1
|
Kim MH, Jeong YJ, Urm SH, Seog DH. The heterotrimeric kinesin-2 family member KIF3A directly binds to disabled-1 (Dab1). BMB Rep 2024; 57:447-452. [PMID: 38919020 PMCID: PMC11524828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 06/27/2024] Open
Abstract
The heterotrimeric molecular motor kinesin-2 is involved in the microtubule-dependent transport of intracellular cargo. It consists of two distinct motor subunits (KIF3A, and KIF3B) and a non-motor subunit, kinesin-associated protein 3 (KAP3). The cargo-binding domain (CBD) at the carboxyl (C)-terminus of KIF3s plays an important role in the interaction with several different binding proteins. To identify the binding proteins for heterotrimeric kinesin-2, we performed a yeast two-hybrid screen and found a new interaction with Disables-1 (Dab1), the intracellular adaptor protein of reelin receptors. Dab1 bound to the CBD of KIF3A, but did not interact with the C-terminal domain of KIF3B, KIF5B, KIF17 or KAP3. The phosphotyrosine binding (PTB) domain-containing region of Dab1 is essential for the interaction with KIF3A. KIF3A interacted with GST-Dab1, and GST-CaMKIIα, but did not interact with GST-apolipoprotein E receptor 2 (ApoER2)-C or with GST alone. When co-expressed in HEK-293T cells, Dab1 co-precipitated with KIF3A, but not with KIF5B. Dab1 and KIF3A were co-localized in cultured cells. We also identified deduced cell surface expression of ApoER2 in KIF3A dominant-negative cells. These results suggest that the KIF3A plays a role in the intracellular trafficking of ApoER2 to the cell surface. [BMB Reports 2024; 57(10): 447-452].
Collapse
Affiliation(s)
- Myoung Hun Kim
- Department of Anesthesia and Pain Medicine, Busan Paik Hospital, Inje University, Busan 47392, Korea
| | - Young Joo Jeong
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea
| | - Sang-Hwa Urm
- Department of Preventive Medicine, College of Medicine, Inje University, Busan 47392, Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea
- Demetia and Neurodegenerative Disease Research Center, College of Medicine, Inje University, Busan 47392, Korea
| |
Collapse
|
2
|
König S, Schmidt N, Bechberger K, Morris S, Priego M, Zaky H, Song Y, Pielage J, Brunholz S, Brady ST, Kins S, Morfini G. Axon-Autonomous Effects of the Amyloid Precursor Protein Intracellular Domain (AICD) on Kinase Signaling and Fast Axonal Transport. Cells 2023; 12:2403. [PMID: 37830617 PMCID: PMC10572015 DOI: 10.3390/cells12192403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The amyloid precursor protein (APP) is a key molecular component of Alzheimer's disease (AD) pathogenesis. Proteolytic APP processing generates various cleavage products, including extracellular amyloid beta (Aβ) and the cytoplasmic APP intracellular domain (AICD). Although the role of AICD in the activation of kinase signaling pathways is well established in the context of full-length APP, little is known about intracellular effects of the AICD fragment, particularly within discrete neuronal compartments. Deficits in fast axonal transport (FAT) and axonopathy documented in AD-affected neurons prompted us to evaluate potential axon-autonomous effects of the AICD fragment for the first time. Vesicle motility assays using the isolated squid axoplasm preparation revealed inhibition of FAT by AICD. Biochemical experiments linked this effect to aberrant activation of selected axonal kinases and heightened phosphorylation of the anterograde motor protein conventional kinesin, consistent with precedents showing phosphorylation-dependent regulation of motors proteins powering FAT. Pharmacological inhibitors of these kinases alleviated the AICD inhibitory effect on FAT. Deletion experiments indicated this effect requires a sequence encompassing the NPTY motif in AICD and interacting axonal proteins containing a phosphotyrosine-binding domain. Collectively, these results provide a proof of principle for axon-specific effects of AICD, further suggesting a potential mechanistic framework linking alterations in APP processing, FAT deficits, and axonal pathology in AD.
Collapse
Affiliation(s)
- Svenja König
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Nadine Schmidt
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Karin Bechberger
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Sarah Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
| | - Hannah Zaky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jan Pielage
- Department of Zoology, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany;
| | - Silke Brunholz
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Scott T. Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Stefan Kins
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
3
|
Brandimarti R, Irollo E, Meucci O. The US9-Derived Protein gPTB9TM Modulates APP Processing Without Targeting Secretase Activities. Mol Neurobiol 2023; 60:1811-1825. [PMID: 36576708 PMCID: PMC9984340 DOI: 10.1007/s12035-022-03153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Alteration of neuronal protein processing is often associated with neurological disorders and is highly dependent on cellular protein trafficking. A prime example is the amyloidogenic processing of amyloid precursor protein (APP) in intracellular vesicles, which plays a key role in age-related cognitive impairment. Most approaches to correct this altered processing aim to limit enzymatic activities that lead to toxic products, such as protein cleavage by β-secretase and the resulting amyloid β production. A viable alternative is to direct APP to cellular compartments where non-amyloidogenic mechanisms are favored. To this end, we exploited the molecular properties of the herpes simplex virus 1 (HSV-1) transport protein US9 to guide APP interaction with preferred endogenous targets. Specifically, we generated a US9 chimeric construct that facilitates APP processing through the non-amyloidogenic pathway and tested it in primary cortical neurons. In addition to reducing amyloid β production, our approach controls other APP-dependent biochemical steps that lead to neuronal deficits, including phosphorylation of APP and tau proteins. Notably, it also promotes the release of neuroprotective soluble αAPP. In contrast to other neuroprotective strategies, these US9-driven effects rely on the activity of endogenous neuronal proteins, which lends itself well to the study of fundamental mechanisms of APP processing/trafficking. Overall, this work introduces a new method to limit APP misprocessing and its cellular consequences without directly targeting secretase activity, offering a novel tool to reduce cognitive decline in pathologies such as Alzheimer's disease and HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Renato Brandimarti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Department of Pharmacy and Biotechnology, University of Bologna, Via San Giacomo,14, 40126, Bologna, Italy
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
4
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
5
|
Padarti A, Belkin O, Abou-Fadel J, Zhang J. In-silico analysis of nonsynonymous genomic variants within CCM2 gene reaffirm the existence of dual cores within typical PTB domain. Biochem Biophys Rep 2022; 29:101218. [PMID: 35128084 PMCID: PMC8808078 DOI: 10.1016/j.bbrep.2022.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose The objective of this study is to validate the existence of dual cores within the typical phosphotyrosine binding (PTB) domain and to identify potentially damaging and pathogenic nonsynonymous coding single nuclear polymorphisms (nsSNPs) in the canonical PTB domain of the CCM2 gene that causes cerebral cavernous malformations (CCMs). Methods The nsSNPs within the coding sequence for PTB domain of human CCM2 gene, retrieved from exclusive database searches, were analyzed for their functional and structural impact using a series of bioinformatic tools. The effects of mutations on the tertiary structure of the PTB domain in human CCM2 protein were predicted to examine the effect of nsSNPs on the tertiary structure of PTB Cores. Results Our mutation analysis, through alignment of protein structures between wildtype CCM2 and mutant, predicted that the structural impacts of pathogenic nsSNPs is biophysically limited to only the spatially adjacent substituted amino acid site with minimal structural influence on the adjacent core of the PTB domain, suggesting both cores are independently functional and essential for proper CCM2 PTB function. Conclusion Utilizing a combination of protein conservation and structure-based analysis, we analyzed the structural effects of inherited pathogenic mutations within the CCM2 PTB domain. Our results predicted that the pathogenic amino acid substitutions lead to only subtle changes locally, confined to the surrounding tertiary structure of the PTB core within which it resides, while no structural disturbance to the neighboring PTB core was observed, reaffirming the presence of independently functional dual cores in the CCM2 typical PTB domain. The pathogenic amino acid mutants lead to subtle structural changes in the PTB core. No structural disturbance to the neighboring PTB core was observed. Data reaffirm the presence of dual functional cores in the CCM2 PTB domain. More new genetic variants leading to CCM pathogenesis were suggested.
Collapse
|
6
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
7
|
Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. Int J Mol Sci 2021; 22:ijms22042121. [PMID: 33672754 PMCID: PMC7924631 DOI: 10.3390/ijms22042121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/04/2023] Open
Abstract
A high-fat, Western-style diet is an important predisposing factor for the onset of type 2 diabetes and obesity. It causes changes in gut microbial profile, reduction of microbial diversity, and the impairment of the intestinal barrier, leading to increased serum lipopolysaccharide (endotoxin) levels. Elevated lipopolysaccharide (LPS) induces acetyltransferase P300 both in the nucleus and cytoplasm of liver hepatocytes through the activation of the IRE1-XBP1 pathway in the endoplasmic reticulum stress. In the nucleus, induced P300 acetylates CRTC2 to increase CRTC2 abundance and drives Foxo1 gene expression, resulting in increased expression of the rate-limiting gluconeogenic gene G6pc and Pck1 and abnormal liver glucose production. Furthermore, abnormal cytoplasm-appearing P300 acetylates IRS1 and IRS2 to disrupt insulin signaling, leading to the prevention of nuclear exclusion and degradation of FOXO1 proteins to further exacerbate the expression of G6pc and Pck1 genes and liver glucose production. Inhibition of P300 acetyltransferase activity by chemical inhibitors improved insulin signaling and alleviated hyperglycemia in obese mice. Thus, P300 acetyltransferase activity appears to be a therapeutic target for the treatment of type 2 diabetes and obesity.
