPA and XPC genes were done. Six novel and seven previously reported mutations were identified. Phenotype-genotype correlation was investigated. We report clinical and molecular findings consistent with previous reports of countries sharing common population structure, and geographical and historical backgrounds with implications on common ancestral origins and historical migration flows. Clinical and genetic profiling improves diagnosis, management, counselling, and implementation of future targeted therapies.
Collapse
|
4
|
Ali MZ, Blatterer J, Khan MA, Schaflinger E, Petek E, Ahmad S, Khan E, Windpassinger C. Identification of a novel protein truncating mutation p.Asp98* in XPC associated with xeroderma pigmentosum in a consanguineous Pakistani family. Mol Genet Genomic Med 2020; 8:e1060. [PMID: 31923348 PMCID: PMC7005610 DOI: 10.1002/mgg3.1060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is a rare genetic disorder, which is characterized by hyper-sensitivity to solar ultraviolet (UV) radiation. Clinical consequences of sun exposure are skin lesions and an increased risk of developing skin cancer. Genetic studies have identified eight genes associated with xeroderma pigmentosum. The proteins encoded by these genes are mainly involved in DNA repair mechanisms. METHODS Molecular genetic characterization of patients with xeroderma pigmentosum involved positional cloning methods such as homozygosity mapping and subsequent candidate gene analysis. Mutation screening was performed through Sanger DNA sequencing. RESULTS AND DISCUSSION In this case study, we report a novel protein truncating mutation in XPC associated with autosomal recessive xeroderma pigmentosum in a consanguineous Pakistani family. Genetic mapping revealed a novel single base insertion of a thymine nucleotide NM_004628.4: c.291dupT (c.291_292insT) in the second exon of XPC. The identified mutation leads to a premature stop codon (TGA) at amino acid position 98 (p.Asp98*) and thus presumably results in a truncated protein. The Xeroderma pigmentosum, complementation group C (XPC) is located on 3p25.1 and encodes a protein involved in nucleotide excision repair. The identified mutation presumably truncates all functional domains of the XPC protein, which likely results in the loss of protein function. CONCLUSION The study expands the knowledge of the mutational spectrum of XPC and is valuable for genetic counseling of affected individuals and their families.
Collapse
Affiliation(s)
- Muhammad Z Ali
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Jasmin Blatterer
- Diagnostic & Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Muzammil A Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Erich Schaflinger
- Diagnostic & Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Erwin Petek
- Diagnostic & Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Safeer Ahmad
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Ejazullah Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Christian Windpassinger
- Diagnostic & Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Tamesada Y, Nakano E, Tsujimoto M, Masaki T, Yoshida K, Niizeki H, Nishigori C. Japanese case of xeroderma pigmentosum complementation group C with a novel mutation. J Dermatol 2018; 45:e80-e81. [DOI: 10.1111/1346-8138.14098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yukari Tamesada
- Division of Dermatology, Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Eiji Nakano
- Division of Dermatology, Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Mariko Tsujimoto
- Division of Dermatology, Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Taro Masaki
- Division of Dermatology, Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Kazue Yoshida
- Department of Dermatology; National Center for Child Health and Development; Tokyo Japan
| | - Hironori Niizeki
- Department of Dermatology; National Center for Child Health and Development; Tokyo Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
6
|
Xeroderma Pigmentosum with Severe Neurological Manifestations/De Sanctis-Cacchione Syndrome and a Novel XPC Mutation. Case Rep Med 2017; 2017:7162737. [PMID: 28255305 PMCID: PMC5309409 DOI: 10.1155/2017/7162737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/20/2016] [Accepted: 01/11/2017] [Indexed: 11/21/2022] Open
Abstract
Several genetic disorders caused by defective nucleotide excision repair that affect the skin and the nervous system have been described, including Xeroderma Pigmentosum (XP), De Sanctis–Cacchione syndrome (DSC), Cockayne syndrome, and Trichothiodystrophy. Cutaneous photosensitivity with an increased risk of skin malignancy is a common feature of these disorders, but clinical manifestations commonly overlap these syndromes. Several genes have been found to be altered in these pathologies, but we lack more genotype-phenotype correlations in order to make an accurate diagnosis. Very few cases of DSC syndrome have been reported in the literature. We present a case of a 12-year-old Colombian male, with multiple skin lesions in sun-exposed areas from the age of 3 months and a history of 15 skin cancers. He also displayed severe neurologic abnormalities (intellectual disability, ataxia, altered speech, and hyperreflexia), short stature, and microcephaly, which are features associated with DSC. Genetic testing revealed a novel germline mutation in the XP-C gene (c.547A>T). This is the first case of an XP-C mutation causing De Sanctis–Cacchione syndrome. Multigene panel testing is becoming more widely available and accessible in the clinical setting and will help rapidly unveil the molecular etiology of these rare genetic disorders.
Collapse
|
7
|
Ghosh R, Rossner P, Honkova K, Dostal M, Sram RJ, Hertz-Picciotto I. Air pollution and childhood bronchitis: Interaction with xenobiotic, immune regulatory and DNA repair genes. ENVIRONMENT INTERNATIONAL 2016; 87:94-100. [PMID: 26655675 DOI: 10.1016/j.envint.2015.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Gene-environment interactions have been investigated for diseases such as asthma, chronic obstructive pulmonary disease, cancer etc. but acute disease like bronchitis has rarely been studied. We investigated interactions between air pollution (polycyclic aromatic hydrocarbons (PAH) and particulate matter <2.5 μm (PM2.5)) and single nucleotide polymorphisms (SNP) in EPHX1, IL10, STAT4 and XPC genes in relation to bronchitis in children aged 0-2 years. METHODS A stratified random sample of 1133 Czech children, born between 1994 and 1998 in two districts, were followed since birth, of which 626 were genotyped. Pediatrician-diagnosed bronchitis episodes were obtained from the medical records. Central-site monitors measured air pollution exposure. We used multivariable logistic regression and estimated coefficients using generalized estimating equations. Interaction was assessed between pollutants and genes and associations in genotype-specific strata were presented. False discovery rate was used to adjust for multiple comparisons. RESULTS There were 803 episodes of bronchitis with an incidence rate of 56 per 1000 child-months. We found significant gene-environment interaction between PAH and four SNPs (EPHX1, (rs2854461), STAT4 (rs16833215), XPC (rs2228001 and rs2733532)), which became non-significant after adjusting for multiple comparisons. PM2.5 interactions with two XPC SNPs (rs2228001 and rs2733532) remained significant after accounting for multiple comparisons and those with CC alleles had a more than doubling of odds, OR=2.65 (95% CI: 1.91, 3.69) and 2.72 (95% CI: 1.95, 3.78), respectively, per 25 μg/m(3) increase in exposure. CONCLUSION The findings suggest that the DNA repair gene XPC may play an important role in the air pollution-induced pathogenesis of the inflammatory disease bronchitis.
Collapse
Affiliation(s)
- Rakesh Ghosh
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States.
| | - Pavel Rossner
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Katerina Honkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Miroslav Dostal
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Radim J Sram
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, United States
| |
Collapse
|
8
|
Abstract
XPC has long been considered instrumental in DNA damage recognition during global genome nucleotide excision repair (GG-NER). While this recognition is crucial for organismal health and survival, as XPC's recognition of lesions stimulates global genomic repair, more recent lines of research have uncovered many new non-canonical pathways in which XPC plays a role, such as base excision repair (BER), chromatin remodeling, cell signaling, proteolytic degradation, and cellular viability. Since the first discovery of its yeast homolog, Rad4, the involvement of XPC in cellular regulation has expanded considerably. Indeed, our understanding appears to barely scratch the surface of the incredible potential influence of XPC on maintaining proper cellular function. Here, we first review the canonical role of XPC in lesion recognition and then explore the new world of XPC function.
Collapse
|
9
|
Oza VS, Marco E, Frieden IJ. Improving the Dermatologic Care of Individuals with Autism: A Review of Relevant Issues and a Perspective. Pediatr Dermatol 2015; 32:447-54. [PMID: 25779667 DOI: 10.1111/pde.12548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition that effects verbal and nonverbal communication and social cognition and often presents with altered sensory processing, stereotyped behavior, and restricted interests. The prevalence of this diagnosis has increased markedly over the past two decades. Dermatologists undoubtedly will be evaluating and managing more patients with this diagnosis, but there has been little written regarding the dermatologic care of patients with ASD. Difficulties with communication and sensory processing create significant challenges in clinical evaluation and management. Individuals with ASD are also at higher risk for certain dermatologic conditions. This review is intended to build an awareness of the complexity of caring for individuals with ASD and discuss strategies that can help improve the dermatologic care of these patients.
