1
|
Schulz MC, Wolff N, Kopf M, Gekle M. Acidosis-induced p38-kinase activation triggers an IL-6-mediated crosstalk of renal proximal tubule cells with fibroblasts leading to their inflammatory response. Cell Commun Signal 2025; 23:180. [PMID: 40217316 PMCID: PMC11987431 DOI: 10.1186/s12964-025-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Local interstitial acidosis in chronic kidney disease (CKD) induces inflammatory responses and dedifferentiation of proximal tubule cells (PTCs), disrupting cellular crosstalk through cytokine and COX-2 metabolite secretion. This promotes a switch to an inflammatory fibroblast phenotype, further exacerbating inflammation and PTC dedifferentiation. p38-signaling and downstream transcription factors, including P-CREB and c-fos, contribute to these responses. This study investigates the impact of acidosis on inflammatory responses in PTCs and fibroblasts, focusing on cellular crosstalk and the role of p38-signaling. METHODS HK-2 (human PTCs) and CCD-1092Sk (human fibroblasts) were exposed to acidic or control media in mono- and coculture for 30 min, 3 h, or 48 h. Protein expression of IL-6, phosphorylated (P-) and total CREB, P- and total SRF, c-fos, and P- and total p38 was analyzed by western blot. IL-6 secretion was measured using ELISA. The impact of p38 and IL-6 receptor activity was assessed by pharmacological intervention. RESULTS In coculture, acidosis initially caused a transient decrease in IL-6 secretion but significantly increased IL-6 levels after 48 h. Acidosis induced intracellular IL-6 expression in HK-2 cells within 3 h independent of culture conditions, with sustained IL-6 protein increase after 48 h only in coculture. Acidosis also enhanced P-CREB and c-fos expression in coculture during the first 3 h. Regardless of culture conditions, acidosis increased IL-6, c-fos, and P-SRF expression in CCDSK cells after 48 h. P-CREB and COX-2 expression were elevated in CCDSK in coculture. Acidosis-mediated effects on IL-6, P-CREB, and P-SRF expression were p38-dependent in both cell lines. Finally, we assessed the pH-dependency of IL-6 action and found that IL-6 addition increased COX-2 expression via the IL-6 receptor in acidic but not control media. Thus, acidosis enhances IL-6 secretion and potentiates its receptor-mediated biological effects. CONCLUSION This study identifies IL-6 as a key mediator of tubule-fibroblast crosstalk in an acidic milieu, promoting inflammatory processes. Acidosis induces IL-6 expression, secretion, and biological effects, with p38 kinase as a crucial mediator. If validated in vivo, these findings could enhance understanding of CKD and support early interventions.
Collapse
Affiliation(s)
- Marie-Christin Schulz
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany.
| | - Nathalie Wolff
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| | - Michael Kopf
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| | - Micheal Gekle
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| |
Collapse
|
2
|
Tofteng SS, Nilsson L, Mogensen AK, Nørregaard R, Nüsing R, Diatchikhine M, Lund L, Bistrup C, Jensen BL, Madsen K. Increased COX-2 after ureter obstruction attenuates fibrosis and is associated with EP 2 receptor upregulation in mouse and human kidney. Acta Physiol (Oxf) 2022; 235:e13828. [PMID: 35543087 PMCID: PMC9542224 DOI: 10.1111/apha.13828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022]
Abstract
AIM Cyclooxygenase-2 (COX-2) activity protects against oxidative stress and apoptosis early in experimental kidney injury. The present study was designed to test the hypothesis that COX-2 activity attenuates fibrosis and preserves microvasculature in injured kidney. The murine unilateral ureteral-obstruction (UUO) model of kidney fibrosis was employed and compared with human nephrectomy tissue with and without chronic hydronephrosis. METHODS Fibrosis and angiogenic markers were quantified in kidney tissue from wild-type and COX-2-/- mice subjected to UUO for 7 days and in human kidney tissue. COX-enzymes, prostaglandin (PG) synthases, PG receptors, PGE2 , and thromboxane were determined in human tissue. RESULTS COX-2 immunosignal was observed in interstitial fibroblasts at baseline and after UUO. Fibronectin, collagen I, III, alpha-smooth muscle actin, and fibroblast specific protein-1 mRNAs increased significantly more after UUO in COX-2-/- vs wild-type mice. In vitro, fibroblasts from COX-2-/- kidneys showed higher matrix synthesis. Compared to control, human hydronephrotic kidneys showed (i) fibrosis, (ii) no significant changes in COX-2, COX-1, PGE2 -, and prostacyclin synthases, and prostacyclin and thromboxane receptor mRNAs, (iii) increased mRNA and protein of PGE2 -EP2 receptor level but unchanged PGE2 tissue concentration, and (iv) two- to threefold increased thromboxane synthase mRNA and protein levels, and increased thromboxane B2 tissue concentration in cortex and outer medulla. CONCLUSION COX-2 protects in the early phase against obstruction-induced fibrosis and maintains angiogenic factors. Increased PGE2 -EP2 receptor in obstructed human and murine kidneys could contribute to protection.
Collapse
Affiliation(s)
- Signe S. Tofteng
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Line Nilsson
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Amalie K. Mogensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | | | - Rolf Nüsing
- Institute of Clinical PharmacologyGoethe UniversityFrankfurtGermany
| | | | - Lars Lund
- Department of UrologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Claus Bistrup
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of NephrologyOdense University HospitalOdenseDenmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark,Department of PathologyOdense University HospitalOdenseDenmark
| |
Collapse
|
3
|
Solanki K, Rajpoot S, Bezsonov EE, Orekhov AN, Saluja R, Wary A, Axen C, Wary K, Baig MS. The expanding roles of neuronal nitric oxide synthase (NOS1). PeerJ 2022; 10:e13651. [PMID: 35821897 PMCID: PMC9271274 DOI: 10.7717/peerj.13651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
The nitric oxide synthases (NOS; EC 1.14.13.39) use L-arginine as a substrate to produce nitric oxide (NO) as a by-product in the tissue microenvironment. NOS1 represents the predominant NO-producing enzyme highly enriched in the brain and known to mediate multiple functions, ranging from learning and memory development to maintaining synaptic plasticity and neuronal development, Alzheimer's disease (AD), psychiatric disorders and behavioral deficits. However, accumulating evidence indicate both canonical and non-canonical roles of NOS1-derived NO in several other tissues and chronic diseases. A better understanding of NOS1-derived NO signaling, and identification and characterization of NO-metabolites in non-neuronal tissues could become useful in diagnosis and prognosis of diseases associated with NOS1 expression. Continued investigation on the roles of NOS1, therefore, will synthesize new knowledge and aid in the discovery of small molecules which could be used to titrate the activities of NOS1-derived NO signaling and NO-metabolites. Here, we address the significance of NOS1 and its byproduct NO in modifying pathophysiological events, which could be beneficial in understanding both the disease mechanisms and therapeutics.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Anita Wary
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Cassondra Axen
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kishore Wary
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| |
Collapse
|
4
|
Samynathan R, Subramanian U, Venkidasamy B, Shariati MA, Chung IM, Thiruvengadam M. S-Allylcysteine (SAC) Exerts Renoprotective Effects via Regulation of TGF-
β1/Smad3 Pathway Mediated Matrix Remodeling in Chronic Renal Failure. Curr Pharm Des 2022; 28:661-670. [DOI: 10.2174/1381612828666220401114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Background: S-Allylcysteine (SAC), an organosulfur phytochemical sourced from aged garlic extract,
is well known for its varied biomedical applications, such as anti-oxidant, anti-inflammatory, and detoxification
mechanisms. Despite this, the scientific findings on the defensive impact of SAC against kidney failure
(KF) are still unclear. Therefore, in the current investigation, the animal model of KF was induced by adenine
in Wistar rats, and the animals were divided into four groups as control, KF induction using adenine, SAC treated
KF rats for an experimental duration of 8 weeks.
Methods: KF progression was assessed by various serum and tissue markers, and the results demonstrated that
the renal functions’ markers, KIM-1 (kidney injury molecule-1), cystatin, NGAL (neutrophil gelatinase-associated
lipocalin), were found increased in adenine-treated rats compared to control. In addition, the inflammatory
markers, matrix proteins, and fibrosis signatures explicated by RT-PCR, ELISA demonstrated a profound increase.
On the other hand, rats received SAC mitigated KF considerably (p < 0.001) with restored cellular functions.
Besides, SAC pre-treatment abrogated the cytokines and pro-inflammatory signals (COX-2 and PGE2) in
a dose-dependent manner.
Conclusion: Furthermore, the fibrosis signaling markers mediators, such as SMAD-2,-3 were increased with associated
matrix proteins. Thus, the present study substantiated that SAC possesses a significant renoprotective
effect that might have been demonstrated by the inhibition of the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Ramkumar Samynathan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk
Colony, Chennai 600051, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow, 109004, Russian Federation
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Alasmari WA, El-Shetry ES, Ibrahim D, ElSawy NA, Eldoumani H, Metwally AS, Saleh AA, Mona MM, Abd-Elsalam MM, Hendam BM, Essawi WM, Abourehab MAS, Abdelfattah-Hassan A. Mesenchymal stem-cells' exosomes are renoprotective in postmenopausal chronic kidney injury via reducing inflammation and degeneration. Free Radic Biol Med 2022; 182:150-159. [PMID: 35218913 DOI: 10.1016/j.freeradbiomed.2022.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/06/2023]
Abstract
Chronic kidney disease (CKD) is an important global disease its rates are increasing worldwide. CKD is caused by injuries to kidney tissue that exceeds the rate of regeneration, which with time lead to irreversible renal damage and CKD become evident. In females, diminished estrogen supply in the postmenopausal period is associated with greater risk for developing CKD. In this study we isolated exosomes from bone marrow mesenchymal stem/stromal cells (BM-MSCs) and tested their therapeutic effects on post-menopause CKD (PM-CKD) and compared their effects with BM-MSCs. The menopause model was achieved by bilateral ovariectomy in 8-months-old female albino rats, then no treatment, 2 million BM-MSCs or 100 μg of exosomes (Exo) was given intravenously in tail vein to ovariectomized rats and the study continued for 8 weeks post-ovariectomy. Changes in weight, urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), Kidney oxidative stress (MDA), kidney antioxidant parameters (SOD, GPx and CAT), histopathological changes, immunohistochemical expression of KIM-1 and, finally, genes related to renal damage (peroxiredoxin-3, KIM-1 and ICAM-1) and inflammation (TNF-α, Cox2 and IL-6) were recorded for all study groups. Post-ovariectomy there was an increased body weight, drastic reduction of estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, increased MDA and reduced GPx SOD, and CAT in kidney tissue, chronic inflammation, degenerative and fibrotic lesions in histopathological examination, high expression of KIM-1 immunohistochemically and changes in gene expression analyses all pointing to the development of CKD in the study rats. In the PM-CKD groups receiving BM-MSCs or Exo, the whole chronic inflammatory picture was completely reversed towards a much normal kidney structure and function. The improvements were more observable with Exo compared to BM-MSCs. Overall, our results show for the first time that exosomes isolated from BM-MSCs are more potent in reducing chronic inflammatory changes in the kidney of postmenopausal females compared to the cell-based approach using BM-MSCs. Therefore, MSCs-derived exosomes are a promising therapeutic approach for preserving postmenopausal kidney structure and function and, subsequently, should improve the quality of life of postmenopausal females.