Collapse
|
8
|
Shaik NA, Al‐Qahtani F, Nasser K, Jamil K, Alrayes NM, Elango R, Awan ZA, Banaganapalli B. Molecular insights into the coding region mutations of low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1) linked to familial hypercholesterolemia. J Gene Med 2020; 22:e3176. [DOI: 10.1002/jgm.3176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Noor A. Shaik
- Department of Genetic Medicine, Faculty of MedicineKing Abdulaziz University Jeddah Saudi Arabia
- Princess Al‐Jawhara Al‐Brahim Center of Excellence in Research of Hereditary DisordersKing Abdulaziz University Jeddah Saudi Arabia
| | - Faten Al‐Qahtani
- Department of Genetic Medicine, Faculty of MedicineKing Abdulaziz University Jeddah Saudi Arabia
| | - Khalidah Nasser
- Princess Al‐Jawhara Al‐Brahim Center of Excellence in Research of Hereditary DisordersKing Abdulaziz University Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz University Jeddah Saudi Arabia
| | - Kaiser Jamil
- Deptartment of GeneticsBhagwan Mahavir Medical Research Centre Hyderabad India
| | - Nuha Mohammad Alrayes
- Princess Al‐Jawhara Al‐Brahim Center of Excellence in Research of Hereditary DisordersKing Abdulaziz University Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz University Jeddah Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of MedicineKing Abdulaziz University Jeddah Saudi Arabia
- Princess Al‐Jawhara Al‐Brahim Center of Excellence in Research of Hereditary DisordersKing Abdulaziz University Jeddah Saudi Arabia
| | - Zuhier Ahmed Awan
- Department of Clinical Biochemistry, Faculty of MedicineKing Abdulaziz University Jeddah Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of MedicineKing Abdulaziz University Jeddah Saudi Arabia
- Princess Al‐Jawhara Al‐Brahim Center of Excellence in Research of Hereditary DisordersKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
9
|
Groeger SE, Meyle J. Epithelial barrier and oral bacterial infection. Periodontol 2000 2017; 69:46-67. [PMID: 26252401 DOI: 10.1111/prd.12094] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 01/11/2023]
Abstract
The oral epithelial barrier separates the host from the environment and provides the first line of defense against pathogens, exogenous substances and mechanical stress. It consists of underlying connective tissue and a stratified keratinized epithelium with a basement membrane, whose cells undergo terminal differentiation resulting in the formation of a mechanically resistant surface. Gingival keratinocytes are connected by various transmembrane proteins, such as tight junctions, adherens junctions and gap junctions, each of which has a specialized structure and specific functions. Periodontal pathogens are able to induce inflammatory responses that lead to attachment loss and periodontal destruction. A number of studies have demonstrated that the characteristics of pathogenic oral bacteria influence the expression and structural integrity of different cell-cell junctions. Tissue destruction can be mediated by host cells following stimulation with cytokines and bacterial products. Keratinocytes, the main cell type in gingival epithelial tissues, express a variety of proinflammatory cytokines and chemokines, including interleukin-1alpha, interleukin-1beta, interleukin-6, interleukin-8 and tumor necrosis factor-alpha. Furthermore, the inflammatory mediators that may be secreted by oral keratinocytes are vascular endothelial growth factor, prostaglandin E2 , interleukin-1 receptor antagonist and chemokine (C-C motif) ligand 2. The protein family of matrix metalloproteinases is able to degrade all types of extracellular matrix protein, and can process a number of bioactive molecules. Matrix metalloproteinase activities under inflammatory conditions are mostly deregulated and often increased, and those mainly relevant in periodontal disease are matrix metalloproteinases 1, 2, 3, 8, 9, 13 and 24. Viral infection may also influence the epithelial barrier. Studies show that the expression of HIV proteins in the mucosal epithelium is correlated with the disruption of epithelial tight junctions, suggesting a possible enhancement of human papilloma virus infection by HIV-associated disruption of tight junctions. Altered expression of matrix metalloproteinases was demonstrated in keratinocytes transformed with human papilloma virus-16 or papilloma virus-18,. To summarize, the oral epithelium is able to react to a variety of exogenous, possibly noxious influences.
Collapse
|
10
|
Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks. Sci Rep 2016; 6:25711. [PMID: 27161996 PMCID: PMC4861959 DOI: 10.1038/srep25711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.
Collapse
|
11
|
Lee JH, Cheng R, Vardarajan B, Lantigua R, Reyes-Dumeyer D, Ortmann W, Graham RR, Bhangale T, Behrens TW, Medrano M, Jiménez-Velázquez IZ, Mayeux R. Genetic Modifiers of Age at Onset in Carriers of the G206A Mutation in PSEN1 With Familial Alzheimer Disease Among Caribbean Hispanics. JAMA Neurol 2015; 72:1043-51. [PMID: 26214276 PMCID: PMC5010776 DOI: 10.1001/jamaneurol.2015.1424] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The present study identified potential genetic modifiers that may delay or accelerate age at onset of familial Alzheimer disease (AD) by examining age at onset in PSEN1 mutation carrier families, and further investigation of these modifiers may provide insight into the pathobiology of AD and potential therapeutic measures. OBJECTIVE To identify genetic variants that modify age at onset of AD. DESIGN, SETTING, AND PARTICIPANTS Using a subset of Caribbean Hispanic families that carry the PSEN1 p.G206A mutation, we performed a 2-stage genome study. The mutation carrier families from an ongoing genetic study served as a discovery set, and the cohort of those with LOAD served as a confirmation set. To identify candidate loci, we performed linkage analysis using 5 p.G206A carrier families (n = 56), and we also performed whole-exome association analysis using 31 p.G206A carriers from 26 families. To confirm the genetic modifiers identified from the p.G206A carrier families, we analyzed the GWAS data for 2888 elderly individuals with LOAD. All study participants were Caribbean Hispanics. MAIN OUTCOMES AND MEASURES Age at onset of AD. RESULTS Linkage analysis of AD identified the strongest linkage support at 4q35 (LOD [logarithm of odds] score, 3.69), and the GWAS of age at onset identified variants on 1p13.1, 2q13, 4q25, and 17p11. In the confirmation stage, genewise analysis identified SNX25, PDLIM3, and 3 SH3 domain genes (SORBS2, SH3RF3, and NPHP1) to be significantly associated with LOAD. Subsequent allelic association analysis confirmed SNX25, PDLIM3, and SORBS2 as genetic modifiers of age at onset of EOAD and LOAD and provided modest support for SH3RF3 and NPHP1. CONCLUSIONS AND RELEVANCE Our 2-stage analysis revealed that SNX25, PDLIM3, and SORBS2 may serve as genetic modifiers of age at onset in both EOAD and LOAD.
Collapse
Affiliation(s)
- Joseph H. Lee
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York2Gertrude H. Sergievsky Center, Columbia University, New York, New York3Department of Epidemiology, School of Public Health, Columbia Univer
| | - Rong Cheng
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York2Gertrude H. Sergievsky Center, Columbia University, New York, New York
| | - Badri Vardarajan
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York2Gertrude H. Sergievsky Center, Columbia University, New York, New York
| | - Rafael Lantigua
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York4Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York
| | | | | | | | - Timothy W. Behrens
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra, Santiago, Dominican Republic
| | | | - Richard Mayeux
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York2Gertrude H. Sergievsky Center, Columbia University, New York, New York3Department of Epidemiology, School of Public Health, Columbia Univer
| |
Collapse
|
12
|
Ding X, Yang Z, Zhou F, Hu X, Zhou C, Luo C, He Z, Liu Q, Li H, Yan F, Wang F, Xiang S, Zhang J. Human intersectin 2 (ITSN2) binds to Eps8 protein and enhances its degradation. BMB Rep 2014; 45:183-8. [PMID: 22449706 DOI: 10.5483/bmbrep.2012.45.3.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Participates in actin remodeling through Rac and receptor endocytosis via Rab5. Here, we used yeast two-hybrid system with Eps8 as bait to screen a human brain cDNA library. ITSN2 was identified as the novel binding factor of Eps8. The interaction between ITSN2 and Eps8 was demonstrated by the in vivo co-immunoprecipitation and colocalization assays and the in vitro GST pull-down assays. Furthermore, we mapped the interaction domains to the region between amino acids 260-306 of Eps8 and the coiled-coil domain of ITSN2. In addition, protein stability assays and immunofluorescence analysis showed ITSN2 overexpression induced the degradation of Eps8 proteins, which was markedly alleviated with the lysosome inhibitor NH4Cl treatment. Taken together, our results suggested ITSN2 interacts with Eps8 and stimulates the degradation of Eps8 proteins.
