1
|
Dong Y, Wang L, Zhang K, Zhang H, Guo D. Prevalence and association with environmental factors and establishment of prediction model of atopic dermatitis in pet dogs in China. Front Vet Sci 2024; 11:1428805. [PMID: 39386248 PMCID: PMC11461458 DOI: 10.3389/fvets.2024.1428805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Canine atopic dermatitis (CAD) is a common skin disease in dogs. Various pathogenic factors contribute to CAD, with dust mites, environmental pathogens, and other substances being predominant. This research involved comprehensive statistical analysis and prediction of CAD in China, using data from 14 cities. A distributed lag nonlinear model (DLNM) was developed to evaluate the impact of environmental factors on CAD incidence. Additionally, a seasonal auto-regressive moving average (ARIMA) model was used to forecast the monthly number of CAD cases. The findings indicated that CAD mainly occurs during June, July, August, and September in China. There was a positive correlation found between CAD incidence and temperature and humidity, while a negative correlation was observed with CO, PM2.5, and other pollutants.
Collapse
Affiliation(s)
- Yingbo Dong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- New Ruipeng Pet Healthcare Group Co., Ltd., Nanjing, China
| | - Long Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Zhang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haibin Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dawei Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Loza-Rodríguez N, Millán-Sánchez A, Mallandrich M, Calpena AC, López O. Lipid-Based Gels for Delivery of 3-O-Ethyl L-Ascorbic acid in Topical Applications. Pharmaceutics 2024; 16:1187. [PMID: 39339223 PMCID: PMC11435238 DOI: 10.3390/pharmaceutics16091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
This study explores the incorporation of 10% 3-O-ethyl L-ascorbic acid (ETVC), a derivative of vitamin C, into two lipid gel systems: a hydrogel (HG) consisting exclusively of lipids and water and a bigel (BG) combining the hydrogel with an oleogel made from olive oil and beeswax. We investigated the ETVC release profiles from both materials using synthetic membranes and measured their permeation through porcine skin in vitro. Additionally, the interaction of these lipid gel systems with the stratum corneum (SC) was determined. Results from the release study indicate that the BG exhibited slower ETVC release compared to the HG. The permeation experiments showed that the presence of lipids in the formulations enhanced ETVC retention in the skin. The HG delivered a higher amount to the SC, while the BG achieved greater retention in the epidermis. This difference is attributed to the different lipophilic nature of each material. The structural analysis of SC lipids revealed that the organization of surface lipids remained unaltered by the application of the gels. Finally, an in vitro efficacy test in porcine skin using methylene blue indicated that our ETVC gels exhibited antioxidant activity. These findings provide valuable insights into the potential of lipid-based gels for topical applications.
Collapse
Affiliation(s)
- Noèlia Loza-Rodríguez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
- Bicosome S.L., C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Aina Millán-Sánchez
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, C/Joan XXII 27-31, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, C/Joan XXII 27-31, 08028 Barcelona, Spain
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
3
|
Oargă (Porumb) DP, Cornea-Cipcigan M, Cordea MI. Unveiling the mechanisms for the development of rosehip-based dermatological products: an updated review. Front Pharmacol 2024; 15:1390419. [PMID: 38666029 PMCID: PMC11043540 DOI: 10.3389/fphar.2024.1390419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rosa spp., commonly known as rosehips, are wild plants that have traditionally been employed as herbal remedies for the treatment of a wide range of disorders. Rosehip is a storehouse of vitamins, including A, B complex, C, and E. Among phytonutrients, vitamin C is found in the highest amount. As rosehips contain significant levels of vitamin C, they are perfect candidates for the development of skincare formulations that can be effectively used in the treatment of different skin disorders (i.e., scarring, anti-aging, hyperpigmentation, wrinkles, melasma, and atopic dermatitis). This research focuses on the vitamin C content of several Rosa sp. by their botanical and geographic origins, which according to research studies are in the following order: R. rugosa > R. montana > R. canina > R. dumalis, with lower levels in R. villosa and R. arvensis, respectively. Among rosehip species, R. canina is the most extensively studied species which also displays significant amounts of bioactive compounds, but also antioxidant, and antimicrobial activities (e.g., against Propionibacterium acnes, Staphylococcus aureus, S, epidermis, and S. haemolyticus). The investigation also highlights the use of rosehip extracts and oils to minimise the harmful effects of acne, which primarily affects teenagers in terms of their physical appearance (e.g., scarring, hyperpigmentation, imperfections), as well as their moral character (e.g., low self-confidence, bullying). Additionally, for higher vitamin C content from various rosehip species, the traditional (i.e., infusion, maceration, Soxhlet extraction) and contemporary extraction methods (i.e., supercritical fluid extraction, microwave-assisted, ultrasonic-assisted, and enzyme-assisted extractions) are highlighted, finally choosing the best extraction method for increased bioactive compounds, with emphasis on vitamin C content. Consequently, the current research focuses on assessing the potential of rosehip extracts as medicinal agents against various skin conditions, and the use of rosehip concentrations in skincare formulations (such as toner, serum, lotion, and sunscreen). Up-to-date studies have revealed that rosehip extracts are perfect candidates as topical application products in the form of nanoemulsions. Extensive in vivo studies have revealed that rosehip extracts also exhibit specific activities against multiple skin disorders (i.e., wound healing, collagen synthesis, atopic dermatitis, melasma, and anti-aging effects). Overall, with multiple dermatological actions and efficacies, rosehip extracts and oils are promising agents that require a thorough investigation of their functioning processes to enable their safe use in the skincare industry.
Collapse
Affiliation(s)
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mirela Irina Cordea
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Viegas J, Dias S, Carvalho AM, Sarmento B. Characterization of a human lesioned-skin model to assess the influence of skin integrity on drug permeability. Biomed Pharmacother 2023; 169:115841. [PMID: 37944442 DOI: 10.1016/j.biopha.2023.115841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The stratum corneum (SC) is the skin's outermost layer, organized by clusters of corneocytes among a lipid matrix, acting as a barrier. This "brick and mortar" organization is modified in many skin diseases. We proposed a lesioned-skin model for assessing the permeability of topical formulations and the impact of skin integrity on the permeability of molecules. We anticipate that removal of the SC compromises the skin barrier function, making it more permeable, affecting the biopharmaceutics of topical formulations. By stripping with 25 strips (Corneofix®), the thickness of the SC was considerably reduced, exposing the viable epidermis. Transversal and upper views of the skin by electronic microscopy and histology confirm the removal of the SC. After, we evaluated the permeability of tacrolimus (Protopic®, 0.1 % and 0.03 %) by HPLC-UV. The non-lesioned skin presented 20-25 % of tacrolimus in the SC and no drug permeated through the skin's inner layers. Contrary, the lesioned-skin model allowed the permeation of tacrolimus to the epidermis, dermis, and also in the receptor medium. These results highlight the importance of using diseased skin tissue as opposed to normal skin when assessing the permeability of pharmaceutical formulations for local topical delivery, closely mimicking the occurred events in clinical scenario.
Collapse
Affiliation(s)
- Juliana Viegas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Margarida Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
5
|
Turcov D, Zbranca-Toporas A, Suteu D. Bioactive Compounds for Combating Oxidative Stress in Dermatology. Int J Mol Sci 2023; 24:17517. [PMID: 38139345 PMCID: PMC10744063 DOI: 10.3390/ijms242417517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
There are extensive studies that confirm the harmful and strong influence of oxidative stress on the skin. The body's response to oxidative stress can vary depending on the type of reactive oxygen species (ROS) or reactive nitrogen species (RNS) and their metabolites, the duration of exposure to oxidative stress and the antioxidant capacity at each tissue level. Numerous skin diseases and pathologies are associated with the excessive production and accumulation of free radicals. title altered Both categories have advantages and disadvantages in terms of skin structures, tolerability, therapeutic performance, ease of application or formulation and economic efficiency. The effect of long-term treatment with antioxidants is evaluated through studies investigating their protective effect and the improvement of some phenomena caused by oxidative stress. This article summarizes the available information on the presence of compounds used in dermatology to combat oxidative stress in the skin. It aims to provide an overview of all the considerations for choosing an antioxidant agent, the topics for further research and the answers sought in order to optimize therapeutic performance.