Collapse
Affiliation(s)
- Wardah A Alasmari
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, 24230, Saudi Arabia
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Naser A ElSawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Aya Sh Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Marwa M Mona
- Department of Medical Biochemistry, Faculty of Medicine, Kafrelsheikh University, Egypt
| | - Marwa M Abd-Elsalam
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Egypt
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa M Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
6
|
Ming J, Sana SRGL, Deng X. Identification of copper-related biomarkers and potential molecule mechanism in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:978601. [PMID: 36329882 PMCID: PMC9623046 DOI: 10.3389/fendo.2022.978601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a chronic microvascular complication in patients with diabetes mellitus, which is the leading cause of end-stage renal disease. However, the role of copper-related genes (CRGs) in DN development remains unclear. MATERIALS AND METHODS CRGs were acquired from the GeneCards and NCBI databases. Based on the GSE96804 and GSE111154 datasets from the GEO repository, we identified hub CRGs for DN progression by taking the intersection of differentially expressed CRGs (DECRGs) and genes in the key module from Weighted Gene Co-expression Network Analysis. The Maximal Clique Centrality algorithm was used to identify the key CRGs from hub CRGs. Transcriptional factors (TFs) and microRNAs (miRNAs) targeting hub CRGs were acquired from publicly available databases. The CIBERSORT algorithm was used to perform comparative immune cell infiltration analysis between normal and DN samples. RESULTS Eighty-two DECRGs were identified between normal and DN samples, as were 10 hub CRGs, namely PTGS2, DUSP1, JUN, FOS, S100A8, S100A12, NAIP, CLEC4E, CXCR1, and CXCR2. Thirty-nine TFs and 165 miRNAs potentially targeted these 10 hub CRGs. PTGS2 was identified as the key CRG and FOS as the most significant gene among all of DECRGs. RELA was identified as the hub TF interacting with PTGS2 by taking the intersection of potential TFs from the ChEA and JASPAR public databases. let-7b-5p was identified as the hub miRNA targeting PTGS2 by taking the intersection of miRNAs from the miRwalk, RNA22, RNAInter, TargetMiner, miRTarBase, and ENCORI databases. Similarly, CREB1, E2F1, and RELA were revealed as hub TFs for FOS, and miR-338-3p as the hub miRNA. Finally, compared with those in healthy samples, there are more infiltrating memory B cells, M1 macrophages, M2 macrophages, and resting mast cells and fewer infiltrating activated mast cells and neutrophils in DN samples (all p< 0.05). CONCLUSION The 10 identified hub copper-related genes provide insight into the mechanisms of DN development. It is beneficial to examine and understand the interaction between hub CRGs and potential regulatory molecules in DN. This knowledge may provide a novel theoretical foundation for the development of diagnostic biomarkers and copper-related therapy targets in DN.
Collapse
Affiliation(s)
- Jie Ming
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Si Ri Gu Leng Sana
- Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Si Ri Gu Leng Sana,
| | - Xijin Deng
- Department of Anaesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Khan AH, Hwang SH, Barnett SD, Burkhan A, Jankiewicz WK, Hammock BD, Imig JD. Multitarget molecule, PTUPB, to treat diabetic nephropathy in rats. Br J Pharmacol 2021; 178:4468-4484. [PMID: 34255857 PMCID: PMC8863090 DOI: 10.1111/bph.15623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy is a common complications related to high morbidity and mortality in type 2 diabetes. We investigated the action of the dual modulator, PTUPB, a soluble epoxide hydrolase and cyclooxygenase-2 inhibitor against diabetic nephropathy. EXPERIMENTAL APPROACH Sixteen-week-old type 2 diabetic and proteinuric obese ZSF1 rats were treated with vehicle, PTUPB or enalapril for 8 weeks. Measurements were made of epoxyeicosatrienoic acids, thromboxane B2 (TBX2 ) and prostaglandin E2 (PGE2 ) in the kidney of these and lean ZSF1 rats along with their blood pressure. KEY RESULT Obese ZSF1 rats were diabetic with fivefold higher fasting blood glucose levels and markedly higher HbA1c levels compared with lean ZSF1 rats. PTUPB nor enalapril reduced fasting blood glucose or HbA1c but alleviated the development of diabetic nephropathy. In PTUPB-treated obese ZSF1 rats, glomerular nephrin expression was preserved. Enalapril also alleviated diabetic nephropathy. Diabetic renal injury in obese ZSF1 rats was accompanied by renal inflammation with six to sevenfold higher urinary MCP-1 (CCR2) level and renal infiltration of CD-68 positive cells. PTUPB and enalapril significantly reduced urinary MCP-1 levels and renal mRNA expression of cytokines. Both PTUPB and enalapril lowered blood pressure. PTUPB but not enalapril decreased hyperlipidaemia and liver injury in obese ZSF1 rats. CONCLUSION AND IMPLICATIONS Overall, the dual modulator PTUPB does not treat hyperglycaemia but can effectively alleviate hypertension, diabetic nephropathy, hyperlipidaemia and liver injury in type 2 diabetic rats. Our data further demonstrate that the renal actions of PTUPB are comparable with a current standard diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Abdul Hye Khan
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Scott D. Barnett
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anna Burkhan
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wojciech K. Jankiewicz
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - John D. Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
He S, Li A, Zhang W, Zhang L, Liu Y, Li K, Qin X. An integrated transcriptomics and network pharmacology approach to exploring the mechanism of adriamycin-induced kidney injury. Chem Biol Interact 2020; 325:109096. [DOI: 10.1016/j.cbi.2020.109096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
|
9
|
Elsherbini DMA, Ebrahim HA. Effect of meloxicam (cyclooygenase-2 inhibitor) versus vitamin D3 (cholecalciferol) as ameliorating agents of progressive doxorubicin-induced nephrotoxicity in rats. Anat Cell Biol 2020; 53:169-182. [PMID: 32647085 PMCID: PMC7343563 DOI: 10.5115/acb.19.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/27/2022] Open
Abstract
Doxorubicin (DOX)-induced nephropathy hampered its antineoplastic efficiency. The objective of the current work is to assess the prospective ameliorating effects of meloxicam versus vitamin D3 (Vit D3, cholecalciferol) against progressive DOX-induced nephropathy in rats trying to ascertain the possible mechanism underlying such amelioration. Ninety Male Wistar rats were randomly distributed to five experimental groups for 3 weeks, with saline, meloxicam (daily), DOX (single dose), Vit D3+DOX, or both meloxicam and DOX. We measured levels of urinary protein, serum creatinine, malondialdehyde (MDA) and renal reduced glutathione (GSH). In addition, tumor necrosis factor-alpha (TNF-α) expression and renal histopathology were assessed. Meloxicam alone treated group revealed no significant difference in urinary protein and serum creatinine. It also presented non-significant reduction in the MDA content while an increase in the reduced GSH content in contrast to the control group, which is more evident after the first week. Renal sections of rats received meloxicam only showed no significant histological changes and negative immunoreactivity compared to the control group. DOX induced a significant increase in urinary protein, serum creatinine, decrease reduced GSH, increased renal MDA and disrupted renal morphometric parameters and histology with increased TNF-α expression. Combination groups of Vit D3+DOX and meloxicam+DOX showed improvement of all DOX disturbed parameters. Meloxicam showed better results most likely due to anti-inflammatory and antioxidant activities superimposing the immune-modulatory effect of Vit D3. So, it is recommended to use meloxicam in patients receiving DOX as a renoprotective agent in addition to its analgesic effects required by cancer patients.
Collapse
Affiliation(s)
- Dalia Mahmoud Abdelmonem Elsherbini
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Hasnaa Ali Ebrahim
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Monirujjaman M, Aukema HM. High Dietary Protein Does Not Alter Renal Prostanoids and Other Oxylipins in Normal Mice or in Those with Inherited Kidney Disease. J Nutr 2020; 150:1135-1143. [PMID: 32006016 DOI: 10.1093/jn/nxz341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Ex vivo studies suggest that increased renal prostanoids can mediate effects of high-protein (HP) compared with low-protein (LP) diets on normal and diseased kidneys. However, a short-term HP feeding study in normal male rats failed to demonstrate higher renal prostanoids in vivo. OBJECTIVES The aim of the present study was to investigate whether long-term HP feeding alters renal prostanoids in male and female mice, with and without kidney disease. METHODS Weanling normal mice (CD1) and mice with kidney disease (CD1-pcy/pcy mice) were fed standard diets with normal protein [NP, 20% of energy (%E)] or HP (35%E) for 13 wk. Renal disease was assessed by histomorphometric analysis of cysts and fibrosis, and measurement of serum urea nitrogen (SUN) and creatinine concentrations. Targeted analysis of renal oxylipins was performed by HPLC-MS/MS. RESULTS The HP diet increased kidney size and water content of normal kidneys, and worsened disease in CD1-pcy/pcy mice as indicated by higher (P < 0.05) kidney weights (8-31%), water content (8-10%), cyst volume (36-60%), fibrous volume (44-53%), and SUN (47-55%). Diseased compared with normal kidneys had higher (P < 0.05) concentrations of 6 of 11 prostanoids and lower (P < 0.05) concentrations of 33 of 54 other oxylipins. This is consistent with previously known effects of dietary HP and disease effects on the kidney. However, the HP diet did not alter renal prostanoids and other renal oxylipins in either normal or diseased kidneys (P < 0.05), despite having the expected physiological effects on normal and diseased kidneys. This study also showed that females have higher concentrations of renal prostanoids [9 of 11 prostanoids higher (P < 0.05) in females], but lower concentrations of other oxylipins [28 of 54 other oxylipins lower (P < 0.05) in females]. CONCLUSIONS The effects of HP diets on normal and diseased kidneys in CD1 and CD1-pcy/pcy mice are independent of renal oxylipin alterations.
