1
|
Liu L, He X, Wang J, Li M, Wei X, Yang J, Cheng G, Du W, Liu Z, Xiao X. Exploring the associations between gut microbiota composition and SARS-CoV-2 inactivated vaccine response in mice with type 2 diabetes mellitus. mSphere 2024; 9:e0038024. [PMID: 39189780 PMCID: PMC11423585 DOI: 10.1128/msphere.00380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is crucial for protecting vulnerable individuals, yet individuals with type 2 diabetes mellitus (T2DM) often exhibit impaired vaccine responses. Emerging evidence suggests that the composition of the host microbiota, crucial in immune regulation and development, influences vaccine efficacy. This study aimed to characterize the relationships between the SARS-CoV-2 inactivated vaccine and the host microbiota (specifically, gut and lung microbiota) of C57BL/6 mice with T2DM. Employing 16S rRNA metagenomic sequencing and ultra-high-performance liquid chromatography-mass spectrometry, we observed lower alpha diversity and distinct beta diversity in fecal microbiota before vaccination and in gut microbiota 28 days post-vaccination between T2DM mice and healthy mice. Compared with healthy mice, T2DM mice showed a higher Firmicutes/Bacteroidetes ratio 28 days post-vaccination. Significant alterations in gut microbiota composition were detected following vaccination, while lung microbiota remained unchanged. T2DM was associated with a diminished initial IgG antibody response against the spike protein, which subsequently normalized after 28 days. Notably, the initial IgG response positively correlated with fecal microbiota alpha diversity pre-vaccination. Furthermore, after 28 days, increased relative abundance of gut probiotics (Bifidobacterium and Lactobacillus) and higher levels of the gut bacterial tryptophan metabolite, indole acrylic acid, were positively associated with IgG levels. These findings suggest a potential link between vaccine efficacy and gut microbiota composition. Nonetheless, further research is warranted to elucidate the precise mechanisms underlying the impact of the gut microbiome on vaccine response. Overall, this study enhances our understanding of the intricate relationships among host microbiota, SARS-CoV-2 vaccination, and T2DM, with potential implications for improving vaccine efficacy. IMPORTANCE Over 7 million deaths attributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by 6 May 2024 underscore the urgent need for effective vaccination strategies. However, individuals with type 2 diabetes mellitus (T2DM) have been identified as particularly vulnerable and display compromised immune responses to vaccines. Concurrently, increasing evidence suggests that the composition and diversity of gut microbiota, crucial regulators of immune function, may influence the efficacy of vaccines. Against this backdrop, our study explores the complex interplay among SARS-CoV-2 inactivated vaccination, T2DM, and host microbiota. We discover that T2DM compromises the initial immune response to the SARS-CoV-2 inactivated vaccine, and this response is positively correlated with specific features of the gut microbiota, such as alpha diversity. We also demonstrate that the vaccination itself induces alterations in the composition and structure of the gut microbiota. These findings illuminate potential links between the gut microbiota and vaccine efficacy in individuals with T2DM, offering valuable insights that could enhance vaccine responses in this high-risk population.
Collapse
Affiliation(s)
- Long Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xianzhen He
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Department of Children's Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiaqi Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Moran Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiuli Wei
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Yang
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Weixing Du
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Zhixin Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiao Xiao
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
3
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Huang J, Ladeiras D, Yu Y, Ming XF, Yang Z. Detrimental Effects of Chronic L-Arginine Rich Food on Aging Kidney. Front Pharmacol 2021; 11:582155. [PMID: 33542686 PMCID: PMC7851093 DOI: 10.3389/fphar.2020.582155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
The impaired L-arginine/nitric oxide pathway is a well-recognized mechanism for cardiovascular and renal diseases with aging. Therefore, supplementation of L-arginine is widely proposed to boost health or as adjunct therapy for the patients. However, clinical data, show adverse effects and even enhanced mortality in patients receiving long-term L-arginine supplementation. The effects of long-term L-arginine supplementation on kidney aging and the underlying mechanisms remain elusive. Moreover, high protein and high amino acid diet has been thought detrimental for kidney. We therefore investigated effects of chronic dietary L-arginine supplementation on kidney aging. In both young (4 months) and old (18-24 months) mice, animals either receive standard chow containing 0.65% L-arginine or diet supplemented with L-arginine to 2.46% for 16 weeks. Inflammation and fibrosis markers and albuminuria are then analyzed. Age-associated increases in tnf-α, il-1β, and il-6, vcam-1, icam-1, mcp1, inos, and macrophage infiltration, collagen expression, and S6K1 activation are observed, which is not favorably affected, but rather further enhanced, by L-arginine supplementation. Importantly, L-arginine supplementation further enhances age-associated albuminuria and mortality particularly in females, accompanied by elevated renal arginase-II (Arg-II) levels. The enhanced albuminuria by L-arginine supplementation in aging is not protected in Arg-II-/- mice. In contrast, L-arginine supplementation increases ROS and decreases nitric oxide production in old mouse aortas, which is reduced in Arg-II-/- mice. The results do not support benefits of long-term L-arginine supplementation. It rather accelerates functional decline of kidney and vasculature in aging. Thus, the long-term dietary L-arginine supplementation should be avoided particularly in elderly population.
Collapse
Affiliation(s)
- Ji Huang
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Diogo Ladeiras
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Yi Yu
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xiu-Fen Ming
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Zhihong Yang
- Department of Endocrinology, Metabolism, and Cardiovascular System, Laboratory of Cardiovascular and Aging Research, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Zou S, Wang X, Liu P, Ke C, Xu S. Arginine metabolism and deprivation in cancer therapy. Biomed Pharmacother 2019; 118:109210. [PMID: 31330440 DOI: 10.1016/j.biopha.2019.109210] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Certain cancer cells with nutrient auxotrophy and have a much higher nutrient demand compared with normal human cells. Arginine as a versatile amino acid, has multiple biological functions in metabolic and signaling pathways. Depletion of this amino acid by arginine depletor is generally well tolerated and has become a targeted therapy for arginine auxotrophic cancers. However, the modulatory eff ;ect of arginine on cancer cells is very complicated and still controversial. Therefore, this article focuses on arginine metabolism and depletion therapy in cancer treatment to provide systemical review on this issue.
Collapse
Affiliation(s)
- Songyun Zou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiangmei Wang
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Po Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China.
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China; Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
l-Arginine supplementation blunts resistance exercise improvement in rats with chronic kidney disease. Life Sci 2019; 232:116604. [PMID: 31260684 DOI: 10.1016/j.lfs.2019.116604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
Chronic kidney disease (CKD) patients present L-arginine (L-arg) deficiency and L-arg supplementation has been used as a treatment. In addition, sarcopenia is another common problem in CKD population, resistance training (RT) is one of the conservative strategies developed to prevent CKD progression, and however there are no evidences of a combination of these two strategies to treat CKD outcomes. The aim of this study was to evaluate the effects of oral L-arg supplementation combined with RT in an experimental model of CKD. Twenty-five Munich-Wistar male rats, 8-week-old were divided in 5 groups: Sham (sedentary control), Nx (CKD sedentary), Nx L-arg (CKD sedentary supplemented with 2% of L-arg), Nx RT (CKD exercised) Nx RT + L-arg (CKD exercised and supplemented with 2% of L-arg). CKD model was obtained by a subtotal 5/6 nephrectomy. RT was performed on a ladder climbing, three weekly sessions on non-consecutive days, with an intensity of 70% maximum carrying capacity. They were submitted to RT and/or L-arg supplementation for 10 weeks. There was a significant improvement in muscle strength, renal function, anti-inflammatory cytokines, arginase metabolism and renal fibrosis after RT. However, the combination of RT and L-arg impaired all the improvements promoted by RT alone. The L-arg supplementation alone did not impair renal fibrosis and renal function. In conclusion, RT improved inflammatory balance, muscle strength, renal function and consequently decreased renal fibrosis. Nevertheless, the association with L-arg supplementation prevented all these effects promoted by RT.