Collapse
Affiliation(s)
- Delia Turcov
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University, 71 A Mangeron Blvd., 700500 Iasi, Romania;
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street no. 16, 700115 Iasi, Romania;
| | - Anca Zbranca-Toporas
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street no. 16, 700115 Iasi, Romania;
| | - Daniela Suteu
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University, 71 A Mangeron Blvd., 700500 Iasi, Romania;
| |
Collapse
|
6
|
Dai X, Hu Y, Jiang L, Lei L, Fu C, Wu S, Zhang X, Zhu L, Zhang F, Chen J, Zeng Q. Decreased oxidative stress response and oxidant detoxification of skin during aging. Mech Ageing Dev 2023; 216:111878. [PMID: 37827221 DOI: 10.1016/j.mad.2023.111878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Oxidative stress plays an important role in the skin aging process; however, the mechanisms are not fully elucidated. Especially the changes in various types of skin cells with aging and the key oxidative stress-related genes that play a regulatory role are not clear. In this study, single-cell RNA sequencing data and microarray transcriptome data were used to explore the changes in oxidative stress response and oxidant detoxification capacity of skin cells during aging and oxidative stress-related genes potentially involved in regulating skin aging were searched. The oxidative stress response and oxidant detoxification ability were weakened in the elderly compared with those of the young. Among the different types of skin cells, keratinocytes, melanocytes, vascular endothelial cells, fibroblasts, and lymphatic endothelial cells exhibited a stronger oxidative stress response and oxidant detoxification ability, while immune cells exhibited a weaker oxidative stress response and detoxification capacity. During aging, the oxidative stress response and oxidant detoxification capacity of keratinocytes, fibroblasts, macrophages, and vascular endothelial cells were significantly weakened. Annexin A1 (ANXA1) and Apolipoprotein E (APOE) may be key oxidative stress-related genes affecting skin aging.
Collapse
Affiliation(s)
- Xixia Dai
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaolin Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lu Zhu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Fan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
7
|
Joshi M, Hiremath P, John J, Ranadive N, Nandakumar K, Mudgal J. Modulatory role of vitamins A, B3, C, D, and E on skin health, immunity, microbiome, and diseases. Pharmacol Rep 2023; 75:1096-1114. [PMID: 37673852 PMCID: PMC10539462 DOI: 10.1007/s43440-023-00520-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
Disruption of the skin barrier and immunity has been associated with several skin diseases, namely atopic dermatitis (AD), psoriasis, and acne. Resident and non-resident immune cells and the barrier system of the skin are integral to innate immunity. Recent advances in understanding skin microbiota have opened the scope of further understanding the various communications between these microbiota and skin immune cells. Vitamins, being one of the important micronutrients, have been reported to exert antioxidant, anti-inflammatory, and anti-microbial effects. The immunomodulatory action of vitamins can halt the progression of skin diseases, and thus, understanding the immuno-pharmacology of these vitamins, especially for skin diseases can pave the way for their therapeutic potential. At the same time, molecular and cellular markers modulated with these vitamins and their derivatives need to be explored. The present review is focused on significant vitamins (vitamins A, B3, C, D, and E) consumed as nutritional supplements to discuss the outcomes and scope of studies related to skin immunity, health, and diseases.
Collapse
Affiliation(s)
- Mahika Joshi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Priyanka Hiremath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
8
|
Bocheva G, Slominski RM, Slominski AT. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int J Mol Sci 2023; 24:10502. [PMID: 37445680 PMCID: PMC10341863 DOI: 10.3390/ijms241310502] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D3, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Radomir M. Slominski
- Department of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Fadadu RP, Abuabara K, Balmes JR, Hanifin JM, Wei ML. Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2526. [PMID: 36767891 PMCID: PMC9916398 DOI: 10.3390/ijerph20032526] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Atopic dermatitis (AD) has increased in prevalence to become the most common inflammatory skin condition globally, and geographic variation and migration studies suggest an important role for environmental triggers. Air pollution, especially due to industrialization and wildfires, may contribute to the development and exacerbation of AD. We provide a comprehensive, multidisciplinary review of existing molecular and epidemiologic studies on the associations of air pollutants and AD symptoms, prevalence, incidence, severity, and clinic visits. Cell and animal studies demonstrated that air pollutants contribute to AD symptoms and disease by activating the aryl hydrocarbon receptor pathway, promoting oxidative stress, initiating a proinflammatory response, and disrupting the skin barrier function. Epidemiologic studies overall report that air pollution is associated with AD among both children and adults, though the results are not consistent among cross-sectional studies. Studies on healthcare use for AD found positive correlations between medical visits for AD and air pollutants. As the air quality worsens in many areas globally, it is important to recognize how this can increase the risk for AD, to be aware of the increased demand for AD-related medical care, and to understand how to counsel patients regarding their skin health. Further research is needed to develop treatments that prevent or mitigate air pollution-related AD symptoms.
Collapse
Affiliation(s)
- Raj P. Fadadu
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - John R. Balmes
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Division of Occupational and Environmental Medicine, University of California, San Francisco, CA 94143, USA
| | - Jon M. Hanifin
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maria L. Wei
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| |
Collapse
|
10
|
Tarshish E, Hermoni K, Sharoni Y, Muizzuddin N. Effect of Lumenato oral supplementation on plasma carotenoid levels and improvement of visual and experiential skin attributes. J Cosmet Dermatol 2022; 21:4042-4052. [PMID: 35020247 PMCID: PMC9786813 DOI: 10.1111/jocd.14724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cellular metabolism and exposure to solar irradiation result in generation of free radicals which are destructive and can lead to premature aging. Antioxidants and free radical scavengers such as carotenoids successfully protect from these free radicals by quenching and neutralizing them thereby strengthening skin barrier which leads to improved skin moisturization, desquamation, and a more youthful look. This study was designed to evaluate the consumer-perceived efficacy of an oral supplement (Lumenato™) containing a mix of tomato carotenoids and oil-soluble vitamins in improving skin appearance after 12 weeks of supplement use. MATERIALS AND METHODS Plasma levels of phytoene, phytofluene, zeta-carotene, and lycopene were quantitated before and after 1-, 2-, 3-, and 4-week administration of Lumenato by 24 healthy volunteers. Part II of the study addressed skin visual attributes as assessed by validated tools (questionnaires). A total of 60 females, aged 35 to 55 years, completed part II of the study. The subjects answered questionnaires pertaining to their assessment of skin appearance before and after 12 weeks of taking the supplement. RESULTS There was a significant increase (p < 0.001) in plasma levels of phytoene, phytofluene, and zeta-carotene after 1- to 4-week treatment with Lumenato. After 12 weeks of using the supplement, the score of different skin parameters was reported to significantly improve (p < 0.001). Improvement was recorded in skin elasticity, firmness, brightness, skin tone, reduction in dark spots and periorbital dark circles, skin hydration, texture and fine lines and wrinkles. A significant (p < 0.001) improvement in overall skin condition after using the supplement was observed. The subjects noticed statistically significant (p < 0.001) improvement in skin elasticity, firmness, brightness, skin tone, reduction in dark spots and periorbital dark circles, skin hydration, texture and fine lines and wrinkles after 12 weeks of using the supplement. The overall skin condition also exhibited a significant improvement (p < 0.001). Self-assessed improvement of the face was identified at the first time point (4 weeks) and improved significantly (p < 0.001) for the 12 weeks of use. Interestingly, these improvements persisted even after treatment was stopped. CONCLUSION Based on the confines and conditions of this study, the use of oral supplement containing a mix of tomato carotenoids significantly increased plasma levels of phytoene, phytofluene, and zeta-carotene, and continuous use resulted in improved facial skin attributes which were palpable by the consumers and continued even after treatment was stopped.
