1
|
Kopač M, Jerin A, Petrera A, Osredkar J. The Role of Cytokines and Chemokines as Biomarkers of Disease Activity in Idiopathic Nephrotic Syndrome in Children. Curr Issues Mol Biol 2025; 47:77. [PMID: 39996798 PMCID: PMC11854277 DOI: 10.3390/cimb47020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
(1) This study investigates the association of plasma concentrations of various cytokines and chemokines with the disease activity of idiopathic nephrotic syndrome (INS) in children in Slovenia. (2) In a prospective single-center study lasting 18 months, we took sequential plasma samples from children with INS at disease onset or relapse (prior to corticosteroid (CS) therapy), at remission, and after discontinuation of CS therapy. The Olink®Target 48 Cytokine Panel was applied to analyze 45 analytes in the plasma samples, adhering to the manufacturer's protocol. We performed a statistical analysis with a paired samples analysis with a t-test as well as with a non-parametric Wilcoxon correction test. (3) We included 18 pediatric patients with INS in the study. We demonstrated statistically significant differences in the concentrations of CSF1, IL4, FLT3LG, CCL19, and MMP12 in the patients at disease onset or relapse compared to those in remission, differences in the concentrations of CSF1 and IL17F in the patients at disease onset or relapse compared to those in remission after CS treatment, and differences in the concentrations of CCL19, MMP12, and CCL13 in the patients in remission compared to those in remission after CS treatment. (4) The findings support potential roles of certain cytokines and chemokines, especially CSF1, CCL19, and MMP12, in influencing the disease activity of INS.
Collapse
Affiliation(s)
- Matjaž Kopač
- Department of Nephrology, Division of Paediatrics, University Medical Centre Ljubljana, Bohoričeva 20, 1525 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Aleš Jerin
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška cesta 2, 1525 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška cesta 2, 1525 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Fistrek Prlic M, Vukovic Brinar I, Kos J, Dika Z, Ivandic E, Fucek M, Jelakovic B. Serum Hepatocyte Growth Factor Concentration Correlates with Albuminuria in Individuals with Optimal Blood Pressure and Untreated Arterial Hypertension. Biomedicines 2024; 12:2233. [PMID: 39457546 PMCID: PMC11505527 DOI: 10.3390/biomedicines12102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Hepatocyte growth factor (HGF) is a protective factor against acute renal injury and chronic renal fibrosis. A positive correlation between HGF and blood pressure (BP) has been established. This study aimed to determine the association between serum HGF concentration and albuminuria in subjects with optimal blood pressure (OBP) and untreated arterial hypertension (UAH), as well as its association with BP levels, serum glucose levels, and inflammatory markers. Methods: Data from 563 subjects were analyzed. Albuminuria was normalized to urine creatinine and expressed as the albumin/creatinine ratio (ACR). HGF, serum glucose, C-reactive protein, and blood leucocyte counts were measured. BP was measured and subjects were divided into optimal blood pressure (BP < 120/80 mmHg, N = 295) and untreated arterial hypertension (BP > 140/90 mmHg, N = 268) groups. Results: The subjects with UAH were significantly older and had higher values of body mass index, waist circumference, serum total and LDL cholesterol levels, triglyceride levels, fasting glucose levels, and ACR (all p < 0.001). A significant positive correlation was found between serum HGF concentration and ACR in both groups. There was no difference or correlation between HGF and BP or inflammatory markers in either group. The multivariate regression analysis identified serum HGF concentration as a strong predictor of ACR increase (Beta = 0.376, p < 0.001). Conclusion: This study found that serum HGF concentration is associated with albuminuria not only in individuals with untreated arterial hypertension, but also in those with optimal blood pressure. The results suggest that serum HGF is an independent predictor of ACR increase in both groups.
Collapse
Affiliation(s)
- Margareta Fistrek Prlic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Ivana Vukovic Brinar
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| | - Jelena Kos
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Zivka Dika
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| | - Ema Ivandic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (J.K.); (E.I.)
| | - Mirjana Fucek
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Bojan Jelakovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.V.B.); (Z.D.); (B.J.)
| |
Collapse
|
3
|
Andryszkiewicz W, Misiąg P, Karwowska A, Resler Z, Wojno A, Kulbacka J, Szewczyk A, Rembiałkowska N. Cancer Metastases to the Liver: Mechanisms of Tumor Cell Colonization. Pharmaceuticals (Basel) 2024; 17:1251. [PMID: 39338413 PMCID: PMC11434846 DOI: 10.3390/ph17091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The liver is one of the most common sites for metastasis, which involves the spread from primary tumors to surrounding organs and tissues in the human body. There are a few steps in cancer expansion: invasion, inflammatory processes allowing the hepatic niche to be created, adhesions to ECM, neovascularization, and secretion of enzymes. The spread of tumor cells depends on the microenvironment created by the contribution of many biomolecules, including proteolytic enzymes, cytokines, growth factors, and cell adhesion molecules that enable tumor cells to interact with the microenvironment. Moreover, the microenvironment plays a significant role in tumor growth and expansion. The secreted enzymes help cancer cells facilitate newly formed hepatic niches and promote migration and invasion. Our study discusses pharmacological methods used to prevent liver metastasis by targeting the tumor microenvironment and cancer cell colonization in the liver. We examine randomized studies focusing on median survival duration and median overall survival in patients administered placebo compared with those treated with bevacizumab, ramucirumab, regorafenib, and ziv-aflibercept in addition to current chemotherapy. We also include research on mice and their responses to these medications, which may suppress metastasis progression. Finally, we discuss the significance of non-pharmacological methods, including surgical procedures, radiotherapy, cryotherapy, radiofrequency ablation (RFA), and transarterial embolization (TAE). In conclusion, the given methods can successfully prevent metastases to the liver and prolong the median survival duration and median overall survival in patients suffering from cancer.
Collapse
Affiliation(s)
- Wiktoria Andryszkiewicz
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Piotr Misiąg
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Anna Karwowska
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Zofia Resler
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Aleksandra Wojno
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Nemati M, Hosseinzadeh Z, Nemati F, Koohpeyma F. Improvement effects of transplanting pancreatic islet that previously incubated with biomaterials on the diabetic nephropathy in STZ- diabetic rats. BMC Nephrol 2024; 25:156. [PMID: 38724923 PMCID: PMC11080158 DOI: 10.1186/s12882-024-03572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Islet transplantation is an effective treatment for diabetes or even its complications. Aim of this study is to investigate efficacy of biomaterial treated islet transplantation on treating diabetic nephropathy. METHODS Male rats were randomly divided into 6 groups; Control, diabetic control, diabetic transplanted with untreated islets, with platelet rich plasma treated islets, with pancreatic islets homogenate treated islets, or with these biomaterials combination treated islets. Islets cultured with biomaterials and transplanted to diabetic rats. After 60 days, biochemical, oxidative stress, and stereological parameters were assessed. RESULTS Serum albumin and BUN concentration, decreased and increased respectively, Oxidative stress of kidney impaired, kidney weight, volume of kidney, cortex, medulla, glomerulus, proximal and distal tubules, collecting ducts, vessels, inflammatory, necrotic and fibrotic tissue in diabetic group increased compared to control group (p < 0.001). In treated groups, especially pancreatic islets homogenate treated islets transplanting animals, there was significant changes in kidney weight, and volume of kidney, proximal and distal tubules, Henle's loop and collecting ducts compared with diabetic group (p = 0.013 to p < 0.001). Combination treated islets animals showed significant increase in vessel volume compared to diabetic group (p < 0.001). Necrotic and fibrotic tissue significantly decreased in islets treated than untreated islet animals, it was higher in pancreatic islets homogenate, and combination treated islets groups (p = 0.001). CONCLUSIONS Biomaterials treated islets transplanting could improve diabetic nephropathy. Improvement of oxidative stress followed by controlling glucose level, and effects of growth factors presenting in biomaterials can be considered as capable underlying mechanism of ameliorating inflammatory, necrotic and fibrotic tissue volume.
Collapse
Affiliation(s)
- Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Hosseinzadeh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Nemati
- School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
6
|
Lee TS, Kim JY, Lee MH, Cho IR, Paik WH, Ryu JK, Kim YT, Lee SH. Savolitinib: A Promising Targeting Agent for Cancer. Cancers (Basel) 2023; 15:4708. [PMID: 37835402 PMCID: PMC10571651 DOI: 10.3390/cancers15194708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Savolitinib is a highly selective small molecule inhibitor of the mesenchymal epithelial transition factor (MET) tyrosine kinase, primarily developed for the treatment of non-small cell lung cancer (NSCLC) with MET mutations. It is also being investigated as a treatment for breast, head and neck, colorectal, gastric, pancreatic, and other gastrointestinal cancers. In both preclinical and clinical studies, it has demonstrated efficacy in lung, kidney, and stomach cancers. Savolitinib is an oral anti-cancer medication taken as a 600 mg dose once daily. It can be used as a monotherapy in patients with non-small cell lung cancer with MET mutations and in combination with epidermal growth factor receptor (EGFR) inhibitors for patients who have developed resistance to them. Furthermore, savolitinib has shown positive results in gastric cancer treatment, particularly in combination with docetaxel. As a result, this review aims to validate its efficacy in NSCLC and suggests its potential application in other gastrointestinal cancers, such as pancreatic cancer, based on related research in gastric and renal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (T.S.L.); (J.Y.K.); (M.H.L.); (I.R.C.); (W.H.P.); (J.K.R.); (Y.-T.K.)