Collapse
Affiliation(s)
- Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Smirnova E, Shanbhag R, Kurabi A, Mobli M, Kwan JJ, Donaldson LW. Solution structure and peptide binding of the PTB domain from the AIDA1 postsynaptic signaling scaffolding protein. PLoS One 2013; 8:e65605. [PMID: 23799029 PMCID: PMC3683042 DOI: 10.1371/journal.pone.0065605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
AIDA1 links persistent chemical signaling events occurring at the neuronal synapse with global changes in gene expression. Consistent with its role as a scaffolding protein, AIDA1 is composed of several protein-protein interaction domains. Here we report the NMR structure of the carboxy terminally located phosphotyrosine binding domain (PTB) that is common to all AIDA1 splice variants. A comprehensive survey of peptides identified a consensus sequence around an NxxY motif that is shared by a number of related neuronal signaling proteins. Using peptide arrays and fluorescence based assays, we determined that the AIDA1 PTB domain binds amyloid protein precursor (APP) in a similar manner to the X11/Mint PTB domain, albeit at reduced affinity (∼10 µM) that may allow AIDA1 to effectively sample APP, as well as other protein partners in a variety of cellular contexts.
Collapse
Affiliation(s)
| | - Riya Shanbhag
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Arwa Kurabi
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Mehdi Mobli
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Jamie J. Kwan
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Logan W. Donaldson
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Xu H, Xu G, Wang D, Zheng C, Wan L. Molecular cloning and tissue distribution of the phosphotyrosine interaction domain containing 1 (PID1) gene in Tianfu goat. Gene 2013; 515:71-7. [DOI: 10.1016/j.gene.2012.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/28/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
15
|
ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66:105-43. [PMID: 22569528 DOI: 10.1016/j.phrs.2012.04.005] [Citation(s) in RCA: 1160] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
ERK1 and ERK2 are related protein-serine/threonine kinases that participate in the Ras-Raf-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including cell adhesion, cell cycle progression, cell migration, cell survival, differentiation, metabolism, proliferation, and transcription. MEK1/2 catalyze the phosphorylation of human ERK1/2 at Tyr204/187 and then Thr202/185. The phosphorylation of both tyrosine and threonine is required for enzyme activation. Whereas the Raf kinase and MEK families have narrow substrate specificity, ERK1/2 catalyze the phosphorylation of hundreds of cytoplasmic and nuclear substrates including regulatory molecules and transcription factors. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a Pro-Xxx-Ser/Thr-Pro sequence. Besides this primary structure requirement, many ERK1/2 substrates possess a D-docking site, an F-docking site, or both. A variety of scaffold proteins including KSR1/2, IQGAP1, MP1, β-Arrestin1/2 participate in the regulation of the ERK1/2 MAP kinase cascade. The regulatory dephosphorylation of ERK1/2 is mediated by protein-tyrosine specific phosphatases, protein-serine/threonine phosphatases, and dual specificity phosphatases. The combination of kinases and phosphatases make the overall process reversible. The ERK1/2 catalyzed phosphorylation of nuclear transcription factors including those of Ets, Elk, and c-Fos represents an important function and requires the translocation of ERK1/2 into the nucleus by active and passive processes involving the nuclear pore. These transcription factors participate in the immediate early gene response. The activity of the Ras-Raf-MEK-ERK cascade is increased in about one-third of all human cancers, and inhibition of components of this cascade by targeted inhibitors represents an important anti-tumor strategy. Thus far, however, only inhibition of mutant B-Raf (Val600Glu) has been found to be therapeutically efficacious.
Collapse
|
16
|
Yu Z, Guo X. NYGGF4 as a new therapeutic target for obesity-associated insulin resistance. Med Hypotheses 2012; 78:432-4. [PMID: 22284633 DOI: 10.1016/j.mehy.2012.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/05/2012] [Indexed: 12/18/2022]
Abstract
Obesity-associated insulin resistance (IR) is manifested by increased hepatic glucose output and reduced glucose disposal in the peripheral tissues at a given level of insulin. Genetic factors play an important role in the development of obesity-associated IR. We identified a new cDNA by using suppression subtractive hybridization (SSH), which was expressed at a higher level in obese subjects and named NYGGF4. We found that the increased expression of NYGGF4 led to a reduction in insulin-stimulated glucose uptake and impaired insulin-stimulated glucose transport in mature adipocytes. We therefore propose the hypothesis that NYGGF4 may be a new therapeutic target for obesity-associated IR. NYGGF4 acts directly on the IRS1/PI3K/AKT insulin pathway to reduce glucose uptake and transport, impairs mitochondrial function and causes IR, which supports our hypothesis that NYGGF4 may be a useful therapeutic target for obesity-associated IR. However, its usefulness as a new therapeutic target need to be confirmed by further investigations, including NYGGF4 knockout mice models, which will be used to validate the role of NYGGF4 in vivo. Future studies are also required to determine whether downregulated expression of NYGGF4 contributes to these therapeutic actions.
Collapse
Affiliation(s)
- Zhangbin Yu
- Department of Pediatrics, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, PR China
| | | |
Collapse
|
17
|
Devallière J, Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol 2011; 82:1391-402. [PMID: 21723852 DOI: 10.1016/j.bcp.2011.06.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 12/20/2022]
Abstract
A better knowledge of the process by which inflammatory extracellular signals are relayed from the plasma membrane to specific intracellular sites is a key step to understand how inflammation develops and how it is regulated. This review focuses on Lnk (SH2B3) a member, with SH2B1 and SH2B2, of the SH2B family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase and receptor tyrosine kinases. SH2B adaptor proteins contain conserved dimerization, pleckstrin homology, and SH2 domains. Initially described as a regulator of hematopoiesis and lymphocyte differentiation, Lnk now emerges as a key regulator in hematopoeitic and non hematopoeitic cells such as endothelial cells (EC) moderating growth factor and cytokine receptor-mediated signaling. In EC, Lnk is a negative regulator of TNF signaling that reduce proinflammatory phenotype and prevent EC from apoptosis. Lnk is a modulator in integrin signaling and actin cytoskeleton organization in both platelets and EC with an impact on cell adhesion, migration and thrombosis. In this review, we discuss some recent insights proposing Lnk as a key regulator of bone marrow-endothelial progenitor cell kinetics, including the ability to cell growth, endothelial commitment, mobilization, and recruitment for vascular regeneration. Finally, novel findings also provided evidences that mutations in Lnk gene are strongly linked to myeloproliferative disorders but also autoimmune and inflammatory syndromes where both immune and vascular cells display a role. Overall, these studies emphasize the importance of the Lnk adaptor molecule not only as prognostic marker but also as potential therapeutic target.
Collapse
|
18
|
Functional Diversity of the Schistosoma mansoni Tyrosine Kinases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:603290. [PMID: 21776387 PMCID: PMC3135232 DOI: 10.1155/2011/603290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 01/07/2023]
Abstract
Schistosoma mansoni, one of the causative agents of schistosomiasis, has a complex life cycle infecting over 200 million people worldwide. Such a successful and prolific parasite life cycle has been shown to be dependent on the adaptive interaction between the parasite and hosts. Tyrosine kinases (TKs) play a key role in signaling pathways as demonstrated by a large body of experimental work in eukaryotes. Furthermore, comparative genomics have allowed the identification of TK homologs and provided insights into the functional role of TKs in several biological systems. Finally, TK structural biology has provided a rational basis for obtaining selective inhibitors directed to the treatment of human diseases. This paper covers the important aspects of the phospho-tyrosine signaling network in S. mansoni, Caenorhabditis elegans, and humans, the main process of functional diversification of TKs, that is, protein-domain shuffling, and also discusses TKs as targets for the development of new anti-schistosome drugs.
Collapse
|
19
|
Smith MJ, Hardy WR, Li GY, Goudreault M, Hersch S, Metalnikov P, Starostine A, Pawson T, Ikura M. The PTB domain of ShcA couples receptor activation to the cytoskeletal regulator IQGAP1. EMBO J 2010; 29:884-96. [PMID: 20075861 DOI: 10.1038/emboj.2009.399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 12/10/2009] [Indexed: 01/18/2023] Open
Abstract
Adaptor proteins respond to stimuli and recruit downstream complexes using interactions conferred by associated protein domains and linear motifs. The ShcA adaptor contains two phosphotyrosine recognition modules responsible for binding activated receptors, resulting in the subsequent recruitment of Grb2 and activation of Ras/MAPK. However, there is evidence that Grb2-independent signalling from ShcA has an important role in development. Using mass spectrometry, we identified the multidomain scaffold IQGAP1 as a ShcA-interacting protein. IQGAP1 and ShcA co-precipitate and are co-recruited to membrane ruffles induced by activated receptors of the ErbB family, and a reduction in ShcA protein levels inhibits the formation of lamellipodia. We used NMR to characterize a direct, non-canonical ShcA PTB domain interaction with a helical fragment from the IQGAP1 N-terminal region that is pTyr-independent. This interaction is mutually exclusive with binding to a more conventional PTB domain peptide ligand from PTP-PEST. ShcA-mediated recruitment of IQGAP1 may have an important role in cytoskeletal reorganization downstream of activated receptors at the cell surface.