Collapse
Affiliation(s)
- Vikash S Oza
- Department of Dermatology, University of California at San Francisco, San Francisco, California
| | - Elysa Marco
- Department of Neurology, University of California at San Francisco, San Francisco, California.,Department of Pediatrics, University of California at San Francisco, San Francisco, California.,Department of Psychiatry, University of California at San Francisco, San Francisco, California
| | - Ilona J Frieden
- Department of Dermatology, University of California at San Francisco, San Francisco, California.,Department of Pediatrics, University of California at San Francisco, San Francisco, California
| |
Collapse
|
10
|
Caminsky NG, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2015. [DOI: 10.12688/f1000research.5654.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
|
11
|
Kraemer KH, DiGiovanna JJ. Forty years of research on xeroderma pigmentosum at the US National Institutes of Health. Photochem Photobiol 2015; 91:452-9. [PMID: 25220021 PMCID: PMC4355260 DOI: 10.1111/php.12345] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/03/2014] [Indexed: 11/30/2022]
Abstract
In 1968, Dr. James Cleaver reported defective DNA repair in cultured cells from patients with xeroderma pigmentosum. This link between clinical disease and molecular pathophysiology has sparked interest in understanding not only the clinical characteristics of sun sensitivity, damage and cancer that occurred in XP patients but also the mechanisms underlying the damage and repair. While affected patients are rare, their exaggerated UV damage provides a window into the workings of DNA repair. These studies have clarified the importance of a functioning DNA repair system to the maintenance of skin and neurologic health in the general population. Understanding the role of damage in causing cancer, neurologic degeneration, hearing loss and internal cancers provides an opportunity for prevention and treatment. Characterizing complementation groups pointed to the importance of different underlying genes. Studying differences in cancer age of onset and underlying molecular signatures in cancers occurring either in XP patients or the general population has led to insights into differences in carcinogenic mechanisms. The accelerated development of cancers in XP has been used as a model to discover new cancer chemopreventive agents. An astute insight can be a "tipping point" triggering decades of productive inquiry.
Collapse
Affiliation(s)
- Kenneth H. Kraemer
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - John J. DiGiovanna
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
12
|
Caminsky N, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2014; 3:282. [PMID: 25717368 PMCID: PMC4329672 DOI: 10.12688/f1000research.5654.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
Affiliation(s)
- Natasha Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K Rogan
- Departments of Biochemistry and Computer Science, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
13
|
Lubin A, Zhang L, Chen H, White VM, Gong F. A human XPC protein interactome--a resource. Int J Mol Sci 2013; 15:141-58. [PMID: 24366067 PMCID: PMC3907802 DOI: 10.3390/ijms15010141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Global genome nucleotide excision repair (GG-NER) is responsible for identifying and removing bulky adducts from non-transcribed DNA that result from damaging agents such as UV radiation and cisplatin. Xeroderma pigmentosum complementation group C (XPC) is one of the essential damage recognition proteins of the GG-NER pathway and its dysfunction results in xeroderma pigmentosum (XP), a disorder involving photosensitivity and a predisposition to cancer. To better understand the identification of DNA damage by XPC in the context of chromatin and the role of XPC in the pathogenesis of XP, we characterized the interactome of XPC using a high throughput yeast two-hybrid screening. Our screening showed 49 novel interactors of XPC involved in DNA repair and replication, proteolysis and post-translational modifications, transcription regulation, signal transduction, and metabolism. Importantly, we validated the XPC-OTUD4 interaction by co-IP and provided evidence that OTUD4 knockdown in human cells indeed affects the levels of ubiquitinated XPC, supporting a hypothesis that the OTUD4 deubiquitinase is involved in XPC recycling by cleaving the ubiquitin moiety. This high-throughput characterization of the XPC interactome provides a resource for future exploration and suggests that XPC may have many uncharacterized cellular functions.
Collapse
Affiliation(s)
- Abigail Lubin
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Hua Chen
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Victoria M. White
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Feng Gong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| |
Collapse
|
14
|
Krzeszinski JY, Choe V, Shao J, Bao X, Cheng H, Luo S, Huo K, Rao H. XPC promotes MDM2-mediated degradation of the p53 tumor suppressor. Mol Biol Cell 2013; 25:213-21. [PMID: 24258024 PMCID: PMC3890342 DOI: 10.1091/mbc.e13-05-0293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
XPC binds MDM2 ubiquitin ligase and participates in the MDM2-mediated p53 degradation. Furthermore, XPC overexpression stimulates p53 degradation following UV irradiation. Combined, the results suggest a key role of XPC in p53 degradation. Although ubiquitin receptor Rad23 has been implicated in bringing ubiquitylated p53 to the proteasome, how Rad23 recognizes p53 remains unclear. We demonstrate that XPC, a Rad23-binding protein, regulates p53 turnover. p53 protein in XPC-deficient cells remains ubiquitylated, but its association with the proteasome is drastically reduced, indicating that XPC regulates a postubiquitylation event. Furthermore, we found that XPC participates in the MDM2-mediated p53 degradation pathway via direct interaction with MDM2. XPC W690S pathogenic mutant is specifically defective for MDM2 binding and p53 degradation. p53 is known to become stabilized following UV irradiation but can be rendered unstable by XPC overexpression, underscoring a critical role of XPC in p53 regulation. Elucidation of the proteolytic role of XPC in cancer cells will help to unravel the detailed mechanisms underlying the coordination of DNA repair and proteolysis.
Collapse
Affiliation(s)
- Jing Yan Krzeszinski
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 First Affiliated Hospital, Nanchang University, Jiangxi 330006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Repair of UV photolesions in xeroderma pigmentosum group C cells induced by translational readthrough of premature termination codons. Proc Natl Acad Sci U S A 2013; 110:19483-8. [PMID: 24218596 DOI: 10.1073/pnas.1312088110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
About 12% of human genetic disorders involve premature termination codons (PTCs). Aminoglycoside antibiotics have been proposed for restoring full-length proteins by readthrough of PTC. To assess the efficiency of readthrough, we selected homozygous and compound heterozygous skin fibroblasts from xeroderma pigmentosum (XP) patients with different PTCs in the XPC DNA repair gene. XP patients have a nucleotide excision repair defect and a 10,000-fold increased risk of UV-induced skin cancer. In six of eight PTC-containing XP-C cells, treatment with Geneticin and gentamicin resulted in (i) stabilized XPC-mRNA, which would have been degraded by nonsense-mediated decay; (ii) increased expression of XPC protein that localized to UV-damaged sites; (iii) recruitment of XPB and XPD proteins to UV DNA damage sites; and (iv) increased repair of 6-4 photoproducts and cyclobutane pyrimidine dimers. Expression of PTC in a transfected vector revealed that readthrough depends on the PTC sequence and its location within the gene. This sensitive DNA repair assay system demonstrates the complexity of response to PTC readthrough inducers. The efficiency of aminoglycoside-mediated readthrough depends on the type and copy number of PTC, the downstream 4+ nucleotide, and the location within the exon. Treatment with small-molecule nonaminoglycoside compounds (PTC124, BZ16, or RTC14) resulted in similarly increased XPC mRNA expression and photoproduct removal with less toxicity than with the aminoglycosides. Characterizing PTC structure and parameters governing effective PTC readthrough may provide a unique prophylactic therapy for skin cancer prevention in XP-C patients.
Collapse
|
16
|
|
17
|
Zafeiriou DI, Ververi A, Dafoulis V, Kalyva E, Vargiami E. Autism spectrum disorders: the quest for genetic syndromes. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:327-366. [PMID: 23650212 DOI: 10.1002/ajmg.b.32152] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disabilities with various etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of ASD remains unclear. A number of genetic syndromes manifest ASD at higher than expected frequencies compared to the general population. These syndromes account for more than 10% of all ASD cases and include tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Williams, Duchenne, etc. Clinicians are increasingly required to recognize genetic disorders in individuals with ASD, in terms of providing proper care and prognosis to the patient, as well as genetic counseling to the family. Vice versa, it is equally essential to identify ASD in patients with genetic syndromes, in order to ensure correct management and appropriate educational placement. During investigation of genetic syndromes, a number of issues emerge: impact of intellectual disability in ASD diagnoses, identification of autistic subphenotypes and differences from idiopathic autism, validity of assessment tools designed for idiopathic autism, possible mechanisms for the association with ASD, etc. Findings from the study of genetic syndromes are incorporated into the ongoing research on autism etiology and pathogenesis; different syndromes converge upon common biological backgrounds (such as disrupted molecular pathways and brain circuitries), which probably account for their comorbidity with autism. This review paper critically examines the prevalence and characteristics of the main genetic syndromes, as well as the possible mechanisms for their association with ASD.
