1
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
2
|
Frangogiannis NG, Kovacic JC. Extracellular Matrix in Ischemic Heart Disease, Part 4/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2219-2235. [PMID: 32354387 DOI: 10.1016/j.jacc.2020.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia and infarction, both in the acute and chronic phases, are associated with cardiomyocyte loss and dramatic changes in the cardiac extracellular matrix (ECM). It has long been appreciated that these changes in the cardiac ECM result in altered mechanical properties of ischemic or infarcted myocardial segments. However, a growing body of evidence now clearly demonstrates that these alterations of the ECM not only affect the structural properties of the ischemic and post-infarct heart, but they also play a crucial and sometimes direct role in mediating a range of biological pathways, including the orchestration of inflammatory and reparative processes, as well as the pathogenesis of adverse remodeling. This final part of a 4-part JACC Focus Seminar reviews the evidence on the role of the ECM in relation to the ischemic and infarcted heart, as well as its contribution to cardiac dysfunction and adverse clinical outcomes.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York.
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
3
|
Bitar MS. Diabetes Impairs Angiogenesis and Induces Endothelial Cell Senescence by Up-Regulating Thrombospondin-CD47-Dependent Signaling. Int J Mol Sci 2019; 20:ijms20030673. [PMID: 30720765 PMCID: PMC6386981 DOI: 10.3390/ijms20030673] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction, impaired angiogenesis and cellular senescence in type 2 diabetes constitute dominant risk factors for chronic non-healing wounds and other cardiovascular disorders. Studying these phenomena in the context of diabetes and the TSP1-CD-47 signaling dictated the use of the in vitro wound endothelial cultured system and an in vivo PVA sponge model of angiogenesis. Herein we report that diabetes impaired the in vivo sponge angiogenic capacity by decreasing cell proliferation, fibrovascular invasion and capillary density. In contrast, a heightened state of oxidative stress and elevated expression of TSP1 and CD47 both at the mRNA and protein levels were evident in this diabetic sponge model of wound healing. An in vitro culturing system involving wound endothelial cells confirmed the increase in ROS generation and the up-regulation of TSP1-CD47 signaling as a function of diabetes. We also provided evidence that diabetic wound endothelial cells (W-ECs) exhibited a characteristic feature that is consistent with cellular senescence. Indeed, enhanced SA-β-gal activity, cell cycle arrest, increased cell cycle inhibitors (CKIs) p53, p21 and p16 and decreased cell cycle promoters including Cyclin D1 and CDK4/6 were all demonstrated in these cells. The functional consequence of this cascade of events was illustrated by a marked reduction in diabetic endothelial cell proliferation, migration and tube formation. A genetic-based strategy in diabetic W-ECs using CD47 siRNA significantly ameliorated in these cells the excessiveness in oxidative stress, attenuation in angiogenic potential and more importantly the inhibition in cell cycle progression and its companion cellular senescence. To this end, the current data provide evidence linking the overexpression of TSP1-CD47 signaling in diabetes to a number of parameters associated with endothelial dysfunction including impaired angiogenesis, cellular senescence and a heightened state of oxidative stress. Moreover, it may also point to TSP1-CD47 as a potential therapeutic target in the treatment of the aforementioned pathologies.
Collapse
Affiliation(s)
- Milad S Bitar
- Department of Pharmacology& Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| |
Collapse
|
4
|
Peng F, Zhong Y, Liu Y, Zhang Y, Xie Y, Lu Y, Zhang X, Li D. SPARC suppresses lymph node metastasis by regulating the expression of VEGFs in ovarian carcinoma. Int J Oncol 2017; 51:1920-1928. [PMID: 29075785 DOI: 10.3892/ijo.2017.4168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/12/2017] [Indexed: 11/06/2022] Open
Abstract
Lymph node metastasis is one of the most valuable determinants for the prognosis of ovarian cancer. However, the molecular mechanisms underlying lymphangiogenesis in ovarian cancer is still poorly understood. Secreted protein acidic and rich in cysteine (SPARC), a Ca2+-binding matricellular glycoprotein that modulates cell adhesion, migration and differentiation, is thought to play a decisive role in tumor metastasis. Vascular endothelial growth factor (VEGF)-C and VEGF-D contributes to tumor-associated lymphatic vessel growth, enhancing the metastatic spread of tumor cells to lymph nodes. The aim of the present study was to investigate the relationship among SPARC, VEGFs and lymph node metastasis in ovarian cancer. We found that SKOV3 cells expressed high-level SPARC, much more than SKOV3-PM4 cells (a subline with high directional lymphatic metastatic potentials established from the metastatic lymph node generated by human ovarian carcinoma cell line SKOV3 in nude mice) did at both mRNA and protein levels. A SPARC-overexpressed SKOV3-PM4 cell line was constructed and it was found that upregulation of SPARC expression suppressed the growth, migration and invasion of SKOV3-PM4 cells as well as markedly reduced the expression of VEGF-D at both mRNA and protein level by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assay. In 47 of ovarian malignant tissues, the expression of SPARC, VEGF-C and VEGF-D were determined by immunohistochemistry. Lymphatic microvessel density (LVD) and microvessel density (MVD) were evaluated by immunostaining with CD34 and D2-40 antibodies, respectively. We found that SPARC expression was significantly lower in tissues with lymph node metastasis as compared to tissues without lymph node metastasis. SPARC expression was inversely associated with the degree of malignancy and it had a negative correlation with VEGF-C expression, VEGF-D expression, LVD and MVD which were actually higher for advanced tumors than for non-advanced tumors. These results suggest SPARC might function as a tumor suppressor inhibiting angiogenesis and lymphangiogenesis in ovarian cancer by reducing the expression of VEGF-C and VEGF-D.
Collapse
Affiliation(s)
- Fenghui Peng
- Affliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yanping Zhong
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yunfeng Liu
- Affliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yueming Zhang
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yihong Xie
- Affliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yingxin Lu
- Affliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xinyin Zhang
- Affliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Danrong Li
- Affliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
5
|
Wong SLI, Sukkar MB. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease. Br J Pharmacol 2016; 174:3-14. [PMID: 27759879 DOI: 10.1111/bph.13653] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
The SPARC (secreted protein acidic and rich in cysteine) protein is matricellular molecule regulating interactions between cells and their surrounding extracellular matrix (ECM). This protein thus governs fundamental cellular functions such as cell adhesion, proliferation and differentiation. SPARC also regulates the expression and activity of numerous growth factors and matrix metalloproteinases essential for ECM degradation and turnover. Studies in SPARC-null mice have revealed a critical role for SPARC in tissue development, injury and repair and in the regulation of the immune response. In the lung, SPARC drives pathological responses in non-small cell lung cancer and idiopathic pulmonary fibrosis by promoting microvascular remodelling and excessive deposition of ECM proteins. Remarkably, although chronic airway conditions such as asthma and chronic obstructive pulmonary disease (COPD) involve significant remodelling in both the airway and vascular compartments, the role of SPARC in these conditions has thus far been overlooked. In this review, we discuss the role of SPARC in lung cancer and pulmonary fibrosis, as well as potential mechanisms by which it may contribute to the disease process in asthma and COPD.
Collapse
Affiliation(s)
- Sharon L I Wong
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Maria B Sukkar
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
6
|
Sweetwyne MT, Brekken RA, Workman G, Bradshaw AD, Carbon J, Siadak AW, Murri C, Sage EH. Functional Analysis of the Matricellular Protein SPARC with Novel Monoclonal Antibodies. J Histochem Cytochem 2016; 52:723-33. [PMID: 15150281 DOI: 10.1369/jhc.3a6153.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SPARC (osteonectin, BM-40) is a matricellular glycoprotein that is expressed in many embryogenic and adult tissues undergoing remodeling or repair. SPARC modulates cellular interaction with the extracellular matrix (ECM), inhibits cell adhesion and proliferation, and regulates growth factor activity. To explore further the function and activity of this protein in tissue homeostasis, we have developed several monoclonal antibodies (MAbs) that recognize distinct epitopes on SPARC. The MAbs bind to SPARC with high affinity and identify SPARC by ELISA, Western blotting, immunoprecipitation, immunocytochemistry, and/or immunohistochemistry. The MAbs were also characterized in functional assays for potential alteration of SPARC activity. SPARC binds to collagen I and laminin-1 through an epitope defined by MAb 293; this epitope is not involved in the binding of SPARC to collagen III. The other MAbs did not interfere with the binding of SPARC to collagen I or III or laminin-1. Inhibition of the anti-adhesive effect of SPARC on endothelial cells by MAb 236 was also observed. Functional analysis of SPARC in the presence of these novel MAbs now confirms that the activities ascribed to this matricellular protein can be assigned to discrete subdomains.