| |
Collapse
|
7
|
Kha M, Krawczyk K, Choong OK, De Luca F, Altiparmak G, Källberg E, Nilsson H, Leandersson K, Swärd K, Johansson ME. The injury-induced transcription factor SOX9 alters the expression of LBR, HMGA2, and HIPK3 in the human kidney. Am J Physiol Renal Physiol 2023; 324:F75-F90. [PMID: 36454702 DOI: 10.1152/ajprenal.00196.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Induction of SRY box transcription factor 9 (SOX9) has been shown to occur in response to kidney injury in rodents, where SOX9-positive cells proliferate and regenerate the proximal tubules of injured kidneys. Additionally, SOX9-positive cells demonstrate a capacity to differentiate toward other nephron segments. Here, we characterized the role of SOX9 in normal and injured human kidneys. SOX9 expression was found to colocalize with a proportion of so-called scattered tubular cells in the uninjured kidney, a cell population previously shown to be involved in kidney injury and regeneration. Following injury and in areas adjacent to inflammatory cell infiltrates, SOX9-positive cells were increased in number. With the use of primary tubular epithelial cells (PTECs) obtained from human kidney tissue, SOX9 expression was spontaneously induced in culture and further increased by transforming growth factor-β1, whereas it was suppressed by interferon-γ. siRNA-mediated knockdown of SOX9 in PTECs followed by analysis of differential gene expression, immunohistochemical expression, and luciferase promoter assays suggested lamin B receptor (LBR), high mobility group AT-hook 2 (HMGA2), and homeodomain interacting protein kinase 3 (HIPK3) as possible target genes of SOX9. Moreover, a kidney explant model was used to demonstrate that only SOX9-positive cells survive the massive injury associated with kidney ischemia and that the surviving SOX9-positive cells spread and repopulate the tubules. Using a wound healing assay, we also showed that SOX9 positively regulated the migratory capacity of PTECs. These findings shed light on the functional and regulatory aspects of SOX9 activation in the human kidney during injury and regeneration.NEW & NOTEWORTHY Recent studies using murine models have shown that SRY box transcription factor 9 (SOX9) is activated during repair of renal tubular cells. In this study, we showed that SOX9-positive cells represent a proportion of scattered tubular cells found in the uninjured human kidney. Furthermore, we suggest that expression of LBR, HMGA2, and HIPK3 is altered by SOX9 in the kidney tubular epithelium, suggesting the involvement of these gene products in kidney injury and regeneration.
Collapse
Affiliation(s)
- Michelle Kha
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krzysztof Krawczyk
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Oi Kuan Choong
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesco De Luca
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gülay Altiparmak
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Källberg
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Helén Nilsson
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
8
|
Meng HF, Jin J, Wang H, Wang LS, Wu CT. Recent advances in the therapeutic efficacy of hepatocyte growth factor gene-modified mesenchymal stem cells in multiple disease settings. J Cell Mol Med 2022; 26:4745-4755. [PMID: 35922965 PMCID: PMC9465188 DOI: 10.1111/jcmm.17497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is considered a new treatment for a wide range of diseases and injuries, but challenges remain, such as poor survival, homing and engraftment rates, thus limiting the therapeutic efficacy of the transplanted MSCs. Many strategies have been developed to enhance the therapeutic efficacy of MSCs, such as preconditioning, co-transplantation with graft materials and gene modification. Hepatocyte growth factor (HGF) is secreted by MSCs, which plays an important role in MSC therapy. It has been reported that the modification of the HGF gene is beneficial to the therapeutic efficacy of MSCs, including diseases of the heart, lung, liver, urinary system, bone and skin, lower limb ischaemia and immune-related diseases. This review focused on studies involving HGF/MSCs both in vitro and in vivo. The characteristics of HGF/MSCs were summarized, and the mechanisms of their improved therapeutic efficacy were analysed. Furthermore, some insights are provided for HGF/MSCs' clinical application based on our understanding of the HGF gene and MSC therapy.
Collapse
Affiliation(s)
- Hong-Fang Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jide Jin
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li-Sheng Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chu-Tse Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
9
|
Construction of HGF-Displaying Yeast by Cell Surface Engineering. Microorganisms 2022; 10:microorganisms10071373. [PMID: 35889092 PMCID: PMC9316346 DOI: 10.3390/microorganisms10071373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte growth factor (HGF) has been investigated as a regulator for immune reactions caused by transplantation and autoimmune diseases and other biological functions. Previous studies demonstrated that cDNA-encoding HGF administration could inhibit acute graft-versus-host disease (GVHD) after treatment via hematopoietic stem cell transplantation. This study aimed to show the preparation of HGF protein on yeast cell surfaces to develop a tool for the oral administration of HGF to a GVHD mouse model. In this study, full-length HGF and the heavy chain of HGF were genetically fused with α-agglutinin and were successfully displayed on the yeast cell surface. This study suggested that yeast cell surface display engineering could provide a novel administration route for HGF.
Collapse
|
10
|
Therapeutic Strategies for Ovarian Cancer in Point of HGF/c-MET Targeting. Medicina (B Aires) 2022; 58:medicina58050649. [PMID: 35630066 PMCID: PMC9147666 DOI: 10.3390/medicina58050649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer deaths in women and is regarded as one of the most difficult cancers to treat. Currently, studies are being conducted to develop therapeutic agents for effective treatment of ovarian cancer. In this review, we explain the properties of the hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) and how the signaling pathway of HGF/c-MET is activated in different cancers and involved in tumorigenesis and metastasis of ovarian cancer. We present the findings of clinical studies using small chemicals or antibodies targeting HGF/c-MET signaling in various cancer types, particularly in ovarian cancer. We also discuss that HGF/c-MET-targeted therapy, when combined with chemo drugs, could be an effective strategy for ovarian cancer therapeutics.
Collapse
|
11
|
Ji J, Yang L. Amniotic stem cells and their exosomes. REGENERATIVE NEPHROLOGY 2022:169-188. [DOI: 10.1016/b978-0-12-823318-4.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Kim JH, Yang HJ, Choi SS, Kim SU, Lee HJ, Song YS. Improved bladder contractility after transplantation of human mesenchymal stem cells overexpressing hepatocyte growth factor into underactive bladder from bladder outlet obstruction models of rats. PLoS One 2021; 16:e0261402. [PMID: 34936660 PMCID: PMC8694482 DOI: 10.1371/journal.pone.0261402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction An underactive bladder can lead to difficulty in voiding that causes incomplete emptying of the bladder, suggesting the need for a new strategy to increase bladder contractility in such patients. This study was performed to investigate whether human mesenchymal stem cells (hMSCs) were capable of restoring bladder contractility in rats with underactive bladder due to bladder outlet obstruction (BOO) and enhancing their effects by overexpressing hepatocyte growth factor (HGF) in hMSCs. Materials and methods The hMSCs were transplanted into the bladder wall of rats. Fifty female Sprague-Dawley rats at six weeks of age were divided into five groups: group 1: control; group 2: sham intervention; group 3: eight-week BOO; group 4: BOO rats transplanted with hMSCs; and group 5: BOO rats transplanted with hMSCs overexpressing HGF. Two weeks after the onset of BOO in groups 4 and 5, hMSCs were injected into the bladder wall. Cystometry evaluation was followed by Masson’s trichrome staining of bladder tissues. Realtime PCR and immunohistochemical staining were performed to determine for hypoxia, apoptosis, and angiogenesis. Results Collagen deposition of bladder increased in BOO but decreased after transplantation of hMSCs. The increased inter-contraction interval and residual urine volume after BOO was reversed after hMSCs transplantation. The decreased maximal voiding pressure after BOO was restored by hMSCs treatment. The mRNA expression of bladder collagen1 and TGF-β1 increased in BOO but decreased after hMSCs transplantation. The decrease in vWF-positive cells in the bladder following BOO was increased after hMSCs transplantation. Caspase 3 and TUNEL-positive apoptosis of bladder cells increased in BOO but decreased after transplantation of hMSCs. These effects were enhanced by overexpressing HGF in hMSCs. Conclusion Transplantation of hMSCs into bladder wall increased the number of micro-vessels, decreased collagen deposition and apoptosis of detrusor muscle, and improved bladder underactivity. The effects were enhanced by overexpressing HGF in hMSCs. Our findings suggest that the restoration of underactive bladder using hMSCs may be used to rectify micturition disorders in patients following resolution of BOO. Further studies are needed before hMSCs can be used in clinical applications.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University School of Medicine, Seoul, Republic of Korea
| | - Hee Jo Yang
- Department of Urology, Soonchunhyang University School of Medicine, Cheonan, Republic of Korea
| | - Sung Sik Choi
- Medical Science Research Institute, Chungbuk National University, Cheong Ju, Republic of Korea
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
| | - Hong J. Lee
- Medical Science Research Institute, Chungbuk National University, Cheong Ju, Republic of Korea
- * E-mail: (HJL); (YSS)
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University School of Medicine, Seoul, Republic of Korea
- * E-mail: (HJL); (YSS)
| |
Collapse
|
13
|
Sharma S, Watanabe T, Nishimoto T, Takihara T, Mlakar L, Nguyen XX, Sanderson M, Su Y, Chambers RA, Feghali-Bostwick C. E4 engages uPAR and enolase-1 and activates urokinase to exert antifibrotic effects. JCI Insight 2021; 6:144935. [PMID: 34935642 PMCID: PMC8783693 DOI: 10.1172/jci.insight.144935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroproliferative disorders such as systemic sclerosis (SSc) have no effective therapies and result in significant morbidity and mortality. We recently demonstrated that the C-terminal domain of endostatin, known as E4, prevented and reversed both dermal and pulmonary fibrosis. Our goal was to identify the mechanism by which E4 abrogates fibrosis and its cell surface binding partner(s). Our findings show that E4 activated the urokinase pathway and increased the urokinase plasminogen activator (uPA) to type 1 plasminogen activator inhibitor (PAI-1) ratio. In addition, E4 substantially increased MMP-1 and MMP-3 expression and activity. In vivo, E4 reversed bleomycin induction of PAI-1 and increased uPA activity. In patients with SSc, the uPA/PAI-1 ratio was decreased in both lung tissues and pulmonary fibroblasts compared with normal donors. Proteins bound to biotinylated-E4 were identified as enolase-1 (ENO) and uPA receptor (uPAR). The antifibrotic effects of E4 required uPAR. Further, ENO mediated the fibrotic effects of TGF-β1 and exerted TGF-β1–independent fibrotic effects. Our findings suggest that the antifibrotic effect of E4 is mediated, in part, by regulation of the urokinase pathway and induction of MMP-1 and MMP-3 levels and activity in a uPAR-dependent manner, thus promoting extracellular matrix degradation. Further, our findings identify a moonlighting function for the glycolytic enzyme ENO in fibrosis.
