1
|
Poulsen SB, Murali SK, Thomas L, Assmus A, Rosenbæk LL, Nielsen R, Dimke H, Rieg T, Fenton RA. Genetic deletion of the kidney sodium/proton exchanger-3 (NHE3) does not alter calcium and phosphate balance due to compensatory responses. Kidney Int 2025; 107:280-295. [PMID: 39089578 DOI: 10.1016/j.kint.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lena L Rosenbæk
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Siew K, Nestler KA, Nelson C, D'Ambrosio V, Zhong C, Li Z, Grillo A, Wan ER, Patel V, Overbey E, Kim J, Yun S, Vaughan MB, Cheshire C, Cubitt L, Broni-Tabi J, Al-Jaber MY, Boyko V, Meydan C, Barker P, Arif S, Afsari F, Allen N, Al-Maadheed M, Altinok S, Bah N, Border S, Brown AL, Burling K, Cheng-Campbell M, Colón LM, Degoricija L, Figg N, Finch R, Foox J, Faridi P, French A, Gebre S, Gordon P, Houerbi N, Valipour Kahrood H, Kiffer FC, Klosinska AS, Kubik A, Lee HC, Li Y, Lucarelli N, Marullo AL, Matei I, McCann CM, Mimar S, Naglah A, Nicod J, O'Shaughnessy KM, Oliveira LCD, Oswalt L, Patras LI, Lai Polo SH, Rodríguez-Lopez M, Roufosse C, Sadeghi-Alavijeh O, Sanchez-Hodge R, Paul AS, Schittenhelm RB, Schweickart A, Scott RT, Choy Lim Kam Sian TC, da Silveira WA, Slawinski H, Snell D, Sosa J, Saravia-Butler AM, Tabetah M, Tanuwidjaya E, Walker-Samuel S, Yang X, Yasmin, Zhang H, Godovac-Zimmermann J, Sarder P, Sanders LM, Costes SV, Campbell RAA, Karouia F, Mohamed-Alis V, Rodriques S, Lynham S, Steele JR, Baranzini S, Fazelinia H, Dai Z, Uruno A, Shiba D, Yamamoto M, A C Almeida E, Blaber E, Schisler JC, Eisch AJ, Muratani M, Zwart SR, et alSiew K, Nestler KA, Nelson C, D'Ambrosio V, Zhong C, Li Z, Grillo A, Wan ER, Patel V, Overbey E, Kim J, Yun S, Vaughan MB, Cheshire C, Cubitt L, Broni-Tabi J, Al-Jaber MY, Boyko V, Meydan C, Barker P, Arif S, Afsari F, Allen N, Al-Maadheed M, Altinok S, Bah N, Border S, Brown AL, Burling K, Cheng-Campbell M, Colón LM, Degoricija L, Figg N, Finch R, Foox J, Faridi P, French A, Gebre S, Gordon P, Houerbi N, Valipour Kahrood H, Kiffer FC, Klosinska AS, Kubik A, Lee HC, Li Y, Lucarelli N, Marullo AL, Matei I, McCann CM, Mimar S, Naglah A, Nicod J, O'Shaughnessy KM, Oliveira LCD, Oswalt L, Patras LI, Lai Polo SH, Rodríguez-Lopez M, Roufosse C, Sadeghi-Alavijeh O, Sanchez-Hodge R, Paul AS, Schittenhelm RB, Schweickart A, Scott RT, Choy Lim Kam Sian TC, da Silveira WA, Slawinski H, Snell D, Sosa J, Saravia-Butler AM, Tabetah M, Tanuwidjaya E, Walker-Samuel S, Yang X, Yasmin, Zhang H, Godovac-Zimmermann J, Sarder P, Sanders LM, Costes SV, Campbell RAA, Karouia F, Mohamed-Alis V, Rodriques S, Lynham S, Steele JR, Baranzini S, Fazelinia H, Dai Z, Uruno A, Shiba D, Yamamoto M, A C Almeida E, Blaber E, Schisler JC, Eisch AJ, Muratani M, Zwart SR, Smith SM, Galazka JM, Mason CE, Beheshti A, Walsh SB. Cosmic kidney disease: an integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction. Nat Commun 2024; 15:4923. [PMID: 38862484 PMCID: PMC11167060 DOI: 10.1038/s41467-024-49212-1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.
Collapse
Affiliation(s)
- Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK.
| | - Kevin A Nestler
- The Institute for Biomedical Sciences (IBS), The George Washington University, Washington, DC, USA
| | - Charlotte Nelson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Viola D'Ambrosio
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
- Department of Experimental and Translational Medicine, Università Cattolica del Sacro Cuore di Roma, Rome, Italy
| | - Chutong Zhong
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Zhongwang Li
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
- Centre for Advanced Biomedical Imaging, University College London, London, UK
- Centre for Computational Medicine, University College London, London, UK
| | - Alessandra Grillo
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Elizabeth R Wan
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Vaksha Patel
- Department of Renal Medicine, University College London, London, UK
| | - Eliah Overbey
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - JangKeun Kim
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - Sanghee Yun
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael B Vaughan
- School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Tissue Engineering and Biomaterials Group, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chris Cheshire
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, UK
| | - Laura Cubitt
- Applied Biotechnology Laboratory, The Francis Crick Institute, London, UK
| | - Jessica Broni-Tabi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | | | - Valery Boyko
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Cem Meydan
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - Peter Barker
- MRC MDU Mouse Biochemistry Laboratory, University of Cambridge, Cambridge, UK
| | - Shehbeel Arif
- Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fatemeh Afsari
- Department of Medicine-Nephrology & Intelligent Critical Care Center, University of Florida, Gainesville, FL, USA
| | - Noah Allen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mohammed Al-Maadheed
- Anti-Doping Laboratory Qatar, Doha, Qatar
- Centre of Metabolism and Inflammation, University College London, London, UK
| | - Selin Altinok
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nourdine Bah
- Applied Biotechnology Laboratory, The Francis Crick Institute, London, UK
| | - Samuel Border
- Department of Medicine-Nephrology & Intelligent Critical Care Center, University of Florida, Gainesville, FL, USA
| | - Amanda L Brown
- Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keith Burling
- MRC MDU Mouse Biochemistry Laboratory, University of Cambridge, Cambridge, UK
| | - Margareth Cheng-Campbell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Lorianna M Colón
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Lovorka Degoricija
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Nichola Figg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rebecca Finch
- School of Health, Science and Wellbeing, Staffordshire University, Stoke-on-Trent, UK
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - Pouya Faridi
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Alison French
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Samrawit Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Peter Gordon
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Nadia Houerbi
- Physiology, Biophysics & Systems Biology, Weill Cornell Medical College, New York, NY, USA
| | - Hossein Valipour Kahrood
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Monash Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Frederico C Kiffer
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aleksandra S Klosinska
- Division of Experimental Medicine & Immunotherapeutics (EMIT), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Angela Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Han-Chung Lee
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Nicholas Lucarelli
- Department of Medicine-Nephrology & Intelligent Critical Care Center, University of Florida, Gainesville, FL, USA
| | - Anthony L Marullo
- School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Irina Matei
- Cornell Center for Immunology, Cornell University, Ithaca, NY, USA
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Colleen M McCann
- Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sayat Mimar
- Department of Medicine-Nephrology & Intelligent Critical Care Center, University of Florida, Gainesville, FL, USA
| | - Ahmed Naglah
- Department of Medicine-Nephrology & Intelligent Critical Care Center, University of Florida, Gainesville, FL, USA
| | - Jérôme Nicod
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine & Immunotherapeutics (EMIT), Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Leah Oswalt
- Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - San-Huei Lai Polo
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Candice Roufosse
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | | | - Anindya S Paul
- Department of Medicine-Nephrology & Intelligent Critical Care Center, University of Florida, Gainesville, FL, USA
| | - Ralf Bernd Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Annalise Schweickart
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Terry Chin Choy Lim Kam Sian
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Willian A da Silveira
- School of Health, Science and Wellbeing, Staffordshire University, Stoke-on-Trent, UK
- International Space University, 67400, Illkirch-Graffenstaden, France
| | - Hubert Slawinski
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Daniel Snell
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Julio Sosa
- University Health Network, Toronto, ON, Canada
| | | | - Marshall Tabetah
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Erwin Tanuwidjaya
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Imaging, University College London, London, UK
- Centre for Computational Medicine, University College London, London, UK
| | | | - Yasmin
- Division of Experimental Medicine & Immunotherapeutics (EMIT), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Haijian Zhang
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Pinaki Sarder
- Department of Medicine-Quantitative Health Section, University of Florida, Gainesville, FL, USA
- Departments of Biomedical Engineering and Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Robert A A Campbell
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vidya Mohamed-Alis
- Anti-Doping Laboratory Qatar, Doha, Qatar
- Centre of Metabolism and Inflammation, University College London, London, UK
| | - Samuel Rodriques
- Applied Biotechnology Laboratory, The Francis Crick Institute, London, UK
| | | | - Joel Ricky Steele
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sergio Baranzini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Hossein Fazelinia
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Dai Shiba
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Eduardo A C Almeida
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Stanley Center for Psychiatric Research, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jonathan C Schisler
- Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Masafumi Muratani
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sara R Zwart
- Department of Preventative Medicine and Community Health, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medical College, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Broad Institute, Cambridge, MA, USA
- Space Biosciences Division, Universities Space Research Association (USRA), Washington, DC, USA
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK.
| |
Collapse
|
3
|
Hakimi S, Dutta P, Layton AT. Coupling of renal sodium and calcium transport: a modeling analysis of transporter inhibition and sex differences. Am J Physiol Renal Physiol 2023; 325:F536-F551. [PMID: 37615047 DOI: 10.1152/ajprenal.00145.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Ca2+ transport along the nephron occurs via specific transcellular and paracellular pathways and is coupled to the transport of other electrolytes. Notably, Na+ transport establishes an electrochemical gradient to drive Ca2+ reabsorption. Hence, alterations in renal Na+ handling, under pathophysiological conditions or pharmacological manipulations, can have major effects on Ca2+ transport. An important class of pharmacological agent is diuretics, which are commonly prescribed for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate Na+ transport but also indirectly affect renal Ca2+ handling. To better understand the underlying mechanisms, we developed a computational model of electrolyte transport along the superficial nephron in the kidney of a male and female rat. Sex differences in renal Ca2+ handling are represented. Model simulations predicted in the female rat nephron lower Ca2+ reabsorption in the proximal tubule and thick ascending limb, but higher reabsorption in the late distal convoluted tubule and connecting tubule, compared with the male nephron. The male rat kidney model yielded a higher urinary Ca2+ excretion than the female model, consistent with animal experiments. Model results indicated that along the proximal tubule and thick ascending limb, Ca2+ and Na+ transport occurred in parallel, but those processes were dissociated in the distal convoluted tubule. Additionally, we conducted simulations of inhibition of channels and transporters that play a major role in Na+ and Ca2+ transport. Simulation results revealed alterations in transepithelial Ca2+ transport, with differential effects among nephron segments and between the sexes.NEW & NOTEWORTHY The kidney plays an important role in the maintenance of whole body Ca2+ balance by regulating Ca2+ reabsorption and excretion. This computational modeling study provides insights into how Ca2+ transport along the nephron is coupled to Na+. Model results indicated that along the proximal tubule and thick ascending limb, Ca2+ and Na+ transport occur in parallel, but those processes were dissociated in the distal convoluted tubule. Simulations also revealed sex-specific responses to different pharmacological manipulations.