Collapse
|
18
|
Beyoğlu D, Smith RL, Idle JR. Dog bites man or man bites dog? The enigma of the amino acid conjugations. Biochem Pharmacol 2012; 83:1331-9. [PMID: 22227274 PMCID: PMC3314100 DOI: 10.1016/j.bcp.2011.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
The proposition posed is that the value of amino acid conjugation to the organism is not, as in the traditional view, to use amino acids for the detoxication of aromatic acids. Rather, the converse is more likely, to use aromatic acids that originate from the diet and gut microbiota to assist in the regulation of body stores of amino acids, such as glycine, glutamate, and, in certain invertebrates, arginine, that are key neurotransmitters in the central nervous system (CNS). As such, the amino acid conjugations are not so much detoxication reactions, rather they are homeostatic and neuroregulatory processes. Experimental data have been culled in support of this hypothesis from a broad range of scientific and clinical literature. Such data include the low detoxication value of amino acid conjugations and the Janus nature of certain amino acids that are both neurotransmitters and apparent conjugating agents. Amino acid scavenging mechanisms in blood deplete brain amino acids. Amino acids glutamate and glycine when trafficked from brain are metabolized to conjugates of aromatic acids in hepatic mitochondria and then irreversibly excreted into urine. This process is used clinically to deplete excess nitrogen in cases of urea cycle enzymopathies through excretion of glycine or glutamine as their aromatic acid conjugates. Untoward effects of high-dose phenylacetic acid surround CNS toxicity. There appears to be a relationship between extent of glycine scavenging by benzoic acid and psychomotor function. Glycine and glutamine scavenging by conjugation with aromatic acids may have important psychosomatic consequences that link diet to health, wellbeing, and disease.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Hepatology Research Group, Department of Clinical Research, Faculty of Medicine, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Robert L. Smith
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jeffrey R. Idle
- Hepatology Research Group, Department of Clinical Research, Faculty of Medicine, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| |
Collapse
|
19
|
Fishelevich R, Zhao Y, Tuchina P, Liu H, Nakazono A, Tammaro A, Meng TC, Lee J, Gaspari AA. Imiquimod-induced TLR7 signaling enhances repair of DNA damage induced by ultraviolet light in bone marrow-derived cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1664-73. [PMID: 21765012 PMCID: PMC3150393 DOI: 10.4049/jimmunol.1100755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Imiquimod is a TLR7/8 agonist that has anticancer therapeutic efficacy in the treatment of precancerous skin lesions and certain nonmelanoma skin cancers. To test our hypothesis that imiquimod enhances DNA repair as a mechanism for its anticancer activity, the nucleotide excision repair genes were studied in bone marrow-derived cells. Imiquimod enhanced the expression of xeroderma pigmentosum (XP) A and other DNA repair genes (quantitative real-time PCR analysis) and resulted in an increased nuclear localization of the DNA repair enzyme XPA. This was dependent on MyD88, as bone marrow-derived cells from MyD88(-/-) mice did not increase XPA gene expression and did not enhance the survival of MyD88(-/-)-derived bone marrow-derived cells after UV B exposure as was observed in bone marrow-derived cells from MyD88(+/+) mice. Imiquimod also enhanced DNA repair of UV light (UVL)-irradiated gene expression constructs and accelerated the resolution of cyclobutane pyrimidine dimers after UVL exposures in P388 and XS52. Lastly, topical treatment of mouse skin with 5% imiquimod cream prior to UVL irradiation resulted in a decrease in the number of cyclobutane pyridimine dimer-positive APC that were found in local lymph nodes 24 h after UVL irradiation in both wild-type and IL-12 gene-targeted mice. In total, these data support the idea that TLR7 agonists such as imiquimod enhance DNA repair in bone marrow-derived cells. This property is likely to be an important mechanism for its anticancer effects because it protects cutaneous APC from the deleterious effects of UVL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jim Lee
- Graceway Pharmaceutical Company, Exton, PA
| | - Anthony A. Gaspari
- Department of Dermatology, Exton, PA
- Department of Microbiology/Immunology, University of Maryland Baltimore, School of Medicine, Baltimore, MD
| |
Collapse
|
20
|
Bradford PT, Goldstein AM, Tamura D, Khan SG, Ueda T, Boyle J, Oh KS, Imoto K, Inui H, Moriwaki SI, Emmert S, Pike KM, Raziuddin A, Plona TM, DiGiovanna JJ, Tucker MA, Kraemer KH. Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J Med Genet 2011; 48:168-76. [PMID: 21097776 PMCID: PMC3235003 DOI: 10.1136/jmg.2010.083022] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The frequency of cancer, neurologic degeneration and mortality in xeroderma pigmentosum (XP) patients with defective DNA repair was determined in a four decade natural history study. METHODS All 106 XP patients admitted to the National Institutes of Health from 1971 to 2009 were evaluated from clinical records and follow-up. RESULTS In the 65 per cent (n=69) of patients with skin cancer, non-melanoma skin cancer (NMSC) was increased 10,000-fold and melanoma was increased 2000-fold in patients under age 20. The 9 year median age at diagnosis of first non-melanoma skin cancer (NMSC) (n=64) was significantly younger than the 22 year median age at diagnosis of first melanoma (n=38)-a relative age reversal from the general population suggesting different mechanisms of carcinogenesis between NMSC and melanoma. XP patients with pronounced burning on minimal sun exposure (n=65) were less likely to develop skin cancer than those who did not. This may be related to the extreme sun protection they receive from an earlier age, decreasing their total ultraviolet exposure. Progressive neurologic degeneration was present in 24% (n=25) with 16/25 in complementation group XP-D. The most common causes of death were skin cancer (34%, n=10), neurologic degeneration (31%, n=9), and internal cancer (17%, n=5). The median age at death (29 years) in XP patients with neurodegeneration was significantly younger than those XP patients without neurodegeneration (37 years) (p=0.02). CONCLUSION This 39 year follow-up study of XP patients indicates a major role of DNA repair genes in the aetiology of skin cancer and neurologic degeneration.
Collapse
Affiliation(s)
- Porcia T. Bradford
- Genetic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD
| | - Alisa M. Goldstein
- Genetic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD
| | - Deborah Tamura
- Dermatology Branch, National Cancer Institute, Bethesda, MD
| | | | - Takahiro Ueda
- Dermatology Branch, National Cancer Institute, Bethesda, MD
| | - Jennifer Boyle
- Dermatology Branch, National Cancer Institute, Bethesda, MD
| | - Kyu-Seon Oh
- Dermatology Branch, National Cancer Institute, Bethesda, MD
| | - Kyoko Imoto
- Dermatology Branch, National Cancer Institute, Bethesda, MD
| | - Hiroki Inui
- Dermatology Branch, National Cancer Institute, Bethesda, MD
| | | | - Steffen Emmert
- Dermatology Branch, National Cancer Institute, Bethesda, MD
| | - Kristen M. Pike
- Laboratory of Molecular Technology, National Cancer Institute at Frederick, Science Applications International Corporation, Frederick, MD
| | - Arati Raziuddin
- Laboratory of Molecular Technology, National Cancer Institute at Frederick, Science Applications International Corporation, Frederick, MD
| | - Teri M. Plona
- Laboratory of Molecular Technology, National Cancer Institute at Frederick, Science Applications International Corporation, Frederick, MD
| | - John J. DiGiovanna
- Dermatology Branch, National Cancer Institute, Bethesda, MD
- Dermatology Department, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Margaret A. Tucker
- Genetic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
21
|
Abstract
The idea that we could build molecular communications systems can be advanced by investigating how actual molecules from living organisms function. Information theory provides tools for such an investigation. This review describes how we can compute the average information in the DNA binding sites of any genetic control protein and how this can be extended to analyze its individual sites. A formula equivalent to Claude Shannon's channel capacity can be applied to molecular systems and used to compute the efficiency of protein binding. This efficiency is often 70% and a brief explanation for that is given. The results imply that biological systems have evolved to function at channel capacity, which means that we should be able to build molecular communications that are just as robust as our macroscopic ones.