Collapse
Affiliation(s)
- Shailza Sharma
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tomoya Watanabe
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tetsuya Nishimoto
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Takahisa Takihara
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Logan Mlakar
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xinh-Xinh Nguyen
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew Sanderson
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yunyun Su
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Roger A Chambers
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
14
|
Sun Q, Shen Z, Liang X, He Y, Kong D, Midgley AC, Wang K. Progress and Current Limitations of Materials for Artificial Bile Duct Engineering. MATERIALS 2021; 14:ma14237468. [PMID: 34885623 PMCID: PMC8658964 DOI: 10.3390/ma14237468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/30/2023]
Abstract
Bile duct injury (BDI) and bile tract diseases are regarded as prominent challenges in hepatobiliary surgery due to the risk of severe complications. Hepatobiliary, pancreatic, and gastrointestinal surgery can inadvertently cause iatrogenic BDI. The commonly utilized clinical treatment of BDI is biliary-enteric anastomosis. However, removal of the Oddi sphincter, which serves as a valve control over the unidirectional flow of bile to the intestine, can result in complications such as reflux cholangitis, restenosis of the bile duct, and cholangiocarcinoma. Tissue engineering and biomaterials offer alternative approaches for BDI treatment. Reconstruction of mechanically functional and biomimetic structures to replace bile ducts aims to promote the ingrowth of bile duct cells and realize tissue regeneration of bile ducts. Current research on artificial bile ducts has remained within preclinical animal model experiments. As more research shows artificial bile duct replacements achieving effective mechanical and functional prevention of biliary peritonitis caused by bile leakage or obstructive jaundice after bile duct reconstruction, clinical translation of tissue-engineered bile ducts has become a theoretical possibility. This literature review provides a comprehensive collection of published works in relation to three tissue engineering approaches for biomimetic bile duct construction: mechanical support from scaffold materials, cell seeding methods, and the incorporation of biologically active factors to identify the advancements and current limitations of materials and methods for the development of effective artificial bile ducts that promote tissue regeneration.
Collapse
Affiliation(s)
- Qiqi Sun
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
| | - Zefeng Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (Z.S.); (X.L.)
| | - Xiao Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (Z.S.); (X.L.)
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
- Correspondence: (A.C.M.); (K.W.)
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (Q.S.); (D.K.)
- Correspondence: (A.C.M.); (K.W.)
| |
Collapse
|
15
|
Qin P, Zhang M, Liu X, Dong Z. Immunogenomic Landscape Analysis of Prognostic Immune-Related Genes in Hepatocellular Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3761858. [PMID: 34745496 PMCID: PMC8570866 DOI: 10.1155/2021/3761858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/16/2021] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. HBV infection is an important risk factor for the tumorigenesis of HCC, given that the inflammatory environment is closely related to morbidity and prognosis. Consequently, it is of urgent importance to explore the immunogenomic landscape to supplement the prognosis of HCC. The expression profiles of immune-related genes (IRGs) were integrated with 377 HCC patients to generate differentially expressed IRGs based on the Cancer Genome Atlas (TCGA) dataset. These IRGs were evaluated and assessed in terms of their diagnostic and prognostic values. A total of 32 differentially expressed immune-related genes resulted as significantly correlated with the overall survival of HCC patients. The Gene Ontology functional enrichment analysis revealed that these genes were actively involved in cytokine-cytokine receptor interaction. A prognostic signature based on IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) stratified patients into high-risk versus low-risk groups in terms of overall survival and remained as an independent prognostic factor in multivariate analyses after adjusting for clinical and pathologic factors. Several IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) of clinical significance were screened in the present study, revealing that the proposed clinical-immune signature is a promising risk score for predicting the prognosis of HCC.
Collapse
Affiliation(s)
- Peng Qin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Liu
- Department of Immunotherapy, Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Ziming Dong
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Fu H, Gui Y, Liu S, Wang Y, Bastacky SI, Qiao Y, Zhang R, Bonin C, Hargis G, Yu Y, Kreutzer DL, Biswas PS, Zhou Y, Wang Y, Tian XJ, Liu Y, Zhou D. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience 2021; 24:103112. [PMID: 34622165 PMCID: PMC8479790 DOI: 10.1016/j.isci.2021.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/20/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
The kidney local microenvironment (KLM) plays a critical role in the pathogenesis of kidney fibrosis. However, the composition and regulation of a fibrotic KLM remain unclear. Through a multidisciplinary approach, we investigated the roles of the hepatocyte growth factor/c-met signaling pathway in regulating KLM formation in various chronic kidney disease (CKD) models. We performed a retrospective analysis of single-cell RNA sequencing data and determined that tubular epithelial cells and macrophages are two major cell populations in a fibrotic kidney. We then created a mathematical model that predicted loss of c-met in tubular cells would cause greater responses to injury than loss of c-met in macrophages. By generating c-met conditional knockout mice, we validated that loss of c-met influences epithelial plasticity, myofibroblast activation, and extracellular matrix synthesis/degradation, which ultimately determined the characteristics of the fibrotic KLM. Our findings open the possibility of designing effective therapeutic strategies to retard CKD.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yuanyuan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sheldon Ira Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yi Qiao
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Christopher Bonin
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Geneva Hargis
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Donald L. Kreutzer
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Partha Sarathi Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
17
|
Lahmann I, Griger J, Chen JS, Zhang Y, Schuelke M, Birchmeier C. Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration. eLife 2021; 10:57356. [PMID: 34350830 PMCID: PMC8370772 DOI: 10.7554/elife.57356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species, as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.
Collapse
Affiliation(s)
- Ines Lahmann
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Jie-Shin Chen
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Yao Zhang
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
18
|
Sanches BDA, Tamarindo GH, Maldarine JDS, Da Silva ADT, Dos Santos VA, Góes RM, Taboga SR, Carvalho HF. Telocytes of the male urogenital system: Interrelationships, possible functions, and pathological implications. Cell Biol Int 2021; 45:1613-1623. [PMID: 33856089 DOI: 10.1002/cbin.11612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
The male urogenital system is composed of the reproductive system and the urinary tract; they have an interconnected embryonic development and share one of their anatomical components, the urethra. This system has a highly complex physiology deeply interconnected with the circulatory and nervous systems, as well as being capable of adapting to environmental variations; it also undergoes changes with aging and, in the case of the reproductive system, with seasonality. The stroma is an essential component in this physiological plasticity and its complexity has increased with the description in the last decade of a new cell type, the telocyte. Several studies have demonstrated the presence of telocytes in the organs of the male urogenital system and other systems; however, their exact function is not yet known. The present review addresses current knowledge about telocytes in the urogenital system in terms of their locations, interrelationships, possible functions and pathological implications. It has been found that telocytes in the urogenital system possibly have a leading role in stromal tissue organization/maintenance, in addition to participation in stem cell niches and an association with the immune system, as well as specific functions in the urogenital system, lipid synthesis in the testes, erythropoiesis in the kidneys and the micturition reflex in the bladder. There is also evidence that telocytes are involved in pathologies in the kidneys, urethra, bladder, prostate, and testes.