Collapse
|
20
|
Cheong SM, Kim H, Han JK. Identification of a novel negative regulator of activin/nodal signaling in mesendodermal formation of Xenopus embryos. J Biol Chem 2009; 284:17052-17060. [PMID: 19389709 DOI: 10.1074/jbc.m109.007443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Phosphotyrosine binding (PTB) domains, which are found in a large number of proteins, have been implicated in signal transduction mediated by growth factor receptors. However, the in vivo roles of these PTB-containing proteins remain to be investigated. Here, we show that Xdpcp (Xenopus dok-PTB containing protein) has a pivotal role in regulating mesendoderm formation in Xenopus, and negatively regulates the activin/nodal signaling pathway. We isolated cDNA for xdpcp and examined its potential role in Xenopus embryogenesis. We found that Xdpcp is strongly expressed in the animal hemisphere at the cleavage and blastula stages. The overexpression of xdpcp RNA affects activin/nodal signaling, which causes defects in mesendoderm formation. In addition, loss of Xdpcp function by injection of morpholino oligonucleotides leads to the expansion of the mesodermal territory. Moreover, we found that axis duplication by ventrally forced expression of activin is recovered by coexpression with Xdpcp. In addition, Xdpcp inhibits the phosphorylation and nuclear translocation of Smad2. Furthermore, we also found that Xdpcp interacts with Alk4, a type I activin receptor, and inhibits activin/nodal signaling by disturbing the interaction between Smad2 and Alk4. Taken together, these results indicate that Xdpcp regulates activin/nodal signaling that is essential for mesendoderm specification.
Collapse
Affiliation(s)
- Seong-Moon Cheong
- From the Department of Life Sciences, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Hyunjoon Kim
- From the Department of Life Sciences, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin-Kwan Han
- From the Department of Life Sciences, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea.
| |
Collapse
|
21
|
Braiterman L, Nyasae L, Guo Y, Bustos R, Lutsenko S, Hubbard A. Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am J Physiol Gastrointest Liver Physiol 2009; 296:G433-44. [PMID: 19033537 PMCID: PMC2643914 DOI: 10.1152/ajpgi.90489.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP7B is a copper-transporting P-type ATPase present predominantly in liver. In basal copper, hepatic ATP7B is in a post-trans-Golgi network (TGN) compartment where it loads cytoplasmic Cu(I) onto newly synthesized ceruloplasmin. When copper levels rise, the protein redistributes via unique vesicles to the apical periphery where it exports intracellular Cu(I) into bile. We want to understand the mechanisms regulating the copper-sensitive trafficking of ATP7B. Earlier, our laboratory reported the presence of apical targeting/TGN retention information within residues 1-63 of human ATP7B; deletion of these residues resulted in a mutant protein that was not efficiently retained in the post-TGN in low copper and constitutively trafficked to the basolateral membrane of polarized, hepatic WIF-B cells with and without copper (13). In this study, we used mutagenesis and adenovirus infection of WIF-B cells followed by confocal immunofluorescence microscopy analysis to identify the precise retention/targeting sequences in the context of full-length ATP7B. We also analyzed the expression of selected mutants in livers of copper-deficient and -loaded mice. Our combined results clearly demonstrate that nine amino acids, F(37)AFDNVGYE(45), comprise an essential apical targeting determinant for ATP7B in elevated copper and participate in the TGN retention of the protein under low-copper conditions. The signal is novel, does not require phosphorylation, and is highly conserved in approximately 24 species of ATP7B. Furthermore, N41S, which is part of the signal we identified, is the first and only Wilson disease-causing missense mutation in residues 1-63 of ATP7B. Expression of N41S-ATP7B in WIF-B cells severely disabled the targeting and retention of the protein. We present a working model of how this physiologically relevant signal might work.
Collapse
Affiliation(s)
- Lelita Braiterman
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; GI Cell Biology Laboratory, The Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Lydia Nyasae
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; GI Cell Biology Laboratory, The Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Yan Guo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; GI Cell Biology Laboratory, The Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Rodrigo Bustos
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; GI Cell Biology Laboratory, The Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Svetlana Lutsenko
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; GI Cell Biology Laboratory, The Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Ann Hubbard
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; GI Cell Biology Laboratory, The Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
22
|
Zhang CM, Chen XH, Wang B, Liu F, Chi X, Tong ML, Ni YH, Chen RH, Guo XR. Over-expression of NYGGF4 inhibits glucose transport in 3T3-L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt. Acta Pharmacol Sin 2009; 30:120-4. [PMID: 19079291 DOI: 10.1038/aps.2008.9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese patients. The purpose of this study was to investigate the effects of NYGGF4 on basal and insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes and to understand the underlying mechanisms. METHODS 3T3-L1 preadipocytes transfected with either an empty expression vector (pcDNA3.1Myc/His B) or an NYGGF4 expression vector were differentiated into mature adipocytes. Glucose uptake was determined by measuring 2-deoxy-D-[3H]glucose uptake into the adipocytes. Immunoblotting was performed to detect the translocation of insulin-sensitive glucose transporter 4 (GLUT4). Immunoblotting also was used to measure the phosphorylation and total protein contents of insulin signaling proteins such as the insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt, ERK1/2, p38, and JNK. RESULTS NYGGF4 over-expression in 3T3-L1 adipocytes reduced insulin-stimulated glucose uptake and impaired insulin-stimulated GLUT4 translocation. It also diminished insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt without affecting the phosphorylation of IR, ERK1/2, p38, and JNK. CONCLUSION NYGGF4 regulates the functions of IRS-1 and Akt, decreases GLUT4 translocation and reduces glucose uptake in response to insulin. These observations highlight the potential role of NYGGF4 in glucose homeostasis and possibly in the pathogenesis of obesity.
Collapse
|
23
|
Suzuki T, Araki Y, Yamamoto T, Nakaya T. Trafficking of Alzheimer's disease-related membrane proteins and its participation in disease pathogenesis. J Biochem 2006; 139:949-55. [PMID: 16788045 DOI: 10.1093/jb/mvj121] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that causes senile dementia. The pathological characteristics are the appearance of neurofibrillary tangles comprising abnormally phosphorylated tau and senile plaques composed of amyloid beta-protein depositions. Amyloid beta-protein precursor (APP) and presenilin (PS) are known to be causative genes of familial AD. Recent analyses have documented that APP functions in the axonal transport of vesicles and PS regulates intracellular protein trafficking. Dystrophic neurites, in which APP and Alcadein accumulate in swollen axons, are also observed in AD brain. These pathological characteristics and the features of AD-related proteins suggest that AD is a disease of the vesicular transport system. Here we review recent progress of research on AD pathogenesis from the viewpoint of membrane trafficking.
Collapse
Affiliation(s)
- Toshiharu Suzuki
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-Nishi 6, Kita-ku, Sapporo 060-0812.
| | | | | | | |
Collapse
|
24
|
Smith MJ, Hardy WR, Murphy JM, Jones N, Pawson T. Screening for PTB domain binding partners and ligand specificity using proteome-derived NPXY peptide arrays. Mol Cell Biol 2006; 26:8461-74. [PMID: 16982700 PMCID: PMC1636785 DOI: 10.1128/mcb.01491-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Modular interaction domains that recognize peptide motifs in target proteins can impart selectivity in signaling pathways. Phosphotyrosine binding (PTB) domains are components of cytoplasmic docking proteins that bind cell surface receptors through NPXY motifs. We have employed a library of human proteome-derived NXXY sequences to explore PTB domain specificity and function. SPOTS peptide arrays were used to create a comprehensive matrix of receptor motifs that were probed with a set of 10 diverse PTB domains. This approach confirmed that individual PTB domains have selective and distinct recognition properties and provided a means to explore over 2,500 potential PTB domain-NXXY interactions. The results correlated well with previously known associations between full-length proteins and predicted novel interactions, as well as consensus binding data for specific PTB domains. Using the Ret, MuSK, and ErbB2 receptor tyrosine kinases, we show that interactions of these receptors with PTB domains predicted to bind by the NXXY arrays do occur in cells. Proteome-based peptide arrays can therefore identify networks of receptor interactions with scaffold proteins that may be physiologically relevant.
Collapse
Affiliation(s)
- Matthew J Smith
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | | | | | | | | |
Collapse
|
25
|
Parisiadou L, Efthimiopoulos S. Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11alpha. Neurobiol Aging 2006; 28:377-88. [PMID: 16458391 DOI: 10.1016/j.neurobiolaging.2005.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
The cytoplasmic tail of amyloid precursor protein (APP) possesses the NPTY motif to which several phosphotyrosine-binding domain-containing proteins bind, including X11alpha and mDab1. X11alpha has been shown to slow cellular APP processing and reduce secretion of Abeta peptides. However, the effect of mDab1 on APP processing has not been determined. Here, we show that mDab1 increases the levels of cellular mature APP and promotes its processing by the secretases in both transiently transfected HEK 293 cells and in neuroglioma U251 cells. These effects derive specifically from the interaction of APP with mDab1 since they are not observed in APP deletion mutants lacking the interaction module NPTY. We further demonstrate that mDab1 enhances cell surface expression of APP, possibly by interfering with its endocytosis. Interestingly, X11alpha and mDab1 exert opposing effects on APP processing. However, when both proteins are co-expressed the effect of X11alpha overrides that of mDab1. Taken together, these results suggest that the relative stoichiometry and binding affinity of the adaptor proteins determines the final outcome on APP metabolism.