Collapse
Affiliation(s)
- Thomas D. Schneider
- National Institutes of Health, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201, United States
| |
Collapse
|
22
|
Ueda T, Compe E, Catez P, Kraemer KH, Egly JM. Both XPD alleles contribute to the phenotype of compound heterozygote xeroderma pigmentosum patients. ACTA ACUST UNITED AC 2009; 206:3031-46. [PMID: 19934020 PMCID: PMC2806454 DOI: 10.1084/jem.20091892] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in the XPD subunit of the DNA repair/transcription factor TFIIH result in the rare recessive genetic disorder xeroderma pigmentosum (XP). Many XP patients are compound heterozygotes with a “causative” XPD point mutation R683W and different second mutant alleles, considered “null alleles.” However, there is marked clinical heterogeneity (including presence or absence of skin cancers or neurological degeneration) in these XPD/R683W patients, thus suggesting a contribution of the second allele. Here, we report XP patients carrying XPD/R683W and a second XPD allele either XPD/Q452X, /I455del, or /199insPP. We performed a systematic study of the effect of these XPD mutations on several enzymatic functions of TFIIH and found that each mutation exhibited unique biochemical properties. Although all the mutations inhibited the nucleotide excision repair (NER) by disturbing the XPD helicase function, each of them disrupted specific molecular steps during transcription: XPD/Q452X hindered the transactivation process, XPD/I455del disturbed RNA polymerase II phosphorylation, and XPD/199insPP inhibited kinase activity of the cdk7 subunit of TFIIH. The broad range and severity of clinical features in XP patients arise from a broad set of deficiencies in NER and transcription that result from the combination of mutations found on both XPD alleles.
Collapse
Affiliation(s)
- Takahiro Ueda
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 10142, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | | | | | | | | |
Collapse
|
23
|
Khan SG, Oh KS, Emmert S, Imoto K, Tamura D, DiGiovanna JJ, Shahlavi T, Armstrong N, Baker CC, Neuburg M, Zalewski C, Brewer C, Wiggs E, Schiffmann R, Kraemer KH. XPC initiation codon mutation in xeroderma pigmentosum patients with and without neurological symptoms. DNA Repair (Amst) 2009; 8:114-25. [PMID: 18955168 PMCID: PMC2684809 DOI: 10.1016/j.dnarep.2008.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/03/2008] [Accepted: 09/17/2008] [Indexed: 11/29/2022]
Abstract
Two unrelated xeroderma pigmentosum (XP) patients, with and without neurological abnormalities, respectively, had identical defects in the XPC DNA nucleotide excision repair (NER) gene. Patient XP21BE, a 27-year-old woman, had developmental delay and early onset of sensorineural hearing loss. In contrast, patient XP329BE, a 13-year-old boy, had a normal neurological examination. Both patients had marked lentiginous hyperpigmentation and multiple skin cancers at an early age. Their cultured fibroblasts showed similar hypersensitivity to killing by UV and reduced repair of DNA photoproducts. Cells from both patients had a homozygous c.2T>G mutation in the XPC gene which changed the ATG initiation codon to arginine (AGG). Both had low levels of XPC message and no detectable XPC protein on Western blotting. There was no functional XPC activity in both as revealed by the failure of localization of XPC and other NER proteins at the sites of UV-induced DNA damage in a sensitive in vivo immunofluorescence assay. XPC cDNA containing the initiation codon mutation was functionally inactive in a post-UV host cell reactivation (HCR) assay. Microsatellite markers flanking the XPC gene showed only a small region of identity ( approximately 30kBP), indicating that the patients were not closely related. Thus, the initiation codon mutation resulted in DNA repair deficiency in cells from both patients and greatly increased cancer susceptibility. The neurological abnormalities in patient XP21BE may be related to close consanguinity and simultaneous inheritance of other recessive genes or other gene modifying effects rather than the influence of XPC gene itself.
Collapse
Affiliation(s)
- Sikandar G. Khan
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kyu-Seon Oh
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steffen Emmert
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kyoko Imoto
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Deborah Tamura
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - John J. DiGiovanna
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Division of Dermatopharmacology, Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Tala Shahlavi
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Najealicka Armstrong
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Carl C. Baker
- Laboratory of Clinical Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Marcy Neuburg
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI
| | - Chris Zalewski
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Carmen Brewer
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Edythe Wiggs
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD
| | - Raphael Schiffmann
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD
| | - Kenneth H. Kraemer
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
24
|
Abstract
The XPC protein is a component of a heterotrimeric complex that is essential for damage recognition in a nucleotide excision repair subpathway that operates throughout the genome. Biochemical analyses have revealed that the broad substrate specificity of this repair system is based on the structure-specific DNA binding properties of the XPC complex. Other subunits of this complex, including human Rad23p orthologs and centrin 2, play individual roles in enhancing the damage recognition activity of XPC. Physical interaction with UV-damaged DNA-binding protein is also important for the efficient recruitment of XPC to sites containing DNA damage, particularly UV-induced photolesions. Furthermore, recent studies have suggested that XPC may also be involved in base excision repair and possibly in other cellular functions that may be mediated by posttranslational modifications.
Collapse
|
25
|
Leite RA, Marchetto MC, Muotri AR, Vasconcelos DDM, de Oliveira ZNP, Machado MCR, Menck CFM. Identification of XP complementation groups by recombinant adenovirus carrying DNA repair genes. J Invest Dermatol 2008; 129:502-6. [PMID: 18685619 DOI: 10.1038/jid.2008.239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Cleaver JE, Revet I. Clinical implications of the basic defects in Cockayne syndrome and xeroderma pigmentosum and the DNA lesions responsible for cancer, neurodegeneration and aging. Mech Ageing Dev 2008; 129:492-7. [PMID: 18336867 PMCID: PMC2517418 DOI: 10.1016/j.mad.2008.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/18/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
Abstract
Cancer, aging, and neurodegeneration are all associated with DNA damage and repair in complex fashions. Aging appears to be a cell and tissue-wide process linked to the insulin-dependent pathway in several DNA repair deficient disorders, especially in mice. Cancer and neurodegeneration appear to have complementary relationships to DNA damage and repair. Cancer arises from surviving cells, or even stem cells, that have down-regulated many pathways, including apoptosis, that regulate genomic stability in a multi-step process. Neurodegeneration however occurs in nondividing neurons in which the persistence of apoptosis in response to reactive oxygen species is, itself, pathological. Questions that remain open concern: sources and chemical nature of naturally occurring DNA damaging agents, especially whether mitochondria are the true source; the target tissues for DNA damage and repair; do the human DNA repair deficient diseases delineate specific pathways of DNA damage relevant to clinical outcomes; if naturally occurring reactive oxygen species are pathological in human repair deficient disease, would anti-oxidants or anti-apoptotic agents be feasible therapeutic agent?
Collapse
Affiliation(s)
- J E Cleaver
- Department of Dermatology and UCSF Cancer Center, University of California-San Francisco, CA 94143-0808, USA.
| | | |
Collapse
|
27
|
Kulkarni A, Wilson DM. The involvement of DNA-damage and -repair defects in neurological dysfunction. Am J Hum Genet 2008; 82:539-66. [PMID: 18319069 PMCID: PMC2427185 DOI: 10.1016/j.ajhg.2008.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/17/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022] Open
Abstract
A genetic link between defects in DNA repair and neurological abnormalities has been well established through studies of inherited disorders such as ataxia telangiectasia and xeroderma pigmentosum. In this review, we present a comprehensive summary of the major types of DNA damage, the molecular pathways that function in their repair, and the connection between defective DNA-repair responses and specific neurological disease. Particular attention is given to describing the nature of the repair defect and its relationship to the manifestation of the associated neurological dysfunction. Finally, the review touches upon the role of oxidative stress, a leading precursor to DNA damage, in the development of certain neurodegenerative pathologies, such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Avanti Kulkarni
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
28
|
In vivo destabilization and functional defects of the xeroderma pigmentosum C protein caused by a pathogenic missense mutation. Mol Cell Biol 2007. [PMID: 17682058 DOI: 10.1128/mcb/02166-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Xeroderma pigmentosum group C (XPC) protein plays an essential role in DNA damage recognition in mammalian global genome nucleotide excision repair (NER). Here, we analyze the functional basis of NER inactivation caused by a single amino acid substitution (Trp to Ser at position 690) in XPC, previously identified in the XPC patient XP13PV. The Trp690Ser change dramatically affects the in vivo stability of the XPC protein, thereby causing a significant reduction of its steady-state level in XP13PV fibroblasts. Despite normal heterotrimeric complex formation and physical interactions with other NER factors, the mutant XPC protein lacks binding affinity for both undamaged and damaged DNA. Thus, this single amino acid substitution is sufficient to compromise XPC function through both quantitative and qualitative alterations of the protein. Although the mutant XPC fails to recognize damaged DNA, it is still capable of accumulating in a UV-damaged DNA-binding protein (UV-DDB)-dependent manner to UV-damaged subnuclear domains. However, the NER factors transcription factor IIH and XPA failed to colocalize stably with the mutant XPC. As well as highlighting the importance of UV-DDB in recruiting XPC to UV-damaged sites, these findings demonstrate the role of DNA binding by XPC in the assembly of subsequent NER intermediate complexes.