Collapse
Affiliation(s)
- Mariya T Sweetwyne
- Department of Vascular Biology, The Hope Heart Institute, Seattle, Washington 98101, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bitar MS, Al-Mulla F. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes. Dis Model Mech 2014; 8:65-80. [PMID: 25381014 PMCID: PMC4283651 DOI: 10.1242/dmm.017145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs) of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE) transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could also point to CREM/ICER as a potential therapeutic target in the treatment of pathological angiogenesis.
Collapse
Affiliation(s)
- Milad S Bitar
- Department of Pharmacology and Toxicology, Kuwait University, Safat 13110, Kuwait.
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
8
|
Nagaraju GP, Dontula R, El-Rayes BF, Lakka SS. Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis 2014; 35:967-73. [PMID: 24675529 DOI: 10.1093/carcin/bgu072] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Communication between the cell and its surrounding environment, consisting of proteinaceous (non-living material) and extracellular matrix (ECM), is important for biophysiological and chemical signaling. This signaling results in a range of cellular activities, including cell division, adhesion, differentiation, invasion, migration and angiogenesis. The ECM non-structural secretory glycoprotein called secreted protein, acidic and rich in cysteine (SPARC), plays a significant role in altering cancer cell activity and the tumor's microenvironment (TME). However, the role of SPARC in cancer research has been the subject of controversy. This review mainly focuses on recent advances in understanding the contradictory nature of SPARC in relation to ECM assembly, cancer cell proliferation, adhesion, migration, apoptosis and tumor growth.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA and
| | | | | | | |
Collapse
|
9
|
Said N, Frierson HF, Sanchez-Carbayo M, Brekken RA, Theodorescu D. Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J Clin Invest 2013; 123:751-66. [PMID: 23321672 DOI: 10.1172/jci64782] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/08/2012] [Indexed: 12/12/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) has been implicated in multiple aspects of human cancer. However, its role in bladder carcinogenesis and metastasis are unclear,with some studies suggesting it may be a promoter and others arguing the opposite. Using a chemical carcinogenesis model in Sparc-deficient mice and their wild-type littermates, we found that loss of SPARC accelerated the development of urothelial preneoplasia (atypia and dysplasia), neoplasia, and metastasis and was associated with decreased survival. SPARC reduced carcinogen-induced inflammation and accumulation of reactive oxygen species as well as urothelial cell proliferation. Loss of SPARC was associated with an inflammatory phenotype of tumor-associated macrophages and fibroblasts, with concomitant increased activation of urothelial and stromal NF-κB and AP1 in vivo and in vitro. Syngeneic spontaneous and experimental metastasis models revealed that tumor- and stroma-derived SPARC reduced tumor growth and metastasis through inhibition of cancer-associated inflammation and lung colonization. In human bladder tumor tissues, the frequency and intensity of SPARC expression were inversely correlated with disease-specific survival. These results indicate that SPARC is produced by benign and malignant compartments of bladder carcinomas where it functions to suppress bladder carcinogenesis, progression, and metastasis.
Collapse
Affiliation(s)
- Neveen Said
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
10
|
Baratta CA, Brown TJ, Al-Dhalaan F, Ringuette MJ. Evolution and Function of SPARC and Tenascins: Matricellular Counter-Adhesive Glycoproteins with Pleiotropic Effects on Angiogenesis and Tissue Fibrosis. EVOLUTION OF EXTRACELLULAR MATRIX 2013. [DOI: 10.1007/978-3-642-36002-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Abstract
The term matricellular proteins describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell-cell and cell-matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines, and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondin (TSP)-1, -2, and -4 as well as tenascin-C and -X secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin, and members of the CCN family (including CCN1 and CCN2/connective tissue growth factor) are involved in a variety of cardiac pathophysiological conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy, and valvular disease. This review discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer G46B, Bronx, NY 10461, USA.
| |
Collapse
|
12
|
Castro PR, Marques SM, Campos PP, Cardoso CC, Sampaio FP, Ferreira MA, Andrade SP. Kinetics of implant-induced inflammatory angiogenesis in abdominal muscle wall in mice. Microvasc Res 2012; 84:9-15. [DOI: 10.1016/j.mvr.2012.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 11/27/2022]
|
13
|
Marques SM, Campos PP, Castro PR, Cardoso CC, Ferreira MA, Andrade SP. Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc Res 2011; 82:246-52. [DOI: 10.1016/j.mvr.2011.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 08/05/2011] [Accepted: 08/25/2011] [Indexed: 11/27/2022]
|
14
|
Rahman M, Chan APK, Tang M, Tai IT. A peptide of SPARC interferes with the interaction between caspase8 and Bcl2 to resensitize chemoresistant tumors and enhance their regression in vivo. PLoS One 2011; 6:e26390. [PMID: 22069448 PMCID: PMC3206029 DOI: 10.1371/journal.pone.0026390] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022] Open
Abstract
SPARC, a matricellular protein with tumor suppressor properties in certain human cancers, was initially identified in a genome-wide analysis of differentially expressed genes in chemotherapy resistance. Its exciting new role as a potential chemosensitizer arises from its ability to augment the apoptotic cascade, although the exact mechanisms are unclear. This study further examines the mechanism by which SPARC may be promoting apoptosis and identifies a smaller peptide analogue with greater chemosensitizing and tumor-regressing properties than the native protein. We examined the possibility that the apoptosis-enhancing activity of SPARC could reside within one of its three biological domains (N-terminus (NT), the follistatin-like (FS), or extracellular (EC) domains), and identified the N-terminus as the region with its chemosensitizing properties. These results were not only confirmed by studies utilizing stable cell lines overexpressing the different domains of SPARC, but as well, with a synthetic 51-aa peptide spanning the NT-domain. It revealed that the NT-domain induced a significantly greater reduction in cell viability than SPARC, and that it enhanced the apoptotic cascade via its activation of caspase 8. Moreover, in chemotherapy resistant human colon, breast and pancreatic cancer cells, its chemosensitizing properties also depended on its ability to dissociate Bcl2 from caspase 8. These observations translated to clinically significant findings in that, in-vivo, mouse tumor xenografts overexpressing the NT-domain of SPARC had significantly greater sensitivity to chemotherapy and tumor regression, even when compared to the highly-sensitive SPARC-overexpressing tumors. Our results identified an interplay between the NT-domain, Bcl2 and caspase 8 that helps augment apoptosis and as a consequence, a tumor's response to therapy. This NT-domain of SPARC and its 51-aa peptide are highly efficacious in modulating and enhancing apoptosis, thereby conferring greater chemosensitivity to resistant tumors. Our findings provide additional insight into mechanisms involved in chemotherapy resistance and a potential novel therapeutic that specifically targets this devastating phenomenon.
Collapse
Affiliation(s)
- Mahbuba Rahman
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
15
|
de Moura SAL, Negri G, Salatino A, Lima LDDC, Dourado LPA, Mendes JB, Andrade SP, Ferreira MAND, Cara DC. Aqueous extract of brazilian green propolis: primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:748283. [PMID: 19690045 PMCID: PMC3137525 DOI: 10.1093/ecam/nep112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 07/17/2009] [Indexed: 01/13/2023]
Abstract
Propolis is a chemically complex resinous bee product which has gained worldwide popularity as a means to improve health condition and prevent diseases. The main constituents of an aqueous extract of a sample of green propolis from Southeast Brazil were shown by high performance liquid chromatography/mass spectroscopy/mass spectroscopy to be mono- and di-O-caffeoylquinic acids; phenylpropanoids known as important constituents of alcohol extracts of green propolis, such as artepillin C and drupanin were also detected in low amounts in the aqueous extract. The anti-inflammatory activity of this extract was evaluated by determination of wound healing parameters. Female Swiss mice were implanted subcutaneously with polyesther-polyurethane sponge discs to induce wound healing responses, and administered orally with green propolis (500 mg kg(-1)). At 4, 7 and 14 days post-implantation, the fibrovascular stroma and deposition of extracellular matrix were evaluated by histopathologic and morphometric analyses. In the propolis-treated group at Days 4 and 7 the inflammatory process in the sponge was reduced in comparison with control. A progressive increase in cell influx and collagen deposition was observed in control and propolis-treated groups during the whole period. However, these effects were attenuated in the propolis-treated group at Days 4 and 7, indicating that key factors of the wound healing process are modulated by propolis constituents.