Collapse
|
7
|
Davani-Davari D, Karimzadeh I, Sagheb MM, Khalili H. The Renal Safety of L-Carnitine, L-Arginine, and Glutamine in Athletes and Bodybuilders. J Ren Nutr 2018; 29:221-234. [PMID: 30341034 DOI: 10.1053/j.jrn.2018.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023] Open
Abstract
One of the major concerns about taking amino acid supplements is their potential adverse effects on the kidney as a major organ involved in the metabolism and excretion of exogenous substances. The aim of this study is to review available data about renal safety of the most prominent amino acid supplements including L-arginine, glutamine and also L-carnitine as well as creatine (as amino acid derivatives) in athletes and bodybuilders. The literature was searched by keywords such as "L-carnitine", "L-arginine", "glutamine", and "kidney injury" in databases such as Scopus, Medline, Embase, and ISI Web of Knowledge. Articles published from 1950 to December 2017 were included. Among 3171, 5740, and 1608 records after primary search in the relevant databases, 8, 7, and 5 studies have been finally included, respectively, for L-carnitine, L-arginine, and glutamine in this review. Arginine appears to have both beneficial and detrimental effects on kidney function. However, adverse effects are unlikely to occur with the routine doses (from 3 to >100 g/day). The risks and benefits of L-carnitine on the athletes' and bodybuilders' kidney have not been evaluated yet. However, L-carnitine up to 6000 mg/day is generally considered to be a safe supplement at least in healthy adults. Both short-term (20-30 g within a few hours) and long-term (0.1 g/kg four times daily for 2 weeks) glutamine supplementation in healthy athletes were associated with no significant adverse effects, but it can cause glomerulosclerosis and serum creatinine level elevation in the setting of diabetic nephropathy. Creatine supplementation (ranged from 5 to 30 g/day) also appears to have no detrimental effects on kidney function of individuals without underlying renal diseases. More clinical data are warranted to determine the optimal daily dose and intake duration of common supplemental amino acids associated with the lowest renal adverse effects in sportsmen and sports women.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Pharmaceutical Biotechnology Incubator, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdi Sagheb
- Nephrology-Urology Research Center and Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Mao X, Luo W, Sun J, Yang N, Zhang LW, Zhao Z, Zhang Z, Wu H. Usp2-69 overexpression slows down the progression of rat anti-Thy1.1 nephritis. Exp Mol Pathol 2016; 101:249-258. [PMID: 27640956 DOI: 10.1016/j.yexmp.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 11/18/2022]
Abstract
Mesangial proliferative glomerulonephritis is characterized by proliferation of mesangial cells (MCs) and transforming growth factor-β (TGF-β)-dependent stimulation of abnormal extracellular matrix (ECM) accumulation. We previously showed that Decorin--a leucine-rich proteoglycan inhibiting the progression of glomerulonephritis and glomerular sclerosis--can be degraded by the ubiquitin-proteasome pathway and deubiquitinated and stabilized by ubiquitin-specific processing protease 2-69(Usp2-69). Usp2-69 is highly expressed in the kidney and has been implicated in the regulation of cell proliferation and apoptosis. However, its role in mesangial proliferative glomerulonephritis remains unclear. Here, we explored the effect of Usp2-69 on MC proliferation and ECM deposition by transfecting Usp2-69 plasmid into rat anti-Thy1.1 nephritis model and into cultured MCs, as well as detected Usp2-69 and Decorin in rat anti-Thy1.1 nephritis model by western blot. Overexpressing Usp2-69 at the early stage, but not advanced stage, of anti-Thy1.1 nephritis alleviated cell proliferation and ECM deposition, which was shown by decreased Ki-67, Collagen IV and Fibronectin detected by immunohistochemistry. Overexpression also increased Decorin and decreased TGF-β1 and Collagen IV both in vitro and in vivo. In conclusion, our findings suggest that Usp2-69 overexpression alleviates the progression of rat anti-Thy1.1 nephritis and, therefore, that exogenous plasmid injection via the renal artery enhanced by electrotransfer technology could be a promising avenue for glomerular disease research.
Collapse
Affiliation(s)
- Xing Mao
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China; Key Laboratory of Molecular Medicine, Chinese Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Weili Luo
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Jianyong Sun
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Nianji Yang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Linda Wei Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhonghua Zhao
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhigang Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China; Shanghai Institute for Kidneys and Dialysis, Shanghai, PR China; Key Laboratory of Molecular Medicine, Chinese Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Huijuan Wu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China; Shanghai Institute for Kidneys and Dialysis, Shanghai, PR China; Key Laboratory of Molecular Medicine, Chinese Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
9
|
Tomlinson JAP, Caplin B, Boruc O, Bruce-Cobbold C, Cutillas P, Dormann D, Faull P, Grossman RC, Khadayate S, Mas VR, Nitsch DD, Wang Z, Norman JT, Wilcox CS, Wheeler DC, Leiper J. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage. J Am Soc Nephrol 2015; 26:3045-59. [PMID: 25855779 DOI: 10.1681/asn.2014030280] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 02/16/2015] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function.
Collapse
Affiliation(s)
- James A P Tomlinson
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom;
| | - Ben Caplin
- Centre for Nephrology, UCL Medical School Royal Free, London, United Kingdom
| | - Olga Boruc
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Claire Bruce-Cobbold
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Pedro Cutillas
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Dirk Dormann
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Peter Faull
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Rebecca C Grossman
- Centre for Nephrology, UCL Medical School Royal Free, London, United Kingdom
| | - Sanjay Khadayate
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Valeria R Mas
- Translational Genomics Transplant Laboratory, Transplant Division, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Dorothea D Nitsch
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom; and
| | - Zhen Wang
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Jill T Norman
- Centre for Nephrology, UCL Medical School Royal Free, London, United Kingdom
| | - Christopher S Wilcox
- Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, DC
| | - David C Wheeler
- Centre for Nephrology, UCL Medical School Royal Free, London, United Kingdom
| | - James Leiper
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| |
Collapse
|
10
|
Popolo A, Adesso S, Pinto A, Autore G, Marzocco S. L-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 2014; 46:2271-86. [PMID: 25161088 DOI: 10.1007/s00726-014-1825-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 12/19/2022]
Abstract
L-Arginine is a semi essential amino acid synthesised from glutamine, glutamate and proline via the intestinal-renal axis in humans and most mammals. L-Arginine degradation occurs via multiple pathways initiated by arginase, nitric-oxide synthase, Arg: glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine and agmatine with each having enormous biological importance. Several disease are associated to an L-arginine impaired levels and/or to its metabolites: in particular various L-arginine metabolites may participate in pathogenesis of kidney and cardiovascular disease. L-Arginine and its metabolites may constitute both a marker of pathology progression both the rationale for manipulating L-arginine metabolism as a strategy to ameliorate these disease. A large number of studies have been performed in experimental models of kidney disease with sometimes conflicting results, which underlie the complexity of Arg metabolism and our incomplete knowledge of all the mechanisms involved. Moreover several lines of evidence demonstrate the role of L-arg metabolites in cardiovascular disease and that L-arg administration role in reversing endothelial dysfunction, which is the leading cause of cardiovascular diseases, such as hypertension and atherosclerosis. This review will discuss the implication of the mains L-arginine metabolites and L-arginine-derived guanidine compounds in kidney and cardiovascular disease considering the more recent literature in the field.
Collapse
Affiliation(s)
- Ada Popolo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | | | | | | | | |
Collapse
|
11
|
Wang-Rosenke Y, Mika A, Khadzhynov D, Loof T, Neumayer HH, Peters H. Stimulation of soluble guanylate cyclase improves renal recovery after relief of unilateral ureteral obstruction. J Urol 2011; 186:1142-9. [PMID: 21784461 DOI: 10.1016/j.juro.2011.04.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE The antifibrotic effects of soluble guanylate cyclase stimulation and cyclic guanosine monophosphate production have been observed in cases of anti-thy1-induced renal disease. We analyzed the action of the specific soluble guanylate cyclase stimulator BAY 41-8543 on the renal recovery phase in rats with unilateral ureteral obstruction after obstruction was relieved. MATERIALS AND METHODS Sprague-Dawley® rats underwent reversible unilateral ureteral obstruction for 5 days, after which obstruction was relieved. Rats were randomly assigned to unilateral ureteral obstruction and unilateral ureteral obstruction plus BAY 41-8543 (10 mg/kg body weight daily). Seven days after relief of obstruction we determined treatment effects on renal atrophy, apoptosis, fibrosis and nitric oxide/cyclic guanosine monophosphate signaling. RESULTS Untreated obstructed rats showed mildly increased systolic blood pressure, marked tubular atrophy and apoptosis, tubulointerstitial macrophage infiltration and fibrosis. Plasma cyclic guanosine monophosphate levels were unaltered in untreated rats with obstruction while renal soluble guanylate cyclase mRNA expression was increased. BAY 41-8543 administration significantly increased plasma cyclic guanosine monophosphate, which was paralleled by significant decreases in systolic blood pressure, renal tubular diameter, apoptosis and renal macrophage infiltration. Also, soluble guanylate cyclase stimulation decreased tubulointerstitial fibrosis, as shown by tubulointerstitial volume, matrix protein accumulation, α-smooth muscle actin expression, collagen IV deposition and transforming growth factor-β1 mRNA expression. CONCLUSIONS Soluble guanylate cyclase stimulation by BAY 41-8543 increases cyclic guanosine monophosphate production and subsequently enhances renal recovery after unilateral ureteral obstruction relief through an array of pathways. This finding suggests that soluble guanylate cyclase stimulation may serve as a novel treatment approach to restore or preserve renal structure and function in cases of obstructive kidney disease.