Collapse
Affiliation(s)
| | | | - Yoav Sharoni
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | | |
Collapse
|
11
|
Zhou Z, Lakey PSJ, von Domaros M, Wise N, Tobias DJ, Shiraiwa M, Abbatt JPD. Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Major Products and Kinetic Multilayer Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7716-7728. [PMID: 35671499 DOI: 10.1021/acs.est.2c01163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Commonly found in atmospheric aerosols, cooking oils, and human sebum, unsaturated lipids rapidly decay upon exposure to ozone, following the Criegee mechanism. Here, the gas-surface ozonolysis of three oleic acid-based compounds was studied in a reactor and indoors. Under dry conditions, quantitative product analyses by 1H NMR indicate up to 79% molar yield of stable secondary ozonides (SOZs) in oxidized triolein and methyl oleate coatings. Elevated relative humidity (RH) significantly suppresses the SOZ yields, enhancing the formation of condensed-phase aldehydes and volatile C9 products. Along with kinetic parameters informed by molecular dynamics simulations, these results were used as constraints in a kinetic multilayer model (KM-GAP) simulating triolein ozonolysis. Covering a wide range of coating thicknesses and ozone levels, the model predicts a much faster decay near the gas-lipid interface compared to the bulk. Although the dependence of RH on SOZ yields is well predicted, the model overestimates the production of H2O2 and aldehydes. With negligible dependence on RH, the product composition for oxidized oleic acid is substantially affected by a competitive reaction between Criegee intermediates (CIs) and carboxylic acids. The resulting α-acyloxyalkyl hydroperoxides (α-AAHPs) have much higher molar yields (29-38%) than SOZs (12-16%). Overall, the ozone-lipid chemistry could affect the indoor environment through "crust" accumulation on surfaces and volatile organic compound (VOC) emission. In the atmosphere, the peroxide formation and changes in particle hygroscopicity may have effects on climate. The related health impacts are also discussed.
Collapse
Affiliation(s)
- Zilin Zhou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Michael von Domaros
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Natsuko Wise
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
12
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
13
|
Camillo L, Grossini E, Farruggio S, Marotta P, Gironi LC, Zavattaro E, Savoia P. Alpha-Tocopherol Protects Human Dermal Fibroblasts by Modulating Nitric Oxide Release, Mitochondrial Function, Redox Status, and Inflammation. Skin Pharmacol Physiol 2021; 35:1-12. [PMID: 34237733 DOI: 10.1159/000517204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/01/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The altered balance between oxidants/antioxidants and inflammation, changes in nitric oxide (NO) release, and mitochondrial function have a role in skin aging through fibroblast modulation. Tocopherol is promising in counteracting the abovementioned events, but the effective mechanism of action needs to be clarified. OBJECTIVE The aim of this study was to examine the effects of α-tocopherol on cell viability/proliferation, NO release, mitochondrial function, oxidants/antioxidants, and inflammation in human dermal fibroblasts (HDF) subjected to oxidative stress. METHODS HDF were treated with H2O2 in the presence or absence of 1-10 μM α-tocopherol. Cell viability, reactive oxygen species (ROS), NO release, and mitochondrial membrane potential were measured; glutathione (GSH), superoxide dismutase (SOD)-1 and -2, glutathione peroxidase-1 (GPX-1), inducible NO synthase (iNOS), and Ki-67 were evaluated by RT-PCR and immunofluorescence; cell cycle was analyzed using FACS. Pro- and anti-inflammatory cytokine gene expression was analyzed through qRT-PCR. RESULTS α-Tocopherol counteracts H2O2, although it remains unclear whether this effect is dose dependent. Improvement of cell viability, mitochondrial membrane potential, Ki-67 expression, and G0/G1 and G2/M phases of the cell cycle was observed. These effects were accompanied by the increase of GSH content and the reduction of SOD-1 and -2, GPX-1, and ROS release. Also, iNOS expression and NO release were inhibited, and pro-inflammatory cytokine gene expression was decreased, confirming the putative role of α-tocopherol against inflammation. CONCLUSION α-Tocopherol exerts protective effects in HDF which underwent oxidative stress by modulating the redox status, inflammation, iNOS-dependent NO release, and mitochondrial function. These observations have a potential role in the prevention and treatment of photoaging-related skin cancers.
Collapse
Affiliation(s)
- Lara Camillo
- Department of Health Science, Dermatologic Unit, University of Eastern Piedmont, Novara, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Serena Farruggio
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Patrizia Marotta
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Elisa Zavattaro
- Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Paola Savoia
- Department of Health Science, Dermatologic Unit, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
14
|
Fadadu RP, Grimes B, Jewell NP, Vargo J, Young AT, Abuabara K, Balmes JR, Wei ML. Association of Wildfire Air Pollution and Health Care Use for Atopic Dermatitis and Itch. JAMA Dermatol 2021; 157:658-666. [PMID: 33881450 PMCID: PMC8060890 DOI: 10.1001/jamadermatol.2021.0179] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
IMPORTANCE Air pollution is a worldwide public health issue that has been exacerbated by recent wildfires, but the relationship between wildfire-associated air pollution and inflammatory skin diseases is unknown. OBJECTIVE To assess the associations between wildfire-associated air pollution and clinic visits for atopic dermatitis (AD) or itch and prescribed medications for AD management. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional time-series study assessed the associations of air pollution resulting from the California Camp Fire in November 2018 and 8049 dermatology clinic visits (4147 patients) at an academic tertiary care hospital system in San Francisco, 175 miles from the wildfire source. Participants included pediatric and adult patients with AD or itch from before, during, and after the time of the fire (October 2018 through February 2019), compared with those with visits in the same time frame of 2015 and 2016, when no large wildfires were near San Francisco. Data analysis was conducted from November 1, 2019, to May 30, 2020. EXPOSURES Wildfire-associated air pollution was characterized using 3 metrics: fire status, concentration of particulate matter less than 2.5 μm in diameter (PM2.5), and satellite-based smoke plume density scores. MAIN OUTCOMES AND MEASURES Weekly clinic visit counts for AD or itch were the primary outcomes. Secondary outcomes were weekly numbers of topical and systemic medications prescribed for AD in adults. RESULTS Visits corresponding to a total of 4147 patients (mean [SD] age, 44.6 [21.1] years; 2322 [56%] female) were analyzed. The rates of visits for AD during the Camp Fire for pediatric patients were 1.49 (95% CI, 1.07-2.07) and for adult patients were 1.15 (95% CI, 1.02-1.30) times the rate for nonfire weeks at lag 0, adjusted for temperature, relative humidity, patient age, and total patient volume at the clinics for pediatric patients. The adjusted rate ratios for itch clinic visits during the wildfire weeks were 1.82 (95% CI, 1.20-2.78) for the pediatric patients and 1.29 (95% CI, 0.96-1.75) for adult patients. A 10-μg/m3 increase in weekly mean PM2.5 concentration was associated with a 7.7% (95% CI, 1.9%-13.7%) increase in weekly pediatric itch clinic visits. The adjusted rate ratio for prescribed systemic medications in adults during the Camp Fire at lag 0 was 1.45 (95% CI, 1.03-2.05). CONCLUSIONS AND RELEVANCE This cross-sectional study found that short-term exposure to air pollution due to the wildfire was associated with increased health care use for patients with AD and itch. These results may provide a better understanding of the association between poor air quality and skin health and guide health care professionals' counseling of patients with skin disease and public health practice.