Collapse
Affiliation(s)
- Loukia Parisiadou
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, 157 84 Panepistimiopolis, Ilisia, Athens, Greece
| | | |
Collapse
|
26
|
Wong A, Bogni S, Kotka P, de Graaff E, D'Agati V, Costantini F, Pachnis V. Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform. Mol Cell Biol 2005; 25:9661-73. [PMID: 16227613 PMCID: PMC1265823 DOI: 10.1128/mcb.25.21.9661-9673.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor tyrosine kinase Ret plays a critical role in the development of the mammalian excretory and enteric nervous systems. Differential splicing of the primary Ret transcript results in the generation of two main isoforms, Ret9 and Ret51, whose C-terminal amino acid tails diverge after tyrosine (Y) 1062. Monoisoformic mice expressing only Ret9 develop normally and are healthy and fertile. In contrast, animals expressing only Ret51 have aganglionosis of the distal gut and hypoplastic kidneys. By generating monoisoformic mice in which Y1062 of Ret9 has been mutated to phenylalanine, we demonstrate that this amino acid has a critical role in Ret9 signaling that is necessary for the development of the kidneys and the enteric nervous system. These findings argue that the distinct activities of Ret9 and Ret51 result from the differential regulation of Y1062 by C-terminal flanking sequences. However, a mutation which places Y1062 of Ret51 in a Ret9 context improves only marginally the ability of Ret51 to support renal and enteric nervous system development. Finally, monoisoformic mice expressing a variant of Ret9 in which a C-terminal PDZ-binding motif was mutated develop normally and are healthy. Our studies identify Y1062 as a critical regulator of Ret9 signaling and suggest that Ret51-specific motifs are likely to inhibit the activity of this isoform.
Collapse
Affiliation(s)
- Adrianne Wong
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Nagai J, Christensen EI, Morris SM, Willnow TE, Cooper JA, Nielsen R. Mutually dependent localization of megalin and Dab2 in the renal proximal tubule. Am J Physiol Renal Physiol 2005; 289:F569-76. [PMID: 15870384 DOI: 10.1152/ajprenal.00292.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disabled-2 (Dab2) is a cytoplasmic adaptor protein that binds to the cytoplasmic tail of the multiligand endocytic receptor megalin, abundantly expressed in renal proximal tubules. Deletion of Dab2 induces a urinary increase in specific plasma proteins such as vitamin D binding protein and retinol binding protein (Morris SM, Tallquist MD, Rock CO, and Cooper JA. EMBO J 21: 1555-1564, 2002). However, the subcellular localization of Dab2 in the renal proximal tubule and its function have not been fully elucidated yet. Here, we report the characterization of Dab2 in the renal proximal tubule. Immunohistocytochemistry revealed colocalization with megalin in coated pits and vesicles but not in dense apical tubules and the brush border. Kidney-specific megalin knockout almost abolished Dab2 staining, indicating that Dab2 subcellular localization requires megalin in the proximal tubule. Reciprocally, knockout of Dab2 led to a redistribution of megalin from endosomes to microvilli. In addition, there was an overall decrease in levels of megalin protein observed by immunoblotting but no decrease in clathrin or alpha-adaptin protein levels or in megalin mRNA. In rat yolk sac epithelial BN16 cells, Dab2 was present apically and colocalized with megalin. Introduction of anti-Dab2 antibody into BN16 cells decreased the internalization of 125I-labeled receptor-associated protein, substantiating the role of Dab2 in megalin-mediated endocytosis. The present study shows that Dab2 is localized in the apical endocytic apparatus of the renal proximal tubule and that this localization requires megalin. Furthermore, the study suggests that the urinary loss of megalin ligands observed in Dab2 knockout mice is caused by suboptimal trafficking of megalin, leading to decreased megalin levels.
Collapse
Affiliation(s)
- J Nagai
- Cell Biology, Institute of Anatomy, Univ. of Aarhus, University Park, Bldg. 234, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Brône B, Eggermont J. PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 2005; 288:C20-9. [PMID: 15591244 DOI: 10.1152/ajpcell.00368.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane of epithelial cells is subdivided into two physically separated compartments known as the apical and basolateral membranes. To obtain directional transepithelial solute transport, membrane transporters (i.e., ion channels, cotransporters, exchangers, and ion pumps) need to be targeted selectively to either of these membrane domains. In addition, the transport properties of an epithelial cell will be maintained only if these membrane transporters are retained and properly regulated in their specific membrane compartments. Recent reports have indicated that PDZ domain-containing proteins play a dual role in these processes and, in addition, that different apical and basolateral PDZ proteins perform similar tasks in their respective membrane domains. First, although PDZ-based interactions are dispensable for the biosynthetic targeting to the proper membrane domain, the PDZ network ensures that the membrane proteins are efficiently retained at the cell surface. Second, the close spatial positioning of functionally related proteins (e.g., receptors, kinases, channels) into a signal transduction complex (transducisome) allows fast and efficient control of membrane transport processes.
Collapse
Affiliation(s)
- Bert Brône
- Laboratory of Physiology, Katholieke Universiteit Leuven, Campus Gasthuisberg O & N, Leuven, Belgium
| | | |
Collapse
|
29
|
Uhlik MT, Temple B, Bencharit S, Kimple AJ, Siderovski DP, Johnson GL. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol 2005; 345:1-20. [PMID: 15567406 DOI: 10.1016/j.jmb.2004.10.038] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 10/13/2004] [Accepted: 10/13/2004] [Indexed: 11/21/2022]
Abstract
Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.
Collapse
Affiliation(s)
- Mark T Uhlik
- Department of Pharmacology and University of North Carolina School of Medicine, 1108 Mary Ellen Jones Building, Campus Box 7365, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
30
|
Lind S, Olsson AG, Eriksson M, Rudling M, Eggertsen G, Angelin B. Autosomal recessive hypercholesterolaemia: normalization of plasma LDL cholesterol by ezetimibe in combination with statin treatment. J Intern Med 2004; 256:406-12. [PMID: 15485476 DOI: 10.1111/j.1365-2796.2004.01401.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Severe hereditary hypercholesterolaemia is most frequently due to familial hypercholesterolaemia (FH), caused by mutations in the LDL receptor (LDLR) gene. However, a phenotype very similar to FH may also be caused by defects in other genes like the genes for apolipoprotein (apo) B-100 or autosomal recessive hypercholesterolaemia (ARH). SUBJECT An 8-year-old male of Lebanese origin was diagnosed with severe hypercholesterolaemia and extensive cutaneous and tendon xanthomas. Plasma LDL cholesterol before treatment was 17 mmol L(-1), whilst parents and both siblings had normal levels. DIAGNOSIS Degradation of (125)I-labelled LDL in blood lymphocytes was reduced, but not abolished. Sequencing analysis of the LDLR and apoB-100 genes were negative, whilst a splice acceptor mutation in intron 1 (IVS 1 -1G>C) was detected in the ARH gene. The patient was homozygous for the mutation, whilst the parents were heterozygous. These findings were in agreement with a diagnosis of ARH. TREATMENT AND CLINICAL COURSE Monthly LDL apheresis and atorvastatin 120 mg daily reduced LDL cholesterol preapheresis level to 4.8 mmol L(-1). When ezetimibe was given 10 mg day(-1) in combination with rosuvastatin 80 mg day(-1), LDL cholesterol was further lowered to 1.6 mmol L(-1), which made apheresis unnecessary. Cutaneous and tendon xanthomas disappeared completely and the intima-media thickness of the common carotid arteries decreased. At age 23 he developed a small myocardial infarction. CONCLUSION ARH should be considered in cases of severe hypercholesterolaemia with a pattern of recessive inheritance. Combination therapy with high-dose statin and ezetimibe seems to be the treatment of choice in ARH and may reduce or eliminate the need for LDL apheresis treatment.
