1
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
2
|
Madsen JJ, Persson E, Olsen OH. The intricate allostery in factor VIIa: triggering the trigger. J Thromb Haemost 2025; 23:1-10. [PMID: 39332529 DOI: 10.1016/j.jtha.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
In the last couple of decades, numerous investigations have shed considerable light on how precisely factor (F)VIIa mediates the initiation of blood coagulation upon association with its cofactor, tissue factor (TF). The role of the cofactor in this process is indispensable under physiological conditions, serving as a membrane-tethering allosteric activator of FVIIa also interacting with substrates (eg, FX). Available evidence reveals the induction and manifestation of complex allostery within FVIIa when stimulated by TF, involving at least 2 connected pathways spanning the interactive interface of the FVIIa-TF complex and the functional segments of FVIIa. Carefully designed FVIIa variants demonstrate corresponding modulations of their properties and response to TF-triggered allostery and activation. In addition, antibodies can stimulate FVIIa activity in both similar and distinctly different ways compared to that employed by TF. The mechanistic insights obtained through basic biochemical investigations have been validated through select engineered FVIIa constructs which, even in vivo, demonstrate beneficial, proof-of-concept effects. Altogether, we have recently gained unprecedented knowledge about and control over FVIIa allostery, enabling us to influence FVIIa activity in advanced manners and in a desired direction. Here, we summarize our current understanding of the allosteric activation of FVIIa ending up with some prospects of future investigations.
Collapse
Affiliation(s)
- Jesper J Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| | | | - Ole H Olsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Ortiz M, Esteban MÁ. Biology and functions of fish thrombocytes: A review. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109509. [PMID: 38493985 DOI: 10.1016/j.fsi.2024.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review examines the role of fish thrombocytes, cells considered functionally analogous to platelets in terms of coagulation, but which differ in their origin and morphology. Despite the evolutionary distance between teleosts and mammals, genomic studies reveal conserved patterns in blood coagulation, although there are exceptions such as the absence of factors belonging to the contact system. Beyond coagulation, fish thrombocytes have important immunological functions. These cells express both proinflammatory genes and genes involved in antigen presentation, suggesting a role in both innate and adaptive immune responses. Moreover, having demonstrated their phagocytic abilities, crucial in the fight against pathogenic microorganisms, underscores their multifaceted involvement in immunity. Finally, the need for further research on the functions of these cells is highlighted, in order to better understand their involvement in maintaining the health of aquaculture fish. The use of standardized and automated methods for the analysis of these activities is advocated, emphaiszing their potential to facilitate the early detection of stress or infection, thus minimizing the economic losses that these adverse situations can generate in the field of aquaculture.
Collapse
Affiliation(s)
- María Ortiz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Stojanovski BM, Pelc LA, Di Cera E. Thrombin has dual trypsin-like and chymotrypsin-like specificity. J Thromb Haemost 2024; 22:1009-1015. [PMID: 38160728 PMCID: PMC10960677 DOI: 10.1016/j.jtha.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The residue at the site of activation of protein C is Arg in all species except the ray-finned fish, where it is Trp. This feature raises the question of whether thrombin is the physiological activator of protein C across vertebrates. OBJECTIVES To establish if thrombin can cleave at Trp residues. METHODS The activity of wild-type thrombin and mutant D189S was tested with a library of chromogenic substrates and toward wild-type protein C and mutants carrying substitutions at the site of cleavage. RESULTS Thrombin has trypsin-like and chymotrypsin-like specificity and cleaves substrates at Arg or Trp residues. Cleavage at Arg is preferred, but cleavage at Trp is significant and comparable with that of chymotrypsin. The D189S mutant of thrombin has broad specificity and cleaves at basic and aromatic residues without significant preference. Thrombin also cleaves natural substrates at Arg or Trp residues, showing activity toward protein C across vertebrates, including the ray-finned fish. The rate of activation of protein C in the ray-finned fish is affected by the sequence preceding Trp at the scissile bond. CONCLUSION The results provide a possible solution for the paradoxical presence of a Trp residue at the site of cleavage of protein C in ray-finned fish and support thrombin as the physiological activator of protein C in all vertebrates. The dual trypsin-like and chymotrypsin-like specificity of thrombin suggests that the spectrum of physiological substrates of this enzyme is broader currently assumed.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
5
|
Stojanovski BM, Di Cera E. Comparative sequence analysis of vitamin K-dependent coagulation factors. J Thromb Haemost 2022; 20:2837-2849. [PMID: 36156849 PMCID: PMC9669250 DOI: 10.1111/jth.15897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prothrombin, protein C, and factors VII, IX, and X are vitamin K (VK)-dependent coagulation proteins that play an important role in the initiation, amplification, and subsequent attenuation of the coagulation response. Blood coagulation evolved in the common vertebrate ancestor as a specialization of the complement system and immune response, which in turn bear close evolutionary ties with developmental enzyme cascades. There is currently no comprehensive analysis of the evolutionary changes experienced by these coagulation proteins during the radiation of vertebrates and little is known about conservation of residues that are important for zymogen activation and catalysis. OBJECTIVES To characterize the conservation level of functionally important residues among VK-dependent coagulation proteins from different vertebrate lineages. METHODS The conservation level of residues important for zymogen activation and catalysis was analyzed in >1600 primary sequences of VK-dependent proteins. RESULTS Functionally important residues are most conserved in prothrombin and least conserved in protein C. Some of the most profound functional modifications in protein C occurred in the ancestor of bony fish when the basic residue in the activation site was replaced by an aromatic residue. Furthermore, during the radiation of placental mammals from marsupials, protein C acquired a cysteine-rich insert that introduced an additional disulfide in the EGF1 domain and evolved a proprotein convertase cleavage site in the activation peptide linker that also became significantly elongated. CONCLUSIONS Sequence variabilities at functionally important residues may lead to interspecies differences in the zymogen activation and catalytic properties of orthologous VK-dependent proteins.
Collapse
Affiliation(s)
- Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
6
|
Abstract
Intraoperative bleeding and postoperative bleeding are major surgical complications. Tissue sealants, hemostats, and adhesives provide the armamentarium for establishing hemostatic balance, including the tissue sealant fibrin. Fibrin sealants combine advantages including instantaneous effect, biocompatibility, and biodegradability. However, several challenges remain. This review summarizes current fibrin product generations and highlights new trends and potential strategies for future improvement.