Collapse
|
29
|
Yasuda G, Nishi R, Watanabe E, Mori T, Iwai S, Orioli D, Stefanini M, Hanaoka F, Sugasawa K. In vivo destabilization and functional defects of the xeroderma pigmentosum C protein caused by a pathogenic missense mutation. Mol Cell Biol 2007; 27:6606-14. [PMID: 17682058 PMCID: PMC2099227 DOI: 10.1128/mcb.02166-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xeroderma pigmentosum group C (XPC) protein plays an essential role in DNA damage recognition in mammalian global genome nucleotide excision repair (NER). Here, we analyze the functional basis of NER inactivation caused by a single amino acid substitution (Trp to Ser at position 690) in XPC, previously identified in the XPC patient XP13PV. The Trp690Ser change dramatically affects the in vivo stability of the XPC protein, thereby causing a significant reduction of its steady-state level in XP13PV fibroblasts. Despite normal heterotrimeric complex formation and physical interactions with other NER factors, the mutant XPC protein lacks binding affinity for both undamaged and damaged DNA. Thus, this single amino acid substitution is sufficient to compromise XPC function through both quantitative and qualitative alterations of the protein. Although the mutant XPC fails to recognize damaged DNA, it is still capable of accumulating in a UV-damaged DNA-binding protein (UV-DDB)-dependent manner to UV-damaged subnuclear domains. However, the NER factors transcription factor IIH and XPA failed to colocalize stably with the mutant XPC. As well as highlighting the importance of UV-DDB in recruiting XPC to UV-damaged sites, these findings demonstrate the role of DNA binding by XPC in the assembly of subsequent NER intermediate complexes.
Collapse
Affiliation(s)
- Gentaro Yasuda
- Biosignal Research Center, Kobe University, 1-1 Rokkodai, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Genomic instability is the driving force behind cancer development. Human syndromes with DNA repair deficiencies comprise unique opportunities to study the clinical consequences of faulty genome maintenance leading to premature aging and premature cancer development. These syndromes include chromosomal breakage syndromes with defects in DNA damage signal transduction and double-strand break repair, mismatch repair defective syndromes as well as nucleotide excision repair defective syndromes. The same genes that are severely affected in these model diseases may harbour more subtle variations in the 'healthy' normal population leading to genomic instability, cancer development, and accelerated aging at later stages of life. Thus, studying those syndromes and the molecular mechanisms behind can significantly contribute to our understanding of (skin) cancerogenesis as well as to the development of novel individualized preventive and therapeutic anticancer strategies. The establishment of centers of excellence for studying rare genetic model diseases may be helpful in this direction.
Collapse
Affiliation(s)
- Kai-Martin Thoms
- Department of Dermatology and Venerology, Georg-August-University Goettingen, Germany
| | | | | |
Collapse
|
31
|
McDaniel LD, Rivera-Begeman A, Doughty AT, Schultz RA, Friedberg EC. Validation of XP-C pathogenic variations in archival material from a live XP patient. DNA Repair (Amst) 2006; 6:115-20. [PMID: 17084680 DOI: 10.1016/j.dnarep.2006.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/19/2022]
Abstract
Xeroderma pigmentosum (XP) genetic complementation group C (XP-C) is the most common form of the disease worldwide. Thirty-four distinct genetic defects have been identified in 45 XP-C patients. Further identification of such defects and the frequency of their occurrence offers the potential of generating diagnostic and prognostic molecular screening panels. Archival material (such as formalin-fixed paraffin embedded skin) may be useful for the identification of novel genetic variations and for documenting the frequency of individual genetic defects in patients who are no longer available for study. However, the use of archival material precludes direct analysis of changes in the mRNA resulting from genomic changes. The serendipitous reacquisition of an XP individual in whom genetic defects were previously characterized in archival material allowed confirmation of the defects as well as a direct analysis of the consequences of these defects on mRNA, mRNA expression and on cellular phenotypes.
Collapse
Affiliation(s)
- Lisa D McDaniel
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | | | | | | | |
Collapse
|
32
|
Rivera-Begeman A, McDaniel LD, Schultz RA, Friedberg EC. A novel XPC pathogenic variant detected in archival material from a patient diagnosed with Xeroderma Pigmentosum: a case report and review of the genetic variants reported in XPC. DNA Repair (Amst) 2006; 6:100-14. [PMID: 17079196 DOI: 10.1016/j.dnarep.2006.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
The disease Xeroderma Pigmentosum (XP) is genetically heterogeneous and defined by pathogenic variants (formerly termed mutations) in any of eight different genes. Pathogenic variants in the XPC gene are the most commonly observed in US patients. Moreover, pathogenic variants in just four of the genes, XPA, XPC, XPD/ERCC2 and XPV/POLH account for 91% of all XP cases worldwide. In the current study, we describe the clinical, histopathologic, molecular genetic, and pathophysiological features of a 19-year-old female patient clinically diagnosed with XP as an infant. Analysis of archival material reveals a novel variation of a 13 base pair deletion in XPC exon 14 and a previously reported A>C missense pathogenic variant in the proximal splice site for XPC exon 6. Both variations induce frameshifts most likely leading to a truncated XPC protein product. Quantitative RT-PCR also revealed reduced mRNA levels in the archived specimen. Analysis of the XPA, XPD/ERCC2 and XPV/POLH genes in the current specimen failed to reveal pathologic variants. All previously reported pathogenic variants, polymorphisms and known amino acid changes for the XPC gene are compiled and described in the current nomenclature. Given the relative ease of screening for genetic variation and the potential role for such variation in human disease, a proposal for screening appropriate archival materials for alterations in the four most prevalent XP genes is presented.
Collapse
Affiliation(s)
- Amanda Rivera-Begeman
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | | | | | |
Collapse
|
33
|
Sugasawa K. UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex, and DNA repair. J Mol Histol 2006; 37:189-202. [PMID: 16858626 DOI: 10.1007/s10735-006-9044-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 12/31/2022]
Abstract
The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Genome Damage Response Research Unit, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
34
|
Leibeling D, Laspe P, Emmert S. Nucleotide excision repair and cancer. J Mol Histol 2006; 37:225-38. [PMID: 16855787 DOI: 10.1007/s10735-006-9041-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 06/21/2006] [Indexed: 12/14/2022]
Abstract
Nucleotide excision repair (NER) is the most versatile and best studied DNA repair system in humans. NER can repair a variety of bulky DNA damages including UV-light induced DNA photoproducts. NER consists of a multistep process in which the DNA lesion is recognized and demarcated by DNA unwinding. Then, an approximately 28 bp DNA damage containing oligonucleotide is excised followed by gap filling using the undamaged DNA strand as a template. The consequences of defective NER are demonstrated by three rare autosomal-recessive NER-defective syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). XP patients show severe sun sensitivity, freckling in sun exposed skin, and develop skin cancers already during childhood. CS patients exhibit sun sensitivity, severe neurologic abnormalities, and cachectic dwarfism. Clinical symptoms of TTD patients include sun sensitivity, freckling in sun exposed skin areas, and brittle sulfur-deficient hair. In contrast to XP patients, CS and TTD patients are not skin cancer prone. Studying these syndromes can increase the knowledge of skin cancer development including cutaneous melanoma as well as basal and squamous cell carcinoma in general that may lead to new preventional and therapeutic anticancer strategies in the normal population.
Collapse
Affiliation(s)
- Diana Leibeling
- Department of Dermatology and Venerology, Georg-August-University Goettingen, Von-Siebold-Strasse 3, 37075 Goettingen, Germany
| | | | | |
Collapse
|
35
|
Khan SG, Oh KS, Shahlavi T, Ueda T, Busch DB, Inui H, Emmert S, Imoto K, Muniz-Medina V, Baker CC, DiGiovanna JJ, Schmidt D, Khadavi A, Metin A, Gozukara E, Slor H, Sarasin A, Kraemer KH. Reduced XPC DNA repair gene mRNA levels in clinically normal parents of xeroderma pigmentosum patients. Carcinogenesis 2005; 27:84-94. [PMID: 16081512 DOI: 10.1093/carcin/bgi204] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Xeroderma pigmentosum group C (XP-C) is a rare autosomal recessive disorder. Patients with two mutant alleles of the XPC DNA repair gene have sun sensitivity and a 1000-fold increase in skin cancers. Clinically normal parents of XP-C patients have one mutant allele and one normal allele. As a step toward evaluating cancer risk in these XPC heterozygotes we characterized cells from 16 XP families. We identified 15 causative mutations (5 frameshift, 6 nonsense and 4 splicing) in the XPC gene in cells from 16 XP probands. All had premature termination codons (PTC) and absence of normal XPC protein on western blotting. The cell lines from 26 parents were heterozygous for the same mutations. We employed a real-time quantitative reverse transcriptase-PCR assay as a rapid and sensitive method to measure XPC mRNA levels. The mean XPC mRNA levels in the cell lines from the XP-C probands were 24% (P<10(-7)) of that in 10 normal controls. This reduced XPC mRNA level in cells from XP-C patients was caused by the PTC that induces nonsense-mediated mRNA decay. The mean XPC mRNA levels in cell lines from the heterozygous XP-C carriers were intermediate (59%, P=10(-4)) between the values for the XP patients and the normal controls. This study demonstrates reduced XPC mRNA levels in XP-C patients and heterozygotes. Thus, XPC mRNA levels may be evaluated as a marker of cancer susceptibility in carriers of mutations in the XPC gene.