Collapse
Affiliation(s)
- Raj P Fadadu
- Department of Dermatology, University of California, San Francisco
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
- School of Public Health, University of California, Berkeley
| | - Barbara Grimes
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Nicholas P Jewell
- School of Public Health, University of California, Berkeley
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jason Vargo
- Office of Health Equity, California Department of Public Health, Richmond
| | - Albert T Young
- Department of Dermatology, University of California, San Francisco
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Katrina Abuabara
- Department of Dermatology, University of California, San Francisco
- School of Public Health, University of California, Berkeley
| | - John R Balmes
- School of Public Health, University of California, Berkeley
- Division of Occupational and Environmental Medicine, University of California, San Francisco
| | - Maria L Wei
- Department of Dermatology, University of California, San Francisco
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
15
|
Petracca B, Rothen-Rutishauser B, Valacchi G, Eeman M. Bench approaches to study the detrimental cutaneous impact of tropospheric ozone. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:137-148. [PMID: 33127990 DOI: 10.1038/s41370-020-00275-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Being exposed to ground-level ozone (O3), as it is often the case in polluted cities, is known to have a detrimental impact on skin. O3 induces antioxidant depletion and lipid peroxidation in the upper skin layers and this effect has repercussions on deeper cellular layers, triggering a cascade of cellular stress and inflammatory responses. Repetitive exposure to high levels of O3 may lead to chronic damages of the cutaneous tissue, cause premature skin aging and aggravate skin diseases such as contact dermatitis and urticaria. This review paper debates about the most relevant experimental approaches that must be considered to gather deeper insights about the complex biological processes that are activated when the skin is exposed to O3. Having a better understanding of O3 effects on skin barrier properties and stress responses could help the whole dermato-cosmetic industry to design innovative protective solutions and develop specific cosmetic regime to protect the skin of every citizen, especially those living in areas where exposure to high levels of O3 is of concern to human health.
Collapse
Affiliation(s)
- Benedetta Petracca
- Dow Silicones Belgium SRL, Seneffe, Belgium
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | | | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Animal Sciences, Kannapolis Research Campus, North Carolina State University, Raleigh, NC, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Marc Eeman
- Dow Silicones Belgium SRL, Seneffe, Belgium.
| |
Collapse
|
16
|
Fussell JC, Kelly FJ. Oxidative contribution of air pollution to extrinsic skin ageing. Free Radic Biol Med 2020; 151:111-122. [PMID: 31874249 PMCID: PMC7322554 DOI: 10.1016/j.freeradbiomed.2019.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022]
Abstract
•Epidemiological evidence links exposure to poor air quality to lentigines and wrinkles. •Experimental studies provide mechanistic explanations involving oxidative stress. •Polluted air may hasten skin ageing through indirect systemic effects via the lung and/or direct effects on cutaneous tissue. •Prevention measures would need to combine strategies that target both ‘routes’. •Air pollution is one of several environmental stressors that combined, may have additive/synergistic effects on the skin.
Collapse
Affiliation(s)
- Julia C Fussell
- NIHR Health Impact of Environmental Hazards HPRU, MRC Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Frank J Kelly
- NIHR Health Impact of Environmental Hazards HPRU, MRC Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
17
|
Woodby B, Penta K, Pecorelli A, Lila MA, Valacchi G. Skin Health from the Inside Out. Annu Rev Food Sci Technol 2020; 11:235-254. [DOI: 10.1146/annurev-food-032519-051722] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The skin is the main interface between the body and the environment, providing a biological barrier against an array of chemical and physical pollutants (e.g., ultraviolet light, ozone, etc.). Exposure of the skin to these outdoor stressors generates reactive oxygen species (ROS), which can overwhelm the skin's endogenous defense systems (e.g., catalase, vitamins C and E, etc.), resulting in premature skin aging due to the induction of DNA damage, mitochondrial damage, lipid peroxidation, activation of inflammatory signaling pathways, and formation of protein adducts. In this review, we discuss how topical application of antioxidants, including vitamins C and E, carotenoids, resveratrol, and pycnogenol, can be combined with dietary supplementation of these antioxidant compounds in addition to probiotics and essential minerals to protect against outdoor stressor-induced skin damage, including the damage associated with aging.
Collapse
Affiliation(s)
- Brittany Woodby
- Plants for Human Health Institute, Department of Animal Science, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Kayla Penta
- Plants for Human Health Institute, Department of Animal Science, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Science, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Animal Science, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Science, North Carolina State University, Kannapolis, North Carolina 28081, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, 02447 Seoul, South Korea
| |
Collapse
|
18
|
Markiewicz E, Idowu OC. DNA damage in human skin and the capacities of natural compounds to modulate the bystander signalling. Open Biol 2019; 9:190208. [PMID: 31847786 PMCID: PMC6936251 DOI: 10.1098/rsob.190208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Human skin is a stratified organ frequently exposed to sun-generated ultraviolet radiation (UVR), which is considered one of the major factors responsible for DNA damage. Such damage can be direct, through interactions of DNA with UV photons, or indirect, mainly through enhanced production of reactive oxygen species that introduce oxidative changes to the DNA. Oxidative stress and DNA damage also associate with profound changes at the cellular and molecular level involving several cell cycle and signal transduction factors responsible for DNA repair or irreversible changes linked to ageing. Crucially, some of these factors constitute part of the signalling known for the induction of biological changes in non-irradiated, neighbouring cells and defined as the bystander effect. Network interactions with a number of natural compounds, based on their known activity towards these biomarkers in the skin, reveal the capacity to inhibit both the bystander signalling and cell cycle/DNA damage molecules while increasing expression of the anti-oxidant enzymes. Based on this information, we discuss the likely polypharmacology applications of the natural compounds and next-generation screening technologies in improving the anti-oxidant and DNA repair capacities of the skin.
Collapse
|
19
|
Elpelt A, Albrecht S, Teutloff C, Hüging M, Saeidpour S, Lohan SB, Hedtrich S, Meinke MC. Insight into the redox status of inflammatory skin equivalents as determined by EPR spectroscopy. Chem Biol Interact 2019; 310:108752. [DOI: 10.1016/j.cbi.2019.108752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
|
20
|
Marrot L. Pollution and Sun Exposure: A Deleterious Synergy. Mechanisms and Opportunities for Skin Protection. Curr Med Chem 2019; 25:5469-5486. [PMID: 28925870 DOI: 10.2174/0929867324666170918123907] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pollutants are diverse chemical entities, including gases such as ozone and particulate matter PM. PM contains toxic chemicals such as polycyclic aromatic hydrocarbons (PAHs). Some PAHs can induce strong oxidative stress under UVA exposure. Pollution aggravates some skin diseases such as atopy or eczema, but epidemiological data also pointed to a correlation with early occurrence of (photo)-aging markers. OBJECTIVE This paper aims at reviewing current literature dealing with dermatological effects of pollution, either on in vitro models or using in vivo approaches (including humans). It particularly focuses on the probable deleterious synergy between pollutants and sunlight. RESULTS An exhaustive analysis of literature suggests that skin may be impacted by external stress through oxidation of some of its surface components. However, pollutants detected in plasma may also be provided to deep skin by the circulation of the blood. Oxidative stress, inflammation and metabolic impairments are among the most probable mechanisms of pollution- derived dermatological hazards. Moreover these stresses should be amplified by the deleterious synergy between pollution and sunlight. Some experiments from our lab identified few PAHs inducing a huge toxic stress, at nanomolar concentrations, when exposed to long UVA wavelengths. Prevention strategies should thus combine surface protection (long UVA sunscreens, antioxidants) and enhanced skin tissue resistance through stimulation of the natural antioxidation/detoxification pathway Nrf2. CONCLUSION In people exposed to highly polluted environments, pollutants and sunlight may synergistically damage skin, requiring a specific protection.
Collapse
|
21
|
Nahhas AF, Abdel-Malek ZA, Kohli I, Braunberger TL, Lim HW, Hamzavi IH. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light-induced oxidative stress. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:420-428. [PMID: 30198587 DOI: 10.1111/phpp.12423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 01/03/2023]
Abstract
Oxidative stress is an integral element that influences a variety of biochemical reactions throughout the body and is known to play a notable role in melanogenesis. Exogenous triggers of oxidative stress, such as ultraviolet radiation (UVR) and visible light (VL), lead to pigment formation through somewhat different pathways, but both share a common endpoint-the potential to generate cosmetically undesirable hyperpigmentation. Though organic and inorganic sunscreens are available to protect against the UVR portion of the electromagnetic spectrum, coverage is lacking to protect against the VL spectrum. In this manuscript, we review the phases of tanning, pathways of melanogenesis triggered by UVR and VL, and the associated impact of oxidative stress. We also discuss the known intrinsic mechanisms and paracrine regulation of melanocytes that influence their response to UVR. Understanding these mechanisms and their role in UVR-induced hyperpigmentation should potentially lead to identification of useful targets that can be coupled with antioxidant therapy to alleviate this effect.