Collapse
Affiliation(s)
- Matthias Beudert
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
7
|
Hsueh YM, Chen WJ, Lin YC, Huang YL, Shiue HS, Lin YF, Hsieh RL, Chen HH. Combined effects of nucleotide-binding domain-like receptor protein 3 polymorphisms and environmental metals exposure on chronic kidney disease. Sci Rep 2022; 12:6307. [PMID: 35428826 PMCID: PMC9012248 DOI: 10.1038/s41598-022-10098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/01/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic inflammation is the cause of chronic kidney disease (CKD). The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome plays a vital role in the inflammation process and is associated with the regulatory effects of NLRP3 gene polymorphisms. This study evaluated the association between NLRP3 gene polymorphisms and CKD, and further explored whether the association of environmental metals with CKD varied by the NLRP3 genotypes. A total of 218 CKD patients and 427 age- and sex-matched healthy controls were recruited in this clinic-based case-control study. Patients were identified as having CKD if their estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 and stage 3-5 for at least 3 months. We examined the genotypes of fifteen common ssingle-nucleotide polymorphisms in NLRP3 genes. Concentrations of total urinary arsenic were examined by summing of urinary inorganic arsenic species. Concentrations of selenium, cadmium, and lead were measured from blood samples. Associations between NLRP3 polymorphisms, environmental metals exposure, and CKD were evaluated using multivariable logistic regression while controlling for confounders. We observed that the odds of carrying NLRP3 rs4925650 GA/AA genotypes, NLRP3 rs1539019 CA/AA genotypes, and NLRP3 rs10157379 CT/TT genotypes were significantly higher among CKD cases compared to controls, with the adjusted odds ratio (95% confidence interval) were 1.54 (1.01-2.36), 1.56 (1.04-2.33), and 1.59 (1.05-2.38), respectively. The significant multiplicative interactions were identified between high levels of blood lead and NLRP3 rs4925650 GA/AA genotypes; high levels of blood cadmium or low levels of plasma selenium and the NLRP3 haplotype (rs4925648, rs4925650, rs12048215, and rs10754555) C-A-A-C multiplicatively interacted to increase the risk of CKD. Our results imply that NLRP3 polymorphisms may play an important role in the development of environmental metals exposure related CKD.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Sorensen AB, Greisen PJ, Madsen JJ, Lund J, Andersen G, Wulff-Larsen PG, Pedersen AA, Gandhi PS, Overgaard MT, Østergaard H, Olsen OH. A systematic approach for evaluating the role of surface-exposed loops in trypsin-like serine proteases applied to the 170 loop in coagulation factor VIIa. Sci Rep 2022; 12:3747. [PMID: 35260627 PMCID: PMC8904457 DOI: 10.1038/s41598-022-07620-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Proteases play a major role in many vital physiological processes. Trypsin-like serine proteases (TLPs), in particular, are paramount in proteolytic cascade systems such as blood coagulation and complement activation. The structural topology of TLPs is highly conserved, with the trypsin fold comprising two β-barrels connected by a number of variable surface-exposed loops that provide a surprising capacity for functional diversity and substrate specificity. To expand our understanding of the roles these loops play in substrate and co-factor interactions, we employ a systematic methodology akin to the natural truncations and insertions observed through evolution of TLPs. The approach explores a larger deletion space than classical random or directed mutagenesis. Using FVIIa as a model system, deletions of 1–7 amino acids through the surface exposed 170 loop, a vital allosteric regulator, was introduced. All variants were extensively evaluated by established functional assays and computational loop modelling with Rosetta. The approach revealed detailed structural and functional insights recapitulation and expanding on the main findings in relation to 170 loop functions elucidated over several decades using more cumbersome crystallization and single deletion/mutation methodologies. The larger deletion space was key in capturing the most active variant, which unexpectedly had a six-amino acid truncation. This variant would have remained undiscovered if only 2–3 deletions were considered, supporting the usefulness of the methodology in general protease engineering approaches. Our findings shed further light on the complex role that surface-exposed loops play in TLP function and supports the important role of loop length in the regulation and fine-tunning of enzymatic function throughout evolution.
Collapse
Affiliation(s)
- Anders B Sorensen
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.,Department of Chemistry and Bioscience, Aalborg University, 9220, Ålborg, Denmark
| | | | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jacob Lund
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Gorm Andersen
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | | | | | | | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Ålborg, Denmark
| | | | - Ole H Olsen
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark. .,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Rast JP, D'Alessio S, Kraev I, Lange S. Post-translational protein deimination signatures in sea lamprey (Petromyzon marinus) plasma and plasma-extracellular vesicles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104225. [PMID: 34358577 DOI: 10.1016/j.dci.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Lampreys are a jawless vertebrate species belonging to an ancient vertebrate lineage that diverged from a common ancestor with humans ~500 million years ago. The sea lamprey (Petromyzon marinus) has a filter feeding ammocoete larval stage that metamorphoses into a parasitic adult, feeding both on teleost and elasmobranch fish. Lampreys are a valuable comparative model species for vertebrate immunity and physiology due to their unique phylogenetic position, unusual adaptive immune system, and physiological adaptions such as tolerance to salinity changes and urea. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which catalyses post-translational deimination/citrullination in target proteins, enabling proteins to gain new functions (moonlighting). The identification of deiminated protein targets in species across phylogeny may provide novel insights into post-translational regulation of physiological and pathophysiological processes. Extracellular vesicles (EVs) are membrane vesicles released from cells that carry cargos of small molecules and proteins for cellular communication, involved in both normal and pathological processes. The current study identified deimination signatures in proteins of both total plasma and plasma-EVs in sea lamprey and furthermore reports the first characterisation of plasma-EVs in lamprey. EVs were poly-dispersed in the size range of 40-500 nm, similar to what is observed in other taxa, positive for CD63 and Flotillin-1. Plasma-EV morphology was confirmed by transmission electron microscopy. Assessment of deimination/citrullination signatures in lamprey plasma and plasma-EVs, revealed 72 deimination target proteins involved in immunity, metabolism and gene regulation in whole plasma, and 37 target proteins in EVs, whereof 24 were shared targets. Furthermore, the presence of deiminated histone H3, indicative of gene-regulatory mechanisms and also a marker of neutrophil extracellular trap formation (NETosis), was confirmed in lamprey plasma. Functional protein network analysis revealed some differences in KEGG and GO pathways of deiminated proteins in whole plasma compared with plasma-EVs. For example, while common STRING network clusters in plasma and plasma-EVs included Peptide chain elongation, Viral mRNA translation, Glycolysis and gluconeogenesis, STRING network clusters specific for EVs only included: Cellular response to heat stress, Muscle protein and striated muscle thin filament, Nucleosome, Protein processing in endoplasmic reticulum, Nucleosome and histone deacetylase complex. STRING network clusters specific for plasma were: Adipokinetic hormone receptor activity, Fibrinogen alpha/beta chain family, peptidase S1A, Glutathione synthesis and recycling-arginine, Fructose 1,6-bisphosphate metabolic process, Carbon metabolism and lactate dehydrogenase activity, Post-translational protein phosphorylation, Regulation of insulin-like growth factor transport and clotting cascade. Overall, for the EV citrullinome, five STRING network clusters, 10 KEGG pathways, 15 molecular GO pathways and 29 Reactome pathways were identified, compared with nine STRING network clusters, six KEGG pathways, two Molecular GO pathways and one Reactome pathway specific for whole plasma; while further pathways were shared. The reported findings indicate that major pathways relevant for immunity and metabolism are targets of deimination in lamprey plasma and plasma-EVs, with some differences, and may help elucidating roles for the conserved PAD enzyme family in regulation of immune and metabolic function throughout phylogeny.