Collapse
Affiliation(s)
- Shervin Hakimi
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Triozzi JL, Hsi RS, Wang G, Akwo EA, Wheless L, Chen HC, Tao R, Ikizler TA, Robinson-Cohen C, Hung AM. Mendelian Randomization Analysis of Genetic Proxies of Thiazide Diuretics and the Reduction of Kidney Stone Risk. JAMA Netw Open 2023; 6:e2343290. [PMID: 37962888 PMCID: PMC10646726 DOI: 10.1001/jamanetworkopen.2023.43290] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
Importance Clinical trial data have called into question the efficacy of thiazide diuretics for the prevention of kidney stones. Objective To identify whether there is an association between genetic proxies of thiazide diuretics and the risk of kidney stones. Design, Setting, and Participants This genetic association study undertook a mendelian randomization analysis of derived exposures and outcomes from genome-wide association study summary statistics. Genetic proxies of thiazide diuretics were derived from the International Consortium for Blood Pressure. Kidney stone cases and controls were derived from the Million Veteran Program, UK Biobank, and the FinnGen study. These cross-sectional designs do not report a duration of follow-up. Data analysis was performed in May 2023. Exposure Genetic proxies of thiazide diuretics were genetic variants in the thiazide-sensitive sodium chloride cotransporter gene associated with systolic blood pressure. Genetic proxies of β-blockers and systolic blood pressure served as negative controls. Main Outcomes and Measures The main outcome was the odds of kidney stones. The secondary outcomes were serum laboratory values relevant to the treatment of kidney stones. Results The main analysis included up to 1 079 657 individuals, including 50 832 kidney stone cases and 1 028 825 controls. In a meta-analysis of all cohorts, genetic proxies of thiazide diuretics were associated with a lower odds of kidney stones (OR, 0.85; 95% CI, 0.81-0.89; P < .001). Genetic proxies of β-blockers (OR, 1.02; 95% CI, 0.96-1.07; P = .52) and systolic blood pressure (OR, 1.00; 95% CI, 1.00-1.01; P = .49) were not associated with kidney stones. Genetic proxies of thiazide diuretics were associated with higher serum calcium (β [SE], 0.051 [0.0092]; P < .001) and total cholesterol (β [SE], 0.065 [0.015]; P < .001), but lower serum potassium (β [SE], -0.073 [0.022]; P < .001). Conclusions and Relevance In this genetic association study, genetic proxies of thiazide diuretics were associated with reduced kidney stone risk. This finding reflects a drug effect over the course of a lifetime, unconstrained by the limited follow-up period of clinical trials.
Collapse
Affiliation(s)
- Jefferson L. Triozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ryan S. Hsi
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Guanchao Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elvis A. Akwo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lee Wheless
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - T. Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adriana M. Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
5
|
Affiliation(s)
| | - Kyle D Wood
- University of Alabama at Birmingham, Birmingham, AL
| | | |
Collapse
|
6
|
Kriuchkova N, Breiderhoff T, Müller D, Yilmaz DE, Demirci H, Drewell H, Günzel D, Himmerkus N, Bleich M, Persson PB, Mutig K. Furosemide rescues hypercalciuria in familial hypomagnesaemia with hypercalciuria and nephrocalcinosis model. Acta Physiol (Oxf) 2023; 237:e13927. [PMID: 36606514 DOI: 10.1111/apha.13927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/10/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Perturbed calcium homeostasis limits life expectancy in familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC). This rare disease occurs by loss-of-function mutations in CLDN16 or CLDN19 genes, causing impaired paracellular reabsorption of divalent cations along the cortical thick ascending limb (cTAL). Only partial compensation takes place in the ensuing late distal convoluted tubule, connecting tubule, and collecting duct, where the luminal transient receptor potential channel V5 (TRPV5), as well as basolateral plasma membrane calcium ATPase (PMCA) and sodium-potassium exchanger (NCX1) mediate transcellular Ca2+ reabsorption. The loop diuretic furosemide induces compensatory activation in these distal segments. Normally, furosemide enhances urinary calcium excretion via inhibition of the aforementioned cTAL. As Ca2+ reabsorption in the cTAL is already severely impaired in FHHNC patients, furosemide may alleviate hypercalciuria in this disease by activation of the distal transcellular Ca2+ transport proteins. METHODS Cldn16-deficient mice (Cldn16-/- ) served as a FHHNC model. Wild-type (WT) and Cldn16-/- mice were treated with furosemide (7 days of 40 mg/kg bw) or vehicle. We assessed renal electrolyte handling (metabolic cages) and key divalent transport proteins. RESULTS Cldn16-/- mice show higher Ca2+ excretion than WT and compensatory stimulation of Cldn2, TRPV5, and NCX1 at baseline. Furosemide reduced hypercalciuria in Cldn16-/- mice and enhanced TRPV5 and PMCA levels in Cldn16-/- but not in WT mice. CONCLUSIONS Furosemide significantly reduces hypercalciuria, likely via upregulation of luminal and basolateral Ca2+ transport systems in the distal nephron and collecting duct in this model for FHHNC.
Collapse
Affiliation(s)
- Natalia Kriuchkova
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tilman Breiderhoff
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Müller
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Duygu Elif Yilmaz
- Department of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hasan Demirci
- Department of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hoora Drewell
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Division of Nutritional Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Markus Bleich
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Pontus B Persson
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Gallafassi E, Bezerra M, Rebouças N. Control of sodium and potassium homeostasis by renal distal convoluted tubules. Braz J Med Biol Res 2023; 56:e12392. [PMID: 36790288 PMCID: PMC9925193 DOI: 10.1590/1414-431x2023e12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/17/2022] [Indexed: 02/12/2023] Open
Abstract
Distal convoluted tubules (DCT), which contain the Na-Cl cotransporter (NCC) inhibited by thiazide diuretics, undergo complex modulation to preserve Na+ and K+ homeostasis. The lysine kinases 1 and 4 (WNK1 and WNK4), identified as hyperactive in the hereditary disease pseudohypoaldosteronism type 2, are responsible for activation of NCC and consequent hypokalemia and hypertension. WNK4, highly expressed in DCT, activates the SPAK/OSR1 kinases, which phosphorylate NCC and other regulatory proteins and transporters in the distal nephron. WNK4 works as a chloride sensor through a Cl- binding site, which acts as an on/off switch at this kinase in response to changes of basolateral membrane electrical potential, the driving force of cellular Cl- efflux. High intracellular Cl- in hyperkalemia decreases NCC phosphorylation and low intracellular Cl- in hypokalemia increases NCC phosphorylation and activity, which makes plasma K+ concentration a central modulator of NCC and of K+ secretion. The WNK4 phosphorylation by cSrc or SGK1, activated by angiotensin II or aldosterone, respectively, is another relevant mechanism of NCC, ENaC, and ROMK modulation in states such as volume reduction, hyperkalemia, and hypokalemia. Loss of NCC function induces upregulation of electroneutral NaCl reabsorption by type B intercalated cells through the combined activity of pendrin and NDCBE, as demonstrated in double knockout mice (KO) animal models, Ncc/pendrin or Ncc/NDCBE. The analysis of ks-Nedd-4-2 KO animal models introduced the modulation of NEDD4-2 by intracellular Mg2+ activity as an important regulator of NCC, explaining the thiazide-induced persistent hypokalemia.
Collapse
Affiliation(s)
- E.A. Gallafassi
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| | - M.B. Bezerra
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| | - N.A. Rebouças
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| |
Collapse
|
8
|
Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022; 817:146192. [PMID: 35031425 PMCID: PMC8950124 DOI: 10.1016/j.gene.2022.146192] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Calcium-selective channel TRPV6 (Transient Receptor Potential channel family, Vanilloid subfamily member 6) belongs to the TRP family of cation channels and plays critical roles in transcellular calcium (Ca2+) transport, reuptake of Ca2+ into cells, and maintaining a local low Ca2+ environment for certain biological processes. Recent crystal and cryo-electron microscopy-based structures of TRPV6 have revealed mechanistic insights on how the protein achieves Ca2+ selectivity, permeation, and inactivation by calmodulin. The TRPV6 protein is expressed in a range of epithelial tissues such as the intestine, kidney, placenta, epididymis, and exocrine glands such as the pancreas, prostate and salivary, sweat, and mammary glands. The TRPV6 gene is a direct transcriptional target of the active form of vitamin D and is efficiently regulated to meet the body's need for Ca2+ demand. In addition, TRPV6 is also regulated by the level of dietary Ca2+ and under physiological conditions such as pregnancy and lactation. Genetic models of loss of function in TRPV6 display hypercalciuria, decreased bone marrow density, deficient weight gain, reduced fertility, and in some cases alopecia. The models also reveal that the channel plays an indispensable role in maintaining maternal-fetal Ca2+ transport and low Ca2+ environment in the epididymal lumen that is critical for male fertility. Most recently, loss of function mutations in TRPV6 gene is linked to transient neonatal hyperparathyroidism and early onset chronic pancreatitis. TRPV6 is overexpressed in a wide range of human malignancies and its upregulation is strongly correlated to tumor aggressiveness, metastasis, and poor survival in selected cancers. This review summarizes the current state of knowledge on the expression, structure, biophysical properties, function, polymorphisms, and regulation of TRPV6. The aberrant expression, polymorphisms, and dysfunction of this protein linked to human diseases are also discussed.