Collapse
Affiliation(s)
- Bruno Domingos Azevedo Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Henrique Tamarindo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliana Dos Santos Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alana Della Torre Da Silva
- Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Vitória Alário Dos Santos
- Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Laboratory of Microscopy and Microanalysis, Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
19
|
Klotz DM, Link T, Goeckenjan M, Wimberger P, Kuhlmann JD. The levels of soluble cMET ectodomain in the blood of patients with ovarian cancer are an independent prognostic biomarker. Mol Oncol 2021; 15:2491-2503. [PMID: 33690968 PMCID: PMC8410524 DOI: 10.1002/1878-0261.12939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The tyrosine kinase mesenchymal–epithelial transition (cMET) is typically overexpressed in up to 75% of patients with ovarian cancer, and cMET overexpression has been associated with poor prognosis. The proteolytic release of the soluble cMET (sMET) ectodomain by metalloproteases, a process called ectodomain shedding, reflects the malignant potential of tumour cells. sMET can be detected in the human circulation and has been proposed as biomarker in several cancers. However, the clinical relevance of sMET in ovarian cancer as blood‐based biomarker is unknown and was therefore investigated in this study. sMET levels were determined by enzyme‐linked immunosorbent assay in a set of 432 serum samples from 85 healthy controls and 86 patients with ovarian cancer (87% FIGO III/IV). Samples were collected at primary diagnosis, at four longitudinal follow‐up time points during the course of treatment and at disease recurrence. Although there was no significant difference between median sMET levels at primary diagnosis of ovarian cancer vs. healthy controls, increased sMET levels at primary diagnosis were an independent predictor of shorter PFS (HR = 0.354, 95% CI: 0.130–0.968, P = 0.043) and shorter OS (HR = 0.217, 95% CI: 0.064–0.734, P = 0.014). In the follow‐up samples, sMET levels were prognostically most informative after the first three cycles of chemotherapy, with high sMET levels being an independent predictor of shorter PFS (HR = 0.245, 95% CI: 0.100–0.602, P = 0.002). This is the first study to suggest that sMET levels in the blood can be used as an independent prognostic biomarker for ovarian cancer. Patients at high risk of recurrence and with poor prognosis, as identified based on sMET levels in the blood, could potentially benefit from cMET‐directed therapies or other targeted regimes, such as PARP inhibitors or immunotherapy.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Maren Goeckenjan
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| |
Collapse
|
20
|
Klotz DM, Link T, Wimberger P, Kuhlmann JD. Prognostic relevance of longitudinal HGF levels in serum of patients with ovarian cancer. Mol Oncol 2021; 15:3626-3638. [PMID: 33738970 PMCID: PMC8637578 DOI: 10.1002/1878-0261.12949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
The pleiotropic protein hepatocyte growth factor (HGF) is the only known ligand of the tyrosine kinase mesenchymal–epithelial transition (cMET) receptor. The HGF/cMET pathway mediates invasion and migration of ovarian cancer cells, and upregulation of HGF/cMET pathway components has been associated with poor prognosis. This study investigated the clinical relevance of circulating HGF in serum of patients with ovarian cancer. Serum HGF (sHGF) was determined by enzyme‐linked immunosorbent assay in a total of 471 serum samples from 82 healthy controls and 113 patients with ovarian cancer (88.5% with ≥ FIGO III). Patient samples were collected at primary diagnosis and at four follow‐up time points throughout treatment and at disease recurrence. Patients with ovarian cancer showed elevated median sHGF levels at primary diagnosis, and sHGF levels transiently increased after surgery and normalized in the course of chemotherapy, even dropping below initial baseline. Higher levels of sHGF were an independent predictor for shorter overall survival (OS) (a) at primary diagnosis (HR = 0.41, 95% CI: 0.22–0.78, P = 0.006), (b) at longitudinal follow‐up time points (after surgery and before/during/after chemotherapy), (c) along the patients’ individual dynamics (HR = 0.21, 95% CI: 0.07–0.63, P = 0.005), and (d) among a subgroup analysis of patients with BRCA1/2 wild‐type ovarian cancer. This is the first study proposing sHGF as an independent prognostic biomarker for ovarian cancer at primary diagnosis and in the course of platinum‐based chemotherapy, irrespective of the postoperative residual disease after surgical debulking. sHGF could be implemented into clinical diagnostics as a CA125 auxiliary tumor marker for individualized prognosis stratification and sHGF‐guided therapy monitoring.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
21
|
Kajiwara K, Yamano S, Aoki K, Okuzaki D, Matsumoto K, Okada M. CDCP1 promotes compensatory renal growth by integrating Src and Met signaling. Life Sci Alliance 2021; 4:4/4/e202000832. [PMID: 33574034 PMCID: PMC7893822 DOI: 10.26508/lsa.202000832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
CDCP1 promotes HGF-induced compensatory renal growth by focally and temporally integrating Src and Met-STAT3 signaling in lipid rafts. Compensatory growth of organs after loss of their mass and/or function is controlled by hepatocyte growth factor (HGF), but the underlying regulatory mechanisms remain elusive. Here, we show that CUB domain-containing protein 1 (CDCP1) promotes HGF-induced compensatory renal growth. Using canine kidney cells as a model of renal tubules, we found that HGF-induced temporal up-regulation of Src activity and its scaffold protein, CDCP1, and that the ablation of CDCP1 robustly abrogated HGF-induced phenotypic changes, such as morphological changes and cell growth/proliferation. Mechanistic analyses revealed that up-regulated CDCP1 recruits Src into lipid rafts to activate STAT3 associated with the HGF receptor Met, and activated STAT3 induces the expression of matrix metalloproteinases and mitogenic factors. After unilateral nephrectomy in mice, the Met-STAT3 signaling is transiently up-regulated in the renal tubules of the remaining kidney, whereas CDCP1 ablation attenuates regenerative signaling and significantly suppresses compensatory growth. These findings demonstrate that CDCP1 plays a crucial role in controlling compensatory renal growth by focally and temporally integrating Src and Met signaling.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shotaro Yamano
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Liu Y, Fang J. Mesenchymal Stem Cells as Therapeutic Agents and Novel Carriers for the Delivery of Candidate Genes in Acute Kidney Injury. Stem Cells Int 2020; 2020:8875554. [PMID: 33381189 PMCID: PMC7748887 DOI: 10.1155/2020/8875554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome characterized by a dramatic increase in serum creatinine. Mild AKI may merely be confined to kidney damage and resolve within days; however, severe AKI commonly involves extrarenal organ dysfunction and is associated with high mortality. There is no specific pharmaceutical treatment currently available that can reverse the course of this disease. Notably, mesenchymal stem cells (MSCs) show great promise for the management of AKI by targeting multiple pathophysiological pathways to facilitate tubular epithelial cell repair. It has been well established that the unique characteristics of MSCs make them ideal vectors for gene therapy. Thus, genetic modification has been attempted to achieve improved therapeutic outcomes in the management of AKI by overexpressing trophic cytokines or facilitating MSC delivery to renal tissues. The present article provides a comprehensive review of genetic modification strategies targeted at optimizing the therapeutic potential of MSCs in AKI.
Collapse
Affiliation(s)
- Yuxiang Liu
- Shanxi Medical University, No. 56, Xinjiannan Road, Taiyuan, 030001 Shanxi, China
| | - Jingai Fang
- First Hospital of Shanxi Medical University, No. 85, Jiefangnan Road, Taiyuan, 030001 Shanxi, China
| |
Collapse
|
23
|
Gu L, Hong F, Fan K, Zhao L, Zhang C, Yu B, Chai C. Integrated Network Pharmacology Analysis and Pharmacological Evaluation to Explore the Active Components and Mechanism of Abelmoschus manihot (L.) Medik. on Renal Fibrosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4053-4067. [PMID: 33061308 PMCID: PMC7535141 DOI: 10.2147/dddt.s264898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Background Renal fibrosis is a common pathological outcome of chronic kidney diseases (CKD) that is considered as a global public health issue with high morbidity and mortality. The dry corolla of Abelmoschus manihot (L.) Medik. (AMC) has been used for chronic nephritis in clinic and showed a superior effect in alleviating proteinuria in CKD patients to losartan. However, the effective components and underlying mechanism of AMC in the treatment of renal fibrosis have not been systematically clarified. Methods Based on drug-likeness evaluation, oral bioavailability prediction and compound contents, a systematic network pharmacology analysis was conducted to predict the active ingredients. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis and protein–protein interaction analysis were applied to predict the potential pathway and target of AMC against renal fibrosis. The formula of component contribution index (CI) based on the algorithm was used to screen the principal active compounds of AMC in the treatment of renal fibrosis. Finally, pharmacological evaluation was conducted to validate the protective effect and primary predicted mechanism of AMC in the treatment of renal fibrosis on a 5/6 nephrectomy mice model. Results Fourteen potential active components of AMC possessing favorable pharmacokinetic profiles and biological activities were selected and hit by 17 targets closely related to renal fibrosis. Quercetin, caffeic acid, 9.12-octadecadienoic acid, and myricetin are recognized as the more highly predictive components as their cumulative contribution rate reached 85.86%. The AMC administration on 5/6 nephrectomy mice showed a protective effect on kidney function and renal fibrosis. The hub genes analysis revealed that AMC plays a major role in inhibiting epithelial-to-mesenchymal transition during renal fibrosis. Conclusion Our results predicted active components and potential targets of AMC for the application to renal fibrosis from a holistic perspective, as well as provided valuable direction for further research of AMC and improved comprehension of renal fibrosis pathogenesis.
Collapse
Affiliation(s)
- Lifei Gu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Fang Hong
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Kaikai Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Lei Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chunlei Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chengzhi Chai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
24
|
LC3C-Mediated Autophagy Selectively Regulates the Met RTK and HGF-Stimulated Migration and Invasion. Cell Rep 2020; 29:4053-4068.e6. [PMID: 31851933 DOI: 10.1016/j.celrep.2019.11.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/18/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
The Met/hepatocyte growth factor (HGF) receptor tyrosine kinase (RTK) is deregulated in many cancers and is a recognized target for cancer therapies. Following HGF stimulation, the signaling output of Met is tightly controlled by receptor internalization and sorting for degradation or recycling. Here, we uncover a role for autophagy in selective degradation of Met and regulation of Met-dependent cell migration and invasion. Met engagement with the autophagic pathway is dependent on complex formation with the mammalian ATG8 family member MAP1LC3C. LC3C deletion abrogates Met entry into the autophagy-dependent degradative pathway, allowing identification of LC3C domains required for rescue. Cancer cells with low LC3C levels show enhanced Met stability, signaling, and cell invasion. These findings provide mechanistic insight into RTK recruitment to autophagosomes and establish distinct roles for ATG8 proteins in this process, supporting that differential expression of ATG8 proteins can shape the functional consequences of autophagy in cancer development and progression.