Collapse
Affiliation(s)
- Amanda F Nahhas
- Department of Dermatology, Beaumont-Farmington Hills, Farmington Hills, Michigan.,Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Indermeet Kohli
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | |
Collapse
|
22
|
Wang K, Jiang H, Li W, Qiang M, Dong T, Li H. Role of Vitamin C in Skin Diseases. Front Physiol 2018; 9:819. [PMID: 30022952 PMCID: PMC6040229 DOI: 10.3389/fphys.2018.00819] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
Vitamin C (ascorbic acid) plays an important role in maintaining skin health and can promote the differentiation of keratinocytes and decrease melanin synthesis, leading to antioxidant protection against UV-induced photodamage. Normal skin needs high concentrations of vitamin C, which plays many roles in the skin, including the formation of the skin barrier and collagen in the dermis, the ability to counteract skin oxidation, and the modulation of cell signal pathways of cell growth and differentiation. However, vitamin C deficiency can cause or aggravate the occurrence and development of some skin diseases, such as atopic dermatitis (AD) and porphyria cutanea tarda (PCT). Levels of vitamin C in plasma are decreased in AD, and vitamin C deficiency may be one of the factors that contributes to the pathogenesis of PCT. On the other hand, high doses of vitamin C have significantly reduced cancer cell viability, as well as invasiveness, and induced apoptosis in human malignant melanoma. In this review, we will summarize the effects of vitamin C on four skin diseases (porphyria cutanea tarda, atopic dermatitis, malignant melanoma, and herpes zoster and postherpetic neuralgia) and highlight the potential of vitamin C as a therapeutic strategy to treat these diseases, emphasizing the clinical application of vitamin C as an adjuvant for drugs or physical therapy in other skin diseases.
Collapse
Affiliation(s)
- Kaiqin Wang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hui Jiang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenshuang Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyue Qiang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tianxiang Dong
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongbin Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
23
|
Cosmetic Functional Ingredients from Botanical Sources for Anti-Pollution Skincare Products. COSMETICS 2018. [DOI: 10.3390/cosmetics5010019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
24
|
Abstract
The skin cells continuously produce, through cellular respiration, metabolic processes or under external aggressions, highly reactive molecules oxidation products, generally called free radicals. These molecules are immediately neutralized by enzymatic and non-enzymatic systems in a physiological and dynamic balance. In situations where this balance is broken, various cellular structures, such as the cell membrane, nuclear or mitochondrial DNA may suffer structural modifications, triggering or worsening skin diseases. several substances with alleged antioxidant effects has been offered for topical or oral use, but little is known about their safety, possible associations and especially their mechanism of action. The management of topical and oral antioxidants can help dermatologist to intervene in the oxidative processes safely and effectively, since they know the mechanisms, limitations and potential risks of using these molecules as well as the potential benefits of available associations.
Collapse
|
25
|
Jeong SK, Choe SJ, Lim CJ, Park K, Park K. Micronutrients in Skin Immunity and Associated Diseases. IMMUNITY AND INFLAMMATION IN HEALTH AND DISEASE 2018:257-270. [DOI: 10.1016/b978-0-12-805417-8.00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Pullar JM, Carr AC, Vissers MCM. The Roles of Vitamin C in Skin Health. Nutrients 2017; 9:E866. [PMID: 28805671 PMCID: PMC5579659 DOI: 10.3390/nu9080866] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
The primary function of the skin is to act as a barrier against insults from the environment, and its unique structure reflects this. The skin is composed of two layers: the epidermal outer layer is highly cellular and provides the barrier function, and the inner dermal layer ensures strength and elasticity and gives nutritional support to the epidermis. Normal skin contains high concentrations of vitamin C, which supports important and well-known functions, stimulating collagen synthesis and assisting in antioxidant protection against UV-induced photodamage. This knowledge is often used as a rationale for the addition of vitamin C to topical applications, but the efficacy of such treatment, as opposed to optimising dietary vitamin C intake, is poorly understood. This review discusses the potential roles for vitamin C in skin health and summarises the in vitro and in vivo research to date. We compare the efficacy of nutritional intake of vitamin C versus topical application, identify the areas where lack of evidence limits our understanding of the potential benefits of vitamin C on skin health, and suggest which skin properties are most likely to benefit from improved nutritional vitamin C intake.
Collapse
Affiliation(s)
- Juliet M Pullar
- Department of Pathology, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand.
| | - Anitra C Carr
- Department of Pathology, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand.
| | - Margreet C M Vissers
- Department of Pathology, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand.
| |
Collapse
|
27
|
Lakey PSJ, Wisthaler A, Berkemeier T, Mikoviny T, Pöschl U, Shiraiwa M. Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects. INDOOR AIR 2017; 27:816-828. [PMID: 27943451 DOI: 10.1111/ina.12360] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/30/2016] [Indexed: 05/03/2023]
Abstract
Ozone reacts with skin lipids such as squalene, generating an array of organic compounds, some of which can act as respiratory or skin irritants. Thus, it is important to quantify and predict the formation of these products under different conditions in indoor environments. We developed the kinetic multilayer model that explicitly resolves mass transport and chemical reactions at the skin and in the gas phase (KM-SUB-Skin). It can reproduce the concentrations of ozone and organic compounds in previous measurements and new experiments. This enabled the spatial and temporal concentration profiles in the skin oil and underlying skin layers to be resolved. Upon exposure to ~30 ppb ozone, the concentrations of squalene ozonolysis products in the gas phase and in the skin reach up to several ppb and on the order of ~10 mmol m-3 . Depending on various factors including the number of people, room size, and air exchange rates, concentrations of ozone can decrease substantially due to reactions with skin lipids. Ozone and dicarbonyls quickly react away in the upper layers of the skin, preventing them from penetrating deeply into the skin and hence reaching the blood.
Collapse
Affiliation(s)
- P S J Lakey
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - A Wisthaler
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - T Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - T Mikoviny
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - U Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - M Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
28
|
Fischer H, Fumicz J, Rossiter H, Napirei M, Buchberger M, Tschachler E, Eckhart L. Holocrine Secretion of Sebum Is a Unique DNase2-Dependent Mode of Programmed Cell Death. J Invest Dermatol 2017; 137:587-594. [PMID: 27771328 DOI: 10.1016/j.jid.2016.10.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Sebaceous glands produce sebum via holocrine secretion, a largely uncharacterized mode of programmed cell death that contributes to the homeostasis and barrier function of the skin. To determine the mechanism of DNA degradation during sebocyte cell death, we have inactivated candidate DNA-degrading enzymes by targeted gene deletions in mice. DNase1 and DNase1-like 2 were dispensable for nuclear DNA degradation in sebocytes. By contrast, epithelial cell-specific deletion of lysosomal DNase2 blocked DNA degradation in these cells. DNA breakdown during sebocyte differentiation coincided with the loss of LAMP1 and was accelerated by the abrogation of autophagy, the central cellular program of lysosome-dependent catabolism. Suppression of DNA degradation by the deletion of DNase2 resulted in aberrantly increased concentrations of residual DNA and decreased amounts of the DNA metabolite uric acid in secreted sebum. These results define holocrine secretion as a DNase2-mediated form of programmed cell death and suggest that autophagy-dependent metabolism, DNA degradation, and the molecular composition of sebum are mechanistically linked.