Collapse
Affiliation(s)
- Md Monirujjaman
- Department of Food and Human Nutritional Sciences, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Ma KL, Liu L, Zhang Y, Wang GH, Hu ZB, Chen PP, Lu J, Lu CC, Gong TK, Gong YX, Liu BC. Aspirin attenuates podocyte injury in diabetic rats through overriding cyclooxygenase-2-mediated dysregulation of LDL receptor pathway. Int Urol Nephrol 2019; 51:551-558. [PMID: 30604228 DOI: 10.1007/s11255-018-2059-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
AIM This study aimed to investigate the effects of aspirin on podocyte injury and its underlying mechanisms in diabetic nephropathy (DN). METHODS Eight-week-old male Sprague-Dawley rats were divided into three groups: non-diabetic rats (Control), streptozotocin-induced diabetic rats (DM), and diabetic rats treated with aspirin (DM + Aspirin) for 12 weeks. Intracellular lipid accumulation was evaluated by Oil Red O staining and quantitative free cholesterol assays. Podocyte injury and the levels of COX-2, inflammatory cytokines, and low-density lipoprotein receptor (LDLr) pathway-related proteins were evaluated by electron microscopy, immunohistochemical staining, and Western blotting, respectively. RESULTS Lipid levels and urinary albumin-creatinine ratios were higher in the DM rats than in the Control rats. Periodic acid-Schiff staining showed glomerular hypertrophy and mild mesangial area widening in the DM rats. Electron microscopy showed that the podocyte foot processes were significantly flattened or absent in the DM rats. The protein expression levels of WT-1 and nephrin in the podocytes of DM rats were reduced. Interestingly, lipid accumulation in the kidneys of DM rats was significantly increased due to increased protein expression levels of LDLr, sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP), SREBP-2, cyclooxygenase-2 (COX-2), and inflammatory cytokines. Confocal immunofluorescent staining showed that COX-2 and WT-1 were co-expressed. Furthermore, COX-2 protein expression levels were positively correlated with LDLr protein expression levels. However, when COX-2 expression was inhibited by aspirin, these changes in the DM rats were significantly attenuated. CONCLUSION Aspirin attenuates podocyte injury in DN, which may be through COX-2-mediated dysregulation of LDLr pathway.
Collapse
Affiliation(s)
- Kun Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China.
| | - Liang Liu
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| | - Yang Zhang
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| | - Gui Hua Wang
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| | - Ze Bo Hu
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| | - Pei Pei Chen
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| | - Jian Lu
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| | - Chen Chen Lu
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| | - Tie Kai Gong
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| | - Yu Xiang Gong
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| | - Bi Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Medical School of Southeast University, NO. 87, Ding Jia Qiao Road, Nang Jing, 210009, Jiang Su, China
| |
Collapse
|
12
|
Islam MA, Ravandi A, Aukema HM. Linoleic acid derived oxylipins are elevated in kidney and liver and reduced in serum in rats given a high-protein diet. J Nutr Biochem 2018; 61:40-47. [DOI: 10.1016/j.jnutbio.2018.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
|
13
|
Distinct oxylipin alterations in diverse models of cystic kidney diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1562-1574. [DOI: 10.1016/j.bbalip.2017.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022]
|
14
|
Watanabe Y, Yamaguchi T, Ishihara N, Nakamura S, Tanaka S, Oka R, Imamura H, Sato Y, Ban N, Kawana H, Ohira M, Shimizu N, Saiki A, Tatsuno I. 7-Ketocholesterol induces ROS-mediated mRNA expression of 12-lipoxygenase, cyclooxygenase-2 and pro-inflammatory cytokines in human mesangial cells: Potential role in diabetic nephropathy. Prostaglandins Other Lipid Mediat 2017; 134:16-23. [PMID: 29154978 DOI: 10.1016/j.prostaglandins.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
7-Ketocholesterol (7-KCHO) is a highly proinflammatory oxysterol and plays an important role in the pathophysiology of diabetic nephropathy (DN). Lipoxygenases (LOXs) and cyclooxygenases (COXs) are also involved in the development of DN. The aim of this study was to clarify the effects of 7-KCHO on mRNA expression of LOXs and COXs as well as pro-inflammatory cytokines in human mesangial cells (HMC). We evaluated cell viability by WST-8 assay and measured mRNA expression by reverse transcription-polymerase chain reaction. Intracellular reactive oxygen species (ROS) production was evaluated by flow cytometry. Although 7-KCHO did not affect cell viability of HMC, 7-KCHO stimulated significant increases in mRNA expression of 12-LOX, COX-2 and pro-inflammatory cytokines. 7-KCHO also induced an increase in ROS production, while N-acetylcysteine partially suppressed the increase. The 12-LOX and COX-2 inhibitors also suppressed mRNA expression of cytokines. These findings may contribute to the elucidation of the molecular mechanism of the pathophysiology of DN.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan; Department of Diabetes, Endocrinology and Metabolism, Toho University Graduate School of Medicine, 6-1-1 Omorinisi, Ota-ku, Tokyo, Japan
| | - Takashi Yamaguchi
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Noriko Ishihara
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Shoko Nakamura
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Sho Tanaka
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Rena Oka
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Haruki Imamura
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Yuta Sato
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Noriko Ban
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Hidetoshi Kawana
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Masahiro Ohira
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Naomi Shimizu
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Atsuhito Saiki
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-City, Chiba 285-8741, Japan.
| |
Collapse
|
15
|
Alexanian A, Sorokin A. Cyclooxygenase 2: protein-protein interactions and posttranslational modifications. Physiol Genomics 2017; 49:667-681. [PMID: 28939645 DOI: 10.1152/physiolgenomics.00086.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies implicate the cyclooxygenase 2 (COX2) enzyme and COX2-derived prostanoids in various human diseases, and thus, much effort has been made to uncover the regulatory mechanisms of this enzyme. COX2 has been shown to be regulated at both the transcriptional and posttranscriptional levels, leading to the development of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX2 inhibitors (COXIBs), which inhibit the COX2 enzyme through direct targeting. Recently, evidence of posttranslational regulation of COX2 enzymatic activity by s-nitrosylation, glycosylation, and phosphorylation has also been presented. Additionally, posttranslational regulators that actively downregulate COX2 expression by facilitating increased proteasome degradation of this enzyme have also been reported. Moreover, recent data identified proteins, located in close proximity to COX2 enzyme, that serve as posttranslational modulators of COX2 function, upregulating its enzymatic activity. While the precise mechanisms of the protein-protein interaction between COX2 and these regulatory proteins still need to be addressed, it is likely these interactions could regulate COX2 activity either as a result of conformational changes of the enzyme or by impacting subcellular localization of COX2 and thus affecting its interactions with regulatory proteins, which further modulate its activity. It is possible that posttranslational regulation of COX2 enzyme by such proteins could contribute to manifestation of different diseases. The uncovering of posttranslational regulation of COX2 enzyme will promote the development of more efficient therapeutic strategies of indirectly targeting the COX2 enzyme, as well as provide the basis for the generation of novel diagnostic tools as biomarkers of disease.
Collapse
Affiliation(s)
- Anna Alexanian
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrey Sorokin
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
16
|
Jin J, Tang Q, Li Z, Zhao Z, Zhang Z, Lu L, Zhu T, Vanhoutte PM, Leung SW, Tu R, Shi Y. Prostaglandin E 2 regulates renal function in C57/BL6 mouse with 5/6 nephrectomy. Life Sci 2017; 174:68-76. [PMID: 28263803 DOI: 10.1016/j.lfs.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
AIMS To investigate the roles of cyclooxygenases (COX) and their metabolites in C57/BL6 mice with 5/6 nephrectomy, an animal model of chronic renal failure. MAIN METHODS C57/BL6 mice were grouped into sham-operated (2K), one kidney removal (1K) and 5/6 nephrectomy groups (5/6Nx). Renal resistive index was measured by ultrasonography. Blood, aortae, renal arteries and renal cortex were collected for measurement of kidney function, assessment of vascular responsiveness, Western blotting, immuohistochemistry and enzyme-linked immunosorbent assays. KEY FINDINGS After four weeks, acetylcholine-induced relaxations were blunted in renal arteries of 1K and 5/6Nx mice; indomethacin, a non-selective COX inhibitor, improved the response in 5/6Nx, but not in 1K renal arteries. In 5/6Nx renal arteries, but not in 1K preparations, the protein presence of endothelial nitric oxide synthase (eNOS) was decreased, while that of COX-2 and its products [prostacyclin and thromboxane A2] were increased. The renal resistive index was lower in 5/6Nx mice, suggesting a lower resistance in the renal microvasculature. In the renal cortex of 5/6Nx mice, eNOS protein presence was increased; while the presence of COX-2 was not detectable. The prostaglandin E2 level was lower in the 5/6Nx cortex than in the other two groups. SIGNIFICANCE The early stage of renal mass removal is associated with increased renal arterial constriction and reduced microvascular resistance. The former is due to downregulation of eNOS and upregulation of COX-2, leading to an increased production of prostacyclin and thromboxane A2. A reduced production of PGE2 in the renal cortex is important for maintaining normal renal function.