Collapse
Affiliation(s)
- Vinayak Khattar
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Hanna RM, Ahdoot RS, Kalantar-Zadeh K, Ghobry L, Kurtz I. Calcium Transport in the Kidney and Disease Processes. Front Endocrinol (Lausanne) 2022; 12:762130. [PMID: 35299844 PMCID: PMC8922474 DOI: 10.3389/fendo.2021.762130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Calcium is a key ion involved in cardiac and skeletal muscle contractility, nerve function, and skeletal structure. Global calcium balance is affected by parathyroid hormone and vitamin D, and calcium is shuttled between the extracellular space and the bone matrix compartment dynamically. The kidney plays an important role in whole-body calcium balance. Abnormalities in the kidney transport proteins alter the renal excretion of calcium. Various hormonal and regulatory pathways have evolved that regulate the renal handling of calcium to maintain the serum calcium within defined limits despite dynamic changes in dietary calcium intake. Dysregulation of renal calcium transport can occur pharmacologically, hormonally, and via genetic mutations in key proteins in various nephron segments resulting in several disease processes. This review focuses on the regulation transport of calcium in the nephron. Genetic diseases affecting the renal handling of calcium that can potentially lead to changes in the serum calcium concentration are reviewed.
Collapse
Affiliation(s)
- Ramy M. Hanna
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Rebecca S. Ahdoot
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, CA, United States
| | - Lena Ghobry
- School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ira Kurtz
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- University of California Los Angeles (UCLA) Brain Research Center, Los Angeles, CA, United States
| |
Collapse
|
10
|
Butt AK, Patel J, Shirwany H, Mirza Q, Hoover J, Khouzam RN. Beneficial Extracardiac Effects of Cardiovascular Medications. Curr Cardiol Rev 2022; 18:e151021197270. [PMID: 34779371 PMCID: PMC9413730 DOI: 10.2174/1573403x17666211015145132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases are the most common cause of death worldwide, with cardiovascular medications being amongst the most common medications prescribed. These medications have diverse effects on the heart, vascular system, as well as other tissues and organ systems. The extra cardiovascular effects have been found to be of use in the treatment of non-cardiovascular diseases and pathologies. Minoxidil is used to manage systemic hypertension with its well-known side effect of hirsutism used to treat alopecia and baldness. Sildenafil was originally investigated as a treatment option for systemic hypertension; however, its side effect of penile erection led to it being widely used for erectile dysfunction. Alpha-1 blockers such as terazosin are indicated to treat systemic hypertension but are more commonly used for benign prostatic hyperplasia and post-traumatic stress disorder. Beta blockers are the mainstay treatment for congestive heart failure and systemic hypertension but have been found useful to help in patients with intention tremors as well as prophylaxis of migraines. Similarly, calcium channel blockers are indicated in medical expulsion therapy for ureteric calculi in addition to their cardiovascular indications. Thiazides are commonly used for treating systemic hypertension and as diuretics. Thiazides can cause hypocalciuria and hypercalcemia. This side effect has led to thiazides being used to treat idiopathic hypercalciuria and associated nephrolithiasis. Spironolactone is commonly utilized in treating heart failure and as a diuretic for edema. It's well described anti-androgen side effects have been used for acne vulgaris and hirsutism in polycystic ovarian syndrome. This review article discusses how the various extracardiovascular effects of commonly used cardiovascular medications are put to use in managing non-cardiovascular conditions.
Collapse
Affiliation(s)
- Asra K. Butt
- Department of Internal Medicine, Veteran Affairs Medical Center, Memphis, TN 38104, USA
| | - Jay Patel
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hamid Shirwany
- University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA
| | - Qasim Mirza
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jonathan Hoover
- Department of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rami N. Khouzam
- Department of Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
11
|
Abstract
Magnesium (Mg2+) plays an essential role in many biological processes. Mg2+ deficiency is therefore associated with a wide range of clinical effects including muscle cramps, fatigue, seizures and arrhythmias. To maintain sufficient Mg2+ levels, (re)absorption of Mg2+ in the intestine and kidney is tightly regulated. Genetic defects that disturb Mg2+ uptake pathways, as well as drugs interfering with Mg2+ (re)absorption cause hypomagnesemia. The aim of this review is to provide an overview of the molecular mechanisms underlying genetic and drug-induced Mg2+ deficiencies. This leads to the identification of four main mechanisms that are affected by hypomagnesemia-causing mutations or drugs: luminal transient receptor potential melastatin type 6/7-mediated Mg2+ uptake, paracellular Mg2+ reabsorption in the thick ascending limb of Henle's loop, structural integrity of the distal convoluted tubule and Na+-dependent Mg2+ extrusion driven by the Na+/K+-ATPase. Our analysis demonstrates that genetic and drug-induced causes of hypomagnesemia share common molecular mechanisms. Targeting these shared pathways can lead to novel treatment options for patients with hypomagnesemia.
Collapse
|
12
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
Walters ME, Esfandi R, Tsopmo A. Potential of Food Hydrolyzed Proteins and Peptides to Chelate Iron or Calcium and Enhance their Absorption. Foods 2018; 7:E172. [PMID: 30347663 PMCID: PMC6210708 DOI: 10.3390/foods7100172] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
Iron and calcium are two essential micronutrients that have strong effects on nutrition and human health because of their involvement in several biological and redox processes. Iron is responsible for electron and oxygen transport, cell respiration, and gene expression, whereas calcium is responsible for intracellular metabolism, muscle contraction, cardiac function, and cell proliferation. The bioavailability of these nutrients in the body is dependent on enhancers and inhibitors, some of which are found in consumed foods. Hydrolyzed proteins and peptides from food proteins can bind these essential minerals in the body and facilitate their absorption and bioavailability. The binding is also important because excess free iron will increase oxidative stress and the risks of developing chronic diseases. This paper provides an overview of the function of calcium and iron, and strategies to enhance their absorption with an emphasis on hydrolyzed proteins and peptides from foods. It also discusses the relationship between the structure of peptides and their potential to act as transition metal ligands.
Collapse
Affiliation(s)
- Mallory E Walters
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
- Institute of Biochemistry, Carleton Unive6rsity, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
14
|
Yang YS, Xie J, Yang SS, Lin SH, Huang CL. Differential roles of WNK4 in regulation of NCC in vivo. Am J Physiol Renal Physiol 2018; 314:F999-F1007. [PMID: 29384416 PMCID: PMC6031911 DOI: 10.1152/ajprenal.00177.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 11/22/2022] Open
Abstract
The Na+-Cl- cotransporter (NCC) in distal convoluted tubule (DCT) plays important roles in renal NaCl reabsorption. The current hypothesis for the mechanism of regulation of NCC focuses on WNK4 and intracellular Cl- concentration ([Cl-]i). WNK kinases bind Cl-, and Cl- binding decreases the catalytic activity. It is believed that hypokalemia under low K+ intake decreases [Cl-]i to activate WNK4, which thereby phosphorylates and stimulates NCC through activation of SPAK. However, increased NCC activity and apical NaCl entry would mitigate the fall in [Cl-]i. Whether [Cl-]i in DCT under low-K+ diet is sufficiently low to activate WNK4 is unknown. Furthermore, increased luminal NaCl delivery also stimulates NCC and causes upregulation of the transporter. Unlike low K+ intake, increased luminal NaCl delivery would tend to increase [Cl-]i. Thus we investigated the role of WNK4 and [Cl-]i in regulating NCC. We generated Wnk4-knockout mice and examined regulation of NCC by low K+ intake and by increased luminal NaCl delivery in knockout (KO) and wild-type mice. Wnk4-KO mice have marked reduction in the abundance, phosphorylation, and functional activity of NCC vs. wild type. Low K+ intake increases NCC phosphorylation and functional activity in wild-type mice, but not in Wnk4-KO mice. Increased luminal NaCl delivery similarly upregulates NCC, which, contrary to low K+ intake, is not abolished in Wnk4-KO mice. The results reveal that modulation of WNK4 activity by [Cl-]i is not the sole mechanism for regulating NCC. Increased luminal NaCl delivery upregulates NCC via yet unknown mechanism(s) that may override inhibition of WNK4 by high [Cl-]i.
Collapse
MESH Headings
- Animals
- Biological Transport
- Gene Expression Regulation, Enzymologic
- Injections, Subcutaneous
- Kidney Tubules, Distal/drug effects
- Kidney Tubules, Distal/enzymology
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- Potassium, Dietary/metabolism
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Renal Elimination
- Renal Reabsorption
- Sodium Chloride/administration & dosage
- Sodium Chloride/metabolism
- Sodium Chloride Symporter Inhibitors/pharmacology
- Solute Carrier Family 12, Member 3/deficiency
- Solute Carrier Family 12, Member 3/genetics
- Solute Carrier Family 12, Member 3/metabolism
Collapse
Affiliation(s)
- Yih-Sheng Yang
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jian Xie
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, and Graduate Institute of Medical Sciences, National Defense Medical Center , Taipei , Taiwan
- Graduate Institute of Biomedical Sciences, Academia Sinica, Taipei , Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, and Graduate Institute of Medical Sciences, National Defense Medical Center , Taipei , Taiwan
| | - Chou-Long Huang
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
15
|
Bongers EMHF, Shelton LM, Milatz S, Verkaart S, Bech AP, Schoots J, Cornelissen EAM, Bleich M, Hoenderop JGJ, Wetzels JFM, Lugtenberg D, Nijenhuis T. A Novel Hypokalemic-Alkalotic Salt-Losing Tubulopathy in Patients with CLDN10 Mutations. J Am Soc Nephrol 2017; 28:3118-3128. [PMID: 28674042 DOI: 10.1681/asn.2016080881] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/11/2017] [Indexed: 11/03/2022] Open
Abstract
Mice lacking distal tubular expression of CLDN10, the gene encoding the tight junction protein Claudin-10, show enhanced paracellular magnesium and calcium permeability and reduced sodium permeability in the thick ascending limb (TAL), leading to a urine concentrating defect. However, the function of renal Claudin-10 in humans remains undetermined. We identified and characterized CLDN10 mutations in two patients with a hypokalemic-alkalotic salt-losing nephropathy. The first patient was diagnosed with Bartter syndrome (BS) >30 years ago. At re-evaluation, we observed hypocalciuria and hypercalcemia, suggesting Gitelman syndrome (GS). However, serum magnesium was in the upper normal to hypermagnesemic range, thiazide responsiveness was not blunted, and genetic analyses did not show mutations in genes associated with GS or BS. Whole-exome sequencing revealed compound heterozygous CLDN10 sequence variants [c.446C>G (p.Pro149Arg) and c.465-1G>A (p.Glu157_Tyr192del)]. The patient had reduced urinary concentrating ability, with a preserved aquaporin-2 response to desmopressin and an intact response to furosemide. These findings were not in line with any other known salt-losing nephropathy. Subsequently, we identified a second unrelated patient showing a similar phenotype, in whom we detected compound heterozygous CLDN10 sequence variants [c.446C>G (p.(Pro149Arg) and c.217G>A (p.Asp73Asn)]. Cell surface biotinylation and immunofluorescence experiments in cells expressing the encoded mutants showed that only one mutation caused significant differences in Claudin-10 membrane localization and tight junction strand formation, indicating that these alterations do not fully explain the phenotype. These data suggest that pathogenic CLDN10 mutations affect TAL paracellular ion transport and cause a novel tight junction disease characterized by a non-BS, non-GS autosomal recessive hypokalemic-alkalotic salt-losing phenotype.