Collapse
Affiliation(s)
- S Lind
- Department of Medicine and Care, Faculty of Health Sciences, Linköping University, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
31
|
Wilhelmsen K, Copp J, Glenn G, Hoffman RC, Tucker P, van der Geer P. Purification and identification of protein-tyrosine kinase-binding proteins using synthetic phosphopeptides as affinity reagents. Mol Cell Proteomics 2004; 3:887-95. [PMID: 15215307 DOI: 10.1074/mcp.m400062-mcp200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine kinases are known regulators of cell division that have been implicated in the onset of a variety of malignancies. They act through cellular signaling proteins that bind to specific autophosphorylation sites. To find out whether these autophosphorylation sites can be used to identify downstream signaling proteins, synthetic peptides based on an autophosphorylation site in the colony-stimulating factor-1 (CSF-1) receptor were linked to agarose beads and incubated with lysates from macrophages. Bound proteins were analyzed by MS, leading to the identification of both known and novel CSF-1 receptor-interacting proteins. The approach presented here can be applied to phosphorylation sites in a wide variety of proteins. It will lead to the identification of novel protein-protein interactions and provide new insights into the mechanics of signal transduction. Novel protein-protein interactions may provide useful targets for the development of drugs that interfere with the activation of signaling cascades used by protein-tyrosine kinases to turn on cell division.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0601, USA
| | | | | | | | | | | |
Collapse
|
32
|
Warn-Cramer BJ, Lau AF. Regulation of gap junctions by tyrosine protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:81-95. [PMID: 15033580 PMCID: PMC2875151 DOI: 10.1016/j.bbamem.2003.10.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 10/20/2003] [Accepted: 10/20/2003] [Indexed: 12/16/2022]
Abstract
Most of the gap junction proteins are regulated in part by post-translational phosphorylation. Phosphorylation has been shown to be important in gap junction assembly and turnover, and for channel function in the resting state. Connexin phosphorylation may be altered by the activation of intracellular signaling pathways in response to growth factors, tumor promoters, activated oncogenes, hormones and inflammatory mediators. In some instances altered phosphorylation has been associated with changes in connexin function and in other cases appears to be associated with changes in the levels of the connexin protein and/or mRNA. This review focuses on the role of tyrosine protein kinases in the regulation of gap junctions. The literature is most extensive for connexin43 and those studies are reviewed here. A great deal has been learned in recent years about how connexin43 is regulated by tyrosine kinase-dependent signaling pathways. These pathways are often complex and to some extent are cell type- and stimulus-dependent. Although considerable progress has been made in unraveling the cellular pathways that regulate connexin function, significant challenges remain to be addressed in identifying additional phosphorylation sites and determining the stoichiometries of the phosphorylation events that regulate connexin function and it's interaction with other cellular proteins.
Collapse
Affiliation(s)
- Bonnie J. Warn-Cramer
- Natural Products Program, Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Alan F. Lau
- Molecular Carcinogenesis Section, Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Cell and Molecular Biology, School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Corresponding author. Cancer Research Center, University of Hawaii at Manoa, 1236 Lauhala Street, Room 308, Honolulu, HI 96813, USA. Tel.: +1-808-586-2959; fax: +1-808-586-2970. (A.F. Lau)
| |
Collapse
|
33
|
Pan ZZ, Devaux Y, Ray P. Ribosomal S6 kinase as a mediator of keratinocyte growth factor-induced activation of Akt in epithelial cells. Mol Biol Cell 2004; 15:3106-13. [PMID: 15107468 PMCID: PMC452568 DOI: 10.1091/mbc.e04-01-0043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The keratinocyte growth factor receptor (KGFR) is a member of the fibroblast growth factor receptor (FGFR) superfamily. The proximal signaling molecules of FGFRs are much less characterized compared with other growth factor receptors. Using the yeast two-hybrid assay, we have identified ribosomal S6 kinase (RSK) to be a protein that associates with the cytoplasmic domain of the KGFR. The RSK family of kinases controls multiple cellular processes, and our studies for the first time show association between the KGFR and RSK. Using a lung-specific inducible transgenic system we have recently demonstrated protective effects of KGF on the lung epithelium and have demonstrated KGF-induced activation of the prosurvival Akt pathway both in vivo and in vitro. Here we show that a kinase inactive RSK mutant blocks KGF-induced Akt activation and KGF-mediated inhibition of caspase 3 activation in epithelial cells subjected to oxidative stress. It was recently shown that RSK2 recruits PDK1, the kinase responsible for both Akt and RSK activation. When viewed collectively, it appears that the association between the KGFR and RSK plays an important role in KGF-induced Akt activation and consequently in the protective effects of KGF on epithelial cells.
Collapse
Affiliation(s)
- Zhong-Zong Pan
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
34
|
King GD, Scott Turner R. Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? Exp Neurol 2004; 185:208-19. [PMID: 14736502 DOI: 10.1016/j.expneurol.2003.10.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cytoplasmic C-terminus of APP plays critical roles in its cellular trafficking and delivery to proteases. Adaptor proteins with phosphotyrosine-binding (PTB) domains, including those in the X11, Fe65, and c-Jun N-terminal kinase (JNK)-interacting protein (JIP) families, bind specifically to the absolutely conserved -YENPTY- motif in the APP C-terminus to regulate its trafficking and processing. Compounds that modulate APP-adaptor protein interactions may inhibit Abeta generation by specifically targeting the substrate (APP) instead of the enzyme (beta- or gamma-secretase). Genetic polymorphisms in (or near) adaptor proteins may influence risk of sporadic AD by interacting with APP in vivo to modulate its trafficking and processing to Abeta.
Collapse
Affiliation(s)
- Gwendalyn D King
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
35
|
Gallagher H, Oleinikov AV, Fenske C, Newman DJ. The adaptor disabled-2 binds to the third ΨxNPxY sequence on the cytoplasmic tail of megalin. Biochimie 2004; 86:179-82. [PMID: 15134832 DOI: 10.1016/j.biochi.2004.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
The cytoplasmic tail (CT) of megalin possesses several functional motifs likely to participate in protein-protein interactions within the proximal tubular epithelial cell (PTEC) of the kidney. One such interaction is with the phosphotyrosine interaction domain (PID) of the adaptor protein disabled-2 (Dab2), a mitogen-responsive phosphoprotein, which interacts via its PID with Psi xNPxY (where Psi represents a hydrophobic residue) motifs on its binding partners. Megalin CT has three such motifs; it has been established that there is no interaction of Dab2 with the first (from N to C) (Biochem. J. 3 (2000) 613). Here, we analyse in real-time the binding of recombinant megalin CT, and of synthetic peptide sequences encompassing the second and third Psi xNPxY motifs, to Dab2PID in real-time using surface plasmon resonance (SPR). We report a binding affinity of DabPID for megalin CT of K(D) = 2.6 x 10(-7) +/- 5.3 x 10(-8). Direct binding and competition studies indicate that this interaction is with the third Psi xNPxY motif. The dissociation of Dab2 from the third Psi xNPxY peptide was significantly slower than that from the second (k(off) (mean +/- S.E.M.) (per s) = 0.002 +/- 0.002 vs. 0.007 +/- 0.002, P < 0.05). Synthetic peptide sequences encompassing the third Psi xNPxY but not the second inhibited Dab2PID binding both to intact megalin CT and to the third Psi xNPxY motif. Tyrosine phosphorylation of either motif did not exert a major effect upon competition efficacy. We further demonstrate for the first time the presence of Dab2 expression in primary human PTEC.
Collapse
Affiliation(s)
- Hugh Gallagher
- SW Thames Institute for Renal Research, St. Helier Hospital, Carshalton, Surrey SM5 1AA, UK.
| | | | | | | |
Collapse
|
36
|
Araki Y, Tomita S, Yamaguchi H, Miyagi N, Sumioka A, Kirino Y, Suzuki T. Novel cadherin-related membrane proteins, Alcadeins, enhance the X11-like protein-mediated stabilization of amyloid beta-protein precursor metabolism. J Biol Chem 2003; 278:49448-58. [PMID: 12972431 DOI: 10.1074/jbc.m306024200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously we found that X11-like protein (X11L) associates with amyloid beta-protein precursor (APP). X11L stabilizes APP metabolism and suppresses the secretion of the amyloid beta-protein (Abeta) that are the pathogenic agents of Alzheimer's disease (AD). Here we found that Alcadein (Alc), a novel membrane protein family that contains cadherin motifs and originally reported as calsyntenins, also interacted with X11L. Alc was abundant in the brain and occurred in the same areas of the brain as X11L. X11L could simultaneously associate with APP and Alc, resulting in the formation of a tripartite complex in brain. The tripartite complex stabilized intracellular APP metabolism and enhanced the X11L-mediated suppression of Abeta secretion that is due to the retardation of intracellular APP maturation. X11L and Alc also formed another complex with C99, a carboxyl-terminal fragment of APP cleaved at the beta-site (CTFbeta). The formation of the Alc.X11L.C99 complex inhibited the interaction of C99 with presenilin, which strongly suppressed the gamma-cleavage of C99. In AD patient brains, Alc and APP were particularly colocalized in dystrophic neurites in senile plaques. Deficiencies in the X11L-mediated interaction between Alc and APP and/or CTFbeta enhanced the production of Abeta, which may be related to the development or progression of AD.