Collapse
Affiliation(s)
- Sandra Aparecida Lima de Moura
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Giuseppina Negri
- CEBRID—Department of Psychobiology, UNIFESP, R. Botucatu, 862, Biomedical Sciences, Brazil
| | - Antônio Salatino
- Department of Botany, Biosciences Institute, University of São Paulo, R. do Matão 277, São Paulo, Brazil
| | - Luiza Dias da Cunha Lima
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Luana Pereira Antunes Dourado
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Juliana Barros Mendes
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais-UFMG, Avenida Antônio Carlos, 6627, Pampulha, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais-UFMG, Avenida Antônio Carlos, 6627, Pampulha, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | - Denise Carmona Cara
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais-UFMG, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Sweetwyne MT, Pallero MA, Lu A, Van Duyn Graham L, Murphy-Ullrich JE. The calreticulin-binding sequence of thrombospondin 1 regulates collagen expression and organization during tissue remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1710-24. [PMID: 20724603 DOI: 10.2353/ajpath.2010.090903] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Amino acids 17-35 of the thrombospondin1 (TSP1) N-terminal domain (NTD) bind cell surface calreticulin to signal focal adhesion disassembly, cell migration, and anoikis resistance in vitro. However, the in vivo relevance of this signaling pathway has not been previously determined. We engineered local in vivo expression of the TSP1 calreticulin-binding sequence to determine the role of TSP1 in tissue remodeling. Surgical sponges impregnated with a plasmid encoding the secreted calreticulin-binding sequence [NTD (1-35)-EGFP] or a control sequence [mod NTD (1-35)-EGFP] tagged with enhanced green fluorescent protein were implanted subcutaneously in mice. Sponges expressing NTD (1-35)-EFGP formed a highly organized capsule despite no differences in cellular composition, suggesting stimulation of collagen deposition by the calreticulin-binding sequence of TSP1. TSP1, recombinant NTD, or a peptide of the TSP1 calreticulin-binding sequence (hep I) increased both collagen expression and matrix deposition by fibroblasts in vitro. TSP1 stimulation of collagen was inhibited by a peptide that blocks TSP1 binding to calreticulin, demonstrating the requirement for cell surface calreticulin. Collagen stimulation was independent of TGF-β activity and Smad phosphorylation but was blocked by an Akt inhibitor, suggesting that signaling through the Akt pathway is important for regulation of collagen through TSP1 binding to calreticulin. These studies identify a novel function for the NTD of TSP1 as a mediator of collagen expression and deposition during tissue remodeling.
Collapse
Affiliation(s)
- Mariya T Sweetwyne
- Departments of Cell Biology, University of Alabama, Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | |
Collapse
|
17
|
Zinovyeva MV, Monastyrskaya GS, Kopantzev EP, Vinogradova TV, Kostina MB, Sass AV, Filyukova OB, Uspenskaya NY, Sukhikh GT, Sverdlov ED. Identification of some human genes oppositely regulated during esophageal squamous cell carcinoma formation and human embryonic esophagus development. Dis Esophagus 2010; 23:260-70. [PMID: 19732125 DOI: 10.1111/j.1442-2050.2009.01008.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we directly compared gene expression profiles in human esophageal squamous cell carcinomas and in human fetal esophagus development. We used the suppression subtractive hybridization technique to subtract cDNAs prepared from tumor and normal human esophageal samples. cDNA sequencing and reverse transcription polymerase chain reaction (RT-PCR) analysis of RNAs from human tumor and the normal esophagus revealed 10 differentially transcribed genes: CSTA, CRNN, CEACAM1, MAL, EMP1, ECRG2, and SPRR downregulated, and PLAUR, SFRP4, and secreted protein that is acidic and rich in cysteine upregulated in tumor tissue as compared with surrounding normal tissue. In turn, genes up- and downregulated in tumor tissue were down- and upregulated, respectively, during development from the fetal to adult esophagus. Thus, we demonstrated that, as reported for other tumors, gene transcriptional activation and/or suppression events in esophageal tumor progression were opposite to those observed during development from the fetal to adult esophagus. This tumor 'embryonization' supports the idea that stem or progenitor cells are implicated in esophageal cancer emergence.
Collapse
Affiliation(s)
- M V Zinovyeva
- Laboratory of Structure and Functions of Human Genes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bradshaw AD, Baicu CF, Rentz TJ, Van Laer AO, Bonnema DD, Zile MR. Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart Circ Physiol 2010; 298:H614-22. [PMID: 20008277 PMCID: PMC2822576 DOI: 10.1152/ajpheart.00474.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 12/04/2009] [Indexed: 01/19/2023]
Abstract
Advanced age, independent of concurrent cardiovascular disease, can be associated with increased extracellular matrix (ECM) fibrillar collagen content and abnormal diastolic function. However, the mechanisms causing this left ventricular (LV) remodeling remain incompletely defined. We hypothesized that one determinant of age-dependent remodeling is a change in the extent to which newly synthesized procollagen is processed into mature collagen fibrils. We further hypothesized that secreted protein acidic and rich in cysteine (SPARC) plays a key role in the changes in post-synthetic procollagen processing that occur in the aged myocardium. Young (3 mo old) and old (18-24 mo old) wild-type (WT) and SPARC-null mice were studied. LV collagen content was measured histologically by collagen volume fraction, collagen composition was measured by hydroxyproline assay as soluble collagen (1 M NaCl extractable) versus insoluble collagen (mature cross-linked), and collagen morphological structure was examined by scanning electron microscopy. SPARC expression was measured by immunoblot analysis. LV and myocardial structure and function were assessed using echocardiographic and papillary muscle experiments. In WT mice, advanced age increased SPARC expression, myocardial diastolic stiffness, fibrillar collagen content, and insoluble collagen. In SPARC-null mice, advanced age also increased myocardial diastolic stiffness, fibrillar collagen content, and insoluble collagen but significantly less than those seen in WT old mice. As a result, insoluble collagen and myocardial diastolic stiffness were lower in old SPARC-null mice (1.36 +/- 0.08 mg hydroxyproline/g dry wt and 0.04 +/- 0.005) than in old WT mice (1.70 +/- 0.10 mg hydroxyproline/g dry wt and 0.07 +/- 0.005, P < 0.05). In conclusion, the absence of SPARC reduced age-dependent alterations in ECM fibrillar collagen and diastolic function. These data support the hypothesis that SPARC plays a key role in post-synthetic procollagen processing and contributes to the increase in collagen content found in the aged myocardium.
Collapse
Affiliation(s)
- Amy D Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Arnold SA, Brekken RA. SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 2009; 3:255-73. [PMID: 19809893 PMCID: PMC2778590 DOI: 10.1007/s12079-009-0072-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/14/2009] [Indexed: 12/11/2022] Open
Abstract
Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature.
Collapse
Affiliation(s)
- Shanna A Arnold
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology and Departments of Surgery and Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-8593 USA
| | | |
Collapse
|
20
|
Nie J, Sage EH. SPARC functions as an inhibitor of adipogenesis. J Cell Commun Signal 2009; 3:247-54. [PMID: 19798596 PMCID: PMC2778584 DOI: 10.1007/s12079-009-0064-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/26/2009] [Indexed: 12/29/2022] Open
Abstract
Adipogenesis, a key step in the pathogenesis of obesity, involves extensive ECM remodeling, changes in cell-ECM interactions, and cytoskeletal rearrangement. Matricellular proteins regulate cell-cell and cell-ECM interactions. Evidence in vivo and in vitro indicates that the prototypic matricellular protein, SPARC, inhibits adipogenesis and promotes osteoblastogenesis. Herein we discuss mechanisms underlying the inhibitory effect of SPARC on adipogenesis. SPARC enhances the Wnt/β-catenin signaling pathway and regulates the expression and posttranslational modification of collagen. SPARC might drive preadipocytes away from the status of growth arrest and therefore prevent terminal differentiation. SPARC could also decrease WAT deposition through its negative effects on angiogenesis. Therefore, several stages of white adipose tissue accumulation are sensitive to the inhibitory effects of SPARC.