Collapse
Affiliation(s)
- Jonathan P Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, 30322, USA.
| | - Stefania D'Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
10
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
11
|
Schreuder M, Liu X, Cheung KL, Reitsma PH, Nicolaes GAF, Bos MHA. ptFVa ( Pseudonaja Textilis Venom-Derived Factor Va) Retains Structural Integrity Following Proteolysis by Activated Protein C. Arterioscler Thromb Vasc Biol 2021; 41:2263-2276. [PMID: 34162230 PMCID: PMC8288481 DOI: 10.1161/atvbaha.121.316038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: The Australian snake venom ptFV (Pseudonaja textilis venom-derived factor V) variant retains cofactor function despite APC (activated protein C)-dependent proteolysis. Here, we aimed to unravel the mechanistic principles by determining the role of the absent Arg306 cleavage site that is required for the inactivation of FVa (mammalian factor Va). Approach and Results: Our findings show that in contrast to human FVa, APC-catalyzed proteolysis of ptFVa at Arg306 and Lys507 does not abrogate ptFVa cofactor function. Remarkably, the structural integrity of APC-proteolyzed ptFVa is maintained indicating that stable noncovalent interactions prevent A2-domain dissociation. Using Molecular Dynamics simulations, we uncovered key regions located in the A1 and A2 domain that may be at the basis of this remarkable characteristic. Conclusions: Taken together, we report a completely novel role for uniquely adapted regions in ptFVa that prevent A2 domain dissociation. As such, these results challenge our current understanding by which strict regulatory mechanisms control FVa activity.
Collapse
Affiliation(s)
- Mark Schreuder
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands (M.S., K.L.C., P.H.R., M.H.A.B.)
| | - Xiaosong Liu
- Maastricht University, Department of Biochemistry, the Netherlands (X.L.)
| | - Ka Lei Cheung
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands (M.S., K.L.C., P.H.R., M.H.A.B.)
| | - Pieter H Reitsma
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands (M.S., K.L.C., P.H.R., M.H.A.B.).,VarmX B.V, Leiden, the Netherlands (P.H.R.)
| | | | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands (M.S., K.L.C., P.H.R., M.H.A.B.)
| |
Collapse
|
12
|
Jagau H, Packirisamy S, Brandon K, Herwald H. Plasma Protein Layer Concealment Protects Streptococcus pyogenes From Innate Immune Attack. Front Cell Infect Microbiol 2021; 11:633394. [PMID: 34094995 PMCID: PMC8173628 DOI: 10.3389/fcimb.2021.633394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Early recognition and elimination of invading pathogens by the innate immune system, is one of the most efficient host defense mechanisms preventing the induction of systemic complications from infection. To this end the host can mobilize endogenous antimicrobials capable of killing the intruder by perforating the microbial cell wall. Here, we show that Streptococcus pyogenes can shield its outer surface with a layer of plasma proteins. This mechanism protects the bacteria from an otherwise lytic attack by LL-37 and extracellular histones, allowing the bacteria to adjust their gene regulation to an otherwise hostile environment.
Collapse
Affiliation(s)
- Hilger Jagau
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Swathi Packirisamy
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Kyle Brandon
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.,UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Heiko Herwald
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Branchini A. The carboxyl-terminal region of coagulation serine proteases: A matter of cut and change. J Thromb Haemost 2021; 19:917-919. [PMID: 33792173 DOI: 10.1111/jth.15237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Cañas CA, Cañas F, Bautista-Vargas M, Bonilla-Abadía F. Role of Tissue Factor in the Pathogenesis of COVID-19 and the Possible Ways to Inhibit It. Clin Appl Thromb Hemost 2021; 27:10760296211003983. [PMID: 33784877 PMCID: PMC8020089 DOI: 10.1177/10760296211003983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 (Coronavirus Disease 2019) is a highly contagious infection and associated with high mortality rates, primarily in elderly; patients with heart failure; high blood pressure; diabetes mellitus; and those who are smokers. These conditions are associated to increase in the level of the pulmonary epithelium expression of angiotensin-converting enzyme 2 (ACE-2), which is a recognized receptor of the S protein of the causative agent SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Severe cases are manifested by parenchymal lung involvement with a significant inflammatory response and the development of microvascular thrombosis. Several factors have been involved in developing this prothrombotic state, including the inflammatory reaction itself with the participation of proinflammatory cytokines, endothelial dysfunction/endotheliitis, the presence of antiphospholipid antibodies, and possibly the tissue factor (TF) overexpression. ARS-Cov-19 ACE-2 down-regulation has been associated with an increase in angiotensin 2 (AT2). The action of proinflammatory cytokines, the increase in AT2 and the presence of antiphospholipid antibodies are known factors for TF activation and overexpression. It is very likely that the overexpression of TF in COVID-19 may be related to the pathogenesis of the disease, hence the importance of knowing the aspects related to this protein and the therapeutic strategies that can be derived. Different therapeutic strategies are being built to curb the expression of TF as a therapeutic target for various prothrombotic events; therefore, analyzing this treatment strategy for COVID-19-associated coagulopathy is rational. Medications such as celecoxib, cyclosporine or colchicine can impact on COVID-19, in addition to its anti-inflammatory effect, through inhibition of TF.
Collapse
Affiliation(s)
- Carlos A. Cañas
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| | - Felipe Cañas
- Unit of Cardiology, Clínica Medellín, Medellín, Colombia
| | | | - Fabio Bonilla-Abadía
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
| |
Collapse
|
15
|
Anigbo GC, Onyekwere OA, Akwukwaegbu PI, Lackson A, Bando CD, Okoye OM, Okoroafor AB, Esemaya P, Patrick C. OG. EVALUATION OF THE HAEMOSTATIC POTENTIALS OF CRUDE METHANOLIC LEAF EXTRACT OF PERSEA AMERICANA IN WISTAR RATS. ACTA CHEMICA IASI 2021. [DOI: 10.47743/achi-2021-1-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
16
|
Marancik DP, Perrault JR, Komoroske LM, Stoll JA, Kelley KN, Manire CA. Plasma proteomics of green turtles ( Chelonia mydas) reveals pathway shifts and potential biomarker candidates associated with health and disease. CONSERVATION PHYSIOLOGY 2021; 9:coab018. [PMID: 33959286 PMCID: PMC8084024 DOI: 10.1093/conphys/coab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 05/08/2023]
Abstract
Evaluating sea turtle health can be challenging due to an incomplete understanding of pathophysiologic responses in these species. Proteome characterization of clinical plasma samples can provide insights into disease progression and prospective biomarker targets. A TMT-10-plex-LC-MS/MS platform was used to characterize the plasma proteome of five, juvenile, green turtles (Chelonia mydas) and compare qualitative and quantitative protein changes during moribund and recovered states. The 10 plasma samples yielded a total of 670 unique proteins. Using ≥1.2-fold change in protein abundance as a benchmark for physiologic upregulation or downregulation, 233 (34.8%) were differentially regulated in at least one turtle between moribund and recovered states. Forty-six proteins (6.9%) were differentially regulated in all five turtles with two proteins (0.3%) demonstrating a statistically significant change. A principle component analysis showed protein abundance loosely clustered between moribund samples or recovered samples and for turtles that presented with trauma (n = 3) or as intestinal floaters (n = 2). Gene Ontology terms demonstrated that moribund samples were represented by a higher number of proteins associated with blood coagulation, adaptive immune responses and acute phase response, while recovered turtle samples included a relatively higher number of proteins associated with metabolic processes and response to nutrients. Abundance levels of 48 proteins (7.2%) in moribund samples significantly correlated with total protein, albumin and/or globulin levels quantified by biochemical analysis. Differentially regulated proteins identified with immunologic and physiologic functions are discussed for their possible role in the green turtle pathophysiologic response and for their potential use as diagnostic biomarkers. These findings enhance our ability to interpret sea turtle health and further progress conservation, research and rehabilitation programs for these ecologically important species.