Collapse
Affiliation(s)
- Yoichi Araki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku Kita-12 Nishi-6, Sapporo 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhou Y, Zhang J, King ML. Xenopus autosomal recessive hypercholesterolemia protein couples lipoprotein receptors with the AP-2 complex in oocytes and embryos and is required for vitellogenesis. J Biol Chem 2003; 278:44584-92. [PMID: 12944396 DOI: 10.1074/jbc.m308870200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARH is required for normal endocytosis of the low density lipoprotein (LDL) receptor in liver and mutations within this gene cause autosomal recessive hypercholesterolemia in humans. xARH is a localized maternal RNA in Xenopus with an unknown function in oogenesis and embryogenesis. Like ARH, xARH contains a highly conserved phosphotyrosine binding domain and a clathrin box. To address the function of xARH, we examined its expression pattern in development and used pull-down experiments to assess interactions between xARH, lipoprotein receptors and proteins in embryo extracts. xARH was detected concentrated at the cell periphery as well as in the perinuclear region of oocytes and embryos. In pull-down experiments, the xARH phosphotyrosine binding domain interacted with the LDL and vitellogenin receptors found in Xenopus oocytes and embryos. Mutations within the receptor internalization signal specifically abolished this interaction. The xARH C-terminal region pulled-down several proteins from embryo extracts including alpha- and beta-adaptins, subunits of the AP-2 endocytic complex. Mutations within either of the two Dvarphi(F/W) motifs found in xARH abolished binding to alpha- and beta-adaptins. Expression of a dominant negative mutant of xARH missing the clathrin box and one functional Dvarphi(F/W) motif severely inhibited endocytosis of vitellogenin in cultured oocytes. The data indicate that xARH acts as an adaptor protein linking LDL and vitellogenin receptors directly with the AP-2 complex. In oocytes, we propose that xARH mediates the uptake of lipoproteins from the blood for storage in endosomes and later use in the embryo. Our findings point to an evolutionarily conserved function for ARH in lipoprotein uptake.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
38
|
Shingai T, Ikeda W, Kakunaga S, Morimoto K, Takekuni K, Itoh S, Satoh K, Takeuchi M, Imai T, Monden M, Takai Y. Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells. J Biol Chem 2003; 278:35421-7. [PMID: 12826663 DOI: 10.1074/jbc.m305387200] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that play roles in organization of a variety of cell-cell junctions in cooperation with or independently of cadherins. Four nectins have been identified. Five nectin-like molecules, which have domain structures similar to those of nectins, have been identified, and we characterized here nectin-like molecule-2 (Necl-2)/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1. Necl-2 showed Ca2+-independent homophilic cell-cell adhesion activity. It furthermore showed Ca2+-independent heterophilic cell-cell adhesion activity with Necl-1/TSLL1/SynCAM3 and nectin-3. Necl-2 was widely expressed in rat tissues examined. Necl-2 localized at the basolateral plasma membrane in epithelial cells of the mouse gall bladder, but not at specialized cell-cell junctions, such as tight junctions, adherens junctions, and desmosomes. Nectins bind afadin, whereas Necl-2 did not bind afadin but bound Pals2, a membrane-associated guanylate kinase family member known to bind Lin-7, implicated in the proper localization of the Let-23 protein in Caenorhabditis elegans, the homologue of mammalian epidermal growth factor receptor. These results indicate the unique localization of Necl-2 and its possible involvement in localization of a transmembrane protein(s) through Pals2.
Collapse
Affiliation(s)
- Tatsushi Shingai
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hobbs HH, Graf GA, Yu L, Wilund KR, Cohen JC. Genetic defenses against hypercholesterolemia. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 67:499-505. [PMID: 12858576 DOI: 10.1101/sqb.2002.67.499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Bile/metabolism
- Chromosomes, Human, Pair 1/genetics
- Endocytosis
- Genes, Recessive
- Humans
- Hyperlipoproteinemia Type II/genetics
- Hyperlipoproteinemia Type II/metabolism
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Mutation
- Receptors, LDL/metabolism
- Sitosterols/blood
- Sterols/metabolism
Collapse
Affiliation(s)
- H H Hobbs
- McDermott Center for Human Growth and Development, Department of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Schlessinger J, Lemmon MA. SH2 and PTB domains in tyrosine kinase signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE12. [PMID: 12865499 DOI: 10.1126/stke.2003.191.re12] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Intracellular signaling pathways that involve protein tyrosine kinases (PTKs) are critical for the control of most cellular processes. Dysfunctions in PTKs, or in the signaling pathways that they regulate, result in a variety of diseases such as cancer, diabetes, immune deficiency, and many others. SH2 (Src homology region 2) and PTB (phosphotyrosine-binding) domains are small protein modules that mediate protein-protein interactions involved in many signal transduction pathways. Both domains were initially identified as modules that recognize phosphorylated tyrosines in receptor tyrosine kinases and other signaling proteins. Subsequent studies have shown that, while binding of SH2 domains to their target proteins is strictly regulated by tyrosine phosphorylation, most PTB domains actually bind to their (nonphosphorylated) targets constitutively. The functions of SH2 and PTB domains include targeting of their host proteins to different cellular compartments, assembly of key components of signaling pathways in response to extracellular signals, and the control of autoinhibition, activation and dimerization of their host proteins. The information flow from the cell surface to different cellular compartments to regulate the cell cycle, cell shape and movement, cell proliferation, differentiation and cell survival are all controlled in part by SH2 and PTB domains that can recognize phosphotyrosine or particular amino acid sequence motifs in a wide variety of target molecules.
Collapse
Affiliation(s)
- Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
42
|
Settle M, Gordon MD, Nadella M, Dankort D, Muller W, Jacobs JR. Genetic identification of effectors downstream of Neu (ErbB-2) autophosphorylation sites in a Drosophila model. Oncogene 2003; 22:1916-26. [PMID: 12673197 DOI: 10.1038/sj.onc.1206240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ErbB-2/Neu receptor tyrosine kinase plays a causal role in tumorigenesis in mammals. Neu's carboxyl terminus contains five phosphorylated tyrosines that mediate transformation through interaction with cytoplasmic SH2 or PTB containing adaptor proteins. We show that Drosophila adaptors signal from individual phosphotyrosine sites of rat Neu. Activated Neu expression in the midline glia suppressed apoptosis, similar to that seen with activated Drosophila EGF-R expression. Expression in eye and wing tissues generated graded phenotypes suitable for dosage-sensitive modifier genetics. Suppression of ErbB-2/Neu-induced phenotypes in tissues haplosufficient for genes encoding adaptor protein or second messengers suggests that pTyr 1227(YD) signals require Shc, and that pTyr 1253 (YE) signalling does not employ Ras, but does require Raf function. Signalling from pTyr (YB) was affected by a haplosufficiency in drk (Grb-2), and in genes thought to function downstream of Grb-2: dab, sos, csw (Shp-2), and dos (Gab-1). These data demonstrate the power of Drosophila genetics to unmask the molecules that signal from oncogenic ErbB-2/Neu.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Animals
- Animals, Genetically Modified
- Apoptosis/genetics
- Apoptosis/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/metabolism
- ErbB Receptors/physiology
- Eye/growth & development
- Eye Proteins/genetics
- Eye Proteins/physiology
- Gene Dosage
- Gene Expression Regulation, Developmental
- Morphogenesis/genetics
- Morphogenesis/physiology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Phenotype
- Phosphorylation
- Phosphotyrosine/chemistry
- Protein Kinases
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- Protein Tyrosine Phosphatases, Non-Receptor
- Proteins/genetics
- Proteins/physiology
- Proto-Oncogene Proteins c-raf/genetics
- Proto-Oncogene Proteins c-raf/physiology
- Rats
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/physiology
- Receptors, Invertebrate Peptide/physiology
- Recombinant Fusion Proteins/physiology
- Shc Signaling Adaptor Proteins
- Signal Transduction/genetics
- Signal Transduction/physiology
- Son of Sevenless Protein, Drosophila/genetics
- Son of Sevenless Protein, Drosophila/physiology
- Structure-Activity Relationship
- Wings, Animal/growth & development
Collapse
Affiliation(s)
- Mark Settle
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Calderwood DA, Fujioka Y, de Pereda JM, García-Alvarez B, Nakamoto T, Margolis B, McGlade CJ, Liddington RC, Ginsberg MH. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci U S A 2003; 100:2272-7. [PMID: 12606711 PMCID: PMC151330 DOI: 10.1073/pnas.262791999] [Citation(s) in RCA: 315] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic domains (tails) of heterodimeric integrin adhesion receptors mediate integrins' biological functions by binding to cytoplasmic proteins. Most integrin beta tails contain one or two NPXYF motifs that can form beta turns. These motifs are part of a canonical recognition sequence for phosphotyrosine-binding (PTB) domains, protein modules that are present in a wide variety of signaling and cytoskeletal proteins. Indeed, talin and ICAP1-alpha bind to integrin beta tails by means of a PTB domain-NPXY ligand interaction. To assess the generality of this interaction we examined the binding of a series of recombinant PTB domains to a panel of short integrin beta tails. In addition to the known integrin-binding proteins, we found that Numb (a negative regulator of Notch signaling) and Dok-1 (a signaling adaptor involved in cell migration) and their isolated PTB domain bound to integrin tails. Furthermore, Dok-1 physically associated with integrin alpha IIb beta 3. Mutations of the integrin beta tails confirmed that these interactions are canonical PTB domain-ligand interactions. First, the interactions were blocked by mutation of an NPXY motif in the integrin tail. Second, integrin class-specific interactions were observed with the PTB domains of Dab, EPS8, and tensin. We used this specificity, and a molecular model of an integrin beta tail-PTB domain interaction to predict critical interacting residues. The importance of these residues was confirmed by generation of gain- and loss-of-function mutations in beta 7 and beta 3 tails. These data establish that short integrin beta tails interact with a large number of PTB domain-containing proteins through a structurally conserved mechanism.