Collapse
Affiliation(s)
- J Jin
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, China
| | - Q Tang
- Department of Urology, Zhongshan Hospital, Fudan University, China; Shanghai Key Laboratory of Organ Transplantation, China
| | - Z Li
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, China
| | - Z Zhao
- Department of Pathology, Faculty of Medicine, Fudan University, China
| | - Z Zhang
- Department of Pathology, Faculty of Medicine, Fudan University, China
| | - L Lu
- Department of Physiology and Pathophysiology, Faculty of Medicine, Fudan University, China
| | - T Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, China; Shanghai Key Laboratory of Organ Transplantation, China
| | - P M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S W Leung
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - R Tu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, China.
| | - Y Shi
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, China; Shanghai Key Laboratory of Organ Transplantation, China.
| |
Collapse
|
17
|
Hye Khan MA, Hwang SH, Sharma A, Corbett JA, Hammock BD, Imig JD. A dual COX-2/sEH inhibitor improves the metabolic profile and reduces kidney injury in Zucker diabetic fatty rat. Prostaglandins Other Lipid Mediat 2016; 125:40-7. [PMID: 27432695 PMCID: PMC5035206 DOI: 10.1016/j.prostaglandins.2016.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 01/11/2023]
Abstract
Cyclooxygenase (COX) and soluble epoxide hydrolase (sEH) inhibitors have therapeutic potential. The present study investigated efficacy of a novel dual acting COX-2/sEH inhibitor, PTUPB in type 2 diabetic Zucker Diabetic Fatty (ZDF) rats. Male ZDF rats were treated with vehicle or PTUPB (10mg/kg/d, i.p.) for 8 weeks. At the end of the 8-week experimental period, ZDF rats were diabetic (fasting blood glucose, 287±45mg/dL) compared to Zucker Diabetic Lean rats (ZDL, 99±6mg/dL), and PTUPB treatment improved glycemic status in ZDF rats (146±6mg/dL). Kidney injury was evident in ZDF compared to ZDL rats with elevated albuminurea (44±4 vs 4±2mg/d) and nephrinurea (496±127 vs 16±4μg/d). Marked renal fibrosis, tubular cast formation and glomerular injury were also present in ZDF compared to ZDL rats. In ZDF rats, PTUPB treatment reduced kidney injury parameters by 30-80% compared to vehicle. The ZDF rats also demonstrated increased inflammation and oxidative stress with elevated levels of urinary monocyte chemoattractant protein-1 excretion (862±300 vs 319±75ng/d), renal macrophage infiltration (53±2 vs 37±4/mm(2)) and kidney malondialdehyde/protein ratio (10±1 vs 5±1μmol/mg). PTUPB treatment decreased these inflammatory and oxidative stress markers in the kidney of ZDF rats by 25-57%. These data demonstrate protective actions of a novel dual acting COX-2/sEH inhibitor on the metabolic abnormalities and kidney function in ZDF rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Md Abdul Hye Khan
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Amit Sharma
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - John D Imig
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
18
|
Slattery P, Frölich S, Schreiber Y, Nüsing RM. COX-2 gene dosage-dependent defects in kidney development. Am J Physiol Renal Physiol 2016; 310:F1113-22. [PMID: 26984955 DOI: 10.1152/ajprenal.00430.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/10/2016] [Indexed: 12/18/2022] Open
Abstract
Deletion of cyclooxygenase (COX)-2 causes impairment of kidney development, including hypothrophic glomeruli and cortical thinning. A critical role for COX-2 is seen 4-8 days postnatally. The present study was aimed at answering whether different COX-2 gene dosage and partial pharmacological COX-2 inhibition impairs kidney development. We studied kidney development in COX-2(+/+), COX-2(+/-), and COX-2(-/-) mice as well as in C57Bl6 mice treated postnatally with low (5 mg·kg(-1)·day(-1)) and high (10 mg·kg(-1)·day(-1)) doses of the selective COX-2 inhibitor SC-236. COX-2(+/-) mice exhibit impaired kidney development leading to reduced glomerular size but, in contrast to COX-2(-/-) mice, only marginal cortical thinning. Moreover, in COX-2(+/-) and COX-2(-/-) kidneys, juxtamedullary glomeruli, which develop in the very early stages of nephrogenesis, also showed a size reduction. In COX-2(+/-) kidneys at the age of 8 days, we observed significantly less expression of COX-2 mRNA and protein and less PGE2 and PGI2 synthetic activity compared with COX-2(+/+) kidneys. The renal defects in COX-2(-/-) and COX-2(+/-) kidneys could be mimicked by high and low doses of SC-236, respectively. In aged COX-2(+/-) kidneys, glomerulosclerosis was observed; however, in contrast to COX-2(-/-) kidneys, periglomerular fibrosis was absent. COX-2(+/-) mice showed signs of kidney insufficiency, demonstrated by enhanced serum creatinine levels, quite similar to COX-2(-/-) mice, but, in contrast, serum urea remained at the control level. In summary, function of both COX-2 gene alleles is absolutely necessary to ensure physiological development of the mouse kidney. Loss of one copy of the COX-2 gene or partial COX-2 inhibition is associated with distinct renal damage and reduced kidney function.
Collapse
Affiliation(s)
- Patrick Slattery
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany; and
| | - Stefanie Frölich
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany; and
| | | | - Rolf M Nüsing
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany; and
| |
Collapse
|
19
|
Qiu J, Yuan H, Chen S, Zhou Y, Song D, Chen R. TNFα up-regulates COX-2 in chronic progressive nephropathy through nuclear accumulation of RelB and NF-κB2. Arch Physiol Biochem 2016; 122:88-93. [PMID: 26824492 DOI: 10.3109/13813455.2016.1141961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The pathogenesis of progressive nephropathies involves inflammatory factors. The inhibition of cyclooxygenase-2 (COX-2) can limit renal damage and inflammation. However, the mechanism of up-regulation of COX-2 in nephropathy is poorly defined. MATERIALS AND METHODS Here we found that tumor necrosis factor alpha (TNFα) was involved in expression of COX-2 in normal rat kidney (NRK) cell line. RESULTS TNFα stimulated COX-2 production in a time-dependent manner in NRK cells by inducing nuclear accumulation of RelB and nuclear factor kappa B2 (NF-κB2) and their association with COX-2 gene promoter. Depletion of IκB-inducing kinase alpha, a positive regulator of activation of p100 processing to active p52, attenuated TNFα-induced COX-2 production. Furthermore, TNFα induced COX-2 production and nuclear import in anti-thymocyte serum (ATS) nephropathy. DISCUSSION AND CONCLUSION These data suggest that TNFα-RelB/p52 pathway may be involved in the early stages of renal damage, in part by stimulating COX-2 and inflammatory responses.
Collapse
Affiliation(s)
- Junsi Qiu
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Hongying Yuan
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Shujue Chen
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Ying Zhou
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Dan Song
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Rongquan Chen
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| |
Collapse
|
20
|
Lipid mediators are critical in resolving inflammation: a review of the emerging roles of eicosanoids in diabetes mellitus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:568408. [PMID: 25866794 PMCID: PMC4383369 DOI: 10.1155/2015/568408] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 12/25/2022]
Abstract
The biosynthesis pathway of eicosanoids derived from arachidonic acid, such as prostaglandins and leukotrienes, relates to the pathophysiology of diabetes mellitus (DM). A better understanding of how lipid mediators modulate the inflammatory process may help recognize key factors underlying the progression of diabetes complications. Our review presents recent knowledge about eicosanoid synthesis and signaling in DM-related complications, and discusses eicosanoid-related target therapeutics.
Collapse
|
21
|
Role of COX-2/mPGES-1/prostaglandin E2 cascade in kidney injury. Mediators Inflamm 2015; 2015:147894. [PMID: 25729216 PMCID: PMC4333324 DOI: 10.1155/2015/147894] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/19/2015] [Indexed: 12/26/2022] Open
Abstract
COX-2/mPGES-1/PGE2 cascade plays critical roles in modulating many physiological and pathological actions in different organs. In the kidney, this cascade is of high importance in regulating fluid metabolism, blood pressure, and renal hemodynamics. Under some disease conditions, this cascade displays various actions in response to the different pathological insults. In the present review, the roles of this cascade in the pathogenesis of kidney injuries including diabetic and nondiabetic kidney diseases and acute kidney injuries were introduced and discussed. The new insights from this review not only increase the understanding of the pathological role of the COX-2/mPGES-1/PGE2 pathway in kidney injuries, but also shed new light on the innovation of the strategies for the treatment of kidney diseases.
Collapse
|
22
|
Cyclooxygenase product inhibition with acetylsalicylic acid slows disease progression in the Han:SPRD-Cy rat model of polycystic kidney disease. Prostaglandins Other Lipid Mediat 2015; 116-117:19-25. [DOI: 10.1016/j.prostaglandins.2014.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/30/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
|
23
|
Chen X, Jiang D, Wang J, Chen X, Xu X, Xi P, Fan Y, Zhang X, Guan Y. Prostaglandin E2 EP1 receptor enhances TGF-β1-induced mesangial cell injury. Int J Mol Med 2014; 35:285-93. [PMID: 25352206 DOI: 10.3892/ijmm.2014.1979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 10/15/2014] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence indicates that transforming growth factor-β1 (TGF-β1) is a pivotal mediator in the pathogenesis of renal fibrosis. Mesangial cells (MCs) are important for glomerular function under both physiological and pathological conditions. Studies have found that the expression level of prostaglandin E2 (PGE2) in MCs increases under high glucose conditions, that PGE2 affects the proliferation and hypertrophy of MCs mainly through the EP1 pathway, and that the proliferation of MCs and the accumulation of extracellular matrix are the main events leading to glomerular fibrosis. In this study, we investigated the effects and mechanisms of action of the EP1 receptor, which is induced by transforming growth factor (TGF)-β1, on the proliferation of mouse MCs, the accumulation of extracellular matrix and the expression of PGE2 synthase. Primary mouse glomerular MCs were isolated from EP1 receptor-deficient mice (EP1-/- mice, in which the EP1 receptor was knocked down) and wild-type (WT) mice (WT MCs). In our preliminary experiments, we found that cell proliferation, as well as the mRNA and protein expression of cyclin D1, proliferating cell nuclear antigen (PCNA), fibronectin (FN), collagen I (ColI), membrane-associated PGE2 synthase-1 (mPGES-1) and cyclooxygenase-2 (COX-2) in the WT MCs were significantly increased following treatment with 10 ng/ml TGF-β1 for 24 h. Compared with the WT MCs, following the knockdown of the EP1 gene, the TGF-β1-induced MC injury was markedly suppressed. The aforementioned changes were notably enhanced following treatment with the EP1 agonist, 17-phenyl trinor PGE2 ethyl amide. Additionally, TGF-β1 induced extracellular signal-regulated kinase (ERK) phosphorylation. We found that the TGF-β1-induced ERK phosphorylation was alleviated by EP1 knockdown and promoted by EP1 expression. These results suggest that the EP1 receptor plays a role in the proliferation of mouse MCs, in the accumulation of extracellular matrix and in the expression of mPGES-1 induced by TGF-β1. Its mechanisms of action are possibly related to the reinforcement of ERK phosphorylation.