Collapse
Affiliation(s)
- Yingrui Wang-Rosenke
- Department of Nephrology and Center for Cardiovascular Research, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009; 37:153-168. [PMID: 19030957 PMCID: PMC2677116 DOI: 10.1007/s00726-008-0210-y] [Citation(s) in RCA: 859] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 11/05/2008] [Indexed: 12/11/2022]
Abstract
L-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or L-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Extracellular matrix (ECM) remodeling with successive tissue fibrosis is a key feature of chronic cardiovascular diseases, including atherosclerosis and restenosis. The atherogenic changes underlying these pathologies result from chronification of an acute repair response towards injurious and inflammatory stimuli. Thereby functional tissue is replaced by excessive ECM deposition. In the kidney, impaired remodeling is a major cause of perivascular, interstitial, and glomerular fibrosis but also a common complication of chronic hypertension. Experimental evidence points to the matrix metalloproteases (MMPs) and their intrinsic inhibitors, the tissue inhibitors of MMPs as key mediators of atherogenic and fibrotic pathologies. Mechanistically, a deregulation in ECM turnover tightly correlates with an increased production and release of proinflammatory and profibrotic factors including interleukin-1beta, transforming growth factor beta, angiotensin II, and reactive oxygen species. Unlike these factors the pleiotropic messenger molecule nitric oxide (NO) by acting as the major physiological vasodilator has emerged as one of the most atheroprotective factors. However, under inflammatory conditions NO does acquire proatherogenic and profibrotic properties thereby exacerbating tissue fibrosis. In this review, the mechanisms underlying both opposing properties of NO on perivascular ECM remodeling will exemplarily be discussed for renal fibrosis with a particular focus on the MMPs and intrinsic protease inhibitors.
Collapse
Affiliation(s)
- W Eberhardt
- Pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7 Frankfurt am Main, Germany.
| | | |
Collapse
|
14
|
Akool ES, Doller A, Müller R, Gutwein P, Xin C, Huwiler A, Pfeilschifter J, Eberhardt W. Nitric Oxide Induces TIMP-1 Expression by Activating the Transforming Growth Factor β-Smad Signaling Pathway. J Biol Chem 2005; 280:39403-16. [PMID: 16183640 DOI: 10.1074/jbc.m504140200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive accumulation of the extracellular matrix is a hallmark of many inflammatory and fibrotic diseases, including those of the kidney. This study addresses the question whether NO, in addition to inhibiting the expression of MMP-9, a prominent metalloprotease expressed by mesangial cells, additionally modulates expression of its endogenous inhibitor TIMP-1. We demonstrate that exogenous NO has no modulatory effect on the extracellular TIMP-1 content but strongly amplifies the early increase in cytokine-induced TIMP-1 mRNA and protein levels. We examined whether transforming growth factor beta (TGFbeta), a potent profibrotic cytokine, is involved in the regulation of NO-dependent TIMP-1 expression. Experiments utilizing a pan-specific neutralizing TGFbeta antibody demonstrate that the NO-induced amplification of TIMP-1 is mediated by extracellular TGFbeta. Mechanistically, NO causes a rapid increase in Smad-2 phosphorylation, which is abrogated by the addition of neutralizing TGFbeta antisera. Similarly, the NO-dependent increase in Smad-2 phosphorylation is prevented in the presence of an inhibitor of TGFbeta-RI kinase, indicating that the NO-dependent activation of Smad-2 occurs via the TGFbeta-type I receptor. Furthermore, activation of the Smad signaling cascade by NO is corroborated by the NO-dependent increase in nuclear Smad-4 level and is paralleled by increased DNA binding of Smad-2/3 containing complexes to a TIMP-1-specific Smad-binding element (SBE). Reporter gene assays revealed that NO activates a 0.6-kb TIMP-1 gene promoter fragment as well as a TGFbeta-inducible and SBE-driven control promoter. Chromatin immunoprecipitation analysis also demonstrated DNA binding activity of Smad-3 and Smad-4 proteins to the TIMP-1-specific SBE. Finally, by enzyme-linked immunosorbent assay, we demonstrated that NO causes a rapid increase in TGFbeta(1) levels in cell supernatants. Together, these experiments demonstrate that NO by induction of the Smad signaling pathway modulates TIMP-1 expression.
Collapse
Affiliation(s)
- El-Sayed Akool
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang Y, Krämer S, Loof T, Martini S, Kron S, Kawachi H, Shimizu F, Neumayer HH, Peters H. Stimulation of soluble guanylate cyclase slows progression in anti-thy1-induced chronic glomerulosclerosis. Kidney Int 2005; 68:47-61. [PMID: 15954895 DOI: 10.1111/j.1523-1755.2005.00380.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND A critical role of soluble guanylate cyclase and nitric oxide-dependent cyclic 3',5'-guanosine monophosphate (cGMP) production for glomerular matrix expansion has recently been documented in a rat model of acute anti-thy1 glomerulonephritis. The present study analyzes the renal activity of the nitric oxide-cGMP signaling cascade in and the effect of the specific soluble guanylate cyclase stimulator Bay 41-2272 on a progressive model of anti-thy1-induced chronic glomerulosclerosis. METHODS Anti-thy1 glomerulosclerosis was induced by injection of anti-thy1 antibody into uninephrectomized rats. One week after disease induction, animals were randomly assigned to chronic glomerulosclerosis, chronic glomerulosclerosis plus Bay 41-2272 (10 mg/kg body weight/day) or chronic glomerulosclerosis plus hydralazine (15 mg/kg body weight/day). In week 16, analysis included effects on systolic blood pressure, proteinuria, kidney function, glomerular and tubulointerstitial matrix protein accumulation, expression of transforming growth factor-beta1 (TGF-beta1), fibronectin and plasminogen activator inhibitor type 1 (PAI-1), macrophage infiltration, cell proliferation, basal and nitric oxide-stimulated cGMP production as well as tubulointerstitial mRNA expression of alpha 1 and beta 1 soluble guanylate cyclase. RESULTS The moderately elevated systolic blood pressure seen in the chronic glomerulosclerosis group was comparably decreased by both treatments. Compared to normal controls, soluble guanylate cyclase mRNA expression and nitric oxide-stimulated cGMP production were up-regulated in the tubulointerstitium of the untreated chronic glomerulosclerosis animals, while its activity was decreased in glomeruli. Bay 41-2272 treatment enhanced glomerular and tubulointerstitial nitric oxide-cGMP signaling significantly. This went along with markedly reduced glomerular and tubulointerstitial macrophage infiltration, number of proliferating cells, matrix expression and accumulation, as well as improved kidney function. In contrast, hydralazine therapy did not significantly affect renal nitric oxide-cGMP signaling, macrophage number, cell proliferation, matrix protein expression and accumulation. CONCLUSION Glomerular and tubulointerstitial soluble guanylate cyclase activity are discordantly altered in anti-thy1-induced chronic glomerulosclerosis. Stimulation of soluble guanylate cyclase signaling by Bay 41-2272 limits the progressive course of this model toward tubulointerstitial fibrosis and impaired renal function at least in part in a blood pressure-independent manner. The results suggest that soluble guanylate cyclase activation counteracts fibrosis and progression in chronic renal disease.
Collapse
Affiliation(s)
- Yingrui Wang
- Department of Nephrology and Center of Cardiovascular Research, Charité University Medicine Berlin, Charité Campus Mitte, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gaedeke J, Boehler T, Budde K, Neumayer HH, Peters H. Glomerular activin A overexpression is linked to fibrosis in anti-Thy1 glomerulonephritis. Nephrol Dial Transplant 2005; 20:319-28. [PMID: 15673690 DOI: 10.1093/ndt/gfh653] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Activin A, a member of the transforming growth factor-beta (TGF-beta) superfamily of proteins, shares many biological features with the pro-fibrotic cytokine TGF-beta1, which is primarily responsible for the accumulation of extracellular matrix proteins in renal disease. This study was designed to identify regulators of activin A production in glomerular mesangial cells and test if activin A acts as a pro-fibrotic cytokine in mesangial cells. METHODS The effect of inflammatory cytokines on activin A production and the effect of exogenous activin A on mediators of fibrosis were analysed in cultured rat mesangial cells. Expression of activin A and of established mediators of fibrosis was analysed in a rat model of glomerular fibrosis (anti-Thy1 glomerulonephritis). RESULTS In cultured mesangial cells, interleukin-1 and basic fibroblast growth factor, both mediators of glomerular inflammatory injury, dose-dependently increased activin A expression. Incubation with activin A significantly stimulated TGF-beta1, PAI-1 and connective tissue growth factor RNA expression and increased production of extracellular matrix proteins in mesangial cells. In rats with anti-Thy1 glomerulonephritis, expression of glomerular activin A mRNA and protein paralled the expression of TGF-beta and other indices of fibrosis, showing little change from normal on day 1, a marked, 70-fold increase of activin protein production on day 6, and a subsequent decrease at day 12. Antifibrotic therapy with the angiotensin-converting enzyme inhibitor enalapril significantly reduced glomerular activin A production. CONCLUSION Taken together, the results of this study link overexpression of activin A to glomerular matrix protein expansion in vivo and in vitro, suggesting that activin A acts as pro-fibrotic cytokine in renal disease.