Collapse
Affiliation(s)
- David A Calderwood
- Division of Vascular Biology, Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Shc is a prototype adapter protein that is expressed from the earliest stages of T-cell development. Shc becomes rapidly tyrosine phosphorylated after T-cell receptor (TCR) engagement. Expression of dominant negative forms of Shc in T-cell lines had also suggested a role for this adapter downstream of the TCR. However, until recently, the relative significance of Shc compared to several other adapters in T cells was unclear. Mice lacking Shc expression specifically in the T-cell lineage together with inducible expression of dominant negative Shc in transgenic mice have revealed an essential and nonredundant role for Shc in thymic T-cell development. Functional defects in a Jurkat T-cell line lacking Shc expression also suggest a role for Shc in mature T-cell functions. While the requirement of Shc in T-cell signaling is now established, precisely what signaling pathways downstream of Shc make this adapter unique are less clear. Although the Shc-mediated activation of the extracellular signal regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathway could be one component, Shc likely signals to other pathways in T cells that are not yet discovered. A better molecular understanding of Shc function in the future could provide insights into how multiple adapters coordinate the various outcomes downstream of the TCR.
Collapse
Affiliation(s)
- Li Zhang
- Department of Microbiology and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
45
|
Pedersen WA, Chan SL, Zhu H, Abdur-Rahman LA, Verdi JM, Mattson MP. Numb isoforms containing a short PTB domain promote neurotrophic factor-induced differentiation and neurotrophic factor withdrawal-induced death of PC12 Cells. J Neurochem 2002; 82:976-86. [PMID: 12358803 DOI: 10.1046/j.1471-4159.2002.01036.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The development of the nervous system is regulated by trophic signals that control cell proliferation, differentiation, and survival. Numb is an evolutionarily conserved protein identified by its ability to control cell fate in the nervous system of Drosophila. Mammals express four isoforms of Numb that differ in the length of a phosphotyrosine-binding (PTB) domain and a proline-rich region (PRR). Using PC12 cells stably expressing each of the human isoforms, we show that Numb regulates sensitivity of the cells to neurotrophic factor-induced differentiation and neurotrophic factor withdrawal-induced death in an isoform-specific manner. Numb isoforms containing a short PTB domain enhance the differentiation response to NGF and enhance apoptosis upon NGF withdrawal; Numb isoforms containing a long PTB domain exhibit the same sensitivity to NGF as vector-transfected cells. These effects of Numb were found to be independent of the length of the PRR. In undifferentiated conditions, the levels of full-length TrkA and of phosphorylated p44/p42 mitogen-activated protein kinase (MAPK) are increased in cells expressing Numb isoforms with a short PTB domain, indicating an up-regulation of NGF signaling pathways. Furthermore, we provide evidence that the mechanism whereby short PTB domain Numb isoforms sensitize cells to trophic factor deprivation-induced apoptosis involves elevations in intracellular calcium concentrations. Our results suggest that Numb sensitizes cells to neurotrophin responses in an isoform-specific manner, an effect that may play an important role in the development and plasticity of the nervous system.
Collapse
Affiliation(s)
- Ward A Pedersen
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
46
|
Taru H, Kirino Y, Suzuki T. Differential roles of JIP scaffold proteins in the modulation of amyloid precursor protein metabolism. J Biol Chem 2002; 277:27567-74. [PMID: 12023290 DOI: 10.1074/jbc.m203713200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously found that the JNK-interacting proteins JIP1b and JIP2 associate with the cytoplasmic domain of the Alzheimer's amyloid precursor protein (APP) (Taru, H., Iijima, K., Hase, M., Kirino, Y., Yagi, Y., and Suzuki, T. (2002) J. Biol. Chem. 277, 20070-20078). This interaction involves the carboxyl-terminal phosphotyrosine interaction (PI) domain of JIP1b or JIP2 and the GYENPTY motif in the APP cytoplasmic domain. The expression of JIP1b stabilizes immature APP and suppresses the production of a secreted large extracellular amino-terminal domain of APP, the generation of a cleaved intracellular carboxyl-terminal fragment of APP, and the secretion of beta-amyloid 40 and 42. Deletion of the PI domain or alteration of PI amino acid residues prevents JIP1b from interacting with APP and affecting its metabolism, but deletion of the JNK-binding domain of JIP1b has no effect. JIP2, a weaker APP-binding protein, does not influence the processing of APP, although it is known that both JIP1b and JIP2 equally regulate the JNK signaling cascade. The present results suggest that JIP1b can directly modulate APP metabolism by interacting with the APP cytoplasmic domain, independent of its regulation of the JNK signaling cascade.
Collapse
Affiliation(s)
- Hidenori Taru
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, the University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
47
|
Liu J, Yao F, Wu R, Morgan M, Thorburn A, Finley RL, Chen YQ. Mediation of the DCC apoptotic signal by DIP13 alpha. J Biol Chem 2002; 277:26281-5. [PMID: 12011067 DOI: 10.1074/jbc.m204679200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DCC (deleted in colorectal cancer) is a candidate tumor suppressor gene. However the function of DCC remains elusive. Previously, we demonstrated that forced expression of DCC induces apoptosis or cell cycle arrest (Chen, Y. Q., Hsieh, J. T., Yao, F., Fang, B., Pong, R. C., Cipriano, S. C. & Krepulat, F. (1999) Oncogene 18, 2747-2754). To delineate the DCC-induced apoptotic pathway, we have identified a protein, DIP13 alpha, which interacts with DCC. The DIP13 alpha protein has a pleckstrin homology domain and a phosphotyrosine binding domain. It interacts with a region on the DCC cytoplasmic domain that is required for the induction of apoptosis. Although ectopic expression of DIP13 alpha alone causes only a slight increase in apoptosis, co-expression of DCC and DIP13 alpha results in an approximately 5-fold increase in apoptosis. Removal of the DCC-interacting domain on DIP13 alpha abolishes its ability to enhance DCC-induced apoptosis. Inhibition of endogenous DIP13 alpha expression by small interfering RNA blocks DCC-induced apoptosis. Our data suggest that DIP13 alpha is a mediator of the DCC apoptotic pathway.
Collapse
Affiliation(s)
- Jiayou Liu
- Department of Pathology, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Taru H, Iijima KI, Hase M, Kirino Y, Yagi Y, Suzuki T. Interaction of Alzheimer's beta -amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade. J Biol Chem 2002; 277:20070-8. [PMID: 11912189 DOI: 10.1074/jbc.m108372200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have isolated a novel protein based on its association with Drosophila APP-like protein (APPL), a homolog of the beta-amyloid precursor protein (APP) that is implicated in Alzheimer's disease. This novel APPL-interacting protein 1 (APLIP1) contains a Src homology 3 domain and a phosphotyrosine interaction domain and is expressed abundantly in neural tissues. The phosphotyrosine interaction domain of APLIP1 interacts with a sequence containing GYENPTY in the cytoplasmic domain of APPL. APLIP1 is highly homologous to the carboxyl-terminal halves of mammalian c-Jun NH(2)-terminal kinase (JNK)-interacting protein 1b (JIP1b) and 2 (JIP2), which also contain Src homology 3 and phosphotyrosine interaction domains. The similarity of APLIP1 to JIP1b and JIP2 includes interaction with component(s) of the JNK signaling pathway and with the motor protein kinesin and the formation of homo-oligomers. JIP1b interacts strongly with the cytoplasmic domain of APP (APPcyt), as APLIP1 does with APPL, but the interaction of JIP2 with APPcyt is weak. Overexpression of JIP1b slightly enhances the JNK-dependent threonine phosphorylation of APP in cultured cells, but that of JIP2 suppresses it. These observations suggest that the interactions of APP family proteins with APLIP1, JIP1b, and JIP2 are conserved and play important roles in the metabolism and/or the function of APPs including the regulation of APP phosphorylation by JNK. Analysis of APP family proteins and their associated proteins is expected to contribute to understanding the molecular process of neural degeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Hidenori Taru
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, the University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Protein phosphorylation provides molecular control of complex physiological events within cells. In many cases, phosphorylation on specific amino acids directly controls the assembly of multi-protein complexes by recruiting phospho-specific binding modules. Here, the function, structure, and cell biology of phosphotyrosine-binding domains is discussed.
Collapse
Affiliation(s)
- Michael B Yaffe
- Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| |
Collapse
|
50
|
Abstract
The adapter protein Shc was initially identified as an SH2 containing proto-oncogene involved in growth factor signaling. Since then a number of studies in multiple systems have implicated a role for Shc in signaling via many different types of receptors, such as growth factor receptors, antigen receptors, cytokine receptors, G-protein coupled receptors, hormone receptors and integrins. In addition to the ubiquitous ShcA, two other shc gene products, ShcB and ShcC, which are predominantly expressed in neuronal cells, have also been identified. ShcA knockout mice are embryonic lethal and have clearly suggested an important role for ShcA in vivo. Based on dominant negative studies and mouse embryos deficient in ShcA, a clear role for Shc in leading to mitogen activated protein kinase (MAPK) activation has been established. However MAPK activation may not be the sole function of Shc proteins. Although Shc has also been linked to other signaling events such as c-Myc activation and cell survival, the mechanistic understanding of these signaling events remains poorly characterized. Given the apparently central role that Shc plays signaling via many receptors, delineating the precise mechanism(s) of Shc-mediated signaling may be critical to our understanding of the effects mediated through these receptors.
Collapse
Affiliation(s)
- K S Ravichandran
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia, VA 22908, USA.
| |
Collapse
|