Collapse
Affiliation(s)
- Jing Nie
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 9th Ave, Seattle, WA 98101 USA
| | | |
Collapse
|
21
|
Role of the chemokines CCL3/MIP-1 alpha and CCL5/RANTES in sponge-induced inflammatory angiogenesis in mice. Microvasc Res 2009; 78:148-54. [PMID: 19427874 DOI: 10.1016/j.mvr.2009.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 04/15/2009] [Accepted: 04/21/2009] [Indexed: 02/08/2023]
Abstract
OBJECTIVE We examined the potential contribution of CCL3 and CCL5 to inflammatory angiogenesis in mice. METHODS Polyester-polyurethane sponges were implanted in mice and blood vessel counting and hemoglobin, myeloperoxidase and N-acetylglucosaminidase measurements used as indexes for vascularization, neutrophil and macrophage accumulation, respectively. RESULTS CCL3 and CCL5 were expressed throughout the observation period. Exogenous CCL3 enhanced angiogenesis in WT, but angiogenesis proceeded normally in CCL3(-/-) mice, suggesting that endogenous CCL3 is not critical for sponge-induced angiogenesis in mice. CCL5 expression was detected at day 1, but levels significantly increased thereafter. Exogenous CCL5 reduced angiogenesis in WT mice possible via CCR5 as CCL5 was without an effect in CCR5(-/-) mice. Treatment of WT with the CCR1/CCR5 antagonist, Met-RANTES, prevented neutrophil and macrophage accumulation, but enhanced sponge vascularization. CONCLUSION Thus, endogenous CCL3 appears not to play a role in driving sponge-induced inflammatory angiogenesis in mice. The effects of CCL5 were anti-angiogenic and appeared to be mediated via activation of CCR5.
Collapse
|
22
|
Podhajcer OL, Benedetti LG, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27:691-705. [PMID: 18542844 DOI: 10.1007/s10555-008-9146-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tumor growth is essentially the result of an evolving cross-talk between malignant and surrounding stromal cells (fibroblasts, endothelial cells and inflammatory cells). This heterogeneous mass of extracellular matrix and intermingled cells interact through cell-cell and cell-matrix contacts. Malignant cells also secrete soluble proteins that reach neighbor stromal cells, forcing them to provide the soil on which they will grow and metastasize. Different studies including expression array analysis identified the matricellular protein SPARC as a marker of poor prognosis in different cancer types. Further evidence demonstrated that high SPARC levels are often associated with the most aggressive and highly metastatic tumors. Here we describe the most recent evidence that links SPARC with human cancer progression, the controversy regarding its role in certain human cancers and the physiological processes in which SPARC is involved: epithelial-mesenchymal transition, immune surveillance and angiogenesis. Its relevance as a potential target in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
23
|
Romana-Souza B, Santos JS, Desmoulière A, Monte-Alto-Costa A. Beta-adrenoceptor blockade delays granulation tissue formation in polyurethane sponge implants. J Cutan Pathol 2008; 36:522-8. [PMID: 19476519 DOI: 10.1111/j.1600-0560.2008.01110.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The role of adrenoceptors in granulation tissue formation is not well understood. The aim of this study was to investigate the effects of alpha- and beta-adrenoceptor blockade on granulation tissue development using polyurethane (PU) implants in the rat. METHODS Animals were treated orally with propranolol (beta1- and beta2-antagonist), atenolol (beta1-antagonist) or phentolamine (alpha1- and alpha2-antagonist) until euthanasia. The control group received only water. All animals received subcutaneous implants of PU sponges. After 14 days, implants were collected, formalin-fixed and paraffin-embedded. Sections were stained with hematoxylin and eosin and Sirius red and immunostained for CD68 and alpha-smooth muscle actin. RESULTS The number of inflammatory cells and the volume density of myofibroblasts and blood vessels were lower in the control group than in the propranolol- and atenolol-treated groups. The collagen fiber score was greater in the control group than in the propranolol- and atenolol-treated groups. The inflammatory infiltrate, collagen fiber score, blood vessel density or myofibroblast differentiation was not affected by phentolamine. The percentage of fibrovascular invasion was greater in the antagonist-treated groups than in the control group. CONCLUSIONS Blockade of beta1- and beta2-adrenoceptors, but not alpha-adrenoceptors, impairs granulation tissue development in PU implants due to interference with the inflammatory response.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
24
|
Podhajcer OL, Benedetti L, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27:523-37. [PMID: 18459035 DOI: 10.1007/s10555-008-9135-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumor growth is essentially the result of an evolving cross-talk between malignant and surrounding stromal cells (fibroblasts, endothelial cells and inflammatory cells). This heterogeneous mass of extracellular matrix and intermingled cells interact through cell-cell and cell-matrix contacts. Malignant cells also secrete soluble proteins that reach neighbor stromal cells, forcing them to provide the soil on which they will grow and metastasize. Different studies including expression array analysis identified the matricellular protein SPARC as a marker of poor prognosis in different cancer types. Further evidence demonstrated that high SPARC levels are often associated with the most aggressive and highly metastatic tumors. Here we describe the most recent evidence that links SPARC with human cancer progression, the controversy regarding its role in certain human cancers and the physiological processes in which SPARC is involved: epithelial-mesenchymal transition, immune surveillance and angiogenesis. Its relevance as a potential target in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
25
|
Clark CJ, Sage EH. A prototypic matricellular protein in the tumor microenvironment--where there's SPARC, there's fire. J Cell Biochem 2008; 104:721-32. [PMID: 18253934 DOI: 10.1002/jcb.21688] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Within the tumor microenvironment is a dynamic exchange between cancer cells and their surrounding stroma. This complex biologic system requires carefully designed models to understand the role of its stromal components in carcinogenesis, tumor progression, invasion, and metastasis. Secreted protein acidic and rich in cysteine (SPARC) is a prototypic matricellular protein at the center of this exchange. Two decades of basic science research combined with recent whole genome analyses indicate that SPARC is an important player in vertebrate evolution, normal development, and maintenance of normal tissue homeostasis. Therefore, SPARC might also play an important role in the tumor microenvironment. Clinical evidence indicates that SPARC expression correlates with tumor progression, but tightly controlled animal models have shown that the role of SPARC in tumor progression is dependent on tissue and tumor cell type. In this Prospectus, we review the current understanding of SPARC in the tumor microenvironment and discuss current and future investigations of SPARC and tumor-stromal interactions that require careful consideration of growth factors, cytokines, proteinases, and angiotropic factors that might influence SPARC activity and tumor progression.
Collapse
Affiliation(s)
- Clancy J Clark
- Department of General Surgery, Virginia Mason Medical Center, Seattle, Washington 98101, USA
| | | |
Collapse
|
26
|
Jørgensen LH, Petersson SJ, Sellathurai J, Andersen DC, Thayssen S, Sant DJ, Jensen CH, Schrøder HD. Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J Histochem Cytochem 2008; 57:29-39. [PMID: 18796407 DOI: 10.1369/jhc.2008.951954] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15-16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment.
Collapse
|
27
|
Yunker CK, Golembieski W, Lemke N, Schultz CR, Cazacu S, Brodie C, Rempel SA. SPARC-induced increase in glioma matrix and decrease in vascularity are associated with reduced VEGF expression and secretion. Int J Cancer 2008; 122:2735-43. [PMID: 18350569 PMCID: PMC3644882 DOI: 10.1002/ijc.23450] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/27/2007] [Indexed: 11/23/2022]
Abstract
Glioblastomas are heterogeneous tumors displaying regions of necrosis, proliferation, angiogenesis, apoptosis and invasion. SPARC, a matricellular protein that negatively regulates angiogenesis and cell proliferation, but enhances cell deadhesion from matrix, is upregulated in gliomas (Grades II-IV). We previously demonstrated that SPARC promotes invasion while concomitantly decreasing tumor growth, in part by decreasing proliferation of the tumor cells. In other cancer types, SPARC has been shown to influence tumor growth by altering matrix production, and by decreasing angiogenesis via interfering with the VEGF-VEGFR1 signaling pathway. We therefore examined whether the SPARC-induced decrease in glioma tumor growth was also, in part, due to alterations in matrix and/or decreased vascularity, and assessed SPARC-VEGF interactions. The data demonstrate that SPARC upregulates glioma matrix, collagen I is a constituent of the matrix and SPARC promotes collagen fibrillogenesis. Furthermore, SPARC suppressed glioma vascularity, and this was accompanied by decreased VEGF expression and secretion, which was, in part, due to reduced VEGF165 transcript abundance. These data indicate that SPARC modulates glioma growth by altering the tumor microenvironment and by suppressing tumor vascularity through suppression of VEGF expression and secretion. These experiments implicate a novel mechanism, whereby SPARC regulates VEGF function by limiting the available growth factor. Because SPARC is considered to be a therapeutic target for gliomas, a further understanding of its complex signaling mechanisms is important, as targeting SPARC to decrease invasion could undesirably lead to the growth of more vascular and proliferative tumors.