Collapse
Affiliation(s)
| | | | - Susanne Milatz
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | | | | | - Markus Bleich
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
16
|
Alexander RT, Dimke H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am J Physiol Renal Physiol 2017; 312:F998-F1015. [DOI: 10.1152/ajprenal.00032.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023] Open
Abstract
Calcium (Ca2+) and Magnesium (Mg2+) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca2+ and Mg2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport. Acetazolamide, osmotic diuretics, Na+/H+ exchanger (NHE3) inhibitors, and antidiabetic Na+/glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop diuretics and renal outer medullary K+ (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na+ transport at distal sites, can also affect divalent cation transport.
Collapse
Affiliation(s)
- R. Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada; and
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Ceylan K, Topal C, Erkoc R, Sayarlioglu H, Can S, Yilmaz Y, Dogan E, Algun E, Gonulalan H. Effect of Indapamide on Urinary Calcium Excretion in Patients with and without Urinary Stone Disease. Ann Pharmacother 2017; 39:1034-8. [PMID: 15840731 DOI: 10.1345/aph.1e544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND: Indapamide is an antihypertensive agent similar to thiazides, but with some different effects. Thiazide and thiazide-like diuretics are useful in preventing recurrent urinary stone formation due to their hypocalciuric effects. OBJECTIVE: To determine the hypocalciuric and other effects on certain laboratory parameters of indapamide 1.5 mg in different patient groups. METHODS: Four groups of patients recruited from urology and nephrology outpatient departments were experiencing non-hypercalciuric urinary stone disease (group 1), idiopathic hypercalciuria (group 2), urinary stone disease with hypercalciuria (group 3), and essential hypertension (group 4). In all patients, fasting serum uric acid, calcium, sodium, potassium, cholesterol, triglyceride, parathyroid hormone (PTH) values, and morning second-spot urine calcium and creatinine levels were assessed before and 8 weeks after treatment with indapamide. RESULTS: Urinary calcium excretion was reduced significantly in all groups: group 1 from 0.10 ± 0.02 to 0.07 ± 0.03 (mean ± SD; 30% reduction; p < 0.001), group 2 from 0.30 ± 0.15 to 0.15 ± 0.10 (50% reduction; p < 0.001), group 3 from 0.35 ± 0.15 to 0.20 ± 0.10 (43% reduction; p < 0.001), and group 4 from 0.10 ± 0.03 to 0.08 ± 0.02 (20% reduction; p < 0.0010). These results should be interpreted with caution since no control group was included in this study. Mean serum uric acid and triglyceride levels were significantly increased, and mean PTH and potassium levels and diastolic and systolic blood pressure were significantly decreased in all groups. Few temporary adverse effects, such as dizziness and fatigue, were noticed and none of them caused discontinuation of treatment. CONCLUSIONS: Indapamide 1.5 mg/day is effective in decreasing calciuria in patients with non-hypercalciuric urinary stone disease, idiopathic hypercalciuria, urinary stone disease with hypercalciuria, and essential hypertension. This could be achieved with few adverse effects similar to those of thiazides and indapamide 2.5 mg. Indapamide decreased the PTH levels in all groups. Long-term clinical benefits of these effects should be evaluated prospectively with further randomized studies.
Collapse
Affiliation(s)
- Kadir Ceylan
- Faculty of Medicine, Department of Urology, Yuzuncu Yil University, Van, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sinning A, Radionov N, Trepiccione F, López-Cayuqueo KI, Jayat M, Baron S, Cornière N, Alexander RT, Hadchouel J, Eladari D, Hübner CA, Chambrey R. Double Knockout of the Na+-Driven Cl-/HCO3- Exchanger and Na+/Cl- Cotransporter Induces Hypokalemia and Volume Depletion. J Am Soc Nephrol 2016; 28:130-139. [PMID: 27151921 DOI: 10.1681/asn.2015070734] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 03/08/2016] [Indexed: 01/13/2023] Open
Abstract
We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl-/HCO3- exchanger pendrin and the Na+-driven Cl-/2HCO3- exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na+ balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na+ balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na+ homeostasis and provide evidence that the Na+/Cl- cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K+ concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca2+-activated K+ channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K+ concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients.
Collapse
Affiliation(s)
- Anne Sinning
- Institut für Humangenetik, University Hospital Jena, Friedrich Schiller Universität, Jena, Germany
| | - Nikita Radionov
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Francesco Trepiccione
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Karen I López-Cayuqueo
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Centro de Estudios Científicos (CECs), Valdivia, Chile.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Maximilien Jayat
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Stéphanie Baron
- Department de Physiologie, Hopital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Nicolas Cornière
- Service de Néphrologie et Transplantation Rénale, Centre Hospitalier Universitaire de La Réunion, St. Denis, France
| | - R Todd Alexander
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France.,Department de Physiologie, Hopital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Christian A Hübner
- Institut für Humangenetik, University Hospital Jena, Friedrich Schiller Universität, Jena, Germany
| | - Régine Chambrey
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France; .,Faculty de Medicine, Université Paris-Descartes, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
19
|
Tomilin V, Mamenko M, Zaika O, Pochynyuk O. Role of renal TRP channels in physiology and pathology. Semin Immunopathol 2016; 38:371-383. [PMID: 26385481 PMCID: PMC4798925 DOI: 10.1007/s00281-015-0527-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023]
Abstract
Kidneys critically contribute to the maintenance of whole-body homeostasis by governing water and electrolyte balance, controlling extracellular fluid volume, plasma osmolality, and blood pressure. Renal function is regulated by numerous systemic endocrine and local mechanical stimuli. Kidneys possess a complex network of membrane receptors, transporters, and ion channels which allows responding to this wide array of signaling inputs in an integrative manner. Transient receptor potential (TRP) channel family members with diverse modes of activation, varied permeation properties, and capability to integrate multiple downstream signals are pivotal molecular determinants of renal function all along the nephron. This review summarizes experimental data on the role of TRP channels in a healthy mammalian kidney and discusses their involvement in renal pathologies.
Collapse
Affiliation(s)
- Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
21
|
Bueters RRG, Jeronimus-Klaasen A, Maicas N, Florquin S, van den Heuvel LP, Schreuder MF. The Effects of Early Postnatal Diuretics Treatment on Kidney Development and Long-Term Kidney Function in Wistar Rats. Nephron Clin Pract 2016; 132:110-8. [PMID: 26807737 DOI: 10.1159/000442674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Diuretics are administered to neonates to control fluid balance. We studied whether clinical doses affected kidney development and function and whether extrauterine growth retardation (EUGR) could be a modulator. METHODS Wistar rats were cross-fostered in normal food or food restricted litters at postnatal day (PND) 2 and treated daily with 0.9% NaCl, 5 mg/kg furosemide or 5 mg/kg hydrochlorothiazide (HCTZ) up to PND 8. Kidneys were evaluated on proliferation, apoptosis and a set of mRNA target genes at PND 8, glomerular- and glomerular generation count at PND 35, clinical pathology parameters at 3- and 9 months, neutrophil gelatinase-associated lipocalin at PND 8, 3 and 6 months, monthly blood pressure from 3 months onward and histopathology at study end. RESULTS Treatment with furosemide or HCTZ did not have relevant effects on measured parameters. EUGR resulted in lower body weight from day 3 onwards (-29% at weaning; p < 0.001, -10% at necropsy; p < 0.001), less glomerular generations (4.4 ± 0.32 vs. 5.0 ± 0.423; p = 0.025, males only), decreased glomerular numbers (27,861 ± 3,468 vs. 30,527 ± 4,096; p = 0.026), higher creatinine clearance (0.84 ± 0.1 vs. 0.77 ± 0.09 ml/min/kg; p = 0.047) at 3 months and lower plasma creatinine (25.7 ± 1.8 vs. 27.5 ± 2.8 µmol/l; p = 0.043) at 9 months. CONCLUSION Furosemide and HCTZ did not influence kidney development or function when administered in a clinically relevant dose to rat pups at a stage of ongoing nephrogenesis. EUGR led to impaired kidney development but did not modify furosemide or HCTZ findings.
Collapse
Affiliation(s)
- Ruud R G Bueters
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Relative roles of principal and intercalated cells in the regulation of sodium balance and blood pressure. Curr Hypertens Rep 2016; 17:538. [PMID: 25794953 DOI: 10.1007/s11906-015-0538-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The kidney continuously adapts daily renal excretion of NaCl to match dietary intakes in order to maintain the NaCl content of the body, and keep vascular volume constant. Any situation that leads to NaCl retention favors a rise in blood pressure. The aldosterone-sensitive distal nephron, which contains two main types of cells, principal (PC) and intercalated (IC) cells, is an important site for the final regulation of urinary Na(+) excretion. Research over the past 20 years established a paradigm in which PCs are the exclusive site of Na(+) absorption while ICs are solely dedicated to acid-base transport. Recent studies have revealed the unexpected importance of ICs for NaCl reabsorption. Here, we review the mechanisms of Na(+) and Cl(-) transport in the aldosterone-sensitive distal nephron, with emphasis on the role of ICs in maintaining NaCl balance and normal blood pressure.