Collapse
Affiliation(s)
- Xu Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Daishan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Jing Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xiaolin Xu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Peipei Xi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yaping Fan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xiaoyan Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Youfei Guan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| |
Collapse
|
24
|
Szweda M, Szarek J, Dublan K, Męcik-Kronenberg T, Kiełbowicz Z, Bigoszewski M. Effect of mucoprotective plant-derived therapies on damage to colonic mucosa caused by carprofen and robenacoxib administered to healthy dogs for 21 days. Vet Q 2014; 34:185-93. [DOI: 10.1080/01652176.2014.968939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Srivastava T, Alon US, Cudmore PA, Tarakji B, Kats A, Garola RE, Duncan RS, McCarthy ET, Sharma R, Johnson ML, Bonewald LF, El-Meanawy A, Savin VJ, Sharma M. Cyclooxygenase-2, prostaglandin E2, and prostanoid receptor EP2 in fluid flow shear stress-mediated injury in the solitary kidney. Am J Physiol Renal Physiol 2014; 307:F1323-33. [PMID: 25234310 DOI: 10.1152/ajprenal.00335.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hyperfiltration subjects podocytes to increased tensile stress and fluid flow shear stress (FFSS). We showed a 1.5- to 2.0-fold increase in FFSS in uninephrectomized animals and altered podocyte actin cytoskeleton and increased synthesis of prostaglandin E2 (PGE2) following in vitro application of FFSS. We hypothesized that increased FFSS mediates cellular changes through specific receptors of PGE2. Presently, we studied the effect of FFSS on cultured podocytes and decapsulated isolated glomeruli in vitro, and on solitary kidney in uninephrectomized sv129 mice. In cultured podocytes, FFSS resulted in increased gene and protein expression of cyclooxygenase (COX)-2 but not COX-1, prostanoid receptor EP2 but not EP4, and increased synthesis and secretion of PGE2, which were effectively blocked by indomethacin. Next, we developed a special flow chamber for applying FFSS to isolated glomeruli to determine its effect on an intact glomerular filtration barrier by measuring change in albumin permeability (Palb) in vitro. FFSS caused an increase in Palb that was blocked by indomethacin (P < 0.001). Finally, we show that unilateral nephrectomy in sv129 mice resulted in glomerular hypertrophy (P = 0.006), increased glomerular expression of COX-2 (P < 0.001) and EP2 (P = 0.039), and increased urinary albumin excretion (P = 0.001). Activation of the COX-2-PGE2-EP2 axis appears to be a specific response to FFSS in podocytes and provides a mechanistic basis for alteration in podocyte structure and the glomerular filtration barrier, leading to albuminuria in hyperfiltration-mediated kidney injury. The COX-2-PGE2-EP2 axis is a potential target for developing specific interventions to ameliorate the effects of hyperfiltration-mediated kidney injury in the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri; Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri;
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Patricia A Cudmore
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Belal Tarakji
- Section of Nephrology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Alexander Kats
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - R Scott Duncan
- Section of Infectious Diseases, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Mark L Johnson
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri; and
| | - Lynda F Bonewald
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri; and
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Virginia J Savin
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Mukut Sharma
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
26
|
Saez F, Reverte V, Paliege A, Moreno JM, Llinás MT, Bachmann S, Salazar FJ. Sex-dependent hypertension and renal changes in aged rats with altered renal development. Am J Physiol Renal Physiol 2014; 307:F461-70. [DOI: 10.1152/ajprenal.00198.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Numerous studies have evaluated blood pressure (BP) and renal changes in several models of developmental programming of hypertension. The present study examined to what extent BP, renal hemodynamic, and renal structure are affected at an old age in male and female animals with altered renal development. It also evaluated whether renal damage is associated with changes in cyclooxygenase (COX)-2 and neuronal nitric oxide synthase (NOS1) expression and immunoreactivity. Experiments were carried out in rats at 10–11 and 16–17 mo of age treated with vehicle or an ANG II type 1 receptor antagonist during the nephrogenic period (ARAnp). A progressive increment in BP and a deterioration of renal hemodynamics were found in both sexes of ARAnp-treated rats, with these changes being greater ( P < 0.05) in male rats. The decrease in glomerular filtration rate at the oldest age was greater ( P < 0.05) in male (74%) than female (32%) ARAnp-treated rats. Sex-dependent deterioration of renal structure was demonstrated in optical and electron microscopic experiments. COX-2 and NOS1 immunoreactivity were enhanced in the macula densa of male but not female ARAnp-treated rats. The present study reports novel findings suggesting that stimuli that induce a decrease of ANG II effects during renal development lead to a progressive increment in BP and renal damage at an old age in both sexes, but these BP and renal changes are greater in males than in females. The renal damage is associated with an increase of COX-2 and NOS1 in the macula densa of males but not females with altered renal development.
Collapse
Affiliation(s)
- Fara Saez
- Department of Physiology, University of Murcia, Regional Campus of International Excellence “Mare Nostrum,” Murcia, Instituto Murciano de Investigación Biomédica, Spain; and
| | - Virginia Reverte
- Department of Physiology, University of Murcia, Regional Campus of International Excellence “Mare Nostrum,” Murcia, Instituto Murciano de Investigación Biomédica, Spain; and
| | - Alexander Paliege
- Anatomisches Institut, Charité, Humboldt Universität, Berlin, Germany
| | - Juan Manuel Moreno
- Department of Physiology, University of Murcia, Regional Campus of International Excellence “Mare Nostrum,” Murcia, Instituto Murciano de Investigación Biomédica, Spain; and
| | - María T. Llinás
- Department of Physiology, University of Murcia, Regional Campus of International Excellence “Mare Nostrum,” Murcia, Instituto Murciano de Investigación Biomédica, Spain; and
| | | | - F. Javier Salazar
- Department of Physiology, University of Murcia, Regional Campus of International Excellence “Mare Nostrum,” Murcia, Instituto Murciano de Investigación Biomédica, Spain; and
| |
Collapse
|
27
|
Yang GX, Xu YY, Fan YP, Wang J, Chen XL, Zhang YD, Wu JH. A maladaptive role for EP4 receptors in mouse mesangial cells. PLoS One 2014; 9:e104091. [PMID: 25122504 PMCID: PMC4133176 DOI: 10.1371/journal.pone.0104091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 07/09/2014] [Indexed: 12/22/2022] Open
Abstract
Roles of the prostaglandin E2 E-prostanoid 4 receptor (EP4) on extracellular matrix (ECM) accumulation induced by TGF-β1 in mouse glomerular mesangial cells (GMCs) remain unknown. Previously, we have identified that TGF-β1 stimulates the expression of FN and Col I in mouse GMCs. Here we asked whether stimulation of EP4 receptors would exacerbate renal fibrosis associated with enhanced glomerular ECM accumulation. We generated EP4Flox/Flox and EP4+/− mice, cultured primary WT, EP4Flox/Flox and EP4+/− GMCs, AD-EP4 transfected WT GMCs (EP4 overexpression) and AD-Cre transfected EP4Flox/Flox GMCs (EP4 deleted). We found that TGF-β1-induced cAMP and PGE2 synthesis decreased in EP4 deleted GMCs and increased in EP4 overexpressed GMCs. Elevated EP4 expression in GMCs augmented the coupling of TGF-β1 to FN, Col I expression and COX2/PGE2 signaling, while TGF-β1 induced FN, Col I expression and COX2/PGE2 signaling were down-regulated in EP4 deficiency GMCs. 8 weeks after 5/6 nephrectomy (Nx), WT and EP4+/− mice exhibited markedly increased accumulation of ECM compared with sham-operated controls. Albuminuria, blood urea nitrogen and creatinine (BUN and Cr) concentrations were significantly increased in WT mice as compared to those of EP4+/− mice. Urine osmotic pressure was dramatically decreased after 5/6 Nx surgery in WT mice as compared to EP4+/− mice. The pathological changes in kidney of EP4+/− mice was markedly alleviated compared with WT mice. Immunohistochemical analysis showed significant reductions of Col I and FN in the kidney of EP4+/− mice compared with WT mice. Collectively, this investigation established EP4 as a potent mediator of the pro-TGF-β1 activities elicited by COX2/PGE2 in mice GMCs. Our findings suggested that prostaglandin E2, acting via EP4 receptors contributed to accumulation of ECM in GMCs and promoted renal fibrosis.
Collapse
Affiliation(s)
- Guang-xia Yang
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
- Department of Rheumatology, Affiliated Hospital of Jiangnan University (Wuxi 4th People's Hospital), Wuxi, Jiangsu, China
| | - Yu-yin Xu
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
| | - Ya-ping Fan
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
| | - Jing Wang
- Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiao-lan Chen
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
- * E-mail:
| | - Yi-de Zhang
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
| | - Jian-hua Wu
- Department of Nephrology, Affiliated Hospital of Nantong university, Nantong, Jiangsu, China
| |
Collapse
|
28
|
Nasrallah R, Hassouneh R, Hébert RL. Chronic kidney disease: targeting prostaglandin E2 receptors. Am J Physiol Renal Physiol 2014; 307:F243-50. [PMID: 24966087 DOI: 10.1152/ajprenal.00224.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease is a leading cause of morbidity and mortality in the world. A better understanding of disease mechanisms has been gained in recent years, but the current management strategies are ineffective at preventing disease progression. A widespread focus of research is placed on elucidating the specific processes implicated to find more effective therapeutic options. PGE2, acting on its four EP receptors, regulates many renal disease processes; thus EP receptors could prove to be important targets for kidney disease intervention strategies. This review summarizes the major pathogenic mechanisms contributing to initiation and progression of chronic kidney disease, emphasizing the role of hyperglycemia, hypertension, inflammation, and oxidative stress. We have long recognized the multifaceted role of PGs in both the initiation and progression of chronic kidney disease, yet studies are only now seriously contemplating specific EP receptors as targets for therapy. Given the plethora of renal complications attributed to PG involvement in the kidney, this review highlights these pathogenic events and emphasizes the PGE2 receptor targets as options available to complement current therapeutic strategies.