Collapse
Affiliation(s)
- Christopher K Yunker
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - William Golembieski
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Nancy Lemke
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Chad R Schultz
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Simona Cazacu
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Chaya Brodie
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Sandra A Rempel
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| |
Collapse
|
28
|
Campos PP, Bakhle YS, Andrade SP. Mechanisms of wound healing responses in lupus-prone New Zealand White mouse strain. Wound Repair Regen 2008; 16:416-24. [DOI: 10.1111/j.1524-475x.2008.00381.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Prada F, Benedetti LG, Bravo AI, Alvarez MJ, Carbone C, Podhajcer OL. SPARC Endogenous Level, rather than Fibroblast-Produced SPARC or Stroma Reorganization Induced by SPARC, Is Responsible for Melanoma Cell Growth. J Invest Dermatol 2007; 127:2618-28. [PMID: 17625595 DOI: 10.1038/sj.jid.5700962] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SPARC (secreted protein acidic and rich in cysteine) is a matricellular protein whose overexpression in malignant or tumor-stromal cells is often associated with increased aggressiveness and bad prognosis in a wide range of human cancer types, particularly melanoma. We established the impact that changes in the level of SPARC produced by malignant cells and neighboring stromal cells have on melanoma growth. Melanoma cell growth in monolayer was only slightly affected by changes in SPARC levels. However, melanoma growth in spheroids was strongly inhibited upon SPARC hyperexpression and conversely enhanced when SPARC expression was downregulated. Interestingly, SPARC overexpression in neighboring fibroblasts had no effect on spheroid growth irrespective of SPARC levels expressed by the melanoma cells, themselves. Downregulation of SPARC expression in melanoma cells induced their rejection in vivo through a mechanism mediated exclusively by host polymorphonuclear cells. On the other hand, SPARC hyperexpression enhanced vascular density, collagen deposition, and fibroblast recruitment in the surrounding stroma without affecting melanoma growth. In agreement with the in vitro data, overexpression of SPARC in co-injected fibroblasts did not affect melanoma growth in vivo. All the data indicate that melanoma growth is not subject to regulation by exogenous SPARC, nor by stromal organization, but only by SPARC levels produced by the malignant cells themselves.
Collapse
Affiliation(s)
- Federico Prada
- Laboratory of Molecular and Cellular Therapy, Leloir Institute-CONICET-University of Buenos Aires, Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
30
|
Sullivan KM, Bissonnette R, Yanagisawa H, Hussain SN, Davis EC. Fibulin-5 functions as an endogenous angiogenesis inhibitor. J Transl Med 2007; 87:818-27. [PMID: 17607303 DOI: 10.1038/labinvest.3700594] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ablation of the fibulin-5 gene (fbln5) in mice results in loose skin, emphysematous lungs and tortuous vessels. Additionally, fbln5(-/-) animals display an apparent increase in vascular sprouting from systemic and cutaneous vessels. From these observations, we hypothesized that a de-regulation of vascular sprouting occurs in the absence of endogenous fibulin-5. To test this hypothesis, vascular sprouts from the long thoracic artery were quantified and polyvinyl alcohol sponges were implanted subcutaneously in wild-type and fbln5(-/-) mice to assess fibrovascular invasion. Results showed a significant increase in in situ sprouting from vessels in fbln5(-/-) mice and a significant increase in vascular invasion, with no increase in fibroblast migration, into sponges removed from fbln5(-/-) mice compared with wild-type mice. Localization of fibulin-5 in wild-type mice showed the protein to be present subjacent to endothelial cells (ECs) in established vessels at the periphery of the sponge, and as a component of the newly formed, loose connective tissue within the sponge. These results suggest that fibulin-5 could function as an inhibitor molecule in initial sprouting and/or migration of ECs. To elucidate the molecular mechanism that drives the increased angiogenesis in the absence of fibulin-5, expression of vascular endothelial growth factor (VEGF) and the angiopoietins (Angs) was determined in sponges implanted for 12 days in wild-type and fbln5(-/-) mice. Quantitative RT-PCR showed message levels for VEGF and all three Angs to be elevated by several fold in the area of invasion of sponges from fbln5(-/-) mice compared with wild-type mice. Expression of Ang-1 was also shown to be elevated (30-fold) in vitro in aortic smooth muscle cells isolated from fbln5(-/-) mice when compared with wild-type cells, with no change in the expression of the Ang-1 mediating transcription factor, ESE-1. Taken together, these results suggest that the normal angiogenic process is enhanced in the absence of fibulin-5.
Collapse
Affiliation(s)
- Kaitlyn M Sullivan
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
31
|
Rocnik EF, Liu P, Sato K, Walsh K, Vaziri C. The Novel SPARC Family Member SMOC-2 Potentiates Angiogenic Growth Factor Activity. J Biol Chem 2006; 281:22855-64. [PMID: 16774925 DOI: 10.1074/jbc.m513463200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SMOC-2 is a novel member of the SPARC family of matricellular proteins. The purpose of this study was to determine whether SMOC-2 can modulate angiogenic growth factor activity and angiogenesis. SMOC-2 was localized in the extracellular periphery of cultured human umbilical vein endothelial cells (HUVECs). Ectopically expressed SMOC-2 was also secreted into the tissue culture medium. In microarray profiling experiments, a recombinant SMOC-2 adenovirus induced the expression of transcripts required for cell cycle progression in HUVECs. Consistent with a growth-stimulatory role for SMOC-2, its overexpression stimulated DNA synthesis in a dose-dependent manner. Overexpressed SMOC-2 also synergized with vascular endothelial growth factor or with basic fibroblast growth factor to stimulate DNA synthesis. Ectopically expressed SMOC-2 stimulated formation of network-like structures as determined by in vitro matrigel angiogenesis assays. Fetal calf serum enhanced the stimulatory effect of overexpressed SMOC-2 in this assay. Conversely, small interference RNA directed toward SMOC-2 inhibited network formation and proliferation. The angiogenic activity of SMOC-2 was also examined in experimental mice by subdermal implantation of Matrigel plugs containing SMOC-2 adenovirus. SMOC-2 adenovirus induced a 3-fold increase in the number of cells invading Matrigel plugs when compared with a control adenoviral vector. Basic fibroblast growth factor and SMOC-2 elicited a synergistic effect on cell invasion. Taken together, our results demonstrate that SMOC-2 is a novel angiogenic factor that potentiates angiogenic effects of growth factors.
Collapse
Affiliation(s)
- Edward F Rocnik
- Molecular Cardiology, Whitaker Cardiovascular Institute and Department of Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
32
|
Järveläinen H, Puolakkainen P, Pakkanen S, Brown EL, Höök M, Iozzo RV, Sage EH, Wight TN. A role for decorin in cutaneous wound healing and angiogenesis. Wound Repair Regen 2006; 14:443-52. [PMID: 16939572 DOI: 10.1111/j.1743-6109.2006.00150.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Decorin is known to influence tissue tensile strength and cellular phenotype. Therefore, decorin is likely to have an impact on tissue repair, including cutaneous wound healing. In this study, cutaneous healing of both excisional and incisional full-thickness dermal wounds was studied in decorin-deficient (Dcn(-/-)) animals. A statistically significant delay in excisional wound healing in the Dcn(-/-) mice occurred at 4 and 10 days postwounding and, in incisional wounds at 4, 10, and 18 days when compared with wild-type (Dcn(-/-)) controls. Fibrovascular invasion into polyvinylalcohol sponges was significantly increased by day 18 in Dcn(-/-) mice relative to Dcn(+/+) mice. The 18-day sponge implants in the Dcn(-/-) mice showed a marked accumulation of biglycan when compared with the corresponding implants in Dcn(+/+) mice. Thus, regulated production of decorin may serve as an excellent therapeutic approach for modifying impaired wound healing and harmful foreign body reactions.
Collapse
|
33
|
Gersdorff N, Müller M, Schall A, Miosge N. Secreted modular calcium-binding protein-1 localization during mouse embryogenesis. Histochem Cell Biol 2006; 126:705-12. [PMID: 16736127 DOI: 10.1007/s00418-006-0200-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2006] [Indexed: 02/06/2023]
Abstract
BM-40 is an extracellular matrix-associated protein and is characterized by an extracellular calcium-binding domain as well as a follistatin-like domain. Secreted modular calcium-binding protein-1 (SMOC-1) is a new member of the BM-40 family. It consists of two thyroglobulin-like domains, a follistatin-like domain and a new domain without known homologues and is expressed ubiquitously in many adult murine tissues. Immunofluorescence studies, as well as immunogold electron microscopy, have confirmed the localization of SMOC-1 in or around basement membranes of adult murine skin, blood vessels, brain, kidney, skeletal muscle, and the zona pellucida surrounding the oocyte. In the present work, light microscopic immunohistochemistry has revealed that SMOC-1 is localized in the early mouse embryo day 7 throughout the entire endodermal basement membrane zone of the embryo proper. SMOC-1 mRNA is synthesized, even in early stages of mouse development, by mesenchymal as well as epithelial cells deriving from all three germ layers. In embryonic stage day 12, and fetal stages day 14, 16, and 18, the protein is present in the basement membrane zones of brain, blood vessels, skin, skeletal muscle, lung, heart, liver, pancreas, intestine, and kidney. This broad and organ-specific distribution suggests multifunctional roles of SMOC-1 during mouse embryogenesis.