Collapse
Affiliation(s)
- David P Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
- Corresponding author: Tel: 473-444-4175.
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway One, Juno Beach, FL 33408, USA
| | - Lisa M Komoroske
- College of Natural Resources, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Jamie A Stoll
- College of Natural Resources, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Kristina N Kelley
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - Charles A Manire
- Loggerhead Marinelife Center, 14200 US Highway One, Juno Beach, FL 33408, USA
| |
Collapse
|
17
|
Kawecki C, Aymonnier K, Ferrière S, Venisse L, Arocas V, Boulaftali Y, Christophe OD, Lenting PJ, Bouton MC, Denis CV. Development and characterization of single-domain antibodies neutralizing protease nexin-1 as tools to increase thrombin generation. J Thromb Haemost 2020; 18:2155-2168. [PMID: 32495984 DOI: 10.1111/jth.14940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Protease nexin-1 (PN-1) is a member of the serine protease inhibitor (Serpin)-family, with thrombin as its main target. Current polyclonal and monoclonal antibodies against PN-1 frequently cross-react with plasminogen activator inhibitor-1 (PAI-1), a structurally and functionally homologous Serpin. OBJECTIVES Here, we aimed to develop inhibitory single-domain antibodies (VHHs) that show specific binding to both human (hPN-1) and murine (mPN-1) PN-1. METHODS PN-1-binding VHHs were isolated via phage-display using llama-derived or synthetic VHH-libraries. Following bacterial expression, purified VHHs were analyzed in binding and activity assays. RESULTS AND CONCLUSIONS By using a llama-derived library, 2 PN-1 specific VHHs were obtained (KB-PN1-01 and KB-PN1-02). Despite their specificity, none displayed inhibitory activity toward hPN-1 or mPN-1. From the synthetic library, 4 VHHs (H12, B11, F06, A08) could be isolated that combined efficient binding to both hPN-1 and mPN-1 with negligible binding to PAI-1. Of these, B11, F06, and A08 were able to fully restore thrombin activity by blocking PN-1. As monovalent VHH, half-maximal inhibitory concentration values for hPN-1 were 50 ± 10, 290 ± 30, and 960 ± 390 nmol/L, for B11, F06, and A08, respectively, and 1580 ± 240, 560 ± 130, and 2880 ± 770 nmol/L for mPN-1. The inhibitory potential was improved 4- to 7-fold when bivalent VHHs were engineered. Importantly, all VHHs could block PN-1 activity in plasma as well as PN-1 released from activated platelets, one of the main sources of PN-1 during hemostasis. In conclusion, we report the generation of inhibitory anti-PN-1 antibodies using a specific approach to avoid cross-reactivity with the homologous Serpin PAI-1.
Collapse
Affiliation(s)
- Charlotte Kawecki
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1148, Université de Paris, Paris, France
| | - Karen Aymonnier
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1148, Université de Paris, Paris, France
| | - Stephen Ferrière
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Laurence Venisse
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1148, Université de Paris, Paris, France
| | - Véronique Arocas
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1148, Université de Paris, Paris, France
| | - Yacine Boulaftali
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1148, Université de Paris, Paris, France
| | - Olivier D Christophe
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marie-Christine Bouton
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1148, Université de Paris, Paris, France
| | - Cécile V Denis
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
18
|
Fröbert O, Frøbert AM, Kindberg J, Arnemo JM, Overgaard MT. The brown bear as a translational model for sedentary lifestyle-related diseases. J Intern Med 2020; 287:263-270. [PMID: 31595572 DOI: 10.1111/joim.12983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sedentary lifestyle accelerates biological ageing, is a major risk factor for developing metabolic syndrome and is associated with cardiovascular disease, diabetes mellitus, kidney failure, sarcopenia and osteoporosis. In contrast to the linear path to worsening health in humans with metabolic syndrome, brown bears have developed a circular metabolic plasticity enabling these animals to tolerate obesity and a 'sedentary lifestyle' during hibernation and exit the den metabolically healthy in spring. Bears are close to humans physiology wise, much closer than rodents, the preferred experimental animals in medical research, and may better serve as translational model to develop treatments for lifestyle-related diseases. In this review, aspects of brown bear hibernation survival strategies are outlined and conceivable experimental strategies to learn from bears are described.
Collapse
Affiliation(s)
- O Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| | - A M Frøbert
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - J Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.,Norwegian Institute for Nature Research, Trondheim, Norway
| | - J M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | - M T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Soslau G. The role of the red blood cell and platelet in the evolution of mammalian and avian endothermy. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:113-127. [DOI: 10.1002/jez.b.22922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/04/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphia Pennsylvania
| |
Collapse
|
20
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
21
|
Pascreau T, de la Morena-Barrio ME, Lasne D, Serrano M, Bianchini E, Kossorotoff M, Boddaert N, Bruneel A, Seta N, Vicente V, de Lonlay P, Corral J, Borgel D. Elevated thrombin generation in patients with congenital disorder of glycosylation and combined coagulation factor deficiencies. J Thromb Haemost 2019; 17:1798-1807. [PMID: 31271700 DOI: 10.1111/jth.14559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation are rare inherited diseases affecting many different proteins. The lack of glycosylation notably affects the hemostatic system and leads to deficiencies of both procoagulant and anticoagulant factors. OBJECTIVE To assess the hemostatic balance in patients with multiple coagulation disorders by using a thrombin generation assay. METHOD We performed conventional coagulation assays and a thrombin generation assay on samples from patients with congenital disorder of glycosylation. The thrombin generation assay was performed before and after activation of the protein C system by the addition of soluble thrombomodulin. RESULTS A total of 35 patients were included: 71% and 57% had low antithrombin and factor XI levels, respectively. Protein C and protein S levels were abnormally low in 29% and 26% of the patients, respectively, whereas only 11% displayed low factor IX levels. Under baseline conditions, the thrombin generation assay revealed a significantly higher endogenous thrombin potential and thrombin peak in patients, relative to controls. After spiking with thrombomodulin, we observed impaired involvement of the protein C system. Hence, 54% of patients displayed a hypercoagulant phenotype in vitro. All the patients with a history of stroke-like episodes or thrombosis displayed this hypercoagulant phenotype. CONCLUSION A thrombin generation assay revealed a hypercoagulant in vitro phenotype under baseline condition; this was accentuated by impaired involvement of the protein C system. This procoagulant phenotype may thus reflect the risk of severe vascular complications. Further research will have to determine whether the thrombin generation assay is predictive of vascular events.