Collapse
Affiliation(s)
- Jens Gaedeke
- Department of Nephrology, Universitätsklinikum Charité, Berlin, Germany.
| | | | | | | | | |
Collapse
|
17
|
Kim JH, Ha IS, Hwang CI, Lee YJ, Kim J, Yang SH, Kim YS, Cao YA, Choi S, Park WY. Gene expression profiling of anti-GBM glomerulonephritis model: the role of NF-kappaB in immune complex kidney disease. Kidney Int 2005; 66:1826-37. [PMID: 15496153 DOI: 10.1111/j.1523-1755.2004.00956.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immune complexes may cause an irreversible onset of chronic renal disease. Most patients with chronic renal disease undergo a final common pathway, marked by glomerulosclerosis and interstitial fibrosis. We attempted to draw a molecular map of anti-glomerular basement membrane (GBM) glomerulonephritis in mice using oligonucleotide microarray technology. METHODS Kidneys were harvested at days 1, 3, 7, 11, and 16 after inducing glomerulonephritis by using anti-GBM antibody. In parallel with examining the biochemical and histologic changes, gene expression profiles were acquired against five pooled control kidneys. Gene expression levels were cross-validated by either reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, or immunohistochemistry. RESULTS Pathologic changes in anti-GBM glomerulonephritis were confirmed in both BALB/c and C57BL/6 strains. Among the 13,680 spotted 65mer oligonucleotides, 1112 genes showing significant temporal patterns by permutation analysis of variance (ANOVA) with multiple testing correction [false discovery ratio (FDR) < 0.05] were chosen for cluster analysis. From the expression profile, acute inflammatory reactions characterized by the elevation of various cytokines, including interleukin (IL)-1 and IL-6, were identified within 3 days of disease onset. After 7 days, tissue remodeling response was prominent with highly induced extracellular-matrix (ECM) genes. Although cytokines related to lymphocyte activation were not detected, monocyte or mesangial cell proliferation-related genes were increased. Tumor necrosis factor-alpha (TNF-alpha) and nuclear factor-kappaB (NF-kappaB) pathway were consistently activated along the entire disease progression, inducing various target genes like complement 3, IL-1b, IL-6, Traf1, and Saa1. CONCLUSION We made a large-scale gene expression time table for mouse anti-GBM glomerulonephritis model, providing a comprehensive overview on the mechanism governing the initiation and the progression of inflammatory renal disease.
Collapse
Affiliation(s)
- Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Peters H, Wang Y, Loof T, Martini S, Kron S, Krämer S, Neumayer HH. Expression and activity of soluble guanylate cyclase in injury and repair of anti-thy1 glomerulonephritis. Kidney Int 2005; 66:2224-36. [PMID: 15569311 DOI: 10.1111/j.1523-1755.2004.66012.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Activation of soluble guanylate cyclase and generation of cyclic 3',5'-guanosine monophosphate (cGMP) is the main signal transducing event of the L-arginine-nitric oxide pathway. The present study analyzes the expression and activity of the nitric oxide-cGMP signaling cascade in and the effect of the specific soluble guanylate cyclase stimulator Bay 41-2272 on the early injury and subsequent repair phase of acute anti-thy1 glomerulonephritis. METHODS Anti-thy1 glomerulonephritis was induced by OX-7 antibody injection in rats. In protocol 1 (injury), Bay 41-2272 was given starting 6 days before antibody injection. One day after disease induction, parameters of mesangial cell injury (glomerular cell number and inducible nitric oxide synthesis) were analyzed. In protocol 2 (repair), Bay 41-2272 treatment was started one day after antibody injection. On day 7, parameters of glomerular repair [glomerular matrix score, expression of transforming growth factor (TGF)-beta1, fibronectin, and plasminogen-activator-inhibitor (PAI)-1, infiltration with macrophages and fibrinogen deposition (indicating platelet localization)] were determined. In both protocols, tail bleeding time, systolic blood pressure, plasma cGMP levels, glomerular mRNA expression of endothelial nitric oxide synthase (eNOS), alpha1 and beta1 soluble guanylate cyclase, and basal and nitric oxide-stimulated glomerular cGMP production were analyzed. RESULTS Bay 41-2272 prolonged bleeding time, reduced blood pressure, and increased plasma cGMP levels in both protocols. In the injury experiment, disease induction increased inducible nitric oxide synthesis and reduced glomerular cell number, while expression and activity of soluble guanylate cyclase was almost completely diminished. Bay 41-2272 did not affect parameters of mesangial cell injury and glomerular soluble guanylate cyclase expression and activity. In the repair protocol, expression and activity of soluble guanylate cyclase was markedly increased by disease. Bay 41-2272 further enhanced soluble guanylate cyclase expression and activity. This went along with significant reductions in proteinuria, glomerular matrix accumulation, expression of TGF-beta1, fibronectin, and PAI-1, macrophage infiltration and fibrinogen deposition as compared to the untreated anti-thy1 animals. CONCLUSION Glomerular nitric oxide signaling via cGMP is markedly impaired during injury of anti-thy1 glomerulonephritis, while it is highly up-regulated during subsequent repair. Further pharmacologic soluble guanylate cyclase stimulation limits glomerular TGF-beta overexpression and matrix expansion, suggesting that the soluble guanylate cyclase enzyme represents an important antifibrotic pathway in glomerular disease.
Collapse
Affiliation(s)
- Harm Peters
- Department of Nephrology and Center of Cardiovascular Research, Charité Medicine Berlin, Charité Campus Mitte, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Glomerulonephritis is a common clinical condition that is caused by immune-mediated injury to the kidney and is characterized by dysfunction of the glomerular capillary filtration barrier. Nitric oxide (NO), a ubiquitous molecule with many biological functions throughout the body, has been evaluated as an inflammatory mediator in these circumstances. NO may induce glomerular injury directly or may act via stimulation of a host of other inflammatory mediators. A variety of experimental models of glomerulonephritis have been studied including those induced by infusion of antibodies to the Thy1.1 antigen or glomerular basement membrane, Heymann nephritis, and autoimmune nephritis. In virtually all of these cases there is evidence of increased NO production. Excessive production of NO by inducible nitric oxide synthase (iNOS), derived from infiltrating immune cells or resident glomerular cells, nearly always is associated with increased glomerular injury. Interventions that inhibit this enzyme result in less proteinuria and diminished glomerular damage. In contrast, NO derived from endothelial nitric oxide synthase (eNOS) may limit glomerular disease by preserving endothelial cell integrity. There are only a limited number of studies that have evaluated the impact of NO in patients with glomerulonephritis. Although the bulk of evidence supports a role of NO as a pro-inflammatory mediator in glomerulonephritis, additional work is needed to show an association between altered NO production and the severity and outcome of disease in patients with this disease. It is hoped that better understanding of the role of NO in glomerulonephritis will lead to the development of therapies to ameliorate the disease.
Collapse
Affiliation(s)
- Howard Trachtman
- Department of Pediatrics, Schneider Children's Hospital of Long Island Jewish Medical Center, Long Island Campus for the Albert Einstein College of Medicine, New Hyde Park, New York 11040, USA.
| |
Collapse
|
20
|
Keller T, Plesková M, McDonald MC, Thiemermann C, Pfeilschifter J, Beck KF. Identification of manganese superoxide dismutase as a NO-regulated gene in rat glomerular mesangial cells by 2D gel electrophoresis. Nitric Oxide 2004; 9:183-93. [PMID: 14996425 DOI: 10.1016/j.niox.2004.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 12/11/2003] [Indexed: 11/19/2022]
Abstract
The course of inflammatory glomerular diseases is accompanied by changes in the expression of matrix-associated proteins, growth factors, and mediators in renal mesangial cells. Furthermore, the production of nitric oxide (NO) by the inducible isoform of nitric oxide synthase (iNOS) is enhanced after stimulation with pro-inflammatory cytokines. NO has been demonstrated to be a potent modulator of gene expression. To identify NO-regulated genes, we compared the expression patterns of mesangial cells treated for 24h with 500 microM (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) with those of un-stimulated controls by applying a proteomics approach. One protein found to be NO-modulated by 2D gel electrophoresis is the manganese superoxide dismutase (Mn-SOD). Immunoblot and Northern blot analysis demonstrated a dose- and time-dependent induction of Mn-SOD expression by S-nitroso-N-acetyl-D, L-penicillamine (SNAP) and DETA-NO on both the protein and the mRNA levels. An upregulation of Mn-SOD expression by NO was accompanied by an increased Mn-SOD activity. Immunoblots of extracts of IL-1beta-treated cells cultivated with or without the iNOS inhibitor N(G)-monomethyl-L-arginine and the inhibitor of soluble guanylyl cyclase (sGC) 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) demonstrated that the upregulation of the Mn-SOD by NO is due to a NO-dependent activation of sGC. The upregulation of Mn-SOD mRNA expression by NO was confirmed in vivo by Northern blot analysis in kidneys from rats treated with lipopolysaccharide (LPS) either in presence or absence of the iNOS inhibitor N(6)-(1-iminoethyl)-L-lysine (l-NIL).