Collapse
Affiliation(s)
- Sikandar G Khan
- Basic Research Laboratory and Laboratory of Cellular Oncology, CCR, NCI, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lam CW, Cheung KKT, Luk NM, Chan SW, Lo KK, Tong SF. DNA-based diagnosis of xeroderma pigmentosum group C by Whole-genome scan using single-nucleotide polymorphism microarray. J Invest Dermatol 2005; 124:87-91. [PMID: 15654957 DOI: 10.1111/j.0022-202x.2004.23563.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we have established the molecular basis of xeroderma pigmentosum (XP) in two unrelated Chinese families. In the first patient with consanguineous parents, we mapped the disease-causing locus XPC using single-nucleotide polymorphism microarray. Mutational analysis of the XPC gene showed that the patient is homozygous for a nonsense mutation, E149X. After developing DNA-based diagnosis of XPC, we screened another XP patient for XPC mutations. We found that the second patient is a compound heterozygote of 1209delG and Q554X in this gene. These are the first XPC-causing mutations identified in Chinese patients.
Collapse
Affiliation(s)
- Ching-Wan Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
37
|
Blankenburg S, König IR, Moessner R, Laspe P, Thoms KM, Krueger U, Khan SG, Westphal G, Berking C, Volkenandt M, Reich K, Neumann C, Ziegler A, Kraemer KH, Emmert S. Assessment of 3 xeroderma pigmentosum group C gene polymorphisms and risk of cutaneous melanoma: a case-control study. Carcinogenesis 2005; 26:1085-90. [PMID: 15731165 DOI: 10.1093/carcin/bgi055] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Individuals with the rare DNA repair deficiency syndrome xeroderma pigmentosum (XP) are sensitive to the sun and exhibit a 1000-fold increased risk for developing skin cancers, including cutaneous melanoma. Inherited polymorphisms of XP genes may contribute to subtle variations in DNA repair capacity and genetic susceptibility to melanoma. We investigated the role of three polymorphic alleles of the DNA repair gene XPC in a hospital-based case-control study of 294 Caucasian patients from Germany who had cutaneous melanoma and 375 healthy cancer-free sex-matched Caucasian control subjects from the same area. We confirmed that the XPC intron 9 PAT+, intron 11 -6A, and the exon 15 2920C polymorphisms are in a linkage disequilibrium. Only 1.6% of the 669 donors genotyped were discordant for these three polymorphisms. The allele frequencies (cases: controls) were for intron 9 PAT+ 41.7%:36.9%, for intron 11 -6A 41.8%:37.0% and for exon 15 2920C 41.3%:37.3%. Using multivariate logistic regression analyses to control for age, skin type and number of nevi, the three polymorphisms were significantly associated with increased risks of melanoma: OR 1.87 (95% CI: 1.10-3.19; P = 0.022), OR 1.83 (95% CI: 1.07-3.11; P = 0.026), and OR 1.82 (95% CI: 1.07-3.08; P = 0.026), respectively. Exploratory multivariate analyses of distinct subgroups revealed that these polymorphisms were associated with increased risks for the development of multiple primary melanomas (n = 28). The results of our case-control study support the hypothesis that the intron 9 PAT+, intron 11 -6A and exon 15 2920C haplotype may contribute to the risk of developing cutaneous melanoma by increasing the rate of an alternatively spliced XPC mRNA isoform that skips exon 12 and leads to reduced DNA repair. Our results should be validated in independent samples in order to guard against false positive findings.
Collapse
|
38
|
Yu CE, Dawson G, Munson J, D’Souza I, Osterling J, Estes A, Leutenegger AL, Flodman P, Smith M, Raskind WH, Spence MA, McMahon W, Wijsman EM, Schellenberg GD. Presence of large deletions in kindreds with autism. Am J Hum Genet 2002; 71:100-115. [PMID: 12058345 PMCID: PMC384967 DOI: 10.1086/341291] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2002] [Accepted: 04/15/2002] [Indexed: 11/03/2022] Open
Abstract
Autism is caused, in part, by inheritance of multiple interacting susceptibility alleles. To identify these inherited factors, linkage analysis of multiplex families is being performed on a sample of 105 families with two or more affected sibs. Segregation patterns of short tandem repeat polymorphic markers from four chromosomes revealed null alleles at four marker sites in 12 families that were the result of deletions ranging in size from 5 to >260 kb. In one family, a deletion at marker D7S630 was complex, with two segments deleted (37 kb and 18 kb) and two retained (2,836 bp and 38 bp). Three families had deletions at D7S517, with each family having a different deletion (96 kb, 183 kb, and >69 kb). Another three families had deletions at D8S264, again with each family having a different deletion, ranging in size from <5.9 kb to >260 kb. At a fourth marker, D8S272, a 192-kb deletion was found in five families. Unrelated subjects and additional families without autism were screened for deletions at these four sites. Families screened included 40 families from Centre d'Etude du Polymorphisme Humaine and 28 families affected with learning disabilities. Unrelated samples were 299 elderly control subjects, 121 younger control subjects, and 248 subjects with Alzheimer disease. The deletion allele at D8S272 was found in all populations screened. For the other three sites, no additional deletions were identified in any of the groups without autism. Thus, these deletions appear to be specific to autism kindreds and are potential autism-susceptibility alleles. An alternative hypothesis is that autism-susceptibility alleles elsewhere cause the deletions detected here, possibly by inducing errors during meiosis.
Collapse
Affiliation(s)
- Chang-En Yu
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Geraldine Dawson
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Jeffrey Munson
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Ian D’Souza
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Julie Osterling
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Annette Estes
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Anne-Louise Leutenegger
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Pamela Flodman
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Moyra Smith
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Wendy H. Raskind
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - M. Anne Spence
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - William McMahon
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Ellen M. Wijsman
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| | - Gerard D. Schellenberg
- Geriatrics Research Education and Clinical Center, Puget Sound Veterans Affairs Medical Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, Department of Psychology and the Center on Human Development and Disability, Department of Biostatistics, Division of Medical Genetics, Department of Medicine, and Departments of Neurology and Pharmacology, University of Washington, Seattle; Department of Pediatrics, University of California, Irvine; and Division of Child and Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City
| |
Collapse
|
39
|
Uchida A, Sugasawa K, Masutani C, Dohmae N, Araki M, Yokoi M, Ohkuma Y, Hanaoka F. The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair (Amst) 2002; 1:449-61. [PMID: 12509233 DOI: 10.1016/s1568-7864(02)00031-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The xeroderma pigmentosum group C (XPC) protein specifically involved in genome-wide damage recognition for nucleotide excision repair (NER) was purified as a tight complex with HR23B, one of the two mammalian homologs of RAD23 in budding yeast. This XPC-HR23B complex exhibits strong binding affinity for single-stranded DNA, as well as preferential binding to various types of damaged DNA. To examine the structure-function relationship of XPC, a series of truncated mutant proteins were generated and assayed for various binding activities. The two domains participating in binding to HR23B and damaged DNA, respectively, were mapped within the carboxy-terminal half of XPC, which also contains an evolutionary conserved amino acid sequence homologous to the yeast RAD4 protein. We established that the carboxy-terminal 125 amino acids are dispensable for both HR23B and damaged DNA binding, while interactions with transcription factor IIH (TFIIH) are significantly impaired by truncation of this domain. Furthermore, deletion of the extreme carboxy-terminal domain totally abolished XPC activity in the cell-free NER reaction. These results suggest that following initial damage recognition, the carboxy terminus of XPC may be essential for the recruitment of TFIIH, and that most truncation mutations identified in XP-C patients result in non-functional proteins.