Collapse
|
23
|
van Loon EPM, Pulskens WP, van der Hagen EAE, Lavrijsen M, Vervloet MG, van Goor H, Bindels RJM, Hoenderop JGJ. Shedding of klotho by ADAMs in the kidney. Am J Physiol Renal Physiol 2015; 309:F359-68. [PMID: 26155844 DOI: 10.1152/ajprenal.00240.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/01/2015] [Indexed: 11/22/2022] Open
Abstract
The anti-aging gene klotho plays an important role in Ca(2+) and phosphate homeostasis. Membrane-bound klotho is an essential coreceptor for fibroblast growth factor-23 and can be cleaved by proteases, including a disintegrin and metalloproteinase (ADAM)10 and ADAM17. Cleavage of klotho occurs at a site directly above the plasma membrane (α-cut) or between the KL1 and KL2 domain (β-cut), resulting in soluble full-length klotho or KL1 and KL2 fragments, respectively. The aim of the present study was to gain insights into the mechanisms behind klotho cleavage processes in the kidney. Klotho shedding was demonstrated using a Madin-Darby canine kidney cell line stably expressing klotho and human embryonic kidney-293 cells transiently transfected with klotho. Here, we report klotho expression on both the basolateral and apical membrane, with a higher abundance of klotho at the apical membrane and in the apical media. mRNA expression of ADAM17 and klotho were enriched in mouse distal convoluted and connecting tubules. In vitro ADAM/matrix metalloproteinase inhibition by TNF484 resulted in a concentration-dependent inhibition of the α-cut, with a less specific effect on β-cut shedding. In vivo TNF484 treatment in wild-type mice did not change urinary klotho levels. However, ADAM/matrix metalloproteinase inhibition did increase renal and duodenal mRNA expression of phosphate transporters, whereas serum phosphate levels were significantly decreased. In conclusion, our data show that renal cells preferentially secrete klotho to the apical side and suggest that ADAMs are responsible for α-cut cleavage.
Collapse
Affiliation(s)
- Ellen P M van Loon
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wilco P Pulskens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eline A E van der Hagen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marla Lavrijsen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
24
|
Sfoungaristos S, Gofrit ON, Yutkin V, Pode D, Duvdevani M. Prevention of renal stone disease recurrence. A systematic review of contemporary pharmaceutical options. Expert Opin Pharmacother 2015; 16:1209-18. [DOI: 10.1517/14656566.2015.1037740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95:1-46. [PMID: 25540137 DOI: 10.1152/physrev.00012.2014] [Citation(s) in RCA: 985] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium (Mg(2+)) is an essential ion to the human body, playing an instrumental role in supporting and sustaining health and life. As the second most abundant intracellular cation after potassium, it is involved in over 600 enzymatic reactions including energy metabolism and protein synthesis. Although Mg(2+) availability has been proven to be disturbed during several clinical situations, serum Mg(2+) values are not generally determined in patients. This review aims to provide an overview of the function of Mg(2+) in human health and disease. In short, Mg(2+) plays an important physiological role particularly in the brain, heart, and skeletal muscles. Moreover, Mg(2+) supplementation has been shown to be beneficial in treatment of, among others, preeclampsia, migraine, depression, coronary artery disease, and asthma. Over the last decade, several hereditary forms of hypomagnesemia have been deciphered, including mutations in transient receptor potential melastatin type 6 (TRPM6), claudin 16, and cyclin M2 (CNNM2). Recently, mutations in Mg(2+) transporter 1 (MagT1) were linked to T-cell deficiency underlining the important role of Mg(2+) in cell viability. Moreover, hypomagnesemia can be the consequence of the use of certain types of drugs, such as diuretics, epidermal growth factor receptor inhibitors, calcineurin inhibitors, and proton pump inhibitors. This review provides an extensive and comprehensive overview of Mg(2+) research over the last few decades, focusing on the regulation of Mg(2+) homeostasis in the intestine, kidney, and bone and disturbances which may result in hypomagnesemia.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Abstract
The distal convoluted tubule (DCT) is a short nephron segment, interposed between the macula densa and collecting duct. Even though it is short, it plays a key role in regulating extracellular fluid volume and electrolyte homeostasis. DCT cells are rich in mitochondria, and possess the highest density of Na+/K+-ATPase along the nephron, where it is expressed on the highly amplified basolateral membranes. DCT cells are largely water impermeable, and reabsorb sodium and chloride across the apical membrane via electroneurtral pathways. Prominent among this is the thiazide-sensitive sodium chloride cotransporter, target of widely used diuretic drugs. These cells also play a key role in magnesium reabsorption, which occurs predominantly, via a transient receptor potential channel (TRPM6). Human genetic diseases in which DCT function is perturbed have provided critical insights into the physiological role of the DCT, and how transport is regulated. These include Familial Hyperkalemic Hypertension, the salt-wasting diseases Gitelman syndrome and EAST syndrome, and hereditary hypomagnesemias. The DCT is also established as an important target for the hormones angiotensin II and aldosterone; it also appears to respond to sympathetic-nerve stimulation and changes in plasma potassium. Here, we discuss what is currently known about DCT physiology. Early studies that determined transport rates of ions by the DCT are described, as are the channels and transporters expressed along the DCT with the advent of molecular cloning. Regulation of expression and activity of these channels and transporters is also described; particular emphasis is placed on the contribution of genetic forms of DCT dysregulation to our understanding.
Collapse
Affiliation(s)
- James A McCormick
- Division of Nephrology & Hypertension, Oregon Health & Science University, & VA Medical Center, Portland, Oregon, United States
| | | |
Collapse
|
27
|
Gul Z, Monga M. Medical and dietary therapy for kidney stone prevention. Korean J Urol 2014; 55:775-9. [PMID: 25512810 PMCID: PMC4265710 DOI: 10.4111/kju.2014.55.12.775] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/11/2014] [Indexed: 12/03/2022] Open
Abstract
The prevalence of kidney stone disease is increasing, and newer research is finding that stones are associated with several serious morbidities. These facts suggest that emphasis needs to be placed not only on stone treatment but also stone prevention. However, there is a relative dearth of information on dietary and medical therapies to treat and avoid nephrolithiasis. In addition, studies have shown that there are many misconceptions among both the general community and physicians about how stones should be managed. This article is meant to serve as a review of the current literature on dietary and drug therapies for stone prevention.
Collapse
Affiliation(s)
- Zeynep Gul
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Manoj Monga
- The Cleveland Clinic, Glickman Urological and Kidney Institute, Cleveland, OH, USA
| |
Collapse
|
28
|
Abstract
TRPV5 is one of the two channels in the TRPV family that exhibit high selectivity to Ca(2+) ions. TRPV5 mediates Ca(2+) influx into cells as the first step to transport Ca(2+) across epithelia. The specialized distribution in the distal tubule of the kidney positions TRPV5 as a key player in Ca(2+) reabsorption. The responsiveness in expression and/or activity of TRPV5 to hormones such as 1,25-dihydroxyvitamin D3, parathyroid hormone, estrogen, and testosterone makes TRPV5 suitable for its role in the fine-tuning of Ca(2+) reabsorption. This role is further optimized by the modulation of TRPV5 trafficking and activity via its binding partners; co-expressed proteins; tubular factors such as calbindin-D28k, calmodulin, klotho, uromodulin, and plasmin; extracellular and intracellular factors such as proton, Mg(2+), Ca(2+), and phosphatidylinositol-4,5-bisphosphate; and fluid flow. These regulations allow TRPV5 to adjust its overall activity in response to the body's demand for Ca(2+) and to prevent kidney stone formation. A point mutation in mouse Trpv5 gene leads to hypercalciuria similar to Trpv5 knockout mice, suggesting a possible role of TRPV5 in hypercalciuric disorders in humans. In addition, the single nucleotide polymorphisms in Trpv5 gene prevalently present in African descents may contribute to the efficient renal Ca(2+) reabsorption among African descendants. TRPV5 represents a potential therapeutic target for disorders with altered Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Tao Na
- Cell Collection and Research Center, Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
| | | |
Collapse
|
29
|
de Baaij JHF, Groot Koerkamp MJ, Lavrijsen M, van Zeeland F, Meijer H, Holstege FCP, Bindels RJM, Hoenderop JGJ. Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg2+ handling. Am J Physiol Renal Physiol 2013; 305:F1563-73. [DOI: 10.1152/ajprenal.00322.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney plays a key role in the maintenance of Mg2+ homeostasis. Specifically, the distal convoluted tubule (DCT) is instrumental in the fine-tuning of renal Mg2+ handling. In recent years, hereditary Mg2+ transport disorders have helped to identify important players in DCT Mg2+ homeostasis. Nevertheless, several proteins involved in DCT-mediated Mg2+ reabsorption remain to be discovered, and a full expression profile of this complex nephron segment may facilitate the discovery of new Mg2+-related genes. Here, we report Mg2+-sensitive expression of the DCT transcriptome. To this end, transgenic mice expressing enhanced green fluorescent protein under a DCT-specific parvalbumin promoter were subjected to Mg2+-deficient or Mg2+-enriched diets. Subsequently, the Complex Object Parametric Analyzer and Sorter allowed, for the first time, isolation of enhanced green fluorescent protein-positive DCT cells. RNA extracts thereof were analyzed by DNA microarrays comparing high versus low Mg2+ to identify Mg2+ regulatory genes. Based on statistical significance and a fold change of at least 2, 46 genes showed differential expression. Several known magnesiotropic genes, such as transient receptor potential cation channel, subfamily M, member 6 ( Trpm6), and Parvalbumin, were upregulated under low dietary Mg2+. Moreover, new genes were identified that are potentially involved in renal Mg2+ handling. To confirm that the selected candidate genes were regulated by dietary Mg2+ availability, the expression levels of solute carrier family 41, member 3 ( Slc41a3), pterin-4 α-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor-1α ( Pcbd1), TBC1 domain family, member 4 ( Tbc1d4), and uromodulin ( Umod) were determined by RT-PCR analysis. Indeed, all four genes show significant upregulation in the DCT of mice fed a Mg2+-deficient diet. By elucidating the Mg2+-sensitive DCT transcriptome, new candidate genes in renal Mg2+ handling have been identified.