Collapse
Affiliation(s)
- Thorsten Keller
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Cherla G, Jaimes EA. Role of L-arginine in the pathogenesis and treatment of renal disease. J Nutr 2004; 134:2801S-2806S; discussion 2818S-2819S. [PMID: 15465789 DOI: 10.1093/jn/134.10.2801s] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L-arginine is a semi essential amino acid and also a substrate for the synthesis of nitric oxide (NO), polyamines, and agmatine. These L-arginine metabolites may participate in the pathogenesis of renal disease and constitute the rationale for manipulating L-arginine metabolism as a strategy to ameliorate kidney disease. Modification of dietary L-arginine intake in experimental models of kidney diseases has been shown to have both beneficial as well as deleterious effects depending on the specific model studied. L-arginine supplementation in animal models of glomerulonephritis has been shown to be detrimental, probably by increasing the production of NO from increased local expression of inducible NO synthase (iNOS). L-arginine supplementation does not modify the course of renal disease in humans with chronic glomerular diseases. However, beneficial effects of L-arginine supplementation have been reported in several models of chronic kidney disease including renal ablation, ureteral obstruction, nephropathy secondary to diabetes, and salt-sensitive hypertension. L-arginine is reduced in preeclampsia and recent experimental studies indicate that L-arginine supplementation may be beneficial in attenuating the symptoms of preeclampsia. Administration of exogenous L-arginine has been shown to be protective in ischemic acute renal failure. In summary, the role of L-arginine in the pathogenesis and treatment of renal disease is not completely understood and remains to be established.
Collapse
Affiliation(s)
- Gautam Cherla
- Nephrology Section VA Medical Center, Renal Division, Miami, FL 33136, USA
| | | |
Collapse
|
22
|
Peters H, Eisenberg R, Daig U, Liefeldt L, Westenfeld R, Gaedeke J, Krämer S, Neumayer HH. Platelet inhibition limits TGF-β overexpression and matrix expansion after induction of anti-thy1 glomerulonephritis. Kidney Int 2004; 65:2238-48. [PMID: 15149337 DOI: 10.1111/j.1523-1755.2004.00630.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although a role of platelets is well established in atherosclerosis, only little is known about their contribution to pathologic renal matrix expansion. The present study analyzes the effect of the platelet inhibitor clopidogrel on the early injury and subsequent repair phase of experimental anti-thy1 glomerulonephritis. METHODS In male Sprague-Dawley rats, acute anti-thy1 glomerulonephritis was induced by intravenous injection of OX-7 antibody. In protocol 1 (injury), clopidogrel was given starting 5 days before antibody injection. One day after disease induction, parameters of mesangial cell injury (glomerular cell number, inducible NO synthesis, and macrophage infiltration) were analyzed. In protocol 2 (repair), clopidogrel treatment was started one day after antibody injection. On day 6, parameters of glomerular repair [glomerular matrix score, expression of transforming growth factor (TGF)-beta 1, fibronectin, and plasminogen activator inhibitor (PAI)-1] and thrombosis (aneurysm formation and fibrinogen deposition) were determined. In both protocols, an additional group of rats was treated with the angiotensin-converting enzyme (ACE) inhibitor enalapril. RESULTS In the injury protocol, platelet inhibition did not affect mesangial cell lysis, glomerular NO production, and macrophage infiltration, while ACE inhibition was protective. In the repair protocol, clopidogrel significantly limited aneurysm formation and fibrinogen deposition, as well as glomerular matrix expansion, TGF-beta 1, fibronectin, and PAI-1 expression. In comparison, enalapril was less effective in preventing glomerular thrombosis, but was significantly superior to clopidogrel in limiting matrix protein expression and accumulation. CONCLUSION The present study shows that platelets play a significant role in the sequence from mesangial cell injury to renal matrix expansion in anti-thy1 glomerulonephritis. The results, directly comparing renin-angiotensin-system and platelet inhibition, suggest that platelets contribute less than angiotensin II to TGF-beta overexpression and matrix accumulation in this model of acute glomerular wound repair.
Collapse
Affiliation(s)
- Harm Peters
- Department of Nephrology, Charité, Campus Mitte, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Peters H, Daig U, Martini S, Rückert M, Schäper F, Liefeldt L, Krämer S, Neumayer HH. NO mediates antifibrotic actions of L-arginine supplementation following induction of anti-thy1 glomerulonephritis. Kidney Int 2003; 64:509-18. [PMID: 12846746 DOI: 10.1046/j.1523-1755.2003.00112.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED NO mediates antifibrotic actions of L-arginine supplementation following induction of anti-thy1 glomerulonephritis. BACKGROUND L-Arginine plays a complex role in renal matrix expansion, involving endogenous metabolism into nitric oxide (NO), polyamines, L-proline and agmatine. Supplementing dietary L-arginine intake has been shown to limit transforming growth factor (TGF)-beta 1 overproduction and matrix accumulation in rats with induced anti-thy1 glomerulonephritis (GN). The present study tests the hypothesis that this beneficial effect on in vivo TGF-beta overexpression is mediated via the generation of NO. METHODS One day after induction of anti-thy1 GN, male Wistar rats fed a normal protein diet were assigned to the following groups: (1) normal controls; (2) GN; (3) GN-Arg (plus 500 mg L-arginine/day); (4) GN-Arg-NAME [plus 500 mg L-arginine/day and 75 mg/L of the NO synthase inhibitor nitro-L-arginine-methyl ester (L-NAME) in the drinking water]; and (5) GN-Molsi (10 mg/day of the NO donor molsidomine). In protocol 1, treatment lasted until day 7, and in protocol 2, until day 12 after disease induction, respectively. Analysis included systolic blood pressure, a glomerular histologic matrix score, and the glomerular mRNA and protein expression of the key fibrogen TGF-beta1, the matrix protein fibronectin, and the protease inhibitor plasminogen activator inhibitor type 1 (PAI-1). RESULTS Blood pressure was normal in untreated anti-thy1 animals and not significantly affected by any of the treatments. Compared to untreated nephritic rats, administration of both L-arginine and molsidomine reduced glomerular TGF-beta 1 overexpression significantly and to a similar degree in both protocols, while the beneficial effect of L-arginine was abolished by concomitant NO synthesis inhibition. Glomerular matrix accumulation, fibronectin and PAI-1 mRNA and protein expression closely followed the expression of TGF-beta 1. CONCLUSION The present study shows that L-arginine's antifibrotic action in normotensive anti-thy1 GN is mainly mediated by endogenous production of NO. The data suggest that NO limits in vivo TGF-beta overexpression in a pressure-independent manner and that NO donors may be of benefit in the treatment of human fibrotic renal disease.
Collapse
Affiliation(s)
- Harm Peters
- Division of Nephrology and Institute of Pathology, Charité, Campus Mitte, Humboldt-University, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Peters H, Martini S, Woydt R, Rückert M, Shimizu F, Kawachi H, Liefeldt L, Krämer S, Neumayer HH. Moderate alcohol intake has no impact on acute and chronic progressive anti-thy1 glomerulonephritis. Am J Physiol Renal Physiol 2003; 284:F1105-14. [PMID: 12676738 DOI: 10.1152/ajprenal.00328.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Moderate alcohol consumption has shown beneficial effects in experimental and human cardiovascular disease. With the use of rat models of acute and chronic progressive anti-thy1 glomerulonephritis (GN), we tested the hypothesis that moderate alcohol intake is protective in renal fibrotic disease. In acute anti-thy1 GN, untreated nephritic rats showed marked mesangial cell lysis and induced nitric oxide production at day 1 and high proteinuria, glomerular matrix accumulation, and transforming growth factor (TGF)-beta(1), fibronectin, and plasminogen activator inhibitor (PAI)-1 expression at day 7 after disease induction, respectively. In animals 15 wk after induction of chronic progressive anti-thy1 GN, disease was characterized by significantly reduced renal function, persisting albuminuria as well as increased glomerular and tubulointerstitial matrix expansion, TGF-beta(1), fibronectin, and PAI-1 protein expression. In both anti-thy1 GN models, an ethanol intake of approximately 2 ml per day and animal was achieved, however, disease severity was not significantly altered by moderate alcohol consumption in any of the protocols. In conclusion, moderate alcohol intake does not influence renal matrix protein production and accumulation in acute and chronic progressive anti-thy1 glomerulofibrosis. The study suggests that, in contrast to cardiovascular disorders, moderate alcohol consumption might not provide specific protection in renal fibrotic disease.
Collapse
Affiliation(s)
- Harm Peters
- Division of Nephrology, Charité, Campus Mitte, Humboldt-University, D-10098 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sabbatini M, Pisani A, Uccello F, Fuiano G, Alfieri R, Cesaro A, Cianciaruso B, Andreucci VE. Arginase inhibition slows the progression of renal failure in rats with renal ablation. Am J Physiol Renal Physiol 2003; 284:F680-7. [PMID: 12475746 DOI: 10.1152/ajprenal.00270.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exogenous arginine slows the progression of chronic renal failure (CRF) in remnant rats through a nitric oxide (NO)-dependent mechanism. We tested whether the inhibition of arginase could induce similar results through the increased availability of endogenous arginine. Three groups of remnant rats were studied for 8 wk: 1) untreated rats (REM); 2) remnant rats treated with 1% l-arginine (ARG); and 3) remnant rats administered a Mn(2+)-free diet to inhibit arginase (MNF). Normal rats (NOR) were used as controls. Liver arginase activity was depressed in MNF rats (-35% vs. REM, P < 0.01). No difference in metabolic data was detected among the groups throughout the study; blood pressure was significantly lower in MNF vs. ARG and REM rats after 6 wk (P < 0.001). The glomerular filtration rate (GFR) was greatly depressed in REM rats (-47% vs. NOR, P < 0.03) but was higher in ARG and MNF rats (+40 and +43% vs. REM, respectively, P < 0.05), with comparable changes in renal hemodynamics. Despite the better GFR, proteinuria was decreased in both ARG and MNF rats (-42%, P < 0.05, and -57%, P < 0.01, respectively, vs. REM rats). Arginine plasma levels, significantly reduced in REM rats (-41% vs. NOR, P < 0.01), were partially restored in MNF rats (+38% vs. REM), and urinary nitrite excretion, greatly depressed in REM rats (-76% vs. NOR, P < 0.01), was significantly increased in MNF rats (+209% vs. REM, P < 0.05). At the renal level, arginase activity was only slightly depressed in MNF rats (-18% vs. REM), but intrarenal concentrations of arginine were lower in this latter group (P < 0.05 vs. other groups). Beyond the hemodynamic modifications, MNF rats showed a lower glomerular sclerosis index (P < 0.05 vs. REM and ARG). Inhibition of arginase slows the progression of CRF in remnant rats similarly to arginine-treated rats; the better histological protection in MNF rats, however, suggests that additional factors are involved in these modifications.