Collapse
Affiliation(s)
- Nikolaus Gersdorff
- Department of Prosthodontics, Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
34
|
Nozaki M, Sakurai E, Raisler BJ, Baffi JZ, Witta J, Ogura Y, Brekken RA, Sage EH, Ambati BK, Ambati J. Loss of SPARC-mediated VEGFR-1 suppression after injury reveals a novel antiangiogenic activity of VEGF-A. J Clin Invest 2006; 116:422-9. [PMID: 16453023 PMCID: PMC1359054 DOI: 10.1172/jci26316] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 11/08/2005] [Indexed: 12/12/2022] Open
Abstract
VEGF-A promotes angiogenesis in many tissues. Here we report that choroidal neovascularization (CNV) incited by injury was increased by excess VEGF-A before injury but was suppressed by VEGF-A after injury. This unorthodox antiangiogenic effect was mediated via VEGFR-1 activation and VEGFR-2 deactivation, the latter via Src homology domain 2-containing (SH2-containing) tyrosine phosphatase-1 (SHP-1). The VEGFR-1-specific ligand placental growth factor-1 (PlGF-1), but not VEGF-E, which selectively binds VEGFR-2, mimicked these responses. Excess VEGF-A increased CNV before injury because VEGFR-1 activation was silenced by secreted protein, acidic and rich in cysteine (SPARC). The transient decline of SPARC after injury revealed a temporal window in which VEGF-A signaling was routed principally through VEGFR-1. These observations indicate that therapeutic design of VEGF-A inhibition should include consideration of the level and activity of SPARC.
Collapse
Affiliation(s)
- Miho Nozaki
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky 40536-0284, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Said N, Motamed K. Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1739-52. [PMID: 16314484 PMCID: PMC1613196 DOI: 10.1016/s0002-9440(10)61255-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The matricellular glycoprotein SPARC (secreted protein acidic and rich in cysteine) possesses multifaceted roles in modulation of cell-matrix interactions, as well as tumor growth and metastasis. To investigate the influence of host-derived SPARC on peritoneal dissemination of ovarian cancer, we established a murine model that faithfully recapitulates advanced human disease by intraperitoneal injection of syngeneic ID8 ovarian cancer cells into SPARC-null and wild-type mice. Compared to wild-type mice, SPARC-null mice showed significantly shorter survival and developed extensive nodular peritoneal dissemination with hemorrhagic ascitic fluid accumulation. Ascitic fluid collected from SPARC-null mice showed significantly augmented levels and activity of vascular endothelial growth factor and gelatinases. Immunohistochemical analysis of tumor nodules from SPARC-null mice revealed higher proliferation and lower apoptosis indices with minimal staining for major extracellular matrix constituents. In vitro, SPARC significantly suppressed adhesion to and invasion of various peritoneal extracellular matrix constituents by murine and human ovarian cancer cell lines. Our findings suggest that SPARC ameliorates ovarian peritoneal carcinomatosis through abrogation of the initial steps of disease pathogenesis, namely tumor cell adhesion and invasion, inhibition of tumor cell proliferation, and induction of apoptosis. Thus, SPARC represents an important therapeutic candidate in ovarian cancer.
Collapse
Affiliation(s)
- Neveen Said
- Department of Pathology, Medical College of Georgia, Augusta, 30912, USA
| | | |
Collapse
|
36
|
Barker TH, Baneyx G, Cardó-Vila M, Workman GA, Weaver M, Menon PM, Dedhar S, Rempel SA, Arap W, Pasqualini R, Vogel V, Sage EH. SPARC Regulates Extracellular Matrix Organization through Its Modulation of Integrin-linked Kinase Activity. J Biol Chem 2005; 280:36483-93. [PMID: 16115889 DOI: 10.1074/jbc.m504663200] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
SPARC, a 32-kDa matricellular glycoprotein, mediates interactions between cells and their extracellular matrix, and targeted deletion of Sparc results in compromised extracellular matrix in mice. Fibronectin matrix provides provisional tissue scaffolding during development and wound healing and is essential for the stabilization of mature extracellular matrix. Herein, we report that SPARC expression does not significantly affect fibronectin-induced cell spreading but enhances fibronectin-induced stress fiber formation and cell-mediated partial unfolding of fibronectin molecules, an essential process in fibronectin matrix assembly. By phage display, we identify integrin-linked kinase as a potential binding partner of SPARC and verify the interaction by co-immunoprecipitation and colocalization in vitro. Cells lacking SPARC exhibit diminished fibronectin-induced integrin-linked kinase activation and integrin-linked kinase-dependent cell-contractile signaling. Furthermore, induced expression of SPARC in SPARC-null fibroblasts restores fibronectin-induced integrin-linked kinase activation, downstream signaling, and fibronectin unfolding. These data further confirm the function of SPARC in extracellular matrix organization and identify a novel mechanism by which SPARC regulates extracellular matrix assembly.
Collapse
Affiliation(s)
- Thomas H Barker
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Puolakkainen PA, Bradshaw AD, Brekken RA, Reed MJ, Kyriakides T, Funk SE, Gooden MD, Vernon RB, Wight TN, Bornstein P, Sage EH. SPARC-thrombospondin-2-double-null mice exhibit enhanced cutaneous wound healing and increased fibrovascular invasion of subcutaneous polyvinyl alcohol sponges. J Histochem Cytochem 2005; 53:571-81. [PMID: 15872050 DOI: 10.1369/jhc.4a6425.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) and thrombospondin-2 (TSP-2) are structurally unrelated matricellular proteins that have important roles in cell-extracellular matrix (ECM) interactions and tissue repair. SPARC-null mice exhibit accelerated wound closure, and TSP-2-null mice show an overall enhancement in wound healing. To assess potential compensation of one protein for the other, we examined cutaneous wound healing and fibrovascular invasion of subcutaneous sponges in SPARC-TSP-2 (ST) double-null and wild-type (WT) mice. Epidermal closure of cutaneous wounds was found to occur significantly faster in ST-double-null mice, compared with WT animals: histological analysis of dermal wound repair revealed significantly more mature phases of healing at 1, 4, 7, 10, and 14 days after wounding, and electron microscopy showed disrupted ECM at 14 days in these mice. ST-double-null dermal fibroblasts displayed accelerated migration, relative to WT fibroblasts, in a wounding assay in vitro, as well as enhanced contraction of native collagen gels. Zymography indicated that fibroblasts from ST-double-null mice also produced higher levels of matrix metalloproteinase (MMP)-2. These data are consistent with the increased fibrovascular invasion of subcutaneous sponge implants seen in the double-null mice. The generally accelerated wound healing of ST-double-null mice reflects that described for the single-null animals. Importantly, the absence of both proteins results in elevated MMP-2 levels. SPARC and TSP-2 therefore perform similar functions in the regulation of cutaneous wound healing, but fine-tuning with respect to ECM production and remodeling could account for the enhanced response seen in ST-double-null mice.
Collapse
Affiliation(s)
- Pauli A Puolakkainen
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gruber HE, Sage EH, Norton HJ, Funk S, Ingram J, Hanley EN. Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse. J Histochem Cytochem 2005; 53:1131-8. [PMID: 15879573 DOI: 10.1369/jhc.5a6687.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SPARC (secreted protein, acidic, and rich in cysteine) is a matricellular protein that is present in the intervertebral disc; in man, levels of SPARC decrease with aging and degeneration. In this study, we asked whether targeted deletion of SPARC in the mouse influenced disc morphology. SPARC-null and wild-type (WT) mice were studied at 0.3-21 months of age. Radiologic examination of spines from 2-month-old SPARC-null mice revealed wedging, endplate calcification, and sclerosis, features absent in age-matched WT spines. Discs from 3-month-old SPARC-null mice had a greater number of annulus cells than those of WT animals (1884.6 +/- 397.9 [mean +/- SD] vs 1500.2 +/- 188.2, p=0.031). By 19 months discs from SPARC-null mice contained fewer cells than WT counterparts (1383.6 +/- 363.3 vs 1466.8 +/- 148.0, p=0.033). Histology of midsagittal spines showed herniations of lower lumbar discs of SPARC-null mice ages 14-19 months; in contrast, no herniations were seen in WT age-matched animals. Ultrastructural studies showed uniform collagen fibril diameters in the WT annulus, whereas in SPARC-null disc fibrils were of variable size with irregular margins. Consistent with the connective tissue deficits observed in other tissues of SPARC-null mice, our findings support a fundamental role for SPARC in the production, assembly, or maintenance of the disc extracellular matrix.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Barker TH, Framson P, Puolakkainen PA, Reed M, Funk SE, Sage EH. Matricellular homologs in the foreign body response: hevin suppresses inflammation, but hevin and SPARC together diminish angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:923-33. [PMID: 15743803 PMCID: PMC1602349 DOI: 10.1016/s0002-9440(10)62312-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implanted foreign materials, used to restore or assist tissue function, elicit an initial acute inflammatory response followed by chronic fibrosis that leads to the entrapment of the biomaterial in a thick, poorly vascularized collagenous capsule. Matricellular proteins, secreted macromolecules that interact with extracellular matrix proteins but do not in themselves serve structural roles, have been identified as important mediators of the foreign body response that includes inflammation, angiogenesis, and collagen synthesis and assembly. In this report we delineate functions of hevin and SPARC, two homologs of the SPARC family of matricellular proteins, in the foreign body response. Despite their sequence similarity, hevin and SPARC mediate different aspects of this fibrotic response. Using mice with targeted gene deletions, we show that hevin is central to the progression of biomaterial-induced inflammation whereas SPARC regulates the formation of the collagenous capsule. Although vascular density within the capsule is unaltered in the absence of either protein, SPARC-hevin double-null capsules show substantially increased numbers of vessels, indicating compensatory functions for these two proteins in the inhibition of angiogenesis. These results provide important information for further development of implant technology.