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, and Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ramzi Hassouneh
- Department of Cellular and Molecular Medicine, and Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, and Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Hassan MH, Ghobara M, Abd-Allah GM. Modulator Effects of Meloxicam against Doxorubicin-Induced Nephrotoxicity in Mice. J Biochem Mol Toxicol 2014; 28:337-46. [DOI: 10.1002/jbt.21570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Memy H. Hassan
- Department of Pharmacology and Toxicology; College of Pharmacy; Taibah University; El-Madinah El-Munaworah; P.O. Box 30001 Saudi Arabia
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Al-Azahr University; Cairo Egypt
| | - Mohamed Ghobara
- Department of Medical Laboratories Technology; Faculty of Applied Medical Sciences; Taibah University; El-Madinah El-Munaworah P.O. Box 30001 Saudi Arabia
- Department of Histology; Faculty of Medicine; Tanta University; Tanta Egypt
| | - Gamil M. Abd-Allah
- Department of Biochemistry; Faculty of Pharmacy; Al-Azahr University; Cairo Egypt
| |
Collapse
|
30
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
31
|
Srivastava T, Celsi GE, Sharma M, Dai H, McCarthy ET, Ruiz M, Cudmore PA, Alon US, Sharma R, Savin VA. Fluid flow shear stress over podocytes is increased in the solitary kidney. Nephrol Dial Transplant 2013; 29:65-72. [PMID: 24166460 DOI: 10.1093/ndt/gft387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Glomerular hyperfiltration is emerging as the key risk factor for progression of chronic kidney disease (CKD). Podocytes are exposed to fluid flow shear stress (FFSS) caused by the flow of ultrafiltrate within Bowman's space. The mechanism of hyperfiltration-induced podocyte injury is not clear. We postulated that glomerular hyperfiltration in solitary kidney increases FFSS over podocytes. METHODS Infant Sprague-Dawley rats at 5 days of age and C57BL/6J 14-week-old adult mice underwent unilateral nephrectomy. Micropuncture and morphological studies were then performed on 20- and 60-day-old rats. FFSS over podocytes in uninephrectomized rats and mice was calculated using the recently published equation by Friedrich et al. which includes the variables-single nephron glomerular filtration rate (SNGFR), filtration fraction (f), glomerular tuft diameter (2RT) and width of Bowman's space (s). RESULTS Glomerular hypertrophy was observed in uninephrectomized rats and mice. Uninephrectomized rats on Day 20 showed a 2.0-fold increase in SNGFR, 1.0-fold increase in 2RT and 2.1-fold increase in FFSS, and on Day 60 showed a 1.9-fold increase in SNGFR, 1.3-fold increase in 2RT and 1.5-fold increase in FFSS, at all values of modeled 's'. Similarly, uninephrectomized mice showed a 2- to 3-fold increase in FFSS at all values of modeled SNGFR. CONCLUSIONS FFSS over podocytes is increased in solitary kidneys in both infant rats and adult mice. This increase is a consequence of increased SNGFR. We speculate that increased FFSS caused by reduced nephron number contributes to podocyte injury and promotes the progression of CKD.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
PTGER1 deletion attenuates renal injury in diabetic mouse models. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1789-1802. [PMID: 24113456 DOI: 10.1016/j.ajpath.2013.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/23/2013] [Accepted: 08/22/2013] [Indexed: 01/11/2023]
Abstract
We hypothesized that the EP1 receptor promotes renal damage in diabetic nephropathy. We rendered EP1 (PTGER1, official symbol) knockout mice (EP1(-/-)) diabetic using the streptozotocin and OVE26 models. Albuminuria, mesangial matrix expansion, and glomerular hypertrophy were each blunted in EP1(-/-) streptozotocin and OVE26 cohorts compared with wild-type counterparts. Although diabetes-associated podocyte depletion was unaffected by EP1 deletion, EP1 antagonism with ONO-8711 in cultured podocytes decreased angiotensin II-mediated superoxide generation, suggesting that EP1-associated injury of remaining podocytes in vivo could contribute to filtration barrier dysfunction. Accordingly, EP1 deletion in OVE26 mice prevented nephrin mRNA expression down-regulation and ameliorated glomerular basement membrane thickening and foot process effacement. Moreover, EP1 deletion reduced diabetes-induced expression of fibrotic markers fibronectin and α-actin, whereas EP1 antagonism decreased fibronectin in cultured proximal tubule cells. Similarly, proximal tubule megalin expression was reduced by diabetes but was preserved in EP1(-/-) mice. Finally, the diabetes-associated increase in angiotensin II-mediated constriction of isolated mesenteric arteries was blunted in OVE26EP1(-/-) mice, demonstrating a role for EP1 receptors in the diabetic vasculature. These data suggest that EP1 activation contributes to diabetic nephropathy progression at several locations, including podocytes, proximal tubule, and the vasculature. The EP1 receptor facilitates the actions of angiotensin II, thereby suggesting that targeting of both the renin-angiotensin system and the EP1 receptor could be beneficial in diabetic nephropathy.
Collapse
|
33
|
Chronic administration of EP4-selective agonist exacerbates albuminuria and fibrosis of the kidney in streptozotocin-induced diabetic mice through IL-6. J Transl Med 2013; 93:933-45. [PMID: 23817085 PMCID: PMC3941981 DOI: 10.1038/labinvest.2013.85] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 01/11/2023] Open
Abstract
Diabetic nephropathy is currently the most common cause of end-stage renal disease in the western world. Exacerbated inflammation of the kidney is known to contribute acceleration of nephropathy. Despite increased COX-2-mediated production of prostanoid metabolite PGE2, knowledge on its involvement in the progression of diabetic kidney disease is not complete. Here, we show the cross talk of the PGE2-EP4 pathways and IL-6 in inducing albuminuria and fibrosis in an animal model of type 1 diabetes. Hyperglycemia causes enhanced COX-2 expression and PGE2 production. Administration of PGE2 receptor EP4-selective agonist ONO-AE1-329 for 12 weeks exacerbated fibrosis and albuminuria. Diabetes-induced expression of inflammatory cytokines TNFα and TGFβ1 was enhanced in EP4 agonist-treated mice kidney. In addition, urinary excretion of cytokines (TNFα and IL-6) and chemokines (MCP-1 and IP-10) were significantly more in EP4-treated mice than vehicle-treated diabetes. Diabetes-induced collagen I and CTGF expression were also significantly higher in EP4-treated mice. However, EP4 agonist did not alter macrophage infiltration but increased cytokine and chemokine production in RAW264.7 cells. Interestingly, EP4-induced IL-6 expression in the kidney was localized in proximal and distal tubular epithelial cells. To confirm further whether EP4 agonist increases fibrosis and albuminuria through an increase in IL-6 expression, IL-6-knockout mice were administered with EP4 agonist. IL-6-knockout mice were resistant to EP4-induced exacerbation of albuminuria and diabetes and EP4-induced fibrosis. Our data suggest that EP4 agonist through IL-6 induces glomerulosclerosis and interstitial fibrosis, and IL-6 represents a new factor in the EP4 pathway.
Collapse
|
34
|
Jain G, Jaimes EA. Nicotine signaling and progression of chronic kidney disease in smokers. Biochem Pharmacol 2013; 86:1215-23. [PMID: 23892062 DOI: 10.1016/j.bcp.2013.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 11/24/2022]
Abstract
The deleterious health effects of cigarette smoking are far reaching, and it remains the most important modifiable risk factor for improving overall morbidity and mortality. In addition to being a risk factor for cancer, cardiovascular disease and lung disease, there is strong evidence, both from human and animal studies, demonstrating a role for cigarette smoking in the progression of chronic kidney disease (CKD). Clinical studies have shown a strong correlation between cigarette smoking and worsening CKD in patients with diabetes, hypertension, polycystic kidney disease, and post kidney transplant. Nicotine, in addition to its role in the addictive properties of cigarette smoking, has other biological effects via activation of non-neuronal nicotinic acetylcholine receptors (nAChRs). Several nAChR subunits are expressed in the normal kidney and blockade of the α7-nAChR subunit ameliorates the effects of nicotine in animal models of CKD. Nicotine increases the severity of renal injury in animal models including acute kidney injury, diabetes, acute nephritis and subtotal nephrectomy. The renal effects of nicotine are also linked to increased generation of reactive oxygen species and activation of pro-fibrotic pathways. In humans, nicotine induces transitory increases in blood pressure accompanied by reductions in glomerular filtration rate and effective renal plasma flow. In summary, clinical and experimental evidence indicate that nicotine is at least in part responsible for the deleterious effects of cigarette smoking in the progression of CKD. The mechanisms involved are the subject of active investigation and may result in novel strategies to ameliorate the effects of cigarette smoking in CKD.
Collapse
Affiliation(s)
- Gaurav Jain
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
35
|
Celecoxib modifies glomerular basement membrane, mesangium and podocytes in OVE26 mice, but ibuprofen is more detrimental. Clin Sci (Lond) 2013; 124:685-94. [DOI: 10.1042/cs20120543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The role of COXs/PGs (cyclo-oxygenases/prostaglandins) in diabetic kidneys remains unclear. NSAIDs (non-steroidal anti-inflammatory drugs) that inhibit COXs/PGs are known for their renal toxicity, and COX-2 inhibitors worsen cardiovascular outcomes in susceptible individuals. Given the renal controversies concerning COX-2 inhibitors, we compared the effect of chronic NSAIDs (non-selective, ibuprofen; COX-2-selective, celecoxib) on diabetic kidneys in OVE26 mice from 8 weeks of age. Systolic BPs (blood pressures) were increased by NSAIDs in diabetic mice at 20 weeks, but were unchanged at 32 weeks. Although NSAIDs further increased diabetic kidney/body weight ratios, they did not affect albuminuria. Mesangial matrix was increased 2-fold by celecoxib but not ibuprofen. Electron microscopy revealed that NSAIDs reduced GBM (glomerular basement membrane) thickness and slit pore diameters. Although diabetics had increased glomerular diameters and reduced foot process densities, these were unaltered by NSAIDs. Celecoxib does not exacerbate the diabetic state, but PG inhibition may contribute to disease progression by modifying the GBM, mesangial area and podocyte structure in OVE26 mice. Despite these findings, celecoxib remains safer than a similar dose of ibuprofen. The present study substantiates the need to more closely consider selective COX-2 inhibitors such as celecoxib as alternatives to non-selective NSAIDs for therapeutic management in a setting of chronic kidney disease.