Collapse
Affiliation(s)
- Massimo Sabbatini
- Departments of Nephrology and Experimental Medicine, University Federico II, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Peters H, Border WA, Rückert M, Krämer S, Neumayer HH, Noble NA. L-arginine supplementation accelerates renal fibrosis and shortens life span in experimental lupus nephritis. Kidney Int 2003; 63:1382-92. [PMID: 12631354 DOI: 10.1046/j.1523-1755.2003.00881.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Inducible, high-output nitric oxide (NO) production has been identified as a central mediator of cell injury in immune-mediated renal disease. In acute anti-thy-1 glomerulonephritis prefeeding with the NO precursor L-arginine increases mesangial cell injury and the subsequent fibrosis. The present study tested the hypothesis that L-arginine supplementation may also be detrimental in chronic, NO-mediated murine lupus nephritis. METHODS Groups (N = 18) of female MRL/lpr mice with lupus nephritis were fed the following diets: (1) normal protein (22% casein); (2) normal protein and 1.0% L-arginine in the drinking water; (3) low protein (6% casein); (4) low protein + 0.4%l-arginine; and (5) low protein + 1.0% L-arginine. After 40 days mouse survival, albuminuria, matrix accumulation, inflammatory cell infiltration, immunoglobulin G (IgG) deposition, expression of transforming growth factor-beta 1 (TGF-beta 1), fibronectin and plasminogen activator inhibitor-1 (PAI-1) mRNA and protein, anti-DNA antibody titer, inducible nitric oxide synthase (iNOS) mRNA expression, blood amino acid levels, blood urea nitrogen (BUN) concentrations and blood and urinary NOx (nitrite + nitrate) levels were assessed. RESULTS L-Arginine supplementation increased mortality significantly (P < 0.02). The death rate increased from 0% in the lowest to 50% in the highest L-arginine intake group (normal protein + 1.0% L-arginine). L-Arginine administration increased albuminuria, renal matrix accumulation, TGF-beta 1, fibronectin, PAI-1, blood L-arginine, L-citrulline, BUN and blood and urine NOx levels, while protein restriction reduced these parameters. Renal cell infiltration and iNOS mRNA expression were decreased in the low protein group only. Anti-ds DNA-IgG and renal IgG deposition were comparable in all groups CONCLUSIONS Increasing L-arginine intake increases the severity of renal fibrosis and the likelihood of death in MRL/lpr mice. The results appear to be at least in part mediated through enhanced cytotoxic NO generation via iNOS. The data suggest that L-arginine restriction should be considered in human immune-mediated renal diseases.
Collapse
Affiliation(s)
- Harm Peters
- Division of Nephrology, Charité, Campus Mitte, Humboldt-University Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Albrecht EWJA, van Goor H, Smit-van Oosten A, Stegeman CA. Long-term dietary L-arginine supplementation attenuates proteinuria and focal glomerulosclerosis in experimental chronic renal transplant failure. Nitric Oxide 2003; 8:53-8. [PMID: 12586542 DOI: 10.1016/s1089-8603(02)00132-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glomerular endothelial nitric oxide synthase expression is decreased in humans during acute rejection and chronic renal transplant failure (CRTF). This may contribute to vascular damage through changes in the renal hemodynamics and enhanced endothelial adhesion of leukocytes and platelets. Dietary supplementation of L-arginine may increase endothelial NO production, thereby protecting the vascular wall and improving renal hemodynamics. We tested the hypothesis that long-term L-arginine supplementation attenuates the development of CRTF in an experimental model for renal transplantation. In the Fisher 344 to Lewis rat model for renal transplantation, renal function and histology of untreated rats was compared with rats receiving L-arginine in the drinking water (10g/L), starting 2 days before transplantation. Every 4 weeks systolic blood pressure was measured and serum and urine were collected for measurement of nitrite and nitrate (NO(x)), creatinine, and proteinuria. At 34 weeks the histological renal damage was assessed by scoring focal glomerulosclerosis and measurement of alpha-smooth muscle actin (alpha-SMA) expression. Urinary NO(x) was significantly increased in treated animals. Proteinuria was significantly lower in L-arginine-treated animals from week 24 onward (p<0.05). Plasma creatinine and creatinine clearance did not differ between the groups. The focal and segmental glomerulosclerosis (FGS) score (max 400) at week 34 was also significantly lower in treated rats arbitrary U (20+/-21 vs 61+/-67 arbitrary U; p<0.05). The expression of alpha-SMA was lower in L-arginine-treated rats than in untreated rats (1.93+/-0.8% area surface vs 3.64+/-2.5% area surface). In conclusion, in this experimental model for CRTF, L-arginine administration significantly reduced FGS and proteinuria, without affecting renal function. Our data suggest that dietary L-arginine supplementation attenuates progression of CRTF and may therefore be an additional therapeutic option in human renal allograft recipients.
Collapse
Affiliation(s)
- Ester W J A Albrecht
- Department of Pathology and Laboratory Medicine, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Nellore K, Harris NR. L-arginine and antineutrophil serum enable venular control of capillary perfusion in hypercholesterolemic rats. Microcirculation 2002; 9:477-85. [PMID: 12483545 DOI: 10.1038/sj.mn.7800162] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 08/03/2002] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate and counteract dysfunctional control of capillary flow in hypercholesterolemia. Capillary flow is controlled by arteriolar tone, which in turn is influenced by mediators released from closely paired venules in a mechanism that involves nitric oxide (NO). However, venular control of capillary flow is altered with hypercholesterolemia. METHODS Rats were given a normal or high-cholesterol diet before measurements of mesenteric capillary red blood cell velocity. The arteriolar pathway leading to the capillary was videotaped to measure the percent of the surrounding area (within 15 |gmm) that was occupied by a venule (% pairing). RESULTS Venule-paired arterioles were significantly smaller in hypercholesterolemia compared with normocholesterolemia, corresponding to slower capillary flow. A positive correlation between capillary velocity and % pairing observed in normocholesterolemia was not observed during NO synthase inhibition or in hypercholesterolemic rats. However, positive correlations between the two parameters were found in hypercholesterolemia when the rats were given drinking water supplementation of L-arginine or an injection of antineutrophil serum, both of which tended to improve velocity in capillaries branching from venule-paired arteriolar pathways. CONCLUSIONS Dysfunctional venular control of capillary perfusion in hypercholesterolemia may be a consequence of a neutrophil-mediated deficiency of NO.
Collapse
Affiliation(s)
- Kavitha Nellore
- Bioengineering Department, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
29
|
Abstract
Achieving appropriate growth and nutrient accretion of preterm and low birth weight (LBW) infants is often difficult during hospitalization because of metabolic and gastrointestinal immaturity and other complicating medical conditions. Advances in the care of preterm-LBW infants, including improved nutrition, have reduced mortality rates for these infants from 9.6 to 6.2% from 1983 to 1997. The Food and Drug Administration (FDA) has responsibility for ensuring the safety and nutritional quality of infant formulas based on current scientific knowledge. Consequently, under FDA contract, an ad hoc Expert Panel was convened by the Life Sciences Research Office of the American Society for Nutritional Sciences to make recommendations for the nutrient content of formulas for preterm-LBW infants based on current scientific knowledge and expert opinion. Recommendations were developed from different criteria than that used for recommendations for term infant formula. To ensure nutrient adequacy, the Panel considered intrauterine accretion rate, organ development, factorial estimates of requirements, nutrient interactions and supplemental feeding studies. Consideration was also given to long-term developmental outcome. Some recommendations were based on current use in domestic preterm formula. Included were recommendations for nutrients not required in formula for term infants such as lactose and arginine. Recommendations, examples, and sample calculations were based on a 1000 g preterm infant consuming 120 kcal/kg and 150 mL/d of an 810 kcal/L formula. A summary of recommendations for energy and 45 nutrient components of enteral formulas for preterm-LBW infants are presented. Recommendations for five nutrient:nutrient ratios are also presented. In addition, critical areas for future research on the nutritional requirements specific for preterm-LBW infants are identified.