Collapse
|
25
|
The selective c-Met inhibitor capmatinib offsets cisplatin-nephrotoxicity and doxorubicin-cardiotoxicity and improves their anticancer efficacies. Toxicol Appl Pharmacol 2020; 398:115018. [DOI: 10.1016/j.taap.2020.115018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
26
|
Margetts PJ, Bonniaud P. Basic Mechanisms and Clinical Implications of Peritoneal Fibrosis. Perit Dial Int 2020. [DOI: 10.1177/089686080302300604] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Peter J. Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philippe Bonniaud
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Gao L, Zhong X, Jin J, Li J, Meng XM. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. Signal Transduct Target Ther 2020; 5:9. [PMID: 32296020 PMCID: PMC7018831 DOI: 10.1038/s41392-020-0106-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is defined as a rapid decline in renal function and is characterized by excessive renal inflammation and programmed death of resident cells. AKI shows high morbidity and mortality, and severe or repeated AKI can transition to chronic kidney disease (CKD) or even end-stage renal disease (ESRD); however, very few effective and specific therapies are available, except for supportive treatment. Growth factors, such as epidermal growth factor (EGF), insulin-like growth factor (IGF), and transforming growth factor-β (TGF-β), are significantly altered in AKI models and have been suggested to play critical roles in the repair process of AKI because of their roles in cell regeneration and renal repair. In recent years, a series of studies have shown evidence that growth factors, receptors, and downstream effectors may be highly involved in the mechanism of AKI and may function in the early stage of AKI in response to stimuli by regulating inflammation and programmed cell death. Moreover, certain growth factors or correlated proteins act as biomarkers for AKI due to their sensitivity and specificity. Furthermore, growth factors originating from mesenchymal stem cells (MSCs) via paracrine signaling or extracellular vesicles recruit leukocytes or repair intrinsic cells and may participate in AKI repair or the AKI-CKD transition. In addition, growth factor-modified MSCs show superior therapeutic potential compared to that of unmodified controls. In this review, we summarized the current therapeutic and diagnostic strategies targeting growth factors to treat AKI in clinical trials. We also evaluated the possibilities of other growth factor-correlated molecules as therapeutic targets in the treatment of AKI and the AKI-CKD transition.
Collapse
Affiliation(s)
- Li Gao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiang Zhong
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 230032, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
28
|
MET targeting: time for a rematch. Oncogene 2020; 39:2845-2862. [PMID: 32034310 DOI: 10.1038/s41388-020-1193-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
MET, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, is a proto-oncogene involved in embryonic development and throughout life in homeostasis and tissue regeneration. Deregulation of MET signaling has been reported in numerous malignancies, prompting great interest in MET targeting for cancer therapy. The present review offers a summary of the biology of MET and its known functions in normal physiology and carcinogenesis, followed by an overview of the most relevant MET-targeting strategies and corresponding clinical trials, highlighting both past setbacks and promising future prospects. By placing their efforts on a more precise stratification strategy through the genetic analysis of tumors, modern trials such as the NCI-MATCH trial could revive the past enthusiasm for MET-targeted therapy.
Collapse
|
29
|
Salas-Silva S, Simoni-Nieves A, Razori MV, López-Ramirez J, Barrera-Chimal J, Lazzarini R, Bello O, Souza V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Roma MG, Bucio-Ortiz L. HGF induces protective effects in α-naphthylisothiocyanate-induced intrahepatic cholestasis by counteracting oxidative stress. Biochem Pharmacol 2020; 174:113812. [PMID: 31954718 DOI: 10.1016/j.bcp.2020.113812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Cholestasis is a clinical syndrome common to a large number of hepatopathies, in which either bile production or its transit through the biliary tract is impaired due to functional or obstructive causes; the consequent intracellular retention of toxic biliary constituents generates parenchyma damage, largely via oxidative stress-mediated mechanisms. Hepatocyte growth factor (HGF) and its receptor c-Met represent one of the main systems for liver repair damage and defense against hepatotoxic factors, leading to an antioxidant and repair response. In this study, we evaluated the capability of HGF to counteract the damage caused by the model cholestatic agent, α-naphthyl isothiocyanate (ANIT). HGF had clear anti-cholestatic effects, as apparent from the improvement in both bile flow and liver function test. Histology examination revealed a significant reduction of injured areas. HGF also preserved the tight-junctional structure. These anticholestatic effects were associated with the induction of basolateral efflux ABC transporters, which facilitates extrusion of toxic biliary compounds and its further alternative depuration via urine. The biliary epithelium seems to have been also preserved, as suggested by normalization in serum GGT levels, CFTR expression and cholangyocyte primary cilium structure our results clearly show for the first time that HGF protects the liver from a cholestatic injury.
Collapse
Affiliation(s)
- Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - María Valeria Razori
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina
| | - Jocelyn López-Ramirez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Jonatan Barrera-Chimal
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roberto Lazzarini
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Oscar Bello
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico
| | - Verónica Souza
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roxana U Miranda-Labra
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Marcelo G Roma
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina.
| | - Leticia Bucio-Ortiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| |
Collapse
|
30
|
Shen Y, Jiang L, Wen P, Ye Y, Zhang Y, Ding H, Luo J, Xu L, Zen K, Zhou Y, Yang J. Tubule-derived lactate is required for fibroblast activation in acute kidney injury. Am J Physiol Renal Physiol 2020; 318:F689-F701. [PMID: 31928224 DOI: 10.1152/ajprenal.00229.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a highly prevalent medical syndrome associated with high mortality and morbidity. Several types of cells, including epithelial cells, vascular endothelial cells, pericytes, and macrophages, participate in the development of AKI. Recently, renal fibroblasts were found to play an important role in the regulation of tubular injury, repair, and recovery after AKI. However, the mechanisms underlying fibroblast activation and proliferation during the progression of AKI remain unclear. In the present study, we found many activated myofibroblasts located in the renal interstitium with an abundance of extracellular matrix deposition following folic acid-induced AKI. The proliferative pattern of tubular epithelial cells and interstitial cells following acute injury was different, indicating that the proliferation of fibroblasts followed the proliferation of tubular epithelial cells. Furthermore, we observed that proliferative tubular epithelial cells preferred aerobic glycolysis as the dominating metabolic pathway in the progression of AKI. Lactate generated from injured tubules was taken up by interstitial fibroblasts in the later stages of AKI, which induced fibroblast activation and proliferation in vitro. Early inhibition of lactate production in tubules by glycolytic inhibitors suppressed fibroblast activation after folic acid-induced injury. Collectively, these results support the important role of fibroblasts in the development of AKI and suggest that lactate produced by glycolysis in tubular epithelial cells is a novel regulator of fibroblast activation and proliferation.
Collapse
Affiliation(s)
- Yan Shen
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lei Jiang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinyin Ye
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yu Zhang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Ding
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Luo
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingling Xu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences, Nanjing, Jiangsu, China
| | - Yang Zhou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Yip HK, Chen KH, Dubey NK, Sun CK, Deng YH, Su CW, Lo WC, Cheng HC, Deng WP. Cerebro- and renoprotective activities through platelet-derived biomaterials against cerebrorenal syndrome in rat model. Biomaterials 2019; 214:119227. [DOI: 10.1016/j.biomaterials.2019.119227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
|
32
|
Gui Y, Lu Q, Gu M, Wang M, Liang Y, Zhu X, Xue X, Sun X, He W, Yang J, Zhao AZ, Xiao B, Dai C. Fibroblast mTOR/PPARγ/HGF axis protects against tubular cell death and acute kidney injury. Cell Death Differ 2019; 26:2774-2789. [PMID: 31024074 DOI: 10.1038/s41418-019-0336-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 02/05/2023] Open
Abstract
Kidney fibroblasts play a crucial role in dictating tubular cell fate and the outcome of acute kidney injury (AKI). The underlying mechanisms remain to be determined. Here, we found that mTOR signaling was activated in fibroblasts from mouse kidneys with ischemia/reperfusion injury (IRI). Ablation of fibroblast Rheb or Rictor promoted, while ablation of fibroblast Tsc1 protected against tubular cell death and IRI in mice. In tubular cells cultured with conditioned media (CM) from Rheb-/- or Rictor-/- fibroblasts, less hepatocyte growth factor (HGF) receptor c-met signaling activation or staurosporine-induced cell apoptosis was observed. While CM from Tsc1-/- fibroblasts promoted tubular cell c-met signaling activation and inhibited staurosporine-induced cell apoptosis. In kidney fibroblasts, blocking mTOR signaling downregulated the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and HGF. Downregulating fibroblast HGF expression or blocking tubular cell c-met signaling facilitated tubular cell apoptosis. Notably, renal PPARγ and HGF expression was less in mice with fibroblast Rheb or Rictor ablation, but more in mice with fibroblast Tsc1 ablation than their littermate controls, respectively. Together, these data suggest that mTOR signaling activation in kidney fibroblasts protects against tubular cell death and dictates the outcome of AKI through stimulating PPARγ and HGF expression.