Collapse
Affiliation(s)
- Tiffany Pascreau
- Laboratoire d'Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Le Kremlin-Bicêtre, France
| | - Maria E de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Dominique Lasne
- Laboratoire d'Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Le Kremlin-Bicêtre, France
| | - Mercedes Serrano
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, U-703 Center for Biomedical Research on Rare Diseases, Barcelona, Spain
- Department of Genetic Medicine, Institute of Pediatric Research-Hospital Sant Joan de Déu, U-703 Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | | | - Manoelle Kossorotoff
- Paediatric Neurology Department, French Center for Paediatric Stroke, AP-HP, Hôpital Necker-Enfants-Malades, Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Necker-Enfants-Malades, Paris, France
- Institut Imagine, INSERM U1000 and UMR 1163, Paris, France
| | - Arnaud Bruneel
- Biochimie Métabolique, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Nathalie Seta
- Biochimie Métabolique, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Pascale de Lonlay
- Reference Center of Metabolism, Imagine Institute, AP-HP, Hôpital Necker-Enfants Maladies, University Paris-Descartes, Paris, France
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Delphine Borgel
- Laboratoire d'Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
22
|
Winter WE, Greene DN, Beal SG, Isom JA, Manning H, Wilkerson G, Harris N. Clotting factors: Clinical biochemistry and their roles as plasma enzymes. Adv Clin Chem 2019; 94:31-84. [PMID: 31952574 DOI: 10.1016/bs.acc.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to describe structure and function of the multiple proteins of the coagulation system and their subcomponent domains. Coagulation is the process by which flowing liquid blood plasma is converted to a soft, viscous gel entrapping the cellular components of blood including red cells and platelets and thereby preventing extravasation of blood. This process is triggered by the minimal proteolysis of plasma fibrinogen. This transforms the latter to sticky fibrin monomers which polymerize into a network. The proteolysis of fibrinogen is a function of the trypsin-like enzyme termed thrombin. Thrombin in turn is activated by a cascade of trypsin-like enzymes that we term coagulation factors. In this review we examine the mechanics of the coagulation cascade with a view to the structure-function relationships of the proteins. We also note that two of the factors have no trypsin like protease domain but are essential cofactors or catalysts for the proteases. This review does not discuss the major role of platelets except to highlight their membrane function with respect to the factors. Coagulation testing is a major part of routine diagnostic clinical pathology. Testing is performed on specimens from individuals either with bleeding or with thrombotic disorders and those on anticoagulant medications. We examine the basic in-vitro laboratory coagulation tests and review the literature comparing the in vitro and in vivo processes. In vitro clinical testing typically utilizes plasma specimens and non-physiological or supraphysiological activators. Because the review focuses on coagulation factor structure, a brief overview of the evolutionary origins of the coagulation system is included.
Collapse
Affiliation(s)
- William E Winter
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States
| | - Dina N Greene
- Laboratory Services, Kaiser Permanente, Renton, WA, United States
| | - Stacy G Beal
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States
| | - James A Isom
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States
| | | | | | - Neil Harris
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States.
| |
Collapse
|
23
|
Iorio A, Stonebraker JS, Chambost H, Makris M, Coffin D, Herr C, Germini F. Establishing the Prevalence and Prevalence at Birth of Hemophilia in Males: A Meta-analytic Approach Using National Registries. Ann Intern Med 2019; 171:540-546. [PMID: 31499529 DOI: 10.7326/m19-1208] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The large observed variability in hemophilia prevalence prevents robust estimation of burden of disease. OBJECTIVE To estimate the prevalence and prevalence at birth of hemophilia and the associated life expectancy disadvantage. DESIGN Random-effects meta-analysis of registry data. SETTING Australia, Canada, France, Italy, New Zealand, and the United Kingdom. PARTICIPANTS Male patients with hemophilia A or B. MEASUREMENTS Prevalence of hemophilia as a proportion of cases to the male population, prevalence of hemophilia at birth as a proportion of cases to live male births by year of birth, life expectancy disadvantage as a 1 - ratio of prevalence to prevalence at birth, and expected number of patients worldwide based on prevalence in high-income countries and prevalence at birth. RESULTS Prevalence (per 100 000 males) is 17.1 cases for all severities of hemophilia A, 6.0 cases for severe hemophilia A, 3.8 cases for all severities of hemophilia B, and 1.1 cases for severe hemophilia B. Prevalence at birth (per 100 000 males) is 24.6 cases for all severities of hemophilia A, 9.5 cases for severe hemophilia A, 5.0 cases for all severities of hemophilia B, and 1.5 cases for severe hemophilia B. The life expectancy disadvantage for high-income countries is 30% for hemophilia A, 37% for severe hemophilia A, 24% for hemophilia B, and 27% for severe hemophilia B. The expected number of patients with hemophilia worldwide is 1 125 000, of whom 418 000 should have severe hemophilia. LIMITATION Details were insufficient to adjust for comorbid conditions and ethnicity. CONCLUSION The prevalence of hemophilia is higher than previously estimated. Patients with hemophilia still have a life expectancy disadvantage. Establishing prevalence at birth is a milestone toward assessing years of life lost, years of life with disability, and burden of disease. PRIMARY FUNDING SOURCE None.
Collapse
Affiliation(s)
- Alfonso Iorio
- McMaster University, Hamilton, Ontario, Canada (A.I., F.G.)
| | - Jeffrey S Stonebraker
- Poole College of Management at North Carolina State University, Raleigh, North Carolina (J.S.S.)
| | - Hervé Chambost
- La Timone Hospital of Assistance Publique - Hôpitaux de Marseille, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale, and Institut National de la Recherche Agronomique, Marseille, France (H.C.)
| | - Michael Makris
- University of Sheffield, Sheffield, United Kingdom (M.M.)
| | - Donna Coffin
- World Federation of Hemophilia, Montréal, Québec, Canada (D.C., C.H.)
| | - Christine Herr
- World Federation of Hemophilia, Montréal, Québec, Canada (D.C., C.H.)
| | | | | |
Collapse
|
24
|
Bravo-Pérez C, Vicente V, Corral J. Management of antithrombin deficiency: an update for clinicians. Expert Rev Hematol 2019; 12:397-405. [PMID: 31116611 DOI: 10.1080/17474086.2019.1611424] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction. Antithrombin is a serpin that inhibits multiple procoagulant serine proteases and acts as an endogenous anticoagulant. Thus, congenital antithrombin deficiency constitutes a major thrombophilic state, the most severe so far. Areas covered. In the present work, we globally review the biology, genetics, diagnosis, and management of congenital antithrombin deficiency, and also discuss puzzling questions and future perspectives regarding this severe inherited thrombophilia. Expert opinion. Although this disorder exerts high clinical heterogeneity, many carriers will need careful and long-term anticoagulation and/or thromboprophylaxis, especially in high-risk situations, such as surgery and pregnancy. Notably, antithrombin concentrates constitute a considerable arsenal for both treatment and prevention of acute venous thrombosis in subjects with antithrombin deficiency. Current evidences are based almost exclusively on retrospective case series, so an integrated functional, biochemical and molecular characterization will be of clinical relevance and guide hematologists' personalized decisions.