Collapse
|
36
|
Abstract
Inhibition of the RAAS (renin–angiotensin–aldosterone system) plays a pivotal role in the prevention and treatment of diabetic nephropathy and a spectrum of other proteinuric kidney diseases. Despite documented beneficial effects of RAAS inhibitors in diabetic patients with nephropathy, reversal of the progressive course of this disorder or at least long-term stabilization of renal function are often difficult to achieve, and many patients still progress to end-stage renal disease. Incomplete inhibition of the RAAS has been postulated as one of reasons for unsatisfactory therapeutic responses to RAAS inhibition in some patients. Inhibition of renin, a rate-limiting step in the RAAS activation cascade, could overcome at least some of the abovementioned problems associated with the treatment with traditional RAAS inhibitors. The present review focuses on experimental and clinical studies evaluating the two principal approaches to renin inhibition, namely direct renin inhibition with aliskiren and inhibition of the (pro)renin receptor. Moreover, the possibilities of renin inhibition and nephroprotection by interventions primarily aiming at non-RAAS targets, such as vitamin D, urocortins or inhibition of the succinate receptor GPR91 and cyclo-oxygenase-2, are also discussed.
Collapse
|
37
|
PARK YUKYOUNG, JANG BYEONGCHURL, CHOI MISUN. Platelet-derived growth factor-D induces expression of cyclooxygenase-2 in rat mesangial cells through activation of PI3K/PKB and PKCs. Int J Mol Med 2012; 31:447-52. [DOI: 10.3892/ijmm.2012.1216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022] Open
|
38
|
Zhang MZ, Yao B, Yang S, Yang H, Wang S, Fan X, Yin H, Fogo AB, Moeckel GW, Harris RC. Intrarenal dopamine inhibits progression of diabetic nephropathy. Diabetes 2012; 61:2575-84. [PMID: 22688335 PMCID: PMC3447896 DOI: 10.2337/db12-0046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The kidney has a local intrarenal dopaminergic system, and in the kidney, dopamine modulates renal hemodynamics, inhibits salt and fluid reabsorption, antagonizes the renin-angiotensin system, and inhibits oxidative stress. The current study examined the effects of alterations in the intrarenal dopaminergic system on kidney structure and function in models of type 1 diabetes. We studied catechol-O-methyl-transferase (COMT)(-/-) mice, which have increased renal dopamine production due to decreased dopamine metabolism, and renal transplantation was used to determine whether the effects seen with COMT deficiency were kidney-specific. To determine the effects of selective inhibition of intrarenal dopamine production, we used mice with proximal tubule deletion of aromatic amino acid decarboxylase (ptAADC(-/-)). Compared with wild-type diabetic mice, COMT(-/-) mice had decreased hyperfiltration, decreased macula densa cyclooxygenase-2 expression, decreased albuminuria, decreased glomerulopathy, and inhibition of expression of markers of inflammation, oxidative stress, and fibrosis. These differences were also seen in diabetic mice with a transplanted kidney from COMT(-/-) mice. In contrast, diabetic ptAADC(-/-) mice had increased nephropathy. Our study demonstrates an important role of the intrarenal dopaminergic system to modulate the development and progression of diabetic kidney injury and indicate that the decreased renal dopamine production may have important consequences in the underlying pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Corresponding author: Ming-Zhi Zhang, , or Raymond C. Harris,
| | - Bing Yao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shilin Yang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Suwan Wang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xiaofeng Fan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Huiyong Yin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Gilbert W. Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Raymond C. Harris
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville Veterans Affairs Hospital, Nashville, Tennessee
- Corresponding author: Ming-Zhi Zhang, , or Raymond C. Harris,
| |
Collapse
|
39
|
Wakefield AP, Ogborn MR, Ibrahim N, Aukema HM. A dietary conjugated linoleic acid treatment that slows renal disease progression alters renal cyclooxygenase-2-derived prostanoids in the Han: SPRD-cy rat. J Nutr Biochem 2012; 23:908-14. [DOI: 10.1016/j.jnutbio.2011.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/22/2010] [Accepted: 04/20/2011] [Indexed: 01/11/2023]
|
40
|
Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation. Eur J Pharmacol 2012; 689:65-71. [DOI: 10.1016/j.ejphar.2012.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 01/01/2023]
|
41
|
Jia Z, Wang H, Yang T. Microsomal prostaglandin E synthase 1 deletion retards renal disease progression but exacerbates anemia in mice with renal mass reduction. Hypertension 2012; 59:122-8. [PMID: 22106404 PMCID: PMC11157940 DOI: 10.1161/hypertensionaha.111.178897] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/31/2011] [Indexed: 11/16/2022]
Abstract
Microsomal prostaglandin E synthase 1 (mPGES-1) is a cytokine-inducible enzyme responsible for generation of prostaglandin E(2) (PGE(2)) during the inflammatory response. In the present study, we investigated the role of mPGES-1 in the development of chronic renal failure in mice with 5/6 nephrectomy (Nx). After 4 weeks of Nx, wild-type mice with renal mass reduction exhibited increased blood urea nitrogen, plasma creatinine and phosphorus concentrations, and defective urine concentrating capability, all of which were significantly attenuated by mPGES-1 deletion. The Nx wild-type mice developed a 2.6-fold increase in urinary albumin excretion, accompanied by glomerulosclerosis and reduction of nephrin and wild-type 1 expression in the remnant kidney. In contrast, the Nx KO mice had normal albuminuria with improvement of glomerular injury. Nx-induced increases in circulating and renal tumor necrosis factor 1α and renal interleukin 1β and monocyte chemoattractant protein 1 expressions were all remarkably attenuated or abolished by mPGES-1 deletion. Paradoxically, the Nx knockout mice developed worsened anemia, accompanied by impaired erythropoietin synthesis. The coinduction of mPGES-1 and cyclooxygenase 2 but not cyclooxygenase 1 mRNA expressions, along with increased PGE(2) synthesis, was demonstrated in the remnant kidney of wild-type mice. mPGES-1 deletion remarkably reduced renal PGE(2) content and urinary PGE(2) excretion after renal ablation but had a limited effect on the baseline PGE(2) production. We conclude that mPGES-1 deletion ameliorates chronic renal failure in the mouse model of renal mass reduction, and mPGES-1 deletion paradoxically exacerbates anemia in this model likely via suppression of erythropoietin synthesis.
Collapse
Affiliation(s)
- Zhanjun Jia
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
42
|
Nozawa Y, Sato A, Piao H, Morioka T, Narita I, Oite T. The effect of renal administration of a selective cyclooxygenase-2 inhibitor or stable prostaglandin I2 analog on the progression of sclerotic glomerulonephritis in rats. Clin Exp Nephrol 2011; 16:221-30. [PMID: 22147282 DOI: 10.1007/s10157-011-0558-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/20/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND METHODS There is increasing evidence that a change in glomerular hemodynamics may promote the development of glomerulosclerosis. In this study, we focused on the pharmacological effects of 2 contrasting agents, etodolac, a preferential cyclooxygenase-2 inhibitor, and beraprost sodium (BPS), a prostaglandin I(2) analog, delivered renally, on the disease course of progressive anti-Thy-1 (ATS) glomerulonephritis. RESULTS Intravital microscopic analysis showed that the diameters of glomerular capillaries and glomerular blood flow in unilaterally nephrectomized (Nx) rats treated locally with BPS were significantly increased, as compared to those of Nx rats treated locally with normal saline (NS) or etodolac. We then examined the effects of BPS and etodolac on the course of progressive glomerulosclerosis. Mesangial cell proliferation, adhesion of glomerular capillary tufts and crescent formation in the BPS-treated group appeared to be more severe compared to the ATS + NS and the ATS + etodolac groups. Scoring of mesangial proliferation and glomerulosclerosis revealed that local BPS treatment significantly worsened glomerular pathology. At day 28, there were significant differences in blood flow between the ATS + etodolac group and both the ATS + NS and ATS + BPS groups, indicating that local treatment with etodolac enhanced the recovery of glomerular circulation. CONCLUSION This study provides hemodynamic-based evidence showing that disturbance of intraglomerular microcirculation is a critical marker for progressive glomerulonephritis.
Collapse
Affiliation(s)
- Yukiko Nozawa
- Department of Cellular Physiology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Cyclooxygenase-2 and kidney failure. Prostaglandins Other Lipid Mediat 2011; 98:86-90. [PMID: 22119250 DOI: 10.1016/j.prostaglandins.2011.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 01/11/2023]
Abstract
Cyclooxygenase (COX)-dependent prostaglandins are necessary for normal kidney function. These prostaglandins are associated with inflammation, maintenance of sodium and water homeostasis, control of renin release, renal vasodilation, vasoconstriction attenuation, and prenatal renal development. COX-2 expression is regulated by the renin-angiotensin system, glucocorticoids or mineralcorticoids, and aldosterone, supporting a role for COX-2 in kidney function. Indeed, COX-2 mRNA and protein levels as well as enzyme activity are increased, along with PGE2, during kidney failure. In addition, changes in COX-2 expression are associated with increased blood pressure, urinary volume, sodium and protein and decreased urinary osmolarity. Intrarenal mechanisms such as angiotensin II (Ang II) production, increased sodium delivery, glomerular hypertension, and renal tubular inflammation have been suggested to be responsible for the increase in COX-2 expression. Although, specific COX-2 pharmacological inhibition has been related to the prevention of kidney damage, clinical studies have reported that COX-2 inhibition may cause side effects such as edema or a modest elevation in blood pressure and could possibly interfere with antihypertensive drugs and increase the risk of cardiovascular complications. Thus, administration of COX-2 inhibitors requires caution, especially in the presence of underlying cardiovascular disease.