Collapse
Affiliation(s)
- Yuan Gui
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Qingmiao Lu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mengru Gu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mingjie Wang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yan Liang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Xingwen Zhu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Xian Xue
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Xiaoli Sun
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Allan Zijian Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510515, Guangzhou, China
| | - Bo Xiao
- Neuroscience and Metabolism Research, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
33
|
Jing Y, Sun Q, Xiong X, Meng R, Tang S, Cao S, Bi Y, Zhu D. Hepatocyte growth factor alleviates hepatic insulin resistance and lipid accumulation in high-fat diet-fed mice. J Diabetes Investig 2019; 10:251-260. [PMID: 30070033 PMCID: PMC6400203 DOI: 10.1111/jdi.12904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 01/06/2023] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is frequently accompanied by fatty liver disease. Lipid accumulation within the liver is considered as one of the risk factors for insulin resistance. Hepatocyte growth factor (HGF) is used to treat liver dysfunction; however, the effect and mechanism of HGF on hepatic lipid metabolism are still not fully understood. MATERIALS AND METHODS Male C57BL/6 mice were induced with a high-fat diet for 12 weeks, followed by a 4-week treatment of HGF or vehicle saline. The levels of fasting blood glucose, fasting insulin and homeostatic model assessment of insulin resistance were calculated for insulin sensitivity. Biochemical plasma parameters were also measured to assess the effect of HGF on lipid accumulation. Additionally, genes in the lipid metabolism pathway were evaluated in palmitic acid-treated HepG2 cells and high-fat diet mice. RESULTS HGF treatment significantly decreased the levels of fasting blood glucose, hepatic triglyceride and cholesterol contents. Additionally, HGF-regulated expression levels of sterol regulatory element-binding protein-1c/fatty acid synthase, peroxidase proliferator-activated receptor-α, and upstream nuclear receptors, such as farnesoid X receptor and small heterodimer partner. Furthermore, c-Met inhibitor could partially reverse the effects of HGF. CONCLUSIONS HGF treatment can ameliorate hepatic insulin resistance and steatosis through regulation of lipid metabolism. These effects might occur through farnesoid X receptor-small heterodimer partner axis-dependent transcriptional activity.
Collapse
Affiliation(s)
- Yali Jing
- Department of EndocrinologyDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Qingmin Sun
- Department of PharmacyThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Xiaolu Xiong
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Ran Meng
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Sunyinyan Tang
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Shu Cao
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Yan Bi
- Department of EndocrinologyDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Dalong Zhu
- Department of EndocrinologyDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
34
|
Putra A, Pertiwi D, Milla MN, Indrayani UD, Jannah D, Sahariyani M, Trisnadi S, Wibowo JW. Hypoxia-preconditioned MSCs Have Superior Effect in Ameliorating Renal Function on Acute Renal Failure Animal Model. Open Access Maced J Med Sci 2019; 7:305-310. [PMID: 30833992 PMCID: PMC6390148 DOI: 10.3889/oamjms.2019.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute renal failure (ARF) is a serious disease characterised by a rapid loss of renal functions due to nephrotoxic drug or ischemic insult. The clinical treatment approach such as dialysis techniques and continuous renal enhancement have grown rapidly during past decades. However, there is yet no significant effect in improving renal function. Hypoxia-preconditioned mesenchymal stem cells (HP-MSCs) have positive effects on the in vitro survival and stemness, in addition to angiogenic potential. AIM In this study, we aimed to analyse the effect of HP-MSCs administration in improving renal function, characterised by blood urea nitrogen (BUN) and creatinine level. METHODS A group of 15 male Wistar rats weighing 250 g to 300 g were used in this study (n = 5 for each group). Rats were randomly distributed into 3 groups: Vehicle control (Veh) as a control group, HP-MSCs and normoxia MSCs (N-MSCs) as the treatment group. Renal function was evaluated based on the BUN and creatinine levels using the colourimetric method on day 5 and 13. The histological analysis using HE staining was performed on day 13. RESULTS The result showed there is a significant decrease in BUN and creatinine level (p < 0.05). The histological analysis of renal tissue also showed a significant decrease between Veh and treatment group (p < 0.05). CONCLUSION Based on this study, we conclude that HP-MSCs have a superior beneficial effect than N-MSCs in improving renal function in an animal model of gentamicin-induced ARF.
Collapse
Affiliation(s)
- Agung Putra
- Stem Cell and Cancer Research (SCCR) Laboratory, Medical Faculty, UNISSULA, Semarang, Indonesia
- Department of Postgraduate Biomedical Science, Medical Faculty, UNISSULA, Semarang, Indonesia
- Departement of Pathological Anatomy of Medical Faculty, UNISSULA, Semarang, Indonesia
| | - Danis Pertiwi
- Department of Clinical Pathology, UNISSULA, Semarang, Indonesia
| | | | | | - Durotul Jannah
- Department of Neurology, Medical Faculty, UNISSULA, Semarang, Indonesia
| | | | - Setyo Trisnadi
- Department of Postgraduate Biomedical Science, Medical Faculty, UNISSULA, Semarang, Indonesia
| | - Joko Wahyu Wibowo
- Department of Postgraduate Biomedical Science, Medical Faculty, UNISSULA, Semarang, Indonesia
| |
Collapse
|
35
|
Mikael PE, Willard C, Koyee A, Barlao CG, Liu X, Han X, Ouyang Y, Xia K, Linhardt RJ, Dordick JS. Remodeling of Glycosaminoglycans During Differentiation of Adult Human Bone Mesenchymal Stromal Cells Toward Hepatocytes. Stem Cells Dev 2019; 28:278-289. [PMID: 30572803 PMCID: PMC6389772 DOI: 10.1089/scd.2018.0197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
There is a critical need to generate functional hepatocytes to aid in liver repair and regeneration upon availability of a renewable, and potentially personalized, source of human hepatocytes (hHEP). Currently, the vast majority of primary hHEP are obtained from human tissue through cadavers. Recent advances in stem cell differentiation have opened up the possibility to obtain fully functional hepatocytes from embryonic or induced pluripotent stem cells, or adult stem cells. With respect to the latter, human bone marrow mesenchymal stromal cells (hBMSCs) can serve as a source of autogenetic and allogenic multipotent stem cells for liver repair and regeneration. A major aspect of hBMSC differentiation is the extracellular matrix (ECM) composition and, in particular, the role of glycosaminoglycans (GAGs) in the differentiation process. In this study, we examine the influence of four distinct culture conditions/protocols (T1-T4) on GAG composition and hepatic markers. α-Fetoprotein and hepatocyte nuclear factor-4α were expressed continually over 21 days of differentiation, as indicated by real time quantitative PCR analysis, while albumin (ALB) expression did not begin until day 21. Hepatocyte growth factor (HGF) appears to be more effective than activin A in promoting hepatic-like cells through the mesenchymal-epithelial transition, perhaps due to the former binding to the HGF receptor to form a unique complex that diversifies the biological functions of HGF. Of the four protocols tested, uniform hepatocyte-like morphological changes, ALB secretion, and glycogen storage were found to be highest with protocol T2, which involves both early- and late-stage combinations of growth factors. The total GAG profile of the hBMSC ECM is rich in heparan sulfate (HS) and hyaluronan, both of which fluctuate during differentiation. The GAG profile of primary hHEP showed an HS-rich ECM, and thus, it may be possible to guide hBMSC differentiation to more mature hepatocytes by controlling the GAG profile expressed by differentiating cells.
Collapse
Affiliation(s)
- Paiyz E. Mikael
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Charles Willard
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Aurvan Koyee
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Charmaine-Grace Barlao
- Department of Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, New York
| | - Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| | - Xiaorui Han
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| | - Yilan Ouyang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
- Department of Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| | - Jonathan S. Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
- Department of Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
36
|
Orlando E, Aebersold DM, Medová M, Zimmer Y. Oncogene addiction as a foundation of targeted cancer therapy: The paradigm of the MET receptor tyrosine kinase. Cancer Lett 2019; 443:189-202. [DOI: 10.1016/j.canlet.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
|
37
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
38
|
Ahmed SM, Fouad FE. Possible protective effect of platelet-rich plasma on a model of cisplatin-induced nephrotoxicity in rats: A light and transmission electron microscopic study. J Cell Physiol 2018; 234:10470-10480. [PMID: 30387156 DOI: 10.1002/jcp.27706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cisplatin (Cis), is a potent chemotherapeutic drug. However, Cis nephrotoxicity is high, thus limiting its use. Platelet-rich plasma (PRP) is an autologous product, easy to get from blood centrifugation. The aim of this study is to investigate the effects of PRP in reversing Cis-induced nephrotoxicity. MATERIALS AND METHODS Thirty-two adult albino rats were distributed into Group I, the control group; Group II, in which the rats received Cis (5 mg·kg-1 ·day -1 , intraperitoneal); Group III and Group IV, in which the rats received Cis, followed by normal saline and PRP distribution, respectively (1 ml) over the renal surface 24 hr later. All rats were killed on the eighth day of the experiment. Histopathological changes were examined. RESULTS Glomerular atrophy, tubular degeneration, interrupted PAS reaction, highly expressed caspase-3, and ultra-structural changes were observed after Cis injection, which improved with PRP administration. CONCLUSION PRP reduced acute kidney injury through the epithelial GFs.