Collapse
Affiliation(s)
- Akio Uchida
- Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Emmert S, Slor H, Busch DB, Batko S, Albert RB, Coleman D, Khan SG, Abu-Libdeh B, DiGiovanna JJ, Cunningham BB, Lee MM, Crollick J, Inui H, Ueda T, Hedayati M, Grossman L, Shahlavi T, Cleaver JE, Kraemer KH. Relationship of neurologic degeneration to genotype in three xeroderma pigmentosum group G patients. J Invest Dermatol 2002; 118:972-82. [PMID: 12060391 DOI: 10.1046/j.1523-1747.2002.01782.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied three newly diagnosed xeroderma pigmentosum complementation group G patients with markedly different clinical features. An Israeli-Palestinian girl (XP96TA) had severe abnormalities suggestive of the xeroderma pigmentosum/Cockayne syndrome complex including sun sensitivity, neurologic and developmental impairment, and death by age 6 y. A Caucasian girl (XP82DC) also had severe sun sensitivity with neurologic and developmental impairment and died at 5.8 y. In contrast, a mildly affected 14-y-old Caucasian female (XP65BE) had sun sensitivity but no neurologic abnormalities. XP96TA, XP82DC, and XP65BE fibroblasts showed marked reductions in post-ultraviolet cell survival and DNA repair but these were higher in XP65BE than in XP82DC. XP96TA fibroblasts had very low XPG mRNA expression levels whereas XP65BE fibroblasts had nearly normal levels. Host cell reactivation of an ultraviolet-treated reporter assigned all three fibroblast strains to the rare xeroderma pigmentosum complementation group G (only 10 other patients previously reported). XP96TA and XP82DC cells had mutations in both XPG alleles that are predicted to result in severely truncated proteins including stop codons and two base frameshifts. The mild XP65BE patient had an early stop codon mutation in the paternal allele. The XP65BE maternal allele had a single base missense mutation (G2817A, Ala874Thr) that showed residual ability to complement xeroderma pigmentosum complementation group G cells. These observations agree with earlier studies demonstrating that XPG mutations, which are predicted to lead to severely truncated proteins in both alleles, were associated with severe xeroderma pigmentosum/Cockayne syndrome neurologic symptoms. Retaining residual functional activity in one allele was associated with mild clinical features without neurologic abnormalities.
Collapse
Affiliation(s)
- Steffen Emmert
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Autistic disorder is a behavioural syndrome beginning before the age of 3 years and lasting over the whole lifetime. It is characterised by impaired communication, impaired social interactions, and repetitive interests and behaviour. The prevalence is about 7/10,000 taking a restrictive definition and more than 1/500 with a broader definition, including all the pervasive developmental disorders. The importance of genetic factors has been highlighted by epidemiological studies showing that autistic disorder is one of the most genetic neuropsychiatric diseases. The relative risk of first relatives is about 100-fold higher than the risk in the normal population and the concordance in monozygotic twin is about 60%. Different strategies have been applied on the track of susceptibility genes. The systematic search of linked loci led to contradictory results, in part due to the heterogeneity of the clinical definitions, to the differences in the DNA markers, and to the different methods of analysis used. An oversimplification of the inferred model is probably also cause of our disappointment. More work is necessary to give a clearer picture. One region emerges more frequently: the long arm of chromosome 7. Several candidate genes have been studied and some gave indications of association: the Reelin gene and the Wnt2 gene. Cytogenetical abnormalities are frequent at 15q11-13, the region of the Angelman and Prader-Willi syndrome. Imprinting plays an important role in this region, no candidate gene has been identified in autism. Biochemical abnormalities have been found in the serotonin system. Association and linkage studies gave no consistent results with some serotonin receptors and in the transporter, although it seems interesting to go further in the biochemical characterisation of the serotonin transporter activity, particularly in platelets, easily accessible. Two monogenic diseases have been associated with autistic disorder: tuberous sclerosis and fragile X. A better knowledge of the pathophysiology of these disorders can help to understand autism. Different other candidate genes have been tested, positive results await replications in other samples. Animal models have been developed, generally by knocking out the different candidate genes. Behaviour studies have mainly focused on anxiety and learning paradigms. Another group of models results from surgical or toxic lesions of candidate regions in the brain, in general during development. The tools to analyse these animals are not yet standardised, and an important effort needs to be undertaken.
Collapse
|
42
|
Gozukara EM, Khan SG, Metin A, Emmert S, Busch DB, Shahlavi T, Coleman DM, Miller M, Chinsomboon N, Stefanini M, Kraemer KH. A stop codon in xeroderma pigmentosum group C families in Turkey and Italy: molecular genetic evidence for a common ancestor. J Invest Dermatol 2001; 117:197-204. [PMID: 11511294 DOI: 10.1046/j.1523-1747.2001.01424.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xeroderma pigmentosum family G from Van, Turkey had two severely affected children: a son with multiple skin cancers who died at age 10 (XP67TMA), and an 8 y old daughter who began developing skin cancer before 3 y of age (XP68TMA). XP67TMA and XP68TMA cells were hypersensitive to killing by ultraviolet and the post-ultraviolet DNA repair level was 12-16% of normal. Host cell reactivation of an ultraviolet-treated reporter plasmid cotransfected with a vector expressing wild-type XPC cDNA assigned XP67TMA to xeroderma pigmentosum complementation group C. The XPC mRNA level was markedly reduced. Sequencing of the 3.5 kb XPC cDNA from XP67TMA showed a C-T mutation in XPC exon 8 at base pair 1840. This mutation converts the CGA codon of arginine at amino acid 579 to a UGA stop codon resulting in marked truncation of the 940 amino acid xeroderma pigmentosum C protein. Restriction fragment length polymorphism analysis of XPC exon 8 DNA in XP67TMA and XP68TMA showed that both affected children had a homozygous mutation and that both parents had heterozygous normal and mutated sequences at the same position consistent with a history of consanguinity in the family. The mutated allele also contained two XPC single nucleotide polymorphisms. The same mutated XPC allele was reported in an Italian family. Studies of 19 microsatellite markers flanking the XPC gene on chromosome 3 suggest that the XPC allele passed between Italy and Turkey approximately 300-500 y ago. This XPC allele containing a nonsense mutation is associated with severe clinical disease with multiple skin cancers and early death.
Collapse
Affiliation(s)
- E M Gozukara
- Department of Biochemistry, Inönü University Medical School, Malatya, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Takebayashi Y, Pourquier P, Zimonjic DB, Nakayama K, Emmert S, Ueda T, Urasaki Y, Kanzaki A, Akiyama SI, Popescu N, Kraemer KH, Pommier Y. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nat Med 2001; 7:961-6. [PMID: 11479630 DOI: 10.1038/91008] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While investigating the novel anticancer drug ecteinascidin 743 (Et743), a natural marine product isolated from the Caribbean sea squirt, we discovered a new cell-killing mechanism mediated by DNA nucleotide excision repair (NER). A cancer cell line selected for resistance to Et743 had chromosome alterations in a region that included the gene implicated in the hereditary disease xeroderma pigmentosum (XPG, also known as Ercc5). Complementation with wild-type XPG restored the drug sensitivity. Xeroderma pigmentosum cells deficient in the NER genes XPG, XPA, XPD or XPF were resistant to Et743, and sensitivity was restored by complementation with wild-type genes. Moreover, studies of cells deficient in XPC or in the genes implicated in Cockayne syndrome (CSA and CSB) indicated that the drug sensitivity is specifically dependent on the transcription-coupled pathway of NER. We found that Et743 interacts with the transcription-coupled NER machinery to induce lethal DNA strand breaks.
Collapse
Affiliation(s)
- Y Takebayashi
- Laboratory of Molecular Pharmacology, National Cancer Institute/NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Emmert S, Schneider TD, Khan SG, Kraemer KH. The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res 2001; 29:1443-52. [PMID: 11266544 PMCID: PMC31292 DOI: 10.1093/nar/29.7.1443] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Defects in the XPG DNA repair endonuclease gene can result in the cancer-prone disorders xeroderma pigmentosum (XP) or the XP-Cockayne syndrome complex. While the XPG cDNA sequence was known, determination of the genomic sequence was required to understand its different functions. In cells from normal donors, we found that the genomic sequence of the human XPG gene spans 30 kb, contains 15 exons that range from 61 to 1074 bp and 14 introns that range from 250 to 5763 bp. Analysis of the splice donor and acceptor sites using an information theory-based approach revealed three splice sites with low information content, which are components of the minor (U12) spliceosome. We identified six alternatively spliced XPG mRNA isoforms in cells from normal donors and from XPG patients: partial deletion of exon 8, partial retention of intron 8, two with alternative exons (in introns 1 and 6) and two that retained complete introns (introns 3 and 9). The amount of alternatively spliced XPG mRNA isoforms varied in different tissues. Most alternative splice donor and acceptor sites had a relatively high information content, but one has the U12 spliceosome sequence. A single nucleotide polymorphism has allele frequencies of 0.74 for 3507G and 0.26 for 3507C in 91 donors. The human XPG gene contains multiple splice sites with low information content in association with multiple alternatively spliced isoforms of XPG mRNA.