Collapse
Affiliation(s)
- Thomas H Barker
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Ave., Seattle, WA 98101, USA
| | | | | | | | | | | |
Collapse
|
40
|
Reed MJ, Bradshaw AD, Shaw M, Sadoun E, Han N, Ferara N, Funk S, Puolakkainen P, Sage EH. Enhanced angiogenesis characteristic of SPARC-null mice disappears with age. J Cell Physiol 2005; 204:800-7. [PMID: 15795937 DOI: 10.1002/jcp.20348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The impairment of angiogenesis in aging has been attributed, in part, to alterations in proteins associated with the extracellular matrix (ECM). SPARC (secreted protein acidic and rich in cysteine/osteonectin/BM-40) is a matricellular protein that regulates endothelial cell function as well as cell-ECM interactions. We have previously shown that angiogenesis, as reflected by fibrovascular invasion into subcutaneously implanted polyvinyl alcohol (PVA) sponges, is increased in SPARC-null mice (6-9 months of age) relative to their wild-type (WT) counterparts. In this study, we define the influence of aging on (a) the expression of SPARC and (b) fibrovascular invasion into sponge implants in SPARC-null and WT mice. The expression of SPARC in fibroblasts and endothelial cells derived from young donors (humans mean age less than 30 years and mice 4-6 months of age) and old donors (humans mean age over 65 years and mice 22-27 months of age) decreased 1.6 to 2.3-fold with age. Analysis of fibrovascular invasion into sponges implanted into old (22-27 months) SPARC-null and WT mice showed no differences in percent area of invasion or collagenous ECM. Moreover, sponges from old SPARC-null and WT mice contained similar levels of VEGF that were significantly lower than those from young (4-6 months) mice. In contrast to fibroblasts from young SPARC-null mice, dermal fibroblasts from old SPARC-null mice did not migrate farther, proliferate faster, or produce greater amounts of VEGF relative to their old WT counterparts. However, when stimulated with TGF-beta1, primary cells isolated from the sponge implants, and dermal fibroblasts from both old SPARC-null and WT mice, showed marked increases in VEGF secretion. These data indicate that aging results in a loss of enhanced angiogenesis in SPARC-null mice, as a result of the detrimental impact of age on cellular functions, collagen deposition, and VEGF synthesis. However, the influence of aging on these processes may be reversed, in part, by growth factor stimulation.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, The University of Washington, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bach MHM, Sadoun E, Reed MJ. Defects in activation of nitric oxide synthases occur during delayed angiogenesis in aging. Mech Ageing Dev 2004; 126:467-73. [PMID: 15722105 DOI: 10.1016/j.mad.2004.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 08/16/2004] [Accepted: 10/11/2004] [Indexed: 11/28/2022]
Abstract
Angiogenesis, the formation of new vessels from pre-existing vasculature, is impaired in aging. This is due, in part, to a lack of regulatory molecules such as nitric oxide (NO). We wished to test the hypothesis that there are deficits in the pathways that mediate NO production during angiogenesis (as defined by fibrovascular invasion into a polyvinyl alcohol (PVA) sponge implant), in aged mice in comparison to young mice. Sponges were implanted subcutaneously in young (6-8 months old, n=11) and aged (23-25 months old, n=13) mice and sampled at 14 and 19 days. Sections from the implants were stained with antibodies against vascular endothelial growth factor receptor 2 (VEGFR-2), Akt, phosphorylated Akt (p-Akt), endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), inducible NOS (iNOS), and 3-nitrotyrosine (3-NT, a marker for nitrosylated proteins). Expression of VEGFR-2 was similar in the sponges of young and aged mice. Moreover, there were no significant differences in levels of Akt or its phosphorylated form in sponges from young and aged mice at 14 and 19 d. In marked contrast, levels of eNOS, p-eNOS and iNOS were significantly decreased in sponges from aged mice relative to young mice (p<0.02 for eNOS, p-eNOS and <0.01 for iNOS between young and aged mice). Concomitantly, there was diminished expression of 3-NT in the sponges from aged mice (p<0.05). Our data indicate that defects in the activation of nitric oxide synthases result in decreased NO production in aged tissues relative to young tissues. We propose that the subsequent lack of NO contributes to impaired angiogenesis in aging.
Collapse
Affiliation(s)
- Mary H M Bach
- Department of Medicine, Division of Gerontology and Geriatric Medicine, Harborview Medical Center Research and Training Building, School of Medicine, University of Washington, Box 359755, 325 9th Ave, Seattle, WA 98104-2499, USA
| | | | | |
Collapse
|
42
|
Puolakkainen PA, Brekken RA, Muneer S, Sage EH. Enhanced Growth of Pancreatic Tumors in SPARC-Null Mice Is Associated With Decreased Deposition of Extracellular Matrix and Reduced Tumor Cell Apoptosis. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.215.2.4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
SPARC, a matricellular glycoprotein, modulates cellular interaction with the extracellular matrix (ECM). Tumor growth and metastasis occur in the context of the ECM, the levels and deposition of which are controlled in part by SPARC. Tumor-derived SPARC is reported to stimulate or retard tumor progression depending on the tumor type, whereas the function of host-derived SPARC in tumorigenesis has not been explored fully. To evaluate the function of endogenous SPARC, we have examined the growth of pancreatic tumors in SPARC-null (SP−/−) mice and their wild-type (SP+/+) counterparts. Mouse pancreatic adenocarcinoma cells injected s.c. grew significantly faster in SP−/− mice than cells injected into SP+/+ animals, with mean tumor weights at sacrifice of 0.415 ± 0.08 and 0.086 ± 0.03 g (P < 0.01), respectively. Lack of endogenous SPARC resulted in decreased collagen deposition and fiber formation, alterations in the distribution of tumor-infiltrating macrophages, and decreased tumor cell apoptosis. There was no difference in microvessel density of tumors from SP−/− or SP+/+ mice. However, tumors grown in SP−/− had a lower percentage of blood vessels that expressed smooth muscle α-actin, a marker of pericytes. These data reflect the importance of ECM deposition in regulating tumor growth and demonstrate that host-derived SPARC is a critical factor in the response of host tissue to tumorigenesis.
Collapse
Affiliation(s)
- Pauli A. Puolakkainen
- 1Department of Vascular Biology, Hope Heart Institute, and
- 2Department of Medicine, University of Washington, Seattle, Washington
- 3Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland; and
| | - Rolf A. Brekken
- 1Department of Vascular Biology, Hope Heart Institute, and
- 4Division of Surgical Oncology, Department of Pharmacology, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sabeeha Muneer
- 4Division of Surgical Oncology, Department of Pharmacology, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - E. Helene Sage
- 1Department of Vascular Biology, Hope Heart Institute, and
| |
Collapse
|
43
|
Abstract
The process of angiogenesis, during which new blood vessels are formed, is impaired during aging. This Perspective describes many of the myriad components of the angiogenic response that are altered with age. In addition, the impact of impaired angiogenesis on wound healing, vascular disease, and cancer in the aged is discussed.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98104, USA.
| | | |
Collapse
|
44
|
Vozzi G, Previti A, Ciaravella G, Ahluwalia A. Microfabricated fractal branching networks. ACTA ACUST UNITED AC 2004; 71:326-33. [PMID: 15376267 DOI: 10.1002/jbm.a.30167] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this article, we demonstrate how a combination of engineering and biological techniques could lead to the realization of branched microstructures that can be used for the repair of damaged vascularized tissue. Recursive "treelike" networks were first generated by using fractal algorithms based on Murray's equation for vascular branching as well as allometric scaling rules. Two- and three-dimensional branching patterns with different levels of complexity were then microfabricated from poly-lactide-co-glycolide (PLGA) by using the pressure-assisted microsyringe (PAM) system developed in our laboratory. Human endothelial cells isolated from umbilical cords were seeded on the microfabricated branched scaffolds to evaluate their effectiveness in supporting site-specific cell adhesion. The results show that cell densities on the networks increase with complexity up to the sixth level and are then constant independent of branching level. The implications of this finding are discussed in terms of contact inhibition of "capillaries."