Collapse
Affiliation(s)
- Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Judith Fumicz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Rossiter
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Oxidative Stress and Ageing: The Influence of Environmental Pollution, Sunlight and Diet on Skin. COSMETICS 2017. [DOI: 10.3390/cosmetics4010004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Markina M, Stozhko N, Krylov V, Vidrevich M, Brainina K. Nanoparticle-based paper sensor for thiols evaluation in human skin. Talanta 2017; 165:563-569. [PMID: 28153299 DOI: 10.1016/j.talanta.2017.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
A new sensitive non-invasive gold nanoparticle-based sensor that enables to detect thiols in the human skin has been developed. The detection procedure implied the assessment of the color change of a paper sensor resulting from aggregation of gold nanoparticles caused by thiols. The ratio of the intensity of the photo image blue channel vs the red one (in units of RGB coloration) served as analytical response. The main thiol in the skin is glutathione, therefore, it was used as model biothiol and spiking substance. The range of linearity for glutathione was 8-75µM, the detection limit was 6.9µM. RSD≤7% is for inter-day determination of 10μM glutathione and RSD≤12% is the intra-day value. The recovery of 5µM and 10µM of glutathione was evaluated by applying solution, containing thiol-spikes, on skin. The results varied in the range 77-138%. A hundred-fold excess of serine, alanine, histidine, threonine, creatinine, urea, and ammonia; a ten-fold excess of glycine, proline, leucine, isoleucine, phenylalanine, asparagine; and a five-fold excess of valine, tryptophan, tyrosine, and uric acid, which can be extracted from the skin and is contained in the test matrix, have no significant effect on 10µM glutathione signal. Thiols level in the skin of volunteers (21-65 years old, men and women) detected with the use of a proposed non-invasive sensor was 11.6-47.5µM.
Collapse
Affiliation(s)
- M Markina
- Ural State University of Economics, 8 March St., 62, Ekaterinburg 620144, Russian Federation
| | - N Stozhko
- Ural State University of Economics, 8 March St., 62, Ekaterinburg 620144, Russian Federation
| | - V Krylov
- Ural State University of Economics, 8 March St., 62, Ekaterinburg 620144, Russian Federation
| | - M Vidrevich
- Ural State University of Economics, 8 March St., 62, Ekaterinburg 620144, Russian Federation
| | - Kh Brainina
- Ural State University of Economics, 8 March St., 62, Ekaterinburg 620144, Russian Federation; Ural Federal University, Lenin Ave., 51, Ekaterinburg 620000, Russian Federation.
| |
Collapse
|
31
|
Markina M, Lebedeva E, Neudachina L, Stozhko N, Brainina K. Determination of Antioxidants in Human Skin by Capillary Zone Electrophoresis and Potentiometry. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1124111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Ishiwatari S, Takahashi M, Yasuda C, Nakagawa M, Saito Y, Noguchi N, Matsukuma S. The protective role of DJ-1 in ultraviolet-induced damage of human skin: DJ-1 levels in the stratum corneum as an indicator of antioxidative defense. Arch Dermatol Res 2015; 307:925-935. [PMID: 26498291 DOI: 10.1007/s00403-015-1605-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023]
Abstract
DJ-1 is a multifunctional protein associated with Parkinson's disease and plays a significant role in protecting nerve cells from oxidative stress. DJ-1 is expressed in the skin, although its function there is unknown. In this study, we investigated DJ-1 function in keratinocytes. DJ-1 was induced by H2O2 exposure and UV irradiation in keratinocytes. DJ-1 knockdown with small interfering RNA (siRNA) increased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release after UVB irradiation, suggesting that DJ-1 reduces ROS and might protect skin cells from UV damage in vitro. To investigate the in vivo role of DJ-1 in the skin, we determined DJ-1 levels in human stratum corneum samples obtained by the tape-stripping method. DJ-1 levels in the stratum corneum (scDJ-1) correlated with total antioxidant capacity. We also examined the effect of scDJ-1 on changes in skin after UVB irradiation. DJ-1 was elevated in SC from the upper arm 1 to 2 weeks after UVB irradiation. One day after UVB irradiation, L* (brightness) and a* (redness) values, indicators of skin color, were altered regardless of scDJ-1 expression. However, these values recovered more quickly in subjects with high scDJ-1 expression than in those with low scDJ-1 expression. These data suggest that DJ-1 in skin plays a significant role in protection against UV radiation and oxidative stress, and that DJ-1 levels in the SC might be an indicator of antioxidative defense against UV-induced damage.
Collapse
Affiliation(s)
| | | | - Chie Yasuda
- Fancl Research Institute, Totsuka, Yokohama, 244-0806, Japan
| | - Maho Nakagawa
- Fancl Research Institute, Totsuka, Yokohama, 244-0806, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Shoko Matsukuma
- Fancl Research Institute, Totsuka, Yokohama, 244-0806, Japan
| |
Collapse
|
33
|
Mancebo SE, Wang SQ. Recognizing the impact of ambient air pollution on skin health. J Eur Acad Dermatol Venereol 2015; 29:2326-32. [PMID: 26289769 DOI: 10.1111/jdv.13250] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
Ambient air pollution is a known public health hazard that negatively impacts non-cutaneous organs; however, our knowledge regarding the effects on skin remains limited. Current scientific evidence suggests there are four mechanisms by which ambient air pollutants cause adverse effects on skin health: (i) generation of free radicals, (ii) induction of inflammatory cascade and subsequent impairment of skin barrier, (iii) activation of the aryl hydrocarbon receptor (AhR) and (iv) alterations to skin microflora. In this review, we provide a comprehensive overview on ambient air pollutants and their relevant sources, and highlight current evidence of the effects on skin.
Collapse
Affiliation(s)
- S E Mancebo
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Q Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
34
|
Valacchi G, Sticozzi C, Belmonte G, Cervellati F, Demaude J, Chen N, Krol Y, Oresajo C. Vitamin C Compound Mixtures Prevent Ozone-Induced Oxidative Damage in Human Keratinocytes as Initial Assessment of Pollution Protection. PLoS One 2015; 10:e0131097. [PMID: 26270818 PMCID: PMC4536008 DOI: 10.1371/journal.pone.0131097] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/28/2015] [Indexed: 01/30/2023] Open
Abstract
Introduction One of the main functions of cutaneous tissues is to protect our body from the outdoor insults. Ozone (O3) is among the most toxic stressors to which we are continuously exposed and because of its critical location, the skin is one of the most susceptible tissues to the oxidative damaging effect of O3. O3 is not able to penetrate the skin, and although it is not a radical per se, the damage is mainly a consequence of its ability to induce oxidative stress via the formation of lipid peroxidation products. Aim of Study In this study we investigated the protective effect of defined “antioxidant” mixtures against O3 induced oxidative stress damage in human keratinocytes and understand their underlying mechanism of action. Results Results showed that the mixtures tested were able to protect human keratinocytes from O3-induced cytotoxicity, inhibition of cellular proliferation, decrease the formation of HNE protein adducts, ROS, and carbonyls levels. Furthermore, we have observed the decreased activation of the redox sensitive transcription factor NF-kB, which is involved in transcribing pro-inflammatory cytokines and therefore constitutes one of the main players associated with O3 induced skin inflammation. Cells exposed to O3 demonstrated a dose dependent increase in p65 subunit nuclear expression as a marker of NF-kB activation, while pre-treatment with the mixtures abolished NF-kB nuclear translocation. In addition, a significant activation of Nrf2 in keratinocytes treated with the mixtures was also observed. Conclusion Overall this study was able to demonstrate a protective effect of the tested compounds versus O3-induced cell damage in human keratinocytes. Pre-treatment with the tested compounds significantly reduced the oxidative damage induced by O3 exposure and this protective effect was correlated to the abolishment of NF-kB nuclear translocation, as well as activation of Nrf2 nuclear translocation activating the downstream defence enzymes involved in cellular detoxification process.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Life Science and Biotechnologies, University of Ferrara, Via L. Borsari, Ferrara, Italy
- Department of Food and Function, Kyung Hee University, Seoul, South Korea
- * E-mail:
| | - Claudia Sticozzi
- Department of Life Science and Biotechnologies, University of Ferrara, Via L. Borsari, Ferrara, Italy
| | - Giuseppe Belmonte
- Department of Life Science and Biotechnologies, University of Ferrara, Via L. Borsari, Ferrara, Italy
| | - Franco Cervellati
- Department of Life Science and Biotechnologies, University of Ferrara, Via L. Borsari, Ferrara, Italy
| | | | - Nannan Chen
- L’Oreal Research and Innovation, Clark, New Jersey, United States of America
| | - Yevgeniy Krol
- Skinceuticals, Inc., New York, New York, United States of America
| | - Christian Oresajo
- L’Oreal Research and Innovation, Clark, New Jersey, United States of America
| |
Collapse
|
35
|
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015; 5:545-89. [PMID: 25906193 PMCID: PMC4496685 DOI: 10.3390/biom5020545] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria.