Collapse
Affiliation(s)
- S Emmert
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Building 37 Room 3E24, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
45
|
Slor H, Batko S, Khan SG, Sobe T, Emmert S, Khadavi A, Frumkin A, Busch DB, Albert RB, Kraemer KH. Clinical, cellular, and molecular features of an Israeli xeroderma pigmentosum family with a frameshift mutation in the XPC gene: sun protection prolongs life. J Invest Dermatol 2000; 115:974-80. [PMID: 11121128 DOI: 10.1046/j.1523-1747.2000.00190.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An Ashkenazi Jewish Israeli family with two children affected with severe xeroderma pigmentosum was investigated. A son, XP12TA, developed skin cancer at 2 y and died at 10 y. A daughter, XP25TA, now 24 y old, was sun protected and began developing skin cancers at 10 y. Their cultured skin fibroblasts showed reductions in post-ultraviolet survival (11% of normal), unscheduled DNA synthesis (10% of normal), global genome DNA repair (15% of normal), and plasmid host cell reactivation (5% of normal). Transcription-coupled DNA repair was normal, however. Northern blot analysis revealed greatly reduced xeroderma pigmentosum complementation group C mRNA. A plasmid host cell reactivation assay assigned the cells to xeroderma pigmentosum complementation group C. Cells from both parents and an unaffected child exhibited normal post-ultraviolet-C survival and normal DNA repair. Sequencing the xeroderma pigmentosum complementation group C cDNA of XP12TA and XP25TA revealed a homozygous deletion of two bases (del AT 669-670) in exon 5 with a new termination site 10 codons downstream that is expected to encode a truncated xeroderma pigmentosum complementation group C protein. Sequence analysis of the xeroderma pigmentosum complementation group C cDNA in cells from the parents found identical heterozygous mutations: one allele carries both the exon 5 frameshift and an exon 15 polymorphism and the other allele carries neither alteration. Cells from the unaffected brother had two normal xeroderma pigmentosum complementation group C alleles. This frameshift mutation in the xeroderma pigmentosum complementation group C gene led to reduced DNA repair with multiple skin cancers and early death. Sun protection delayed the onset of skin cancer and prolonged life in a sibling with the same mutation.
Collapse
Affiliation(s)
- H Slor
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cleaver JE, Thompson LH, Richardson AS, States JC. A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat 2000; 14:9-22. [PMID: 10447254 DOI: 10.1002/(sici)1098-1004(1999)14:1<9::aid-humu2>3.0.co;2-6] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy are caused by mutations in a set of interacting gene products, which carry out the process of nucleotide excision repair. The majority of the genes have now been cloned and many mutations in the genes identified. The relationships between the distribution of mutations in the genes and the clinical presentations can be used for diagnosis and for understanding the functions and the modes of interaction among the gene products. The summary presented here represents currently known mutations that can be used as the basis for future studies of the structure, function, and biochemical properties of the proteins involved in this set of complex disorders, and may allow determination of the critical sites for mutations leading to different clinical manifestations. The summary indicates where more data are needed for some complementation groups that have few reported mutations, and for the groups for which the gene(s) are not yet cloned. These include the Xeroderma pigmentosum (XP) variant, the trichothiodystrophy group A (TTDA), and ultraviolet sensitive syndrome (UVs) groups. We also recommend that the XP-group E should be defined explicitly through molecular terms, because assignment by complementation in culture has been difficult. XP-E by this definition contains only those cell lines and patients that have mutations in the small subunit, DDB2, of a damage-specific DNA binding protein.
Collapse
Affiliation(s)
- J E Cleaver
- UCSF Cancer Center and Department of Dermatology, University of California, San Francisco 94143-0808, USA.
| | | | | | | |
Collapse
|
47
|
Emmert S, Kobayashi N, Khan SG, Kraemer KH. The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts. Proc Natl Acad Sci U S A 2000; 97:2151-6. [PMID: 10681431 PMCID: PMC15769 DOI: 10.1073/pnas.040559697] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the contribution of the xeroderma pigmentosum group C (XPC) gene to DNA repair. We stably transfected XPC cells (XP4PA-SV-EB) with XPC cDNA and selected a partially corrected (XP4PA-SE1) and a fully corrected (XP4PA-SE2) clone. Cell survival after UVC (254 nm) exposure was low for XP4PA-SV-EB, intermediate for XP4PA-SE1, and normal for XP4PA-SE2 cells. XP4PA-SV-EB cells had undetectable XPC mRNA and protein levels. XP4PA-SE1 cells had 130% of normal mRNA but 25% of normal protein levels, whereas XP4PA-SE2 cells had an 18-fold mRNA overexpression and normal XPC protein levels compared with normal cells. We measured cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP) by using specific mAbs and the ELISA technique. XP4PA-SV-EB cells had no detectable removal of CPD or 6-4PP from their global genome by 24 h after 30 J/m(2) UVC exposure. The partially corrected XP4PA-SE1 cells had normal repair of CPD but minimal repair of 6-4PP by 24 h, whereas the fully corrected XP4PA-SE2 cells regained normal CPD and 6-4PP repair capacities. We also exposed pRSVcat plasmid to UVC (to induce CPD and 6-4PP), to UVC + photolyase (to leave only 6-4PP on the plasmid), or to UVB + acetophenone (to induce only CPD). Host cell reactivation of UVB + acetophenone-, but not of UVC + photolyase-treated plasmids was normal in XP4PA-SE1 cells. Thus, increasing XPC gene expression leads to selective repair of CPD in the global genome. Undetectable XPC protein is associated with no repair of CPD or 6-4PP, detectable but subnormal XPC protein levels reconstitute CPD but not 6-4PP repair, and normal XPC protein levels fully reconstitute both CPD and 6-4PP repair.
Collapse
Affiliation(s)
- S Emmert
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
48
|
Quackenbush EJ, Kraemer KH, Gahl WA, Schirch V, Whiteman DA, Levine K, Levy HL. Hypoglycinaemia and psychomotor delay in a child with xeroderma pigmentosum. J Inherit Metab Dis 1999; 22:915-24. [PMID: 10604143 DOI: 10.1023/a:1005691424004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycine is a nonessential amino acid that serves as both an inhibitory and an excitatory neurotransmitter. Hyperglycinaemia occurs in non-ketotic hyperglycinaemia, a primary defect in the glycine cleavage pathway, and as a secondary feature of several inborn errors of organic acid metabolism. However, specifically low levels of glycine have never been reported. Here we report a child with complementation group C xeroderma pigmentosum (XP) characterized by a splice donor mutation in the XPC gene, multiple skin cancers and specific and persistent hypoglycinaemia. He has cognitive delay, lack of speech, autistic features, hyperactivity and hypotonia, all unexplained by the diagnosis of XP group C, a non-neurological form of the disease. Treatment with oral glycine has improved his hyperactivity. Specific hypoglycinaemia could indicate a metabolic disorder producing neurological dysfunction. Whether it is related to or coincidental with the XP is unclear.
Collapse
Affiliation(s)
- E J Quackenbush
- Division of Genetics, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Shultzaberger RK, Schneider TD. Using sequence logos and information analysis of Lrp DNA binding sites to investigate discrepancies between natural selection and SELEX. Nucleic Acids Res 1999; 27:882-7. [PMID: 9889287 PMCID: PMC148261 DOI: 10.1093/nar/27.3.882] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In vitro experiments that characterize DNA-protein interactions by artificial selection, such as SELEX,are often performed with the assumption that the experimental conditions are equivalent to natural ones. To test whether SELEX gives natural results, we compared sequence logos composed from naturally occurring leucine-responsive regulatory protein (Lrp) binding sites with those composed from SELEX-generated binding sites. The sequence logos were significantly different, indicating that the binding conditions are disparate. A likely explanation is that the SELEX experiment selected for a dimeric or trimeric Lrp complex bound to DNA. In contrast, natural sites appear to be bound by a monomer. This discrepancy suggests that in vitro selections do not necessarily give binding site sets comparable with the natural binding sites.
Collapse
Affiliation(s)
- R K Shultzaberger
- Catoctin High School, 14745 Sabillasville Road, Thurmont, MD 21788, USA
| | | |
Collapse
|