Collapse
Affiliation(s)
- Jeroen H. F. de Baaij
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| | | | - Marla Lavrijsen
- Molecular Cancer Research, UMC Utrecht, Utrecht, The Netherlands
| | - Femke van Zeeland
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| | - Hans Meijer
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| | | | - René J. M. Bindels
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| | - Joost G. J. Hoenderop
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| |
Collapse
|
30
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
31
|
van Angelen AA, San-Cristobal P, Pulskens WP, Hoenderop JG, Bindels RJ. The impact of dietary magnesium restriction on magnesiotropic and calciotropic genes. Nephrol Dial Transplant 2013; 28:2983-93. [DOI: 10.1093/ndt/gft358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
32
|
Lee CT, Lien YHH, Lai LW, Ng HY, Chiou TTY, Chen HC. Variations of dietary salt and fluid modulate calcium and magnesium transport in the renal distal tubule. Nephron Clin Pract 2013; 122:19-27. [PMID: 23774784 DOI: 10.1159/000353199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 05/15/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The renal distal tubule fine-tunes renal epithelial calcium transport. Dietary intake of salt and fluid varies day-to-day and the kidney adapts accordingly to maintain homeostasis. The alternations in salt and fluid balance affect calcium and magnesium transport in the distal tubule, but the mechanisms are not fully understood. METHODS Sprague-Dawley rats were grouped into high-salt, low-salt and dehydration treatment. Daily intake, water consumption and urine output were recorded. At the end of the experiment, blood and urine samples were collected for hormonal and biochemical tests. Genetic analysis, immunoblotting and immunofluorescence studies were then performed to assess the alterations of calcium and magnesium transport-related molecules. RESULTS High-salt treatment increased urinary sodium, calcium and magnesium excretion. Low-salt treatment and dehydration were associated with decreased urinary excretion of all electrolytes. High-salt treatment was associated with increased intact parathyroid hormone levels. A significant increase in gene expression of TRPV5, TRPV6, calbindin-D28k and TRPM6 was found during high-salt treatment, while low salt and dehydration diminished expression. These findings were confirmed with immunofluorescence studies. High-salt and low-salt intake or dehydration did not cause any significant changes in WNK1, WNK3 and WNK4. CONCLUSIONS Alternations in salt and water intake affect renal calcium and magnesium handling. High-salt intake increases the distal delivery of the divalent cations which upregulates distal tubule calcium and magnesium transport molecules, while the opposite effects are associated with low-salt intake or dehydration.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Bergsland KJ, Worcester EM, Coe FL. Role of proximal tubule in the hypocalciuric response to thiazide of patients with idiopathic hypercalciuria. Am J Physiol Renal Physiol 2013; 305:F592-9. [PMID: 23720347 DOI: 10.1152/ajprenal.00116.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The most common metabolic abnormality found in calcium (Ca) kidney stone formers is idiopathic hypercalciuria (IH). Using endogenous lithium (Li) clearance, we previously showed that in IH, there is decreased proximal tubule sodium absorption, and increased delivery of Ca into the distal nephron. Distal Ca reabsorption may facilitate the formation of Randall's plaque (RP) by washdown of excess Ca through the vasa recta toward the papillary tip. Elevated Ca excretion leads to increased urinary supersaturation (SS) with respect to calcium oxalate (CaOx) and calcium phosphate (CaP), providing the driving force for stone growth on RP. Thiazide (TZ) diuretics reduce Ca excretion and prevent stone recurrence, but the mechanism in humans is unknown. We studied the effect of chronic TZ administration on renal mineral handling in four male IH patients using a fixed three meal day in the General Clinical Research Center. Each subject was studied twice: once before treatment and once after 4-7 mo of daily chlorthalidone treatment. As expected, urine Ca fell with TZ, along with fraction of filtered Ca excreted. Fraction of filtered Li excreted also fell sharply with TZ, as did distal delivery of Ca. Unexpectedly, TZ lowered urine pH. Together with reduced urine Ca, this led to a marked fall in CaP SS, but not CaOx SS. Since CaOx stone formation begins with an initial CaP overlay on RP, by lowering urine pH and decreasing distal nephron Ca delivery, TZ might diminish stone risk both by reducing CaP SS, as well as slowing progression of RP.
Collapse
Affiliation(s)
- Kristin J Bergsland
- The Univ. of Chicago, Section of Nephrology/MC5100, 5841 S. Maryland Ave., Chicago, IL 60637.
| | | | | |
Collapse
|
34
|
Initial presentation in psychiatry emergency room led to diagnosis of many urinary bladder stones in a male patient. Am J Ther 2013; 20:107-10. [PMID: 23299232 DOI: 10.1097/mjt.0b013e3182541ca2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The first case of man who presented to psychiatry emergency room for evaluation of abnormal behavior because of urinary stones was reported. Careful evaluation of patient led to a diagnosis of 37 urinary bladder stones in an Egyptian man with obstructive uropathy and metabolic defects in the form of hyperoxaluria and hypocitraturia. Knowledge of the differential diagnosis of metabolic defects can lead to successful outcome in preventing reformation of urinary tract stones after surgery. A 61-year-old Egyptian man presented to psychiatry emergency room because he was found lying on floor in bathroom to urinate by his wife who thought her husband needed psychiatric evaluation. Patient gave history of frequent urination and dysuria on and off for 3 years. In the last 3 months before his presentation to emergency room, he got into a habit of lying down on his left side when he went to bathroom to urinate because it was easier for him to pass urine. Renal consultation requested because of presence of red blood cells in urinalysis. Computed tomography of the abdomen and pelvis showed bilateral hydronephrosis and multiple bladder stones. Twenty-four-hour urine collection showed low urinary citrate and high oxalate. Patient underwent open vesicolithotomy and removal of 36 stones. Stone analysis showed 75% uric acid and 25% calcium oxalate. Patient did very well after surgery, and 1 month later, he underwent transuretheral resection of prostate without any complications. Now patient has no difficulty passing urine and he has no recent attack of urinary tract infection. Knowledge of the differential diagnosis of metabolic defects in men with urinary bladder stones would hopefully provide clinicians with the proper diagnostic tools to more specifically treat such patients with improved success in preventing reformation of urinary tract stones after surgery.
Collapse
|
35
|
van Angelen AA, Glaudemans B, van der Kemp AW, Hoenderop JG, Bindels RJ. Cisplatin-induced injury of the renal distal convoluted tubule is associated with hypomagnesaemia in mice. Nephrol Dial Transplant 2012; 28:879-89. [DOI: 10.1093/ndt/gfs499] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
van Angelen AA, van der Kemp AW, Hoenderop JG, Bindels RJ. Increased expression of renal TRPM6 compensates for Mg(2+) wasting during furosemide treatment. Clin Kidney J 2012; 5:535-44. [PMID: 26069797 PMCID: PMC4400563 DOI: 10.1093/ckj/sfs140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/06/2012] [Indexed: 11/23/2022] Open
Abstract
Background Furosemide is a loop diuretic, which blocks the Na+, K+, 2Cl− cotransporter (NKCC2) in the thick ascending limb of Henle (TAL). By diminishing sodium (Na+) reabsorption, loop diuretics reduce the lumen-positive transepithelial voltage and consequently diminish paracellular transport of magnesium (Mg2+) and calcium (Ca2+) in TAL. Indeed, furosemide promotes urinary Mg2+ excretion; however, it is unclear whether this leads, especially during prolonged treatment, to hypomagnesaemia. The aim of the present study was, therefore, to determine the effect of chronic furosemide application on renal Mg2+ handling in mice. Methods Two groups of 10 mice received an osmotic minipump subcutaneously for 7 days with vehicle or 30 mg/kg/day furosemide. Serum and urine electrolyte concentrations were determined. Next, renal mRNA levels of the epithelial Mg2+ channel (TRPM6), the Na+, Cl− cotransporter (NCC), the epithelial Ca2+ channel (TRPV5), the cytosolic Ca2+-binding protein calbindin-D28K, as well parvalbumin (PV), claudin-7 (CLDN7) and claudin-8 (CLDN8), the epithelial Na+ channel (ENaC) and the Na+–H+ exchanger 3 (NHE3) were determined by real-time quantitative polymerase chain reaction. Renal protein levels of NCC, TRPV5, calbindin-D28K and ENaC were also measured using semi-quantitative immunohistochemistry and immunoblotting. Results The mice chronically treated with 30 mg/kg/day furosemide displayed a significant polyuria (2.1 ± 0.3 and 1.3 ± 0.2 mL/24 h, furosemide versus control respectively, P < 0.05). Furosemide treatment resulted in increased serum concentrations of Na+ [158 ± 3 (treated) and 147 ± 1 mmol/L (control), P < 0.01], whereas serum K+, Ca2+ and Mg2+ values were not significantly altered in mice treated with furosemide. Urinary excretion of Na+, K+, Ca2+ and Mg2+ was not affected by chronic furosemide treatment. The present study shows specific renal upregulation of TRPM6, NCC, TRPV5 and calbindin-D28K. Conclusions During chronic furosemide treatment, enhanced active reabsorption of Mg2+ via the epithelial channel TRPM6 in DCT compensates for the reduced reabsorption of Mg2+ in TAL.
Collapse
Affiliation(s)
- Annelies A van Angelen
- Department of Physiology , Radboud University Nijmegen Medical Centre , Nijmegen , the Netherlands
| | - AnneMiete W van der Kemp
- Department of Physiology , Radboud University Nijmegen Medical Centre , Nijmegen , the Netherlands
| | - Joost G Hoenderop
- Department of Physiology , Radboud University Nijmegen Medical Centre , Nijmegen , the Netherlands
| | - René J Bindels
- Department of Physiology , Radboud University Nijmegen Medical Centre , Nijmegen , the Netherlands
| |
Collapse
|
37
|
Woudenberg-Vrenken TE, van der Eerden BCJ, van der Kemp AWCM, van Leeuwen JPTM, Bindels RJM, Hoenderop JGJ. Characterization of vitamin D-deficient klotho-/- mice: do increased levels of serum 1,25(OH)2D3 cause disturbed calcium and phosphate homeostasis in klotho-/- mice? Nephrol Dial Transplant 2012; 27:4061-8. [DOI: 10.1093/ndt/gfs177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
38
|
Abstract
The kidneys are responsible for the urinary excretion of uremic toxins and the regulation of several body systems such as intra and extracellular volume status, acid-base status, calcium and phosphate metabolism or erythropoiesis. They adapt quantitative and qualitative composition of the urine to keep these systems in balance. The flow of plasma is filtered in the range of 120 mL/min, and depends on the systemic and renal hemodynamics which is subject to self-regulation. The original urine will then be modified in successive segments of the nephron. The proximal nephron is to lead the massive reabsorption of water and essential elements such as sodium, bicarbonates, amino-acids and glucose. The distal nephron includes the distal convoluted tubule, the connector tube and the collecting duct. Its role is to adapt the quality composition of urine to the needs of the body.