Collapse
Affiliation(s)
- Catherine J Klein
- Life Sciences Research Office, 9650 Rockville Pike, Bethesda, Maryland 20814, USA.
| |
Collapse
|
30
|
Suga SI, Mazzali M, Ray PE, Kang DH, Johnson RJ. Angiotensin II type 1 receptor blockade ameliorates tubulointerstitial injury induced by chronic potassium deficiency. Kidney Int 2002; 61:951-8. [PMID: 11849449 DOI: 10.1046/j.1523-1755.2002.00208.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic potassium (K+) deficiency, one of the well-known causes of renal tubulointerstitial injury, is associated with an alteration in vasoactive mediators including persistent generation of renal cortical angiotensin (Ang) II despite the suppression of plasma Ang II, and suppression of urinary nitrite/nitrate excretion. We tested the hypothesis that K+-deficiency-induced renal tubulointerstitial injury could be mediated by Ang II or a reduction in nitric oxide. METHODS Rats were fed a K+-deficient diet (0.01% K+) alone, or with either losartan or l-arginine (L-Arg) in drinking water. Control rats were fed with a normal K+ diet (0.36% K+). At the end of 10 weeks, kidneys were excised and renal injury was evaluated. RESULTS Serum K+ was similarly depressed in all three groups receiving the K+-deficient diet. Rats on the K+-deficient diet alone developed renal hypertrophy and tubulointerstitial fibrosis with an increase in tubular osteopontin expression, macrophage infiltration and type III collagen deposition. Administration of losartan significantly reduced renal hypertrophy and prevented tubulointerstitial injury in the cortex, although some medullary injury occurred. In contrast, administration of L-Arg did not attenuate tubulointerstitial injury in the cortex, despite a complete recovery of urinary nitrate excretion. Mild but significant improvement of tubular osteopontin expression and macrophage infiltration were observed in the medulla of L-Arg-treated hypokalemic rats. CONCLUSIONS These results indicate that hypokalemic renal injury is mediated, at least in part, by Ang II via the Ang II type 1 receptor, with a lesser contribution mediated by a reduction in nitric oxide. Losartan may be beneficial in preventing hypokalemic tubulointerstitial injury.
Collapse
Affiliation(s)
- Shin-Ichi Suga
- Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
31
|
Vos IHC, Rabelink TJ, Dorland B, Loos R, Middelaar BVAN, Gröne HJ, Joles JA. L-arginine supplementation improves function and reduces inflammation in renal allografts. J Am Soc Nephrol 2001; 12:361-367. [PMID: 11158227 DOI: 10.1681/asn.v122361] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Recovery from ischemia/reperfusion and immune-mediated injury in the renal transplant is associated with reduced renal hemodynamics and increased leukocyte infiltration. In diverse models of renal failure, L-arginine supplementation improved hemodynamics and reduced inflammation. However in a proinflammatory environment, L-arginine can worsen renal injury. This study investigated the therapeutic potential of L-arginine supplementation in allogeneic renal transplantation: Brown Norway rat kidneys were transplanted into Lewis rat recipients, with one native kidney remaining. Recipients received low-dose cyclosporin A (2.5 mg/kg per d subcutaneously) to obtain moderate vascular and interstitial rejection, with or without 1% L-arginine in drinking water for 7 d posttransplantation. Transplantation increased renal vasoconstriction (from 16.9 +/- 1.33 to 35.1 +/- 8.6 units; P: < 0.01), thereby reducing GFR (from 0.96 +/- 0.09 to 0.48 +/- 0.10 ml/min; P: < 0.05). Treatment with L-arginine restored renal graft function to levels found in normal donors (renal vascular resistance, 15.7 +/- 1.69 units; GFR, 0.80 +/- 0.06 ml/min). L-arginine significantly reduced vascular occlusion because of less inflammation, endothelial disruption, and thrombosis. L-arginine also decreased tubulitis, interstitial injury, and macrophage infiltration. These protective effects suggest that L-arginine might be useful as additive therapy to conventional immune suppression.
Collapse
Affiliation(s)
- Ingrid H C Vos
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, the Netherlands
| | - Ton J Rabelink
- Department of Vascular Medicine, University Medical Center, Utrecht, the Netherlands
| | - Bert Dorland
- Department of Laboratory of Metabolic Diseases, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Remko Loos
- Department of Laboratory of Metabolic Diseases, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Ben VAN Middelaar
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, the Netherlands
| | - Hermann-Josef Gröne
- Department of Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
32
|
Fleck C, Janz A, Schweitzer F, Karge E, Schwertfeger M, Stein G. Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in renal failure patients. KIDNEY INTERNATIONAL. SUPPLEMENT 2001; 78:S14-8. [PMID: 11168976 DOI: 10.1046/j.1523-1755.2001.59780014.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nitric oxide (NO) synthesis is inhibited by the ADMA that accumulates in the plasma of patients with renal failure; however, the concentration of SDMA also is enhanced. Therefore, it has been hypothesized that ADMA and SDMA may contribute to hypertension in these patients. METHODS We measured the concentrations of ADMA, SDMA and 21 endogenous amino acids in 257 persons by high pressure liquid chromatography (HPLC). RESULTS The plasma concentrations of both ADMA and SDMA were significantly elevated in patients with chronic renal failure (CRF). The increase was more pronounced for SDMA (2.05 +/- 0.1 micromol/L vs. 0.5 +/- 0.04 micromol/L), whereas it was only moderate for ADMA (0.85 +/- 0.03 micromol/L vs. 0.73 +/- 0.06 micromol/L). In dialysis patients, the concentrations were further increased (ADMA, 1.05 +/- 0.04 micromol/L; SDMA, 2.68 +/- 0.13 micromol/L). After kidney transplantation, the concentration of SDMA returned to the baseline value (1.15 +/- 0.11 micromol/L), but that of ADMA remained enhanced (0.99 +/- 0.06 micromol/L). CONCLUSIONS In CRF, especially the concentration of SDMA is significantly increased. Not only ADMA, but also SDMA are likely to be responsible for hypertension. Competition for reabsorption between SDMA and arginine within the kidney has to be considered for the interpretation of changes in the ratio between dimethylarginines and arginine in renal failure. Hemodialysis is not suitable for a long-lasting removal of methylarginines. Whether the administration of arginine could have promising effects on hypertension and complications of CRF needs to be studied in prospective trials.
Collapse
Affiliation(s)
- C Fleck
- Department of Internal Medicine IV, and Institute of Pharmacology and Toxicology, University of Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Ishizuka S, Cunard R, Poucell-Hatton S, Wead L, Lortie M, Thomson SC, Gabbai FB, Satriano J, Blantz RC. Agmatine inhibits cell proliferation and improves renal function in anti-thy-1 glomerulonephritis. J Am Soc Nephrol 2000; 11:2256-2264. [PMID: 11095648 DOI: 10.1681/asn.v11122256] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Changes in the expression of alternate arginine metabolic pathways have been implicated in the pathogenesis of experimental glomerulonephritis. Agmatine, decarboxylated arginine, has been shown in vitro to suppress both inducible nitric oxide synthase and the rate-limiting enzyme of polyamine biosynthesis, ornithine decarboxylase (ODC). This study was undertaken to determine whether agmatine administration could reduce tissue injury by decreasing nitric oxide, and reduce cell proliferation, by diminishing ODC activity, in experimental mesangial proliferative glomerulonephritis (Thy-1 nephritis). Agmatine treatment (50 mg/kg per d intraperitoneally) in Thy-1 nephritis rats prevented a reduction in GFR at day 1. Agmatine treatment decreased nitric oxide production in Thy-1 nephritis rats by 23% and 41% at days 1 and 4, respectively. Agmatine treatment also reduced ODC activity and glomerular (3)H-thymidine incorporation on days 1, 4, and 7. Histologic evaluation revealed a decline in mesangial cell proliferation and extracellular matrix accumulation associated with agmatine treatment administered before or 24 h after Thy-1 antibody, and this was confirmed by a reduction in the number of cells expressing proliferating cell nuclear antigen on days 4 and 7. These studies provide the first in vivo evidence that agmatine administration can reduce cellular proliferation in Thy-1 nephritis and attenuate the initial reduction in renal function associated with this model.