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
36
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
37
|
Peng Y, Xuan M, Leung VYL, Cheng B. Stem cells and aberrant signaling of molecular systems in skin aging. Ageing Res Rev 2015; 19:8-21. [PMID: 25446806 DOI: 10.1016/j.arr.2014.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
The skin is the body's largest organ and it is able to self-repair throughout an individual's life. With advanced age, skin is prone to degenerate in response to damage. Although cosmetic surgery has been widely adopted to rejuvinate skin, we are far from a clear understanding of the mechanisms responsible for skin aging. Recently, adult skin-resident stem/progenitor cells, growth arrest, senescence or apoptotic death and dysfunction caused by alterations in key signaling genes, such as Ras/Raf/MEK/ERK, PI3K/Akt-kinases, Wnt, p21 and p53, have been shown to play a vital role in skin regeneration. Simultaneously, enhanced telomere attrition, hormone exhaustion, oxidative stress, genetic events and ultraviolet radiation exposure that result in severe DNA damage, genomic instability and epigenetic mutations also contribute to skin aging. Therefore, cell replacement and targeting of the molecular systems found in skin hold great promise for controlling or even curing skin aging.
Collapse
Affiliation(s)
- Yan Peng
- Department of Orthopaedics & Traumatology, LKS Faculty of Medicine, The University of Hong Kong, L9-12, Lab block, Hong Kong, SAR, China; Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou command, The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, GuangDong, 510010, PR China
| | - Min Xuan
- Southern Medical University, Guangzhou, 510010, PR China; Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou command, The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, GuangDong, 510010, PR China
| | - Victor Y L Leung
- Department of Orthopaedics & Traumatology, LKS Faculty of Medicine, The University of Hong Kong, L9-12, Lab block, Hong Kong, SAR, China.
| | - Biao Cheng
- Southern Medical University, Guangzhou, 510010, PR China.
| |
Collapse
|
38
|
Krutmann J, Liu W, Li L, Pan X, Crawford M, Sore G, Seite S. Pollution and skin: From epidemiological and mechanistic studies to clinical implications. J Dermatol Sci 2014; 76:163-8. [DOI: 10.1016/j.jdermsci.2014.08.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/11/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022]
|
39
|
The role of antioxidants in skin cancer prevention and treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:860479. [PMID: 24790705 PMCID: PMC3984781 DOI: 10.1155/2014/860479] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/24/2014] [Indexed: 11/17/2022]
Abstract
Skin cells are constantly exposed to reactive oxygen species (ROS) and oxidative stress from exogenous and endogenous sources. UV radiation is the most important environmental factor in the development of skin cancer and skin aging. The primary products caused by UV exposure are generally direct DNA oxidation or generation of free radicals which form and decompose extremely quickly but can produce effects that can last for hours, days, or even years. UV-induced generation of ROS in the skin develops oxidative stress when their formation exceeds the antioxidant defense ability. The reduction of oxidative stress can be achieved on two levels: by lowering exposure to UVR and/or by increasing levels of antioxidant defense in order to scavenge ROS. The only endogenous protection of our skin is melanin and enzymatic antioxidants. Melanin, the pigment deposited by melanocytes, is the first line of defense against DNA damage at the surface of the skin, but it cannot totally prevent skin damage. A second category of defense is repair processes, which remove the damaged biomolecules before they can accumulate and before their presence results in altered cell metabolism. Additional UV protection includes avoidance of sun exposure, usage of sunscreens, protective clothes, and antioxidant supplements.
Collapse
|
40
|
Abstract
It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.
Collapse
Affiliation(s)
- Borut Poljsak
- University of Ljubljana, Faculty of Health Studies, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
41
|
Oresajo C, Pillai S, Manco M, Yatskayer M, McDaniel D. Antioxidants and the skin: understanding formulation and efficacy. Dermatol Ther 2013; 25:252-9. [PMID: 22913443 DOI: 10.1111/j.1529-8019.2012.01505.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antioxidants are molecules capable of inhibiting the oxidation of other molecules. Although oxidation reactions are essential for life, they can also be damaging. All living organisms maintain complex systems of multiple types of antioxidants to protect their cells from oxidative damage. Antioxidants can also act as pro-oxidants, under certain circumstances. The efficacy and benefit of an antioxidant is, therefore, very much dependent on the delivery of the antioxidant to the organism. Topically applied antioxidants constitute an important group of pharmacologically active agents capable of preventing the occurrence and reducing the severity of UV-induced skin damage and skin aging. Antioxidants protect skin cells against the damaging effects of reactive oxygen species (ROS), such as singlet oxygen, superoxide, peroxyl radicals, hydroxyl radicals, and peroxynitrite. ROS induced oxidative stress in the skin has been linked to cancer, aging, inflammation, and photodamage. This review focuses on antioxidants used in the cosmetic industry for protection of skin, formulation methods used to enhance their efficacy, and methods used to test the efficacy of antioxidants in topical formulations.
Collapse
|
42
|
Abla MJ, Banga AK. Quantification of skin penetration of antioxidants of varying lipophilicity. Int J Cosmet Sci 2012; 35:19-26. [DOI: 10.1111/j.1468-2494.2012.00728.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Affiliation(s)
- M. J. Abla
- College of Pharmacy and Health Sciences; Mercer University; Atlanta; GA; 30341; USA
| | - A. K. Banga
- College of Pharmacy and Health Sciences; Mercer University; Atlanta; GA; 30341; USA
| |
Collapse
|
43
|
Evaluation of the antioxidative capability of commonly used antioxidants in dermocosmetics by in vivo detection of protein carbonylation in human stratum corneum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 112:7-15. [PMID: 22537778 DOI: 10.1016/j.jphotobiol.2012.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/22/2012] [Accepted: 03/28/2012] [Indexed: 12/31/2022]
Abstract
We present an in vivo test platform to evaluate the antioxidative capability of seven frequently used dermocosmetic antioxidants on the human stratum corneum (SC). It has been reported that the protein carbonylation could be used as a biomarker for oxidative stress. The current study detects the change of the level of exposed protein carbonyl group in the most outer layer of human SC. The concentration of the antioxidant in each subject emulsion formulation was 0.5% (w/w). The data indicated that alpha-tocopherol (α-Vit E) and ascorbic acid (Vit C) have excellent antioxidative capability and α-Vit E-acetate possesses better than the average antioxidative capability. The bioconversion of α-Vit E-acetate to α-Vit E may occur in the human SC during a less than 2 weeks time course test. Lipoic acid possessed moderate antioxidative capability. Ascorbyl 6-palmitate had a low antioxidative capability. Ascorbic acid 2-glucoside represented an insignificant antioxidative capability. Glutathion (GSH) had no effect on reducing oxidative damage to human SC proteins, implying that the GSH recycling system could be absent in human SC. This test platform is an useful tool to evaluate the antioxidative efficiency of antioxidants on human SC proteins.
Collapse
|
44
|
Free radicals and extrinsic skin aging. Dermatol Res Pract 2012; 2012:135206. [PMID: 22505880 PMCID: PMC3299230 DOI: 10.1155/2012/135206] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/18/2011] [Accepted: 12/26/2011] [Indexed: 01/22/2023] Open
Abstract
Human skin is constantly directly exposed to the air, solar radiation, environmental pollutants, or other mechanical and chemical insults, which are capable of inducing the generation of free radicals as well as reactive oxygen species (ROS) of our own metabolism. Extrinsic skin damage develops due to several factors: ionizing radiation, severe physical and psychological stress, alcohol intake, poor nutrition, overeating, environmental pollution, and exposure to UV radiation (UVR). It is estimated that among all these environmental factors, UVR contributes up to 80%. UV-induced generation of ROS in the skin develops oxidative stress, when their formation exceeds the antioxidant defence ability of the target cell. The primary mechanism by which UVR initiates molecular responses in human skin is via photochemical generation of ROS mainly formation of superoxide anion (O2−∙), hydrogen peroxide (H2O2), hydroxyl radical (OH∙), and singlet oxygen (1O2). The only protection of our skin is in its endogenous protection (melanin and enzymatic antioxidants) and antioxidants we consume from the food (vitamin A, C, E, etc.). The most important strategy to reduce the risk of sun UVR damage is to avoid the sun exposure and the use of sunscreens. The next step is the use of exogenous antioxidants orally or by topical application and interventions in preventing oxidative stress and in enhanced DNA repair.