Collapse
Affiliation(s)
- Carlos Bravo-Pérez
- a Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación , Universidad de Murcia, IMIB-Arrixaca, CIBERER , Murcia , Spain
| | - Vicente Vicente
- a Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación , Universidad de Murcia, IMIB-Arrixaca, CIBERER , Murcia , Spain
| | - Javier Corral
- a Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación , Universidad de Murcia, IMIB-Arrixaca, CIBERER , Murcia , Spain
| |
Collapse
|
25
|
Mutch NJ. Regulation of Fibrinolysis by Platelets. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Anti-tissue factor pathway inhibitor (TFPI) therapy: a novel approach to the treatment of haemophilia. Int J Hematol 2018; 111:42-50. [PMID: 30302740 DOI: 10.1007/s12185-018-2548-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
Novel approaches to the treatment of haemophilia are needed due to the limitations of the current standard of care, factor replacement therapy. Aspirations include lessening the treatment burden and effectively preventing joint damage. Treating haemophilia by restoring thrombin generation may be an effective approach. A promising target for restoring thrombin generation is tissue factor pathway inhibitor (TFPI), a multivalent Kunitz-type serine protease inhibitor that regulates tissue factor-induced coagulation via factor Xa-dependent feedback inhibition of the tissue factor-factor VIIa complex. Inhibition of TFPI reverts the coagulation process to a more primitive state evolutionarily, whilst regulation by other natural inhibitors is preserved. An aptamer and three monoclonal antibodies directed against TFPI have been investigated in clinical trials. As well as improving thrombin generation in the range associated with mild haemophilia, anti-TFPI therapies have the advantage of subcutaneous administration. However, the therapeutic window needs to be defined along with the potential for complications due to the novel mechanism of action. This review provides an overview of TFPI, its role in normal coagulation, the rationale for TFPI inhibition, and a summary of anti-TFPI therapies, previously or currently in development.
Collapse
|
27
|
Dibiasi C, Plewka J, Ploszczanski L, Glanz V, Lichtenegger H, Windberger U. Viscoelasticity and structure of blood clots generated in-vitro by rheometry: A comparison between human, horse, rat, and camel. Clin Hemorheol Microcirc 2018; 69:515-531. [PMID: 29710696 DOI: 10.3233/ch-189203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Although the coagulation system is evolutionary well preserved, profound species differences exist in viscoelastic as well as in common laboratory tests of coagulation. OBJECTIVE Evaluating differences in clot formation and material characterisation of clots of four mammalian species on macro-, micro- and nanoscales by the means of rheometry, scanning electron microscopy (SEM) and small angle x-ray scattering (SAXS). METHODS Blood samples were collected from healthy human volunteers, laboratory rats (HL/LE inbred strain), warmblood horses and dromedary camels. Clot formation was observed by oscillating shear rheometry until plateau formation of the shear storage modulus G', at which point selected clots were prepared for scanning electron microscopy. SEM images were analysed for fibre diameter and fractal dimension. Additionally, scattering profiles for plasma and whole blood samples were obtained with SAXS. RESULTS Viscoelasticity of clots showed great interspecies variation: clots of rats and horses exhibited shorter clotting times and higher G' plateau values, when compared to human clots. Camel clots showed unique clotting characteristics with no G' plateau formation in the timeframe observed. Less differentiating features were found with SEM and SAXS, although the rat fibre network appears to be more convoluted and dense, which resulted in a higher fractal dimension. CONCLUSION Clotting kinetic differs between the species, which is not only of clinical interest, but could also be an important finding for animal models of blood coagulation.
Collapse
Affiliation(s)
- Christoph Dibiasi
- Department of Biomedical Research, Decentralized Biomedical Facilities, Medical University of Vienna, Austria
| | - Jacek Plewka
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Leon Ploszczanski
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Veronika Glanz
- Department of Biomedical Research, Decentralized Biomedical Facilities, Medical University of Vienna, Austria
| | - Helga Lichtenegger
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ursula Windberger
- Department of Biomedical Research, Decentralized Biomedical Facilities, Medical University of Vienna, Austria
| |
Collapse
|
28
|
Madsen JJ, Persson E, Olsen OH. Evolutionary conservation of the allosteric activation of factor VIIa by tissue factor in lamprey: comment. J Thromb Haemost 2018; 16:1450-1454. [PMID: 29733494 DOI: 10.1111/jth.14142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 11/28/2022]
Affiliation(s)
- J J Madsen
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - E Persson
- Hemophilia Biology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - O H Olsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Nadir Y, Brenner B. Novel strategies of coagulation inhibition for reducing tumor growth and angiogenesis. Thromb Res 2018; 164 Suppl 1:S153-S156. [DOI: 10.1016/j.thromres.2017.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
|
30
|
Beeler DL, Aird WC, Grant MA. Evolutionary conservation of the allosteric activation of factor VIIa by tissue factor in lamprey. J Thromb Haemost 2018; 16:734-748. [PMID: 29418058 PMCID: PMC5893411 DOI: 10.1111/jth.13968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Indexed: 11/28/2022]
Abstract
Essentials Tissue factor (TF) enhances factor VIIa (FVIIa) activity through structural and dynamic changes. We analyzed conservation of TF-activated FVIIa allosteric networks in extant vertebrate lamprey. Lamprey Tf/FVIIa molecular dynamics show conserved Tf-induced structural/dynamic FVIIa changes. Lamprey Tf activation of FVIIa allosteric networks follows molecular pathways similar to human. SUMMARY Background Previous studies have provided insight into the molecular basis of human tissue factor (TF) activation of activated factor VII (FVIIa). TF-induced allosteric networks of FVIIa activation have been rationalized through analysis of the dynamic changes and residue connectivities in the human soluble TF (sTF)/FVIIa complex structure during molecular dynamics (MD) simulation. Evolutionary conservation of the molecular mechanisms for TF-induced allosteric FVIIa activation between humans and extant vertebrate jawless fish (lampreys), where blood coagulation emerged more than 500 million years ago, is unknown and of considerable interest. Objective To model the sTf/FVIIa complex from cloned Petromyzon marinus lamprey sequences, and with comparisons to human sTF/FVlla investigate conservation of allosteric mechanisms of FVIIa activity enhancement by soluble TF using MD simulations. Methods Full-length cDNAs of lamprey tf and f7 were cloned and characterized. Comparative models of lamprey sTf/FVIIa complex and free FVIIa were determined based on constructed human sTF/FVIIa complex and free FVIIa models, used in full-atomic MD simulations, and characterized using dynamic network analysis approaches. Results Allosteric paths of correlated motion from Tf contact points in lamprey sTf/FVIIa to the FVIIa active site were determined and quantified, and were found to encompass residue-residue interactions along significantly similar paths compared with human. Conclusions Despite low conservation of residues between lamprey and human proteins, 30% TF and 39% FVII, the structural and protein dynamic effects of TF activation of FVIIa appear conserved and, moreover, present in extant vertebrate proteins from 500 million years ago when TF/FVIIa-initiated extrinsic pathway blood coagulation emerged.
Collapse
Affiliation(s)
- D L Beeler
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - W C Aird
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - M A Grant
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| |
Collapse
|
31
|
Grover SP, Mackman N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler Thromb Vasc Biol 2018; 38:709-725. [PMID: 29437578 DOI: 10.1161/atvbaha.117.309846] [Citation(s) in RCA: 462] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/25/2018] [Indexed: 12/21/2022]
Abstract
Tissue factor (TF) is the high-affinity receptor and cofactor for factor (F)VII/VIIa. The TF-FVIIa complex is the primary initiator of blood coagulation and plays an essential role in hemostasis. TF is expressed on perivascular cells and epithelial cells at organ and body surfaces where it forms a hemostatic barrier. TF also provides additional hemostatic protection to vital organs, such as the brain, lung, and heart. Under pathological conditions, TF can trigger both arterial and venous thrombosis. For instance, atherosclerotic plaques contain high levels of TF on macrophage foam cells and microvesicles that drives thrombus formation after plaque rupture. In sepsis, inducible TF expression on monocytes leads to disseminated intravascular coagulation. In cancer patients, tumors release TF-positive microvesicles into the circulation that may contribute to venous thrombosis. TF also has nonhemostatic roles. For instance, TF-dependent activation of the coagulation cascade generates coagulation proteases, such as FVIIa, FXa, and thrombin, which induce signaling in a variety of cells by cleavage of protease-activated receptors. This review will focus on the roles of TF in protective hemostasis and pathological thrombosis.