Collapse
|
39
|
de Baaij JHF, Stuiver M, Meij IC, Lainez S, Kopplin K, Venselaar H, Müller D, Bindels RJM, Hoenderop JGJ. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem 2012; 287:13644-55. [PMID: 22399287 DOI: 10.1074/jbc.m112.342204] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, mutations in the cyclin M2 (CNNM2) gene were identified to be causative for severe hypomagnesemia. In kidney, CNNM2 is a basolaterally expressed protein with predominant expression in the distal convoluted tubule. Transcellular magnesium (Mg(2+)) reabsorption in the distal convoluted tubule represents the final step before Mg(2+) is excreted into the urine, thus fine-tuning its final excretion via a tightly regulated mechanism. The present study aims to get insight in the structure of CNNM2 and to characterize its post-translational modifications. Here, membrane topology studies using intramolecular epitopes and immunocytochemistry showed that CNNM2 has an extracellular N terminus and an intracellular C terminus. This suggests that one of the predicted transmembrane regions might be re-entrant. By homology modeling, we demonstrated that the loss-of-function mutation as found in patients disturbs the potential ATP binding by the intracellular cystathionine β-synthase domains. In addition, the cellular processing pathway of CNNM2 was exposed in detail. In the endoplasmic reticulum, the signal peptidase complex cleaves off a large N-terminal signal peptide of about 64 amino acids. Mutagenesis screening showed that CNNM2 is glycosylated at residue Asn-112, stabilizing CNNM2 on the plasma membrane. Interestingly, co-immunoprecipitation studies evidenced that CNNM2a forms heterodimers with the smaller isoform CNNM2b. These new findings on CNNM2 structure and processing may aid to elucidate the physiological role of CNNM2 in Mg(2+) reabsorption in the kidney.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Thiazide diuretics are used to prevent the recurrence of calcium-containing kidney stones. The ability of these drugs to reduce urinary calcium excretion has a key role in this process. Although studies have shown a reduction in the recurrence rate of calcium-containing stones in patients treated with thiazides, whether hypocalciuria results from increased calcium reabsorption in the proximal or distal nephron is still unclear. When extracellular fluid volume is considerably reduced, the proximal tubule is likely to have a major role in thiazide-induced hypocalciuria. This process frequently occurs when high doses of thiazides and sodium restriction are prescribed for the treatment of kidney stone disease. The distal tubule is predominantly involved in NaCl cotransporter inhibition-induced hypocalciuria when the extracellular fluid volume is not reduced, a clinical scenario observed in patients with Gitelman syndrome. In this Perspectives article, we discuss the evidence supporting the hypocalciuric effects of NaCl cotransporter inhibition in the proximal and distal nephron.
Collapse
|
41
|
Vigen R, Weideman RA, Reilly RF. Thiazides diuretics in the treatment of nephrolithiasis: are we using them in an evidence-based fashion? Int Urol Nephrol 2011; 43:813-9. [PMID: 20737209 PMCID: PMC3229098 DOI: 10.1007/s11255-010-9824-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/07/2010] [Indexed: 10/19/2022]
Abstract
In the 1980s a change occurred in hydrochlorothiazide prescribing practices for hypertension from high-dose (50 mg/day) to low-dose (12.5-25 mg/day) therapy. However, randomized controlled trials (RCT) for prevention of calcium-containing kidney stones (CCKS) employed only high doses (≥ 50 mg/day). We hypothesized that these practices have resulted in underdosing of hydrochlorothiazide for prevention of CCKS. Patients with a filled prescription for thiazide diuretics that underwent a 24-h urine stone risk factor analysis were eligible. Those with evidence that thiazide was prescribed for CCKS were further analyzed. Of 107 patients, 102 were treated with hydrochlorothiazide, 4 with indapamide, and one with chlorthalidone. Only 35% of hydrochlorothiazide-treated patients received 50 mg/day; a dose previously shown to reduce stone recurrence. Fifty-two percent were prescribed 25 mg and 13% 12.5 mg daily, doses that were not studied in RCT. Evidence-based hydrochlorothiazide use was suboptimal regardless of where the patient received care (Nephrology or Endocrinology clinic). In a small subset of patients (n = 6) with 24-h urinary calcium excretion measured at baseline and after 2 hydrochlorothiazide doses (25 and ≥ 50 mg), there was a trend toward decreased urinary calcium excretion as the dose was increased from 25 to ≥ 50 mg/day (p = 0.051). Low-dose hydrochlorothiazide was often used for prevention of CCKS despite the fact that there is no evidence that it is effective in this setting. This may have resulted from a practice pattern of using lower doses for hypertension therapy or a lack of knowledge of RCT results in treatment of CCKS.
Collapse
Affiliation(s)
- Rebecca Vigen
- Department of Medicine, VA North Texas Heath Care System, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8856, USA
| | - Rick A. Weideman
- Pharmacy Service, VA North Texas Heath Care System, Dallas, TX 75216, USA
| | - Robert F. Reilly
- VA North Texas Heath Care System, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8856, USA. Section of Nephrology, VA North Texas Health Care System, Mail code-111, 4500 S. Lancaster Rd, Dallas, TX 75216, USA
| |
Collapse
|
42
|
Ledeganck KJ, Boulet GA, Horvath CA, Vinckx M, Bogers JJ, Van Den Bossche R, Verpooten GA, De Winter BY. Expression of renal distal tubule transporters TRPM6 and NCC in a rat model of cyclosporine nephrotoxicity and effect of EGF treatment. Am J Physiol Renal Physiol 2011; 301:F486-F493. [PMID: 21653632 DOI: 10.1152/ajprenal.00116.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Renal magnesium (Mg(2+)) and sodium (Na(+)) loss are well-known side effects of cyclosporine (CsA) treatment in humans, but the underlying mechanisms still remain unclear. Recently, it was shown that epidermal growth factor (EGF) stimulates Mg(2+) reabsorption in the distal convoluted tubule (DCT) via TRPM6 (Thébault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. J Am Soc Nephrol 20: 78-85, 2009). In the DCT, the final adjustment of renal sodium excretion is regulated by the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which is activated by the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to gain more insight into the molecular mechanisms of CsA-induced hypomagnesemia and hyponatremia. Therefore, the renal expression of TRPM6, TRPM7, EGF, EGF receptor, claudin-16, claudin-19, and the NCC, and the effect of the RAAS on NCC expression, were analyzed in vivo in a rat model of CsA nephrotoxicity. Also, the effect of EGF administration on these parameters was studied. CsA significantly decreased the renal expression of TRPM6, TRPM7, NCC, and EGF, but not that of claudin-16 and claudin-19. Serum aldosterone was significantly lower in CsA-treated rats. In control rats treated with EGF, an increased renal expression of TRPM6 together with a decreased fractional excretion of Mg(2+) (FE Mg(2+)) was demonstrated. EGF did not show this beneficial effect on TRPM6 and FE Mg(2+) in CsA-treated rats. These data suggest that CsA treatment affects Mg(2+) homeostasis via the downregulation of TRPM6 in the DCT. Furthermore, CsA downregulates the NCC in the DCT, associated with an inactivation of the RAAS, resulting in renal sodium loss.
Collapse
Affiliation(s)
- Kristien J Ledeganck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Meneses JA, Lucas FM, Assunção FC, Castro JPP, Monteiro RB. The impact of metaphylaxis of kidney stone disease in the renal function at long term in active kidney stone formers patients. ACTA ACUST UNITED AC 2011; 40:225-9. [PMID: 21858428 DOI: 10.1007/s00240-011-0407-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
Abstract
A total of 150 patients were included in the analysis. Through chart review, we estimated glomerular filtration rate in the first visit and, at least, 5 years later. All patients were divided into two groups: (1) metaphylaxis adherents (n = 74) and (2) metaphylaxis non-adherents (n = 76). We followed all patients for at least 5 years. The Scr percentage of patients and GFR <60 mL/min was compared between groups. Variables were compared between groups using t test, χ(2) tests, odds ratios with 95% confidence intervals. There were no differences at baseline between groups. After 5 years of follow-up, GFR was 77.9 mL/min in non-adherent-metaphylaxis group and in the adherent-metaphylaxis group was 87.3 mL/min, with p value of 0.02. After 5 years of follow-up, we had a GFR <60 mL/min in the adherent-metaphylaxis group (4.89 vs. 21.95%) with p value of 0.001 and OR = 5.36; IC-95% = 1.95-14.8. Metaphylaxis of kidney stone disease could prevent chronic kidney disease.
Collapse
Affiliation(s)
- Jose A Meneses
- Nephrologist of Clinic Stone Lithocentro, Belo Horizonte, Brazil.