Collapse
|
44
|
Reverte V, Tapia A, Moreno JM, Rodríguez L, Salazar F, Llinás MT, Salazar FJ. Renal effects of prolonged high protein intake and COX2 inhibition on hypertensive rats with altered renal development. Am J Physiol Renal Physiol 2011; 301:F327-33. [DOI: 10.1152/ajprenal.00110.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclooxygenase 2 (COX2) is involved in regulating renal hemodynamics after renal ablation. It is also known that high protein intake (HPI) leads to a deterioration of renal function when there is preexisting renal disease and that there are important gender differences in the regulation of renal function. This study tested the hypothesis that the role of COX2 in regulating renal function and the renal hemodynamic effects elicited by HPI are enhanced when nephrogenesis is altered during renal development. It was also expected that the role of COX2 and the effects elicited by HPI are age and sex dependent. Newborn Sprague-Dawley rats were treated with an AT1 ANG II receptor antagonist during the nephrogenic period (ARAnp). Experiments were performed at 3–4 and 10–11 mo of age. Arterial pressure was elevated ( P < 0.05) at both ages and in both sexes of ARAnp-treated rats. Renal COX2 expression was only elevated ( P < 0.05) at 10–11 mo of age in both sexes of ARAnp-treated rats. COX2 inhibition induced greater renal vasoconstriction in male and female hypertensive than in normotensive rats at both ages. HPI did not induce glomerular filtration rate (GFR) in the youngest hypertensive rats and in the oldest female hypertensive rats. However, the GFR decreased during HPI (0.63 ± 0.07 to 0.19 ± 0.05 ml/min) in the oldest male hypertensive rats. The HPI-induced increment in proteinuria was greater ( P < 0.05) in male (99 ± 22 mg/day) than in female (30 ± 8 mg/day) hypertensive rats. These results show that COX2 plays an important role in the regulation of renal function when renal development is altered and that prolonged HPI can lead to a renal insufficiency in males but not in females with reduced nephron endowment.
Collapse
Affiliation(s)
- Virginia Reverte
- Department of Physiology, School of Medicine, and
- Aging Institute, University of Murcia, Murcia; and
| | | | | | | | | | - M. Teresa Llinás
- Department of Physiology, School of Medicine, and
- Aging Institute, University of Murcia, Murcia; and
| | - F. Javier Salazar
- Department of Physiology, School of Medicine, and
- Aging Institute, University of Murcia, Murcia; and
| |
Collapse
|
45
|
Zhang Q, Qiu J, Li H, Lu Y, Wang X, Yang J, Wang S, Zhang L, Gu Y, Hao CM, Chen J. Cyclooxygenase 2 promotes parathyroid hyperplasia in ESRD. J Am Soc Nephrol 2011; 22:664-72. [PMID: 21335517 DOI: 10.1681/asn.2010060594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target.
Collapse
Affiliation(s)
- Qian Zhang
- Division of Nephrology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chávez E, Segovia J, Shibayama M, Tsutsumi V, Vergara P, Castro-Sánchez L, Salazar EP, Moreno MG, Muriel P. Antifibrotic and fibrolytic properties of celecoxib in liver damage induced by carbon tetrachloride in the rat. Liver Int 2010; 30:969-78. [PMID: 20524983 DOI: 10.1111/j.1478-3231.2010.02256.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Transforming growth factor-beta (TGF-beta) plays a pivotal role in liver fibrosis, because it activates hepatic stellate cells, stimulating extracellular matrix deposition. Cyclooxygenase-2 (COX-2) has been associated with TGF-beta because its inhibition decreases TGF-beta expression and collagen production in some cultured cell types. AIM The aim of this work was to evaluate the ability of celecoxib (a selective COX-2 inhibitor) to prevent and to reverse the liver fibrosis induced by CCl(4). METHODS We established experimental groups of rats including vehicle and drug controls, damage induced by chronic CCl(4) administration and CCl(4) plus pharmacological treatment in both prevention and reversion models. We determined: alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transpeptidase, COX and metalloproteinase-2 and -9 activities, lipid peroxidation, glutathione levels, glycogen and collagen content and TGF-beta expression. RESULTS Celecoxib prevented and aided to the recovery of livers with necrotic and cholestatic damage. Celecoxib exhibited anti-oxidant properties by restoring the redox equilibrium (lipid peroxidation and glutathione levels). Glycogen was decreased by CCl(4), while celecoxib partially prevented and reversed this effect. Celecoxib inhibited COX-2 activity, decreased TGF-beta expression, induced metalloproteinase-2 activity and, consequently, prevented and reversed collagen accumulation. CONCLUSION Our findings indicate that celecoxib exerts strong antifibrogenic and fibrolytic effects in the CCl(4) model of cirrhosis.
Collapse
Affiliation(s)
- Enrique Chávez
- Departamento de Farmacología, Cinvestav-IPN., México, D.F. México
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stitt-Cavanagh EM, Faour WH, Takami K, Carter A, Vanderhyden B, Guan Y, Schneider A, Breyer MD, Kennedy CRJ. A maladaptive role for EP4 receptors in podocytes. J Am Soc Nephrol 2010; 21:1678-90. [PMID: 20671216 DOI: 10.1681/asn.2009121234] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inhibition of p38 mitogen-activated protein kinase and cyclooxygenase-2 reduces albuminuria in models of chronic kidney disease marked by podocyte injury. Previously, we identified a feedback loop in podocytes whereby an in vitro surrogate for glomerular capillary pressure (i.e., mechanical stretch) along with prostaglandin E(2) stimulation of its EP4 receptor induced cyclooxygenase-2 in a p38-dependent manner. Here we asked whether stimulation of EP4 receptors would exacerbate glomerulopathies associated with enhanced glomerular capillary pressure. We generated mice with either podocyte-specific overexpression or depletion of the EP4 receptor (EP4(pod+) and EP4(pod-/-), respectively). Glomerular prostaglandin E(2)-stimulated cAMP levels were eightfold greater for EP4(pod+) mice compared with nontransgenic (non-TG) mice. In contrast, EP4 mRNA levels were >50% lower, and prostaglandin E(2)-induced cAMP synthesis was absent in podocytes isolated from EP4(pod-/-) mice. Non-TG and EP4(pod+) mice underwent 5/6 nephrectomy and exhibited similar increases in systolic BP (+25 mmHg) by 4 weeks compared with sham-operated controls. Two weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod+) mice (3438 μg/mg) was significantly higher than that of non-TG mice (773 μg/mg; P < 0.0001). Consistent with more severe renal injury, the survival rate for nephrectomized EP4(pod+) mice was significantly lower than that for non-TG mice (14 versus 67%). In contrast, 6 weeks after nephrectomy, the albumin-creatinine ratio of EP4(pod-/-) mice (753 μg/mg) was significantly lower than that of non-TG mice (2516 μg/mg; P < 0.05). These findings suggest that prostaglandin E(2), acting via EP4 receptors contributes to podocyte injury and compromises the glomerular filtration barrier.
Collapse
Affiliation(s)
- Erin M Stitt-Cavanagh
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hörl WH. Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals (Basel) 2010; 3:2291-2321. [PMID: 27713354 PMCID: PMC4036662 DOI: 10.3390/ph3072291] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 12/20/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the isoenzymes COX-1 and COX-2 of cyclooxygenase (COX). Renal side effects (e.g., kidney function, fluid and urinary electrolyte excretion) vary with the extent of COX-2-COX-1 selectivity and the administered dose of these compounds. While young healthy subjects will rarely experience adverse renal effects with the use of NSAIDs, elderly patients and those with co-morbibity (e.g., congestive heart failure, liver cirrhosis or chronic kidney disease) and drug combinations (e.g., renin-angiotensin blockers, diuretics plus NSAIDs) may develop acute renal failure. This review summarizes our present knowledge how traditional NSAIDs and selective COX-2 inhibitors may affect the kidney under various experimental and clinical conditions, and how these drugs may influence renal inflammation, water transport, sodium and potassium balance and how renal dysfunction or hypertension may result.
Collapse
Affiliation(s)
- Walter H Hörl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
49
|
Srivastava T, McCarthy ET, Sharma R, Cudmore PA, Sharma M, Johnson ML, Bonewald LF. Prostaglandin E(2) is crucial in the response of podocytes to fluid flow shear stress. J Cell Commun Signal 2010; 4:79-90. [PMID: 20531983 PMCID: PMC2876242 DOI: 10.1007/s12079-010-0088-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 03/05/2010] [Indexed: 12/11/2022] Open
Abstract
Podocytes play a key role in maintaining and modulating the filtration barrier of the glomerulus. Because of their location, podocytes are exposed to mechanical strain in the form of fluid flow shear stress (FFSS). Several human diseases are characterized by glomerular hyperfiltration, such as diabetes mellitus and hypertension. The response of podocytes to FFSS at physiological or pathological levels is not known. We exposed cultured podocytes to FFSS, and studied changes in actin cytoskeleton, prostaglandin E(2) (PGE(2)) production and expression of cyclooxygenase-1 and-2 (COX-1, COX-2). FFSS caused a reduction in transversal F-actin stress filaments and the appearance of cortical actin network in the early recovery period. Cells exhibited a pattern similar to control state by 24 h following FFSS without significant loss of podocytes or apoptosis. FFSS caused increased levels of PGE(2) as early as 30 min after onset of shear stress, levels that increased over time. PGE(2) production by podocytes at post-2 h and post-24 h was also significantly increased compared to control cells (p < 0.039 and 0.012, respectively). Intracellular PGE(2) synthesis and expression of COX-2 was increased at post-2 h following FFSS. The expression of COX-1 mRNA was unchanged. We conclude that podocytes are sensitive and responsive to FFSS, exhibiting morphological and physiological changes. We believe that PGE(2) plays an important role in mechanoperception in podocytes.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO USA
| | - Ellen T. McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS USA
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City VA Medical Center, Room F1-130, Building 15, 4801 Linwood Boulevard, Kansas City, MO 64128 USA
| | - Patricia A. Cudmore
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO USA
| | - Mukut Sharma
- Kidney Disease Center, Medical College of Wisconsin, Milwaukee, WI USA
| | - Mark L. Johnson
- Department of Oral Biology, University of Missouri at Kansas City—School of Dentistry, Kansas, MO USA
| | - Lynda F. Bonewald
- Department of Oral Biology, University of Missouri at Kansas City—School of Dentistry, Kansas, MO USA
| |
Collapse
|
50
|
Yeh JH, Chiu HF, Wang JS, Lee JK, Chou TC. Protective Effect of Baicalein Extracted from Scutellaria baicalensis against Lipopolysaccharide-Induced Glomerulonephritis in Mice. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.81.88] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|