Collapse
Affiliation(s)
- Shunji Ishizuka
- Division of Nephrology-Hypertension and Pathology, University of California, Department of Medicine, San Diego, and VA San Diego Healthcare System, La Jolla, California
| | - Robyn Cunard
- Division of Nephrology-Hypertension and Pathology, University of California, Department of Medicine, San Diego, and VA San Diego Healthcare System, La Jolla, California
| | - Siria Poucell-Hatton
- Division of Nephrology-Hypertension and Pathology, University of California, Department of Medicine, San Diego, and VA San Diego Healthcare System, La Jolla, California
| | - Lucinda Wead
- Division of Nephrology-Hypertension and Pathology, University of California, Department of Medicine, San Diego, and VA San Diego Healthcare System, La Jolla, California
| | - Mark Lortie
- Division of Nephrology-Hypertension and Pathology, University of California, Department of Medicine, San Diego, and VA San Diego Healthcare System, La Jolla, California
| | - Scott C Thomson
- Division of Nephrology-Hypertension and Pathology, University of California, Department of Medicine, San Diego, and VA San Diego Healthcare System, La Jolla, California
| | - Francis B Gabbai
- Division of Nephrology-Hypertension and Pathology, University of California, Department of Medicine, San Diego, and VA San Diego Healthcare System, La Jolla, California
| | - Joseph Satriano
- Division of Nephrology-Hypertension and Pathology, University of California, Department of Medicine, San Diego, and VA San Diego Healthcare System, La Jolla, California
| | - Roland C Blantz
- Division of Nephrology-Hypertension and Pathology, University of California, Department of Medicine, San Diego, and VA San Diego Healthcare System, La Jolla, California
| |
Collapse
|
34
|
Hochberg D, Johnson CW, Chen J, Cohen D, Stern J, Vaughan ED, Poppas D, Felsen D. Interstitial fibrosis of unilateral ureteral obstruction is exacerbated in kidneys of mice lacking the gene for inducible nitric oxide synthase. J Transl Med 2000; 80:1721-8. [PMID: 11092532 DOI: 10.1038/labinvest.3780182] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Unilateral ureteral obstruction (UUO) is characterized by decreases in renal function and increases in interstitial fibrosis. Previous studies have indicated that pharmacologic manipulations that increase nitric oxide (NO) are beneficial to the obstructed kidneys. NO is produced from arginine by nitric oxide synthase (NOS), an enzyme that exists in both constitutive and inducible (iNOS) forms. To determine the role of the inducible form of NOS in UUO, we used mice with a targeted deletion of iNOS (iNOS -/- mice) and compared them with wild-type (WT) mice. Kidneys were obstructed for 2 weeks in both WT and iNOS -/- mice, and were then removed and bisected. Half of the kidney was embedded in paraffin and tissue sections were examined for interstitial volume or the presence of macrophages. The remainder was flash-frozen and samples were used to measure tissue collagen (hydroxyproline) or transforming growth factor-beta (TGF-beta). This study demonstrates that both cortex and medulla of obstructed kidneys of iNOS -/- mice exhibit significantly increased interstitial volume and interstitial macrophages as compared with their WT counterparts. Furthermore tissue collagen was increased to 9.2+/-1.3 microg/mg tissue in WT obstructed kidneys, whereas in iNOS -/- kidneys, collagen was increased to 13.2+/-0.8 microg/mg tissue. The profibrotic cytokine TGF-beta was also significantly increased in obstructed kidneys of iNOS -/- mice, as compared with WT mice. No differences were noted between the unobstructed kidneys of iNOS -/- mice compared with WT mice in any of the parameters examined. These results demonstrate that targeted deletion of the iNOS results in exacerbation of fibrotic events in the obstructed kidney. These results confirm previous pharmacologic studies, and suggest that NO produced via the inducible NOS normally serves a protective function in UUO.
Collapse
Affiliation(s)
- D Hochberg
- Center for Pediatric Urology, Department of Urology, Children's Hospital of New York, Weill Medical College of Cornell University, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Peters H, Border WA, Noble NA. Angiotensin II blockade and low-protein diet produce additive therapeutic effects in experimental glomerulonephritis. Kidney Int 2000; 57:1493-501. [PMID: 10760085 DOI: 10.1046/j.1523-1755.2000.00994.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Transforming growth factor-beta (TGF-beta) overexpression plays a key role in the accumulation of extracellular matrix in acute and chronic renal diseases. Recent studies have suggested that the degree of reduction in pathological TGF-beta overexpression can be used as a therapeutic index to evaluate the antifibrotic potential of pharmacological angiotensin II (Ang II) blockade in renal disease. Using this target, we found that treatment with the angiotensin I-converting enzyme inhibitor enalapril or the Ang II type 1 receptor antagonist losartan reduced TGF-beta overexpression more effectively at doses clearly higher than those required to control blood pressure. However, both forms of Ang II blockade were only partially effective in normalizing TGF-beta expression. This study investigated whether a greater antifibrotic, TGF-beta-reducing benefit can be achieved when Ang II blockade is combined with dietary protein restriction. METHODS Mesangioproliferative glomerulonephritis was induced in male Sprague-Dawley rats on a normal-protein diet. Treatment with a low-protein diet and/or maximally effective doses of enalapril or losartan was started one day after disease induction. On the fifth day, 24-hour urine protein excretion was measured. On the sixth day, cortical kidney tissue was taken for periodic acid-Schiff staining. Isolated glomeruli were used for mRNA extraction or were placed in culture for determination of production of TGF-beta1, the matrix protein fibronectin, and the protease inhibitor plasmin activator inhibitor type 1 (PAI-1) by enzyme-linked immunosorbent assay. RESULTS Compared with untreated nephritic animals on a normal-protein diet, a single treatment with enalapril, losartan, or low-protein diet significantly reduced glomerular TGF-beta production, albeit to a similar degree of approximately 45%. A moderate, but significant further reduction in pathological TGF-beta expression of a total of 65% for enalapril and 60% for losartan was achieved when these drugs were combined with low-protein feeding. This reduction in TGF-beta overexpression paralleled decreased proteinuria, glomerular matrix accumulation, and overproduction of fibronectin and PAI-1. CONCLUSIONS Ang II blockade and low-protein diet have additive effects on disease reduction, suggesting that disease progression in humans with chronic renal failure may be slowed more effectively when Ang II blockade and low-protein diet are combined. Since maximal pharmacological Ang II inhibition was used, it is likely that dietary protein restriction further reduces pathological TGF-beta overexpression by mechanisms different from those of enalapril or losartan.
Collapse
Affiliation(s)
- H Peters
- Fibrosis Research Laboratory, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
36
|
Peters H, Border WA, Noble NA. Tandem antifibrotic actions of L-arginine supplementation and low protein diet during the repair phase of experimental glomerulonephritis. Kidney Int 2000; 57:992-1001. [PMID: 10720952 DOI: 10.1046/j.1523-1755.2000.00927.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Based upon the central role transforming growth factor-beta (TGF-beta) overexpression appears to play in renal fibrotic diseases, we have recently advocated reduction of TGF-beta as a therapeutic target. As part of efforts to determine the strength of this approach, we have undertaken studies to quantitate the effects of currently used and promising therapies in terms of their potential to reduce markers of disease in anti-thymocyte-serum (ATS)-glomerulonephritis in the rat. Here we assess the therapeutic effect of L-arginine supplementation, which has been shown to reduce fibrosis in a number of hypertensive models, given alone or in combination with low protein diet and started 24 hours after disease induction. METHODS Glomerulonephritis was induced by intravenous injection of OX-7 monoclonal antibody into 200 g Sprague-Dawley rats. Twenty-four hours later animals were placed in groups that were either untreated, treated with 1% L-arginine in drinking water or 6% protein diets or both. On the fifth day of disease 24-hour urine specimens were collected and systemic blood pressure was measured. On the sixth day rats were anesthetized. Kidneys were perfused, tissue was taken for PAS staining and glomeruli were isolated. Aliquots of glomeruli were used for RNA preparation and for culture to determine 72-hour production of TGF-beta, fibronectin and plasminogen activator-type 1 (PAI-1), which were assayed by ELISA on culture supernatants. Measures of nitrate and nitrite (NOx) production included plasma NOx, urinary NOx and glomerular production of NOx in culture. RESULTS All disease measures except proteinuria and including matrix accumulation, TGF-beta, fibronectin and PAI-1 production and mRNA expression for TGF-beta, fibronectin and PAI-1 were significantly and similarly reduced by about 50% in groups treated with L-arginine or with low protein diet. Proteinuria was reduced in low protein treated but not in L-arginine supplemented rats. Neither systemic blood pressure nor measures of NO synthesis showed differences between groups that could be attributed to L-arginine supplementation. In contrast, disease-related increases in glomerular production of NOx were markedly reduced by low protein. Combined therapy resulted in small, but statistically significant decreases in most measures of disease. CONCLUSIONS L-arginine supplementation reduces fibrotic disease in ATS-induced glomerulonephritis if started after disease induction. The absence of evidence for increased NO production related to L-arginine supplementation suggests that L-arginine is acting here through different pathways from those demonstrated in hypertensive models of disease. The data support the ideas that TGF-beta reduction is a valid therapeutic target and that quantitation of TGF-beta reduction is a useful approach for comparing antifibrotic drug candidates.
Collapse
Affiliation(s)
- H Peters
- Division of Nephrology, University of Utah School of Medicine, Salt Lake City, USA
| | | | | |
Collapse
|
37
|
Abstract
As a precursor of nitric oxide, polyamines and other molecules with enormous biologic importance, L-arginine plays versatile key roles in nutrition and metabolism. Arginine is an essential amino acid in the fetus and neonate, and is conditionally an essential nutrient for adults, particularly in certain disease conditions. L-Arginine administration is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, and in facilitating wound healing. The effect of L-arginine in treating many common health problems is unique among amino acids, and offers great promise for improved health and well-being in the future.
Collapse
Affiliation(s)
- G Wu
- Faculty of Nutrition and Department of Animal Science, Texas A&M University, College Station 77843-2471, USA.
| | | | | | | | | |
Collapse
|