Collapse
Affiliation(s)
- Steven P Grover
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill
| | - Nigel Mackman
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill.
| |
Collapse
|
32
|
Kim S, Alsrhani A, Zafreen L, Khandekar G, Marlow FL, Abrams EW, Mullins MC, Jagadeeswaran P. G protein-coupled receptor gpr34l mutation affects thrombocyte function in zebrafish. Br J Haematol 2017; 180:412-419. [PMID: 29270984 DOI: 10.1111/bjh.15046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022]
Abstract
Haemostasis is a defence mechanism that has evolved to protect organisms from losing their circulating fluid. We have previously introduced zebrafish as a model to study the genetics of haemostasis to identify novel genes that play a role in haemostasis. Here, we identify a zebrafish mutant that showed prolonged time to occlusion (TTO) in the laser injury venous thrombosis assay. By linkage analysis and fine mapping, we found a mutation in the orphan G protein-coupled receptor 34 like gene (gpr34l) causing a change of Val to Glu in the third external loop of Gpr34l. We have shown that injection of zebrafish gpr34l RNA rescues the prolonged TTO defect. The thrombocytes from the mutant showed elevated levels of cAMP that supports the defective thrombocyte function. We also have demonstrated that knockdown of this gene by intravenous Vivo-Morpholino injections yielded a phenotype similar to the gpr34l mutation. These results suggest that the lack of functional Gpr34l leads to increased cAMP levels that result in defective thrombocyte aggregation.
Collapse
Affiliation(s)
- Seongcheol Kim
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Abdullah Alsrhani
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Lala Zafreen
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Gauri Khandekar
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Florence L Marlow
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elliott W Abrams
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
33
|
Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity - a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol 2017; 180:782-798. [PMID: 29265338 DOI: 10.1111/bjh.15062] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coagulation and innate immunity are linked evolutionary processes that orchestrate the host defence against invading pathogens and injury. The complement system is integral to innate immunity and shares numerous interactions with components of the haemostatic pathway, helping to maintain physiological equilibrium. The term 'immunothrombosis' was introduced in 2013 to embrace this process, and has become an area of much recent interest. What is less apparent in the literature however is an appreciation of the clinical manifestations of the coagulation-complement interaction and the consequences of dysregulation of either system, as seen in many inflammatory and thrombotic disease states, such as sepsis, trauma, atherosclerosis, antiphospholipid syndrome (APS), paroxysmal nocturnal haemoglobinuria (PNH) and some thrombotic microangiopathies to name a few. The growing appreciation of this immunothrombotic phenomenon will foster the drive for novel therapies in these disease states, including anticoagulants as immunomodulators and targeted molecular therapies.
Collapse
Affiliation(s)
- Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Zoe K McQuilten
- Transfusion Research Unit and Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Vic., Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
34
|
Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care 2017; 7:117. [PMID: 29197958 PMCID: PMC5712298 DOI: 10.1186/s13613-017-0339-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Host infection by a micro-organism triggers systemic inflammation, innate immunity and complement pathways, but also haemostasis activation. The role of thrombin and fibrin generation in host defence is now recognised, and thrombin has become a partner for survival, while it was seen only as one of the "principal suspects" of multiple organ failure and death during septic shock. This review is first focused on pathophysiology. The role of contact activation system, polyphosphates and neutrophil extracellular traps has emerged, offering new potential therapeutic targets. Interestingly, newly recognised host defence peptides (HDPs), derived from thrombin and other "coagulation" factors, are potent inhibitors of bacterial growth. Inhibition of thrombin generation could promote bacterial growth, while HDPs could become novel therapeutic agents against pathogens when resistance to conventional therapies grows. In a second part, we focused on sepsis-induced coagulopathy diagnostic challenge and stratification from "adaptive" haemostasis to "noxious" disseminated intravascular coagulation (DIC) either thrombotic or haemorrhagic. Besides usual coagulation tests, we discussed cellular haemostasis assessment including neutrophil, platelet and endothelial cell activation. Then, we examined therapeutic opportunities to prevent or to reduce "excess" thrombin generation, while preserving "adaptive" haemostasis. The fail of international randomised trials involving anticoagulants during septic shock may modify the hypothesis considering the end of haemostasis as a target to improve survival. On the one hand, patients at low risk of mortality may not be treated to preserve "immunothrombosis" as a defence when, on the other hand, patients at high risk with patent excess thrombin and fibrin generation could benefit from available (antithrombin, soluble thrombomodulin) or ongoing (FXI and FXII inhibitors) therapies. We propose to better assess coagulation response during infection by an improved knowledge of pathophysiology and systematic testing including determination of DIC scores. This is one of the clues to allocate the right treatment for the right patient at the right moment.
Collapse
Affiliation(s)
- Xavier Delabranche
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| | - Julie Helms
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM, EFS Grand Est, BPPS UMR-S 949, Université de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- Université de Strasbourg, Faculté de Médecine & Hôpitaux Universitaires de Strasbourg, Service de Réanimation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The role of tissue factor (TF) in the initiation of the blood coagulation network leading to generation of a fibrin clot has been well defined over the past 50 years. Although much is known about this sequence of events and its regulation, many important questions remain unresolved. More recently, a complex role for TF in cellular processes independent of fibrin generation has emerged. This review summarizes some of the advances in this field. RECENT FINDINGS TF is the cellular receptor and cofactor for factor VII/VIIa; however, controversy still surrounds expression of TF within the vasculature, the role of circulating microvesicle pools of TF and mechanisms of 'encryption' of TF activity. However, there have been significant advances in the role of TF-initiated cell signalling. Lastly, an alternatively spliced TF transcript has been identified and some insights into its role in cancer cell metastasis/proliferation have been elucidated. SUMMARY Understanding of TF structure function has increased substantially; however, multiple controversies still surround some aspects of its regulation. TF has emerged as a pivotal player in orchestrating not only fibrin generation but wound repair. Derangement of these repair processes contributes significantly to the pathophysiology of a number of disease processes.
Collapse
|
36
|
Madio B, Undheim EAB, King GF. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. J Proteomics 2017; 166:83-92. [PMID: 28739511 DOI: 10.1016/j.jprot.2017.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022]
Abstract
More than a century of research on sea anemone venoms has shown that they contain a diversity of biologically active proteins and peptides. However, recent omics studies have revealed that much of the venom proteome remains unexplored. We used, for the first time, a combination of proteomic and transcriptomic techniques to obtain a holistic overview of the venom arsenal of the well-studied sea anemone Stichodactyla haddoni. A purely search-based approach to identify putative toxins in a transcriptome from tentacles regenerating after venom extraction identified 508 unique toxin-like transcripts grouped into 63 families. However, proteomic analysis of venom revealed that 52 of these toxin families are likely false positives. In contrast, the combination of transcriptomic and proteomic data enabled positive identification of 23 families of putative toxins, 12 of which have no homology known proteins or peptides. Our data highlight the importance of using proteomics of milked venom to correctly identify venom proteins/peptides, both known and novel, while minimizing false positive identifications from non-toxin homologues identified in transcriptomes of venom-producing tissues. This work lays the foundation for uncovering the role of individual toxins in sea anemone venom and how they contribute to the envenomation of prey, predators, and competitors. BIOLOGICAL SIGNIFICANCE Proteomic analysis of milked venom combined with analysis of a tentacle transcriptome revealed the full extent of the venom arsenal of the sea anemone Stichodactyla haddoni. This combined approach led to the discovery of 12 entirely new families of disulfide-rich peptides and proteins in a genus of anemones that have been studied for over a century.