Collapse
|
45
|
Ikeno H, Tochio T, Tanaka H, Nakata S. Decrease in glutathione may be involved in pathogenesis of acne vulgaris. J Cosmet Dermatol 2012; 10:240-4. [PMID: 21896138 DOI: 10.1111/j.1473-2165.2011.00570.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Some past studies reported that oxidative stress components such as reactive oxygen species (ROS) or lipid peroxide (LPO) are involved in the pathogenesis and progression of acne vulgaris. In this study, we hypothesized that the pathogenesis of acne vulgaris may depend on the differences in antioxidative activity among antioxidants in our body. We collected samples of stratum corneum from acne patients and healthy subjects and compared the quantity of gluthathione (GSH), one of many antioxidative components in our body, for comparison. METHODS Samples of stratum corneum were collected from facial acne-involved lesion, facial uninvolved area, and the medial side of the upper arm in acne vulgaris patients. Similarly, samples were collected from a facial uninvolved area and the medial side of the upper arm in healthy subjects. The quantity of GSH was measured in each area. In vitro effects of alpha-melanocyte stimulating hormone (α-MSH) on GSH synthesis-related gene were also examined. RESULTS The quantity of GSH in stratum corneum from each area was significantly lower in acne vulgaris patients than that of healthy subjects. There was no significant difference in quantity of GSH between the acne-involved lesion and uninvolved area in acne patients. In vitro studies showed that the expression level of Glutamate-cysteine ligase catalytic subunit (GCLC), one of the GSH synthesis-related genes, was significantly decreased by the additional use of α-MSH. CONCLUSIONS We conclude that a decline in antioxidative activity led by a decrease in GSH quantity may play an important role in pathogenesis of acne vulgaris. The use of α-MSH may further decrease the GSH level.
Collapse
Affiliation(s)
- Hiroshi Ikeno
- Ikeno Clinic of Dermatology and Dermatologic Surgery, 1-14-4 Ginza Chuo-ku, Tokyo 104-0061, Japan.
| | | | | | | |
Collapse
|
46
|
Portugal-Cohen M, Oron M, Ma’or Z, Boaz M, Shtendik L, Biro A, Cernes R, Barnea Z, Kazir Z, Kohen R. Noninvasive skin measurements to monitor chronic renal failure pathogenesis. Biomed Pharmacother 2011; 65:280-5. [DOI: 10.1016/j.biopha.2011.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/08/2011] [Indexed: 10/18/2022] Open
|
47
|
The Cornified Envelope: A First Line of Defense against Reactive Oxygen Species. J Invest Dermatol 2011; 131:1409-11. [DOI: 10.1038/jid.2011.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Ozone and ozonated oils in skin diseases: a review. Mediators Inflamm 2010; 2010:610418. [PMID: 20671923 PMCID: PMC2910505 DOI: 10.1155/2010/610418] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/12/2010] [Indexed: 11/18/2022] Open
Abstract
Although orthodox medicine has provided a variety of topical anti-infective agents, some of them have become scarcely effective owing to antibiotic- and chemotherapeutic-resistant pathogens. For more than a century, ozone has been known to be an excellent disinfectant that nevertheless had to be used with caution for its oxidizing properties. Only during the last decade it has been learned how to tame its great reactivity by precisely dosing its concentration and permanently incorporating the gas into triglycerides where gaseous ozone chemically reacts with unsaturated substrates leading to therapeutically active ozonated derivatives. Today the stability and efficacy of the ozonated oils have been already demonstrated, but owing to a plethora of commercial products, the present paper aims to analyze these derivatives suggesting the strategy to obtain products with the best characteristics.
Collapse
|
49
|
Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int J Cosmet Sci 2010; 27:17-34. [PMID: 18492178 DOI: 10.1111/j.1467-2494.2004.00241.x] [Citation(s) in RCA: 457] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inflammation and the resulting accumulation of reactive oxygen species (ROS) play an important role in the intrinsic and photoaging of human skin in vivo. Environmental insults such as ultraviolet (UV) rays from sun, cigarette smoke exposure and pollutants, and the natural process of aging contribute to the generation of free radicals and ROS that stimulate the inflammatory process in the skin. UV irradiation initiates and activates a complex cascade of biochemical reactions in human skin. In short, UV causes depletion of cellular antioxidants and antioxidant enzymes (SOD, catalase), initiates DNA damage leading to the formation of thymidine dimmers, activates the neuroendocrine system leading to immunosuppression and release of neuroendocrine mediators, and causes increased synthesis and release of pro-inflammatory mediators from a variety of skin cells. The pro-inflammatory mediators increase the permeability of capillaries leading to infiltration and activation of neutrophils and other phagocytic cells into the skin. The net result of all these effects is inflammation and free radical generation (both reactive oxygen and nitrogen species). Furthermore, elastsases and other proteases (cathepsin G) released from neutrophils cause further inflammation, and activation of matrix metalloproteases. The inflammation further activates the transcription of various matrixes degrading metalloproteases, leading to abnormal matrix degradation and accumulation of non-functional matrix components. In addition, the inflammation and ROS cause oxidative damage to cellular proteins, lipids and carbohydrates, which accumulates in the dermal and epidermal compartments, contributing to the aetiology of photoaging. Strategies to prevent photodamage caused by this cascade of reactions initiated by UV include: prevention of UV penetration into skin by physical and chemical sunscreens, prevention/reduction of inflammation using anti-inflammatory compounds (e.g. cyclooxygenase inhibitors, inhibitors of cytokine generation); scavenging and quenching of ROS by antioxidants; inhibition of neutrophil elastase activity to prevent extracellular matrix damage and activation of matrix metalloproteases (MMPs), and inhibition of MMP expression (e.g. by retinoids) and activity (e.g. by natural and synthetic inhibitors).
Collapse
Affiliation(s)
- S Pillai
- Engelhard Corporation, Long Island, New York, NY, USA.
| | | | | |
Collapse
|
50
|
Wisthaler A, Weschler CJ. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc Natl Acad Sci U S A 2010; 107:6568-75. [PMID: 19706436 PMCID: PMC2872416 DOI: 10.1073/pnas.0904498106] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study has used proton transfer reaction-mass spectrometry (PTR-MS) for direct air analyses of volatile products resulting from the reactions of ozone with human skin lipids. An initial series of small-scale in vitro and in vivo experiments were followed by experiments conducted with human subjects in a simulated office. The latter were conducted using realistic ozone mixing ratios (approximately 15 ppb with occupants present). Detected products included mono- and bifunctional compounds that contain carbonyl, carboxyl, or alpha-hydroxy ketone groups. Among these, three previously unreported dicarbonyls have been identified, and two previously unreported alpha-hydroxy ketones have been tentatively identified. The compounds detected in this study (excepting acetone) have been overlooked in surveys of indoor pollutants, reflecting the limitations of the analytical methods routinely used to monitor indoor air. The results are fully consistent with the Criegee mechanism for ozone reacting with squalene, the single most abundant unsaturated constituent of skin lipids, and several unsaturated fatty acid moieties in their free or esterified forms. Quantitative product analysis confirms that squalene is the major scavenger of ozone at the interface between room air and the human envelope. Reactions between ozone and human skin lipids reduce the mixing ratio of ozone in indoor air, but concomitantly increase the mixing ratios of volatile products and, presumably, skin surface concentrations of less volatile products. Some of the volatile products, especially the dicarbonyls, may be respiratory irritants. Some of the less volatile products may be skin irritants.
Collapse
Affiliation(s)
- Armin Wisthaler
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey and Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854; and
- Technical University of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| |
Collapse
|