Collapse
Affiliation(s)
- Sabreen M Ahmed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Fatma E Fouad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Minya, Egypt
| |
Collapse
|
39
|
Abstract
Kidney diseases including acute kidney injury and chronic kidney disease are among the largest health issues worldwide. Dialysis and kidney transplantation can replace a significant portion of renal function, however these treatments still have limitations. To overcome these shortcomings, a variety of innovative efforts have been introduced, including cell-based therapies. During the past decades, advances have been made in the stem cell and developmental biology, and tissue engineering. As part of such efforts, studies on renal cell therapy and artificial kidney developments have been conducted, and multiple therapeutic interventions have shown promise in the pre-clinical and clinical settings. More recently, therapeutic cell-secreting secretomes have emerged as a potential alternative to cell-based approaches. This approach involves the use of renotropic factors, such as growth factors and cytokines, that are produced by cells and these factors have shown effectiveness in facilitating kidney function recovery. This review focuses on the renotropic functions of bioactive compounds that provide protective and regenerative effects for kidney tissue repair, based on the available data in the literature.
Collapse
Affiliation(s)
- Kang Su Cho
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
40
|
García-Vilas JA, Medina MÁ. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol 2018; 24:3695-3708. [PMID: 30197476 PMCID: PMC6127652 DOI: 10.3748/wjg.v24.i33.3695] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and is the second leading cause of cancer death. Since the diagnosis of HCC is difficult, in many cases patients with HCC are diagnosed advanced stage of development. Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition receptor (c-Met) axis is a key signaling pathway in HCC, either via canonical or non-canonical pathways. Available treatments against HCC based upon HGF/c-Met inhibition can increase patient lifespan, but do not reach the expected therapeutic benefits. In HCC, c-Met monomers can bind other receptor monomers, activating several noncanonical signaling pathways, leading to increased cell proliferation, invasion, motility, and drug resistance. All of these processes are enhanced by the tumor microenvironment, with stromal cells contributing to boost tumor progression through oxidative stress, angiogenesis, lymphangiogenesis, inflammation, and fibrosis. Novel treatments against HCC are being explored to modulate other targets such as microRNAs, methyltransferases, and acetyltransferases, which are all involved in the regulation of gene expression in cancer. This review compiles basic knowledge regarding signaling pathways in HCC, and compounds already used or showing potential to be used in clinical trials.
Collapse
Affiliation(s)
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, Málaga 29071, Spain
- Unidad 741 de CIBER “de Enfermedades Raras” (CIBERER), Málaga 29071, Spain
- Institute of Biomedical Research in Málaga, Málaga 29071, Spain
| |
Collapse
|
41
|
Renoprotective Effect of Platelet-Rich Plasma on Cisplatin-Induced Nephrotoxicity in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9658230. [PMID: 30116500 PMCID: PMC6079401 DOI: 10.1155/2018/9658230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
Platelet-rich plasma (PRP) has grown as an attractive biologic instrument in regenerative medicine for its powerful healing properties. It is considered as a source of growth factors that may induce tissue repairing and improve fibrosis. This product has proven its efficacy in multiple studies, but its effect on cisplatin-induced nephrotoxicity has not yet been elucidated. The present investigation was performed to estimate the protective impact of platelet-rich plasma against cisplatin- (CP-) evoked nephrotoxicity in male rats. Nephrotoxicity was induced in male Wistar rats by right uninephrectomy followed by CP administration. Uninephrectomized rats were assigned into four groups: (1) control group, (2) PRP group, (3) CP group, and (4) CP + PRP group. PRP was administered by subcapsular renal injection. Renal function, inflammatory cytokines, and growth factor level as well as histopathological investigation were carried out. Treatment with PRP attenuated the severity of CP-induced nephrotoxicity as evidenced by suppressed creatinine, blood urea nitrogen (BUN), and N-acetyl glucosaminidase (NAG) levels. Moreover, PRP depressed intercellular adhesion molecule-1 (ICAM-1), kidney injury molecule-1 (KIM-1), caspase-3, and transforming growth factor-beta 1 (TGF-β1) levels, while enhanced the epidermal growth factor (EGF) level. These biochemical results were reinforced by the histopathological investigation, which revealed restoration of normal renal tissue architectures. These findings highlight evidence for the possible protective effects of PRP in a rat model of CP-induced nephrotoxicity, suggesting a new avenue for using PRP to improve the therapeutic index of cisplatin.
Collapse
|
42
|
Elseweidy MM, Askar ME, Elswefy SE, Shawky M. Nephrotoxicity Induced by Cisplatin Intake in Experimental Rats and Therapeutic Approach of Using Mesenchymal Stem Cells and Spironolactone. Appl Biochem Biotechnol 2018; 184:1390-1403. [PMID: 29043663 DOI: 10.1007/s12010-017-2631-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 02/05/2023]
Abstract
Chronic kidney disease may lead to subsequent tissue fibrosis. However, many factors can combat injurious stimuli in these tissues aiming to repair, heal, and alleviate any disturbance. Chemokines release, migration of inflammatory cells to the affected site, and activation of fibroblasts for the production of extracellular matrix are commonly observed in this disease. In the last years, many studies have focused on spironolactone (SPL), a mineralocorticoid receptor antagonist, and its pharmacological effects. In the present study, SPL was selected as an anti-inflammatory agent to combat nephrotoxicity and renal fibrosis induced by cisplatin. Mesenchymal stem cells (MSCs) were also selected in addition as a referring agent. Renal fibrosis induced by cisplatin intake significantly increased creatinine, urea, nuclear factor kappa B, insulin-like growth factor-1, fibroblast growth factor-23, and kidney malondialdehyde (MDA) content. Hepatocyte growth factor and renal content of reduced glutathione demonstrated a significant decrease. Histopathological examination of kidney tissues demonstrated marked cellular changes which are correlated with the biochemical results. Oral SPL intake (20 mg/kg/body weight) daily for 4 weeks and MSCs administration (3 × 106 cell/rat) intravenous to the experimental rats resulted in a significant improvement of both the biomarkers studied and the histopathological profile of the renal tissue. Individual administration of spironolactone and MSCs exhibited a marked anti-inflammatory potential and alleviated to a great extent the nephrotoxicity and renal fibrotic pattern induced by cisplatin.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Sahar E Elswefy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Shawky
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Faculty of Pharmacy, Horus University in Egypt, New Damietta, Egypt
| |
Collapse
|
43
|
Wang Z, Fei S, Suo C, Han Z, Tao J, Xu Z, Zhao C, Tan R, Gu M. Antifibrotic Effects of Hepatocyte Growth Factor on Endothelial-to-Mesenchymal Transition via Transforming Growth Factor-Beta1 (TGF-β1)/Smad and Akt/mTOR/P70S6K Signaling Pathways. Ann Transplant 2018; 23:1-10. [PMID: 29292365 PMCID: PMC6248046 DOI: 10.12659/aot.906700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The related mechanisms involved in allograft interstitial fibrosis and chronic allograft dysfunction (CAD), following renal transplant, remain largely unknown. Here, we explored the role of hepatocyte growth factor (HGF) treatment on the endothelial-to-mesenchymal transition (EndMT) as a new way to target and prevent kidney fibrosis and improve outcomes for renal transplant recipients. Method/Material We extracted proteins and mRNAs from human umbilical vein endothelial cells (HUVECs) and human renal glomerular endothelial cells (HRGECs) treated with transforming growth factor-beta1 (TGF-β1) and/or varying doses of HGF, and assessed the effect of HGF on the EndMT using western blotting, qRT-PCR, and ELISA assays. We utilized cell motility and migration assays to evaluate cell movement, and applied western blotting to assess the mechanism by which TGF-β1 induced the EndMT. Results HGF significantly attenuated the development of TGF-β1-induced EndMT in a concentration-dependent way, and weakened the abilities of motility and migration of both HUVECs and HRGECs. Moreover, our results reveal that the antifibrotic effect of HGF on the EndMT was associated with the TGF-β/Smad and Akt/mTOR/p70S6K signaling pathways. Conclusions Our study suggests that HGF treatment significantly attenuates the development of EndMT induced by TGF-β1 via the TGFβ/Smad and Akt/mTOR/P70S6K signaling, which provides novel insights into the prevention and treatment of interstitial fibrosis and CAD following renal transplant.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhen Xu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Chunchun Zhao
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Min Gu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
44
|
Abstract
Cabozantinib is a receptor tyrosine kinase inhibitor (TKI) with activity against a broad range of targets, including MET, RET, AXL, VEGFR2, FLT3, and c-KIT. Activity of cabozantinib towards a broad range of tumor models could be detected in several preclinical studies. Of note, cabozantinib decreases metastasis potential and tumor invasiveness when compared with placebo or agents that target VEGFR and have no activity against MET. Cabozantinib is clinically approved for the treatment of medullary thyroid cancer (MTC) and for renal cell cancer (RCC) in the second line. In MTC gain of function mutations, mutations of RET are central for tumorigenesis. Hereditary forms of MTC (MEN II) are caused by germline mutations of RET, in sporadic MTC up to 50% of cases RET mutations occur. Both MET and AXL have been described as mechanisms facilitating resistance against VEGFR-targeted tyrosine kinase therapy in clear cell RCC. Accordingly, cabozantinib has shown activity in RCC patients progressing after first-line VEGFR-TKI therapy in the pivotal METEOR trial. This phase III trial reported a benefit of 4.9 months in survival and an increase in response rate compared to standard everolimus over all patient subgroups. Of particular interest are the effects on patients with bone metastasis, which have a worse prognosis. In these patients, the beneficial effects of cabozantinib over everolimus were even more pronounced. Side effects of interest include diarrhea, hypertension, fatigue, and hand-foot syndrome.