| | | | | | | | | |
Collapse
|
44
|
Valsecchi V, Pignataro G, Del Prete A, Sirabella R, Matrone C, Boscia F, Scorziello A, Sisalli MJ, Esposito E, Zambrano N, Di Renzo G, Annunziato L. NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke 2011; 42:754-63. [PMID: 21293012 DOI: 10.1161/strokeaha.110.597583] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The sodium-calcium exchanger-1 (NCX1) represents a key mediator for maintaining [Na(+)](i) and [Ca(2+)](i) homeostasis. Although changes in NCX1 protein and transcript expression have been detected during stroke, its transcriptional regulation is still unknown. Thus far, however, there is evidence that hypoxia-inducible factor-1 (HIF-1) is a nuclear factor required for transcriptional activation of several genes implicated in stroke. The main objective of this study was to investigate whether NCX1 gene might be a novel target of HIF-1 in the brain. METHODS Here we report that: (1) in neuronal cells, NCX1 increased expression after oxygen and glucose deprivation or cobalt-induced HIF-1 activation was prevented by silencing HIF-1; (2) the brain NCX1 promoter cloned upstream of the firefly-luciferase gene contained 2 regions of HIF-1 target genes called hypoxia-responsive elements that are sensitive to oxygen and glucose deprivation or cobalt chloride; (3) HIF-1 specifically bound hypoxia-responsive elements on brain NCX1, as demonstrated by band-shift and chromatin immunoprecipitation assays; (4) HIF-1α silencing prevented NCX1 upregulation and neuroprotection induced by ischemic preconditioning; and (5) NCX1 silencing partially reverted the preconditioning-induced neuroprotection in rats. CONCLUSIONS NCX1 gene is a novel HIF-1 target, and HIF-1 exerts its prosurvival role through NCX1 upregulation during brain preconditioning.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Peng JB. TRPV5 and TRPV6 in transcellular Ca(2+) transport: regulation, gene duplication, and polymorphisms in African populations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:239-75. [PMID: 21290300 DOI: 10.1007/978-94-007-0265-3_14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TRPV5 and TRPV6 are unique members of the TRP super family. They are highly selective for Ca(2+) ions with multiple layers of Ca(2+)-dependent inactivation mechanisms, expressed at the apical membrane of Ca(2+) transporting epithelia, and robustly responsive to 1,25-dihydroxivitamin D(3). These features are well suited for their roles as Ca(2+) entry channels in the first step of transcellular Ca(2+) transport pathways, which are involved in intestinal absorption, renal reabsorption of Ca(2+), placental transfer of Ca(2+) to fetus, and many other processes. While TRPV6 is more broadly expressed in a variety of tissues such as esophagus, stomach, small intestine, colon, kidney, placenta, pancreas, prostate, uterus, salivary gland, and sweat gland, TRPV5 expression is relatively restricted to the distal convoluted tubule and connecting tubule of the kidney. There is only one TRPV6-like gene in fish and birds in comparison to both TRPV5 and TRPV6 genes in mammals, indicating TRPV5 gene was likely generated from duplication of TRPV6 gene during the evolution of mammals to meet the needs of complex renal function. TRPV5 and TRPV6 are subjected to vigorous regulations under physiological, pathological, and therapeutic conditions. The elevated TRPV6 level in malignant tumors such as prostate and breast cancers makes it a potential therapeutic target. TRPV6, and to a lesser extent TRPV5, exhibit unusually high levels of single nucleotide polymorphisms (SNPs) in African populations as compared to other populations, indicating TRPV6 gene was under selective pressure during or after humans migrated out of Africa. The SNPs of TRPV6 and TRPV5 likely contribute to the Ca(2+) conservation mechanisms in African populations.
Collapse
Affiliation(s)
- Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
Yang SS, Lo YF, Yu IS, Lin SW, Chang TH, Hsu YJ, Chao TK, Sytwu HK, Uchida S, Sasaki S, Lin SH. Generation and analysis of the thiazide-sensitive Na+ -Cl- cotransporter (Ncc/Slc12a3) Ser707X knockin mouse as a model of Gitelman syndrome. Hum Mutat 2010; 31:1304-15. [PMID: 20848653 DOI: 10.1002/humu.21364] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 08/30/2010] [Indexed: 11/05/2022]
Abstract
Gitelman syndrome (GS) is characterized by salt-losing hypotension, hypomagnesemia, hypokalemic metabolic alkalosis, and hypocalciuria. To better model human GS caused by a specific mutation in the thiazide-sensitive Na(+) -Cl(-) cotransporter (NCC) gene SLC12A3, we generated a nonsense Ncc Ser707X knockin mouse corresponding to human p.Ser710X (c.2135C>A), a recurrent mutation with severe phenotypes in Chinese GS patients. Compared with wild-type or heterozygous littermates, homozygous (Hom) knockin mice fully recapitulated the phenotype of human GS. The markedly reduced Ncc mRNA and virtually absent Ncc protein expression in kidneys of Hom mice was primarily due to nonsense-mediated mRNA decay (NMD) surveillance mechanisms. Expression of epithelial Na(+) channel (Enac), Ca(2+) channels (Trpv5 and Trpv6), and K(+) channels (Romk1 and maxi-K) were significantly increased. Late distal convoluted tubules (DCT) volume was increased and DCT cell ultrastructure appeared intact. High K(+) intake could not correct hypokalemia but caused a further increase in maxi-K but not Romk1 expression. Renal tissue from a patient with GS also showed the enhanced TRPV5 and ROMK1 expression in distal tubules. We suggest that the upregulation of TRPV5/6 and of ROMK1 and Maxi-K may contribute to hypocalciuria and hypokalemia in Ncc Ser707X knockin mice and human GS, respectively.
Collapse
Affiliation(s)
- Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Graziani G, Fedeli C, Moroni L, Cosmai L, Badalamenti S, Ponticelli C. Gitelman syndrome: pathophysiological and clinical aspects. QJM 2010; 103:741-8. [PMID: 20650971 DOI: 10.1093/qjmed/hcq123] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Giltelman syndrome (GS) is a recessive salt-losing tubulopathy of children or young adults caused by a mutation of genes encoding the human sodium chloride cotransporters and magnesium channels in the thiazide-sensitive segments of the distal convoluted tubule. The plasma biochemical picture is characterized by hypokalemia, hypomagnesemia, hypocalciuria, metabolic alkalosis and hypereninemic hyperaldosteronism. However, patients with GS present some clinical and biochemical alterations resembling that observed in thiazide diuretics abuse. On the pathophysiological point of view, GS represents a useful and interesting human model to better understand the clinical consequences of plasma hydro-electrolytes and acid-base derangements, associated with multiple hormonal alterations. The impact of this complex disorder involves cardiovascular, muscle-skeletal and some other physiological functions, adversely affecting the patient's quality of life. This review tries to summarize and better explain the linkage between the electrolytes, neurohormonal derangements and clinical picture. Moreover, the differential diagnosis between other similar electrolyte-induced clinical disorders and GS is also discussed.
Collapse
Affiliation(s)
- G Graziani
- Nephrology and Dialysis Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Jang HR, Lee JW, Kim S, Heo NJ, Lee JH, Kim HS, Jung JY, Oh YK, Na KY, Han JS, Joo KW. High dose vitamin D3 attenuates the hypocalciuric effect of thiazide in hypercalciuric rats. J Korean Med Sci 2010; 25:1305-12. [PMID: 20808673 PMCID: PMC2923802 DOI: 10.3346/jkms.2010.25.9.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 03/23/2010] [Indexed: 11/20/2022] Open
Abstract
Thiazide is known to decrease urinary calcium excretion. We hypothesized that thiazide shows different hypocalciuric effects depending on the stimuli causing hypercalciuria. The hypocalciuric effect of hydrochlorothiazide (HCTZ) and the expression of transient receptor potential vanilloid 5 (TRPV5), calbindin-D(28K), and several sodium transporters were assessed in hypercalciuric rats induced by high calcium diet and vitamin D(3). Urine calcium excretion and the expression of transporters were measured from 4 groups of Sprague-Dawley rats; control, HCTZ, high calcium-vitamin D, and high calcium-vitamin D with HCTZ groups. HCTZ decreased urinary calcium excretion by 51.4% in the HCTZ group and only 15% in the high calcium-vitamin D with HCTZ group. TRPV5 protein abundance was not changed by HCTZ in the high calcium-vitamin D with HCTZ group compared to the high calcium-vitamin D group. Protein abundance of NHE3, SGLT1, and NKCC2 decreased in the hypercalciuric rats, and only SGLT1 protein abundance was increased by HCTZ in the hypercalciuric rats. The hypocalciuric effect of HCTZ is attenuated in high calcium and vitamin D-induced hypercalciuric rats. This attenuation seems to have resulted from the lack of HCTZ's effect on protein abundance of TRPV5 in severe hypercalciuric condition induced by high calcium and vitamin D.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jay Wook Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sejoong Kim
- Department of Internal Medicine, Gachon University of Medicine and Science, Incheon, Korea
| | - Nam Ju Heo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hwan Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Sang Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Yong Jung
- Department of Internal Medicine, Gachon University of Medicine and Science, Incheon, Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Suk Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Bindels RJ. 2009 Homer W. Smith Award: Minerals in Motion: From New Ion Transporters to New Concepts. J Am Soc Nephrol 2010; 21:1263-9. [DOI: 10.1681/asn.2010010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
50
|
Kantham L, Quinn SJ, Egbuna OI, Baxi K, Butters R, Pang JL, Pollak MR, Goltzman D, Brown EM. The calcium-sensing receptor (CaSR) defends against hypercalcemia independently of its regulation of parathyroid hormone secretion. Am J Physiol Endocrinol Metab 2009; 297:E915-23. [PMID: 19797241 PMCID: PMC2763782 DOI: 10.1152/ajpendo.00315.2009] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The calcium-sensing receptor (CaSR) controls parathyroid hormone (PTH) secretion, which, in turn, via direct and indirect actions on kidney, bone, and intestine, maintains a normal extracellular ionized calcium concentration (Ca(2+)(o)). There is less understanding of the CaSR's homeostatic importance outside of the parathyroid gland. We have employed single and double knockout mouse models, namely mice lacking PTH alone (CaSR(+/+) PTH(-/-), referred to as C(+)P(-)), lacking both CaSR and PTH (CaSR(-/-) PTH(-/-), C(-)P(-)) or wild-type (CaSR(+/+) PTH(+/+), C(+)P(+)) mice to study CaSR-specific functions without confounding CaSR-mediated changes in PTH. The mice received three hypercalcemic challenges: an oral Ca(2+) load, injection or constant infusion of PTH via osmotic pump, or a phosphate-deficient diet. C(-)P(-) mice show increased susceptibility to developing hypercalcemia with all three challenges compared with the other two genotypes, whereas C(+)P(-) mice defend against hypercalcemia similarly to C(+)P(+) mice. Reduced renal Ca(2+) clearance contributes to the intolerance of the C(-)P(-) mice to Ca(2+) loads, as they excrete less Ca(2+) at any given Ca(2+)(o) than the other two genotypes, confirming the CaSR's direct role in regulating renal Ca(2+) handling. In addition, C(+)P(+) and C(+)P(-), but not C(-)P(-), mice showed increases in serum calcitonin (CT) levels during hypercalcemia. The level of 1,25(OH)(2)D(3) in C(-)P(-) mice, in contrast, was similar to those in C(+)P(-) and C(+)P(+) mice during an oral Ca(2+) load, indicating that increased 1,25(OH)(2)D(3) production cannot account for the oral Ca(2+)-induced hypercalcemia in the C(-)P(-) mice. Thus, CaSR-stimulated PTH release serves as a "floor" to defend against hypocalcemia. In contrast, high-Ca(2+)(o)-induced inhibition of PTH is not required for a robust defense against hypercalcemia, at least in mice, whereas high-Ca(2+)(o)-stimulated, CaSR-mediated CT secretion and renal Ca(2+) excretion, and perhaps other factors, serve as a "ceiling" to limit hypercalcemia resulting from various types of hypercalcemic challenges.
Collapse
Affiliation(s)
- Lakshmi Kantham
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|