Collapse
Affiliation(s)
- G Vozzi
- Centro Interdipartimentale di Ricerca E. Piaggio, Faculty of Engineering, via Diotisalvi 2, University of Pisa, 56126 Pisa, Italy
| | | | | | | |
Collapse
|
45
|
Sadoun E, Reed MJ. Impaired angiogenesis in aging is associated with alterations in vessel density, matrix composition, inflammatory response, and growth factor expression. J Histochem Cytochem 2003; 51:1119-30. [PMID: 12923237 DOI: 10.1177/002215540305100902] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is generally accepted that angiogenesis is delayed in aging. To define the effects of age on the neovascular response, polyvinyl alcohol sponges were implanted SC in young (6-8 months old, n=11) and aged (23-25 months old, n=13) mice and sampled at 14 and 19 days. Angiogenic invasion was significantly delayed in aged mice at 14d relative to young at 14d (% area of invasion 9.0 +/- 3.7 vs 19.0 +/- 5.6; p=0.02). Although microvessel morphology and basement membrane composition were similar between the age groups, a significant decrease in capillary density was noted in aged tissues at 14d (7.5 +/- 4.1) and 19d (12.1 +/- 2.8) relative to young at 14d (18.7 +/- 2.3) (p<0.01 A14d vs Y14d). In comparison to young at 14d, the inflammatory response was decreased by 43 +/- 2.9% and 36 +/- 7.8% in aged mice at 14d and 19d, respectively. Tissues of aged mice showed less newly deposited collagen. There was a lack of expression of transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor (VEGF) in aged mice at 14d (0.63 +/- 0.3) and 19d (1.14 +/- 0.5) vs young at 14d (1.92 +/- 0.5) (p< or =0.01 A14d vs Y14d for VEGF). However, similar production of VEGF receptor2 was observed. In contrast to young mice, there was significantly increased expression of thrombospondin-2 (TSP-2) in aged mice from 14d (14.6 x 10(3) +/- 7.3 x 10(3)) to 19d (34.9 x 10(3) +/- 17 x 10(3)). We conclude that angiogenesis in aging is not merely delayed, but is altered due to multiple impairments.
Collapse
Affiliation(s)
- Eman Sadoun
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104, USA.
| | | |
Collapse
|
46
|
Bradshaw AD, Graves DC, Motamed K, Sage EH. SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci U S A 2003; 100:6045-50. [PMID: 12721366 PMCID: PMC156323 DOI: 10.1073/pnas.1030790100] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Secreted protein acidic and rich in cysteine/osteonectin/BM-40 (SPARC) is a matrix-associated protein that elicits changes in cell shape, inhibits cell-cycle progression, and influences the synthesis of extracellular matrix (ECM). The absence of SPARC in mice gives rise to aberrations in the structure and composition of the ECM that result in generation of cataracts, development of severe osteopenia, and accelerated closure of dermal wounds. In this report we show that SPARC-null mice have greater deposits of s.c. fat and larger epididymal fat pads in comparison with wild-type mice. Similar to earlier studies of SPARC-null dermis, we observed a reduction in collagen I in SPARC-null fat pads in comparison with wild-type. Although elevated levels of serum leptin were observed in SPARC-null mice, their overall body weights were not significantly different from those of wild-type counterparts. The diameters of adipocytes from SPARC-null versus wild-type epididymal fat pads were 252 +/- 61 and 161 +/- 33 microm (means +/- SD), respectively, and there was an increase in adipocyte number within SPARC-null fat pads in comparison with wild-type pads. Thus the absence of SPARC appears to result in an increase in the size of individual adipocytes as well as an increase in the number of adipocytes per fat pad. In fat pads isolated from wild-type mice, SPARC mRNA was associated with both the stromal/vascular and adipocyte fractions. We propose that SPARC limits the accumulation of adipose tissue in mice in part through its demonstrated effects on the regulation of cell shape and production of ECM.
Collapse
Affiliation(s)
- A D Bradshaw
- Department of Vascular Biology, Hope Heart Institute, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
47
|
Brekken RA, Puolakkainen P, Graves DC, Workman G, Lubkin SR, Sage EH. Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM. J Clin Invest 2003; 111:487-95. [PMID: 12588887 PMCID: PMC151926 DOI: 10.1172/jci16804] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SPARC, a 32-kDa glycoprotein, participates in the regulation of morphogenesis and cellular differentiation through its modulation of cell-matrix interactions. Major functions defined for SPARC in vitro are de-adhesion and antiproliferation. In vivo, SPARC is restricted in its expression to remodeling tissues, including pathologies such as cancer. However, the function of endogenous SPARC in tumor growth and progression is not known. Here, we report that implanted tumors grew more rapidly in mice lacking SPARC. We observed that tumors grown in SPARC null mice showed alterations in the production and organization of ECM components and a decrease in the infiltration of macrophages. However, there was no change in the levels of angiogenic growth factors in comparison to tumors grown in wild-type mice, although there was a statistically significant difference in total vascular area. Whereas SPARC did inhibit the growth of tumor cells in vitro, it did not have a demonstrable effect on the proliferation or apoptosis of tumor cells in vivo. These data indicate that host-derived SPARC is important for the appropriate organization of the ECM in response to implanted tumors and highlight the importance of the ECM in regulating tumor growth.
Collapse
Affiliation(s)
- Rolf A Brekken
- Department of Vascular Biology, The Hope Heart Institute, Seattle, Washington 98104-2046, USA
| | | | | | | | | | | |
Collapse
|
48
|
Puolakkainen P, Bradshaw AD, Kyriakides TR, Reed M, Brekken R, Wight T, Bornstein P, Ratner B, Sage EH. Compromised production of extracellular matrix in mice lacking secreted protein, acidic and rich in cysteine (SPARC) leads to a reduced foreign body reaction to implanted biomaterials. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:627-35. [PMID: 12547720 PMCID: PMC1851143 DOI: 10.1016/s0002-9440(10)63856-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SPARC (secreted protein, acidic and rich in cysteine), a matricellular glycoprotein, modulates the interaction of cells with the extracellular matrix (ECM). Recently, accelerated cutaneous wound closure and altered deposition of collagen were reported in SPARC-null mice. Herein we asked whether SPARC might influence the foreign body reaction to biomaterial implants. Polydimethylsiloxane (silicone rubber) disks and cellulose Millipore filters were implanted into wild-type and SPARC-null mice. In wild-type animals, significant levels of SPARC were observed in the cells and the ECM comprising the capsules around the implants. After 4 weeks, SPARC-null mice exhibited a significant decrease in the thickness of the foreign body capsule, as compared to that observed in wild-type mice. A significant reduction in capsular vascular density was also associated with the silicone implants in the SPARC-null animals. Electron microscopy revealed that collagen fibers in the capsules produced by SPARC-null mice were smaller and more uniform in size than those in wild-type animals. Furthermore, staining with picrosirius-red showed that the collagen fibers were less mature in SPARC-null than in wild-type mice. The altered ECM resulting in decreased capsular thickness, indicative of an altered foreign body reaction in SPARC-null mice, implicates SPARC as an important modulator of the encapsulation of implanted biomaterials.
Collapse
Affiliation(s)
- Pauli Puolakkainen
- Department of Vascular Biology, The Hope Heart Institute, University of Washington, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The term 'matricellular' has been applied to a group of extracellular proteins that do not contribute directly to the formation of structural elements in vertebrates but serve to modulate cell-matrix interactions and cell function. Our understanding of the mode of action of matricellular proteins has been advanced considerably by the recent elucidation of the phenotypes of mice that are deficient in these proteins. In many cases, aspects of these phenotypes have illuminated previously unsuspected consequences of the lack of appropriate interactions of cells with their environment.
Collapse
Affiliation(s)
- Paul Bornstein
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|