Collapse
Affiliation(s)
- Carsten Grüllich
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Medical Center, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
| |
Collapse
|
45
|
Elseweidy MM, Askar ME, Elswefy SE, Shawky M. Vanillin as a new modulator candidate for renal injury induced by cisplatin in experimental rats. Cytokine 2017; 99:260-265. [PMID: 28784590 DOI: 10.1016/j.cyto.2017.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023]
Abstract
Cisplatin is commonly prescribed for the treatment of various solid tumors but its use is limited due to certain side effects and renal injury is a true example. Oxidative stress and inflammation may contribute to the cisplatin induced nephrotoxicity. Accordingly, we evaluated the effect of oral vanillin intake (100mg/kg body weight) daily for 4weeks to combat this hazard. The present results have demonstrated significant attenuation of oxidative stress and renal injury where reduced glutathione (GSH) showed significant increase along with malondialdehyde (MDA) decrease. Fibrotic markers like fibroblast growth factor-23 (FGF-23), transforming growth factor-β1 (TGF-β1), inflammatory mediators such as nuclear factor-κB (NF-κB) and tumor necrosis factor-α (TNF-α) showed also significant decrease in vanillin treated rats as compared with the control group. Renal function showed also significant improvement where urea and creatinine demonstrated significant decrease and the histopathological study presented a good support to the biochemical markers results. Our conclusion that vanillin is a potent antioxidant, anti-inflammatory and anti-fibrotic agent. Additionally, it is a good modulator candidate for the renal injury induced by cisplatin intake.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sahar E Elswefy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Shawky
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
46
|
Mesarosova L, Ochodnicky P, Leemans JC, Florquin S, Krenek P, Klimas J. High glucose induces HGF-independent activation of Met receptor in human renal tubular epithelium. J Recept Signal Transduct Res 2017; 37:535-542. [PMID: 28819999 DOI: 10.1080/10799893.2017.1365902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT The role of hepatocyte growth factor (HGF) in diabetic kidney damage remains controversial. OBJECTIVE To test the hypothesis that high glucose levels activate pathways related to HGF and its receptor Met and that this could participate in glucose-induced renal cell damage. MATERIALS AND METHODS HK2 cells, a human proximal tubule epithelial cell line, were stimulated with high glucose for 48 hours. Levels of pMet/Met, pEGFR/EGFR, pSTAT3/STAT3, pAkt/Akt and pERK1/2/ERK1/2 were studied by immunoblotting. Absence of HGF was verified by qRT-PCR and ELISA. RESULTS High glucose level activated Met and its downstream pathways STAT3, Akt and ERK independently of HGF. High glucose induced an integrin ligand fibronectin. HGF-independent Met phosphorylation was prevented by inhibition of integrin α5β1, Met inhibitor crizotinib, Src inhibitors PP2 and SU5565, but not by EGFR inhibitor AG1478. High glucose increased the expression of TGFβ-1, CTGF and the tubular damage marker KIM-1 and increased apoptosis of HK2 cells, effects inhibited by crizotinib. CONCLUSION High glucose activated Met receptor in HK2 cells independently of HGF, via induction of integrin α5β1 and downstream signaling. This mode of Met activation was associated with tubular cell damage and apoptosis and it may represent a novel pathogenic mechanism and a treatment target in diabetic nephropathy.
Collapse
Affiliation(s)
- Lucia Mesarosova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Peter Ochodnicky
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jaklien C Leemans
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Sandrine Florquin
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Peter Krenek
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Jan Klimas
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| |
Collapse
|
47
|
Chae YK, Arya A, Chiec L, Shah H, Rosenberg A, Patel S, Raparia K, Choi J, Wainwright DA, Villaflor V, Cristofanilli M, Giles F. Challenges and future of biomarker tests in the era of precision oncology: Can we rely on immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) to select the optimal patients for matched therapy? Oncotarget 2017; 8:100863-100898. [PMID: 29246028 PMCID: PMC5725070 DOI: 10.18632/oncotarget.19809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
Molecular techniques have improved our understanding of the pathogenesis of cancer development. These techniques have also fueled the rational development of targeted drugs for patient populations stratified by their genetic characteristics. These novel methods have changed the classic paradigm of diagnostic pathology; among them are IHC, FISH, polymerase chain reaction (PCR) and microarray technology. IHC and FISH detection methods for human epidermal growth factor receptor-2 (HER2), epidermal growth factor receptor (EGFR) and programmed death ligand-1 (PD-L1) were recently approved by the Food and Drug Administration (FDA) as routine clinical practice for cancer patients. Here, we discuss general challenges related to the predictive power of these molecular biomarkers for targeted therapy in cancer medicine. We will also discuss the prospects of utilizing new biomarkers for fibroblast growth factor receptor (FGFR) and hepatocyte growth factor receptor (cMET/MET) targeted therapies for developing new and robust predictive biomarkers in oncology.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ayush Arya
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Lauren Chiec
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Hiral Shah
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
| | - Ari Rosenberg
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Sandip Patel
- University of California San Diego, San Diego, CA, USA
| | - Kirtee Raparia
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek A Wainwright
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria Villaflor
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Massimo Cristofanilli
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
48
|
Targeting the hepatocyte growth factor/Met pathway in cancer. Biochem Soc Trans 2017; 45:855-870. [PMID: 28673936 DOI: 10.1042/bst20160132] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Hepatocyte growth factor (HGF)-induced activation of its cell surface receptor, the Met tyrosine kinase, drives mitogenesis, motogenesis and morphogenesis in a wide spectrum of target cell types and embryologic, developmental and homeostatic contexts. Typical paracrine HGF/Met signaling is regulated by HGF activation at target cell surfaces, HGF binding-induced receptor activation, internalization and degradation. Despite these controls, HGF/Met signaling contributes to oncogenesis, tumor angiogenesis and invasiveness, and tumor metastasis in many types of cancer, leading to the rapid growth of pathway-targeted anticancer drug development programs. We review here HGF and Met structure and function, basic properties of HGF/Met pathway antagonists now in clinical development, and recent clinical trial results. Presently, the main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment include optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of effective therapy combinations. The wealth of basic information, analytical reagents and model systems available regarding normal and oncogenic HGF/Met signaling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective cancer treatment.
Collapse
|
49
|
Enosawa S, Takahashi N, Amemiya H, Motomiya Y. Transplantation of Nonvascularized Kidney Tissue Fragments into the Rat Liver with the Aim of Preserving Renal Function. Cell Transplant 2017; 13:413-9. [PMID: 15468683 DOI: 10.3727/000000004783983846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For research in regenerative medicine, not only the study of cellular pluripotency but also knowledge of the reorganization of tissue structure is crucial. However, the latter will probably be more difficult to acquire. When small fragments of kidney (approx. 1 × 1 mm) were implanted in the liver of syngeneic LEW rats, the tissue survived at least 2 weeks with retention of normal structure including glomeruli and tubules. In contrast, no kidney structure survived when transplanted to subcutaneous sites, omentum, or spleen. Molecules involved in renal tubular function, such as megalin and glut2 transporter protein, were detectable in the implanted tissue by immunohistochemistry, suggesting that the cells were biologically active. Survival of cortex, medulla, and calyx tissues was then compared. All three components were still detectable 8 weeks after transplantation but cortex and medulla were replaced by granuloma at 6 months. Only calyx tissue survived for up to 12 months after transplantation. There was no marked difference in tissue survival, either when the recipient liver was partially resected or when infantile donor kidney was implanted instead of adult kidney. The present method opens new avenues in the development of regenerative medicine (i.e., tissue transplantation) as an intermediate modus between organ transplantation and cell transplantation.
Collapse
Affiliation(s)
- Shin Enosawa
- Department of Innovative Surgery, National Research Institute for Child Health and Development, Tokyo, Japan.
| | | | | | | |
Collapse
|
50
|
Morigi M, Benigni A, Remuzzi G, Imberti B. The Regenerative Potential of Stem Cells in Acute Renal Failure. Cell Transplant 2017; 15 Suppl 1:S111-7. [PMID: 16826803 DOI: 10.3727/000000006783982449] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adult stem cells have been characterized in several tissues as a subpopulation of cells able to maintain, generate, and replace terminally differentiated cells in response to physiological cell turnover or tissue injury. Little is known regarding the presence of stem cells in the adult kidney but it is documented that under certain conditions, such as the recovery from acute injury, the kidney can regenerate itself by increasing the proliferation of some resident cells. The origin of these cells is largely undefined; they are often considered to derive from resident renal stem or progenitor cells. Whether these immature cells are a subpopulation preserved from the early stage of nephrogenesis is still a matter of investigation and represents an attractive possibility. Moreover, the contribution of bone marrow-derived stem cells to renal cell turnover and regeneration has been suggested. In mice and humans, there is evidence that extrarenal cells of bone marrow origin take part in tubular epithelium regeneration. Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. Recent studies have demonstrated that hematopoietic stem cells were mobilized following ischemia/reperfusion and engrafted the kidney to differentiate into tubular epithelium in the areas of damage. The evidence that mesenchymal stem cells, by virtue of their renoprotective property, restore renal tubular structure and also ameliorate renal function during experimental acute renal failure provides opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Marina Morigi
- Mario Negri Institute for Pharmacological Research, Via Gavazzeni 11, 24125 Bergamo, Italy.
| | | | | | | |
Collapse
|