Collapse
Affiliation(s)
- Bruno Madio
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
37
|
Genome editing of factor X in zebrafish reveals unexpected tolerance of severe defects in the common pathway. Blood 2017; 130:666-676. [PMID: 28576875 DOI: 10.1182/blood-2017-02-765206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/23/2017] [Indexed: 12/24/2022] Open
Abstract
Deficiency of factor X (F10) in humans is a rare bleeding disorder with a heterogeneous phenotype and limited therapeutic options. Targeted disruption of F10 and other common pathway factors in mice results in embryonic/neonatal lethality with rapid resorption of homozygous mutants, hampering additional studies. Several of these mutants also display yolk sac vascular defects, suggesting a role for thrombin signaling in vessel development. The zebrafish is a vertebrate model that demonstrates conservation of the mammalian hemostatic and vascular systems. We have leveraged these advantages for in-depth study of the role of the coagulation cascade in the developmental regulation of hemostasis and vasculogenesis. In this article, we show that ablation of zebrafish f10 by using genome editing with transcription activator-like effector nucleases results in a major embryonic hemostatic defect. However, widespread hemorrhage and subsequent lethality does not occur until later stages, with absence of any detectable defect in vascular development. We also use f10-/- zebrafish to confirm 5 novel human F10 variants as causative mutations in affected patients, providing a rapid and reliable in vivo model for testing the severity of F10 variants. These findings as well as the prolonged survival of f10-/- mutants will enable us to expand our understanding of the molecular mechanisms of hemostasis, including a platform for screening variants of uncertain significance in patients with F10 deficiency and other coagulation disorders. Further study as to how fish tolerate what is an early lethal mutation in mammals could facilitate improvement of diagnostics and therapeutics for affected patients with bleeding disorders.
Collapse
|
38
|
Abstract
Molecular genetic details of the human coagulation system were among the first successes of the genetic revolution in the 1980s. This information led to new molecular diagnostic strategies for inherited disorders of hemostasis and the development of recombinant clotting factors for the treatment of the common inherited bleeding disorders. A longer term goal of this knowledge has been the establishment of gene transfer to provide continuing access to missing or defective hemostatic proteins. Because of the relative infrequency of inherited coagulation factor disorders and the availability of safe and effective alternative means of management, the application of gene therapy for these conditions has been slow to realize clinical application. Nevertheless, the tools for effective and safe gene transfer are now much improved, and we have started to see examples of clinical gene therapy successes. Leading the way has been the use of adeno-associated virus-based strategies for factor IX gene transfer in hemophilia B. Several small phase 1/2 clinical studies using this approach have shown prolonged expression of therapeutically beneficial levels of factor IX. Nevertheless, before the application of gene therapy for coagulation disorders becomes widespread, several obstacles need to be overcome. Immunologic responses to the vector and transgenic protein need to be mitigated, and production strategies for clinical grade vectors require enhancements. There is little doubt that with the development of more efficient and facile strategies for genome editing and the application of other nucleic acid-based approaches to influence the coagulation system, the future of genetic therapies for hemostasis is bright.
Collapse
Affiliation(s)
- Laura L Swystun
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David Lillicrap
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
39
|
Jagadeeswaran P, Cooley BC, Gross PL, Mackman N. Animal Models of Thrombosis From Zebrafish to Nonhuman Primates: Use in the Elucidation of New Pathologic Pathways and the Development of Antithrombotic Drugs. Circ Res 2017; 118:1363-79. [PMID: 27126647 DOI: 10.1161/circresaha.115.306823] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Thrombosis is a leading cause of morbidity and mortality worldwide. Animal models are used to understand the pathological pathways involved in thrombosis and to test the efficacy and safety of new antithrombotic drugs. In this review, we will first describe the central role a variety of animal models of thrombosis and hemostasis has played in the development of new antiplatelet and anticoagulant drugs. These include the widely used P2Y12 antagonists and the recently developed orally available anticoagulants that directly target factor Xa or thrombin. Next, we will describe the new players, such as polyphosphate, neutrophil extracellular traps, and microparticles, which have been shown to contribute to thrombosis in mouse models, particularly venous thrombosis models. Other mouse studies have demonstrated roles for the factor XIIa and factor XIa in thrombosis. This has spurred the development of strategies to reduce their levels or activities as a new approach for preventing thrombosis. Finally, we will discuss the emergence of zebrafish as a model to study thrombosis and its potential use in the discovery of novel factors involved in thrombosis and hemostasis. Animal models of thrombosis from zebrafish to nonhuman primates are vital in identifying pathological pathways of thrombosis that can be safely targeted with a minimal effect on hemostasis. Future studies should focus on understanding the different triggers of thrombosis and the best drugs to prevent each type of thrombotic event.
Collapse
Affiliation(s)
- Pudur Jagadeeswaran
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.).
| | - Brian C Cooley
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Peter L Gross
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Nigel Mackman
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| |
Collapse
|
40
|
Deicke C, Chakrakodi B, Pils MC, Dickneite G, Johansson L, Medina E, Loof TG. Local activation of coagulation factor XIII reduces systemic complications and improves the survival of mice after Streptococcus pyogenes M1 skin infection. Int J Med Microbiol 2016; 306:572-579. [PMID: 27338836 DOI: 10.1016/j.ijmm.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 01/28/2023] Open
Abstract
Coagulation is a mechanism for wound healing after injury. Several recent studies delineate an additional role of the intrinsic pathway of coagulation, also known as the contact system, in the early innate immune response against bacterial infections. In this study, we investigated the role of factor XIII (FXIII), which is activated upon coagulation induction, during Streptococcus pyogenes-mediated skin and soft tissue infections. FXIII has previously been shown to be responsible for the immobilization of bacteria within a fibrin network which may prevent systemic bacterial dissemination. In order to investigate if the FXIII-mediated entrapment of S. pyogenes also influences the disease outcome we used a murine S. pyogenes M1 skin and soft tissue infection model. Here, we demonstrate that a lack of FXIII leads to prolonged clotting times, increased signs of inflammation, and elevated bacterial dissemination. Moreover, FXIII-deficient mice show an impaired survival when compared with wildtype animals. Additionally, local reconstitution of FXIII-deficient mice with a human FXIII-concentrate (Fibrogammin®P) could reduce the systemic complications, suggesting a protective role for FXIII during early S. pyogenes skin infection. FXIII therefore might be a possible therapeutically application to support the early innate immune response during skin infections caused by S. pyogenes.
Collapse
Affiliation(s)
- Christin Deicke
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Bhavya Chakrakodi
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Marina C Pils
- Mouse-pathology, Animal Experimental Unit, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Gerhard Dickneite
- Department of Preclinical Research and Development, CSL Behring GmbH, Emil-von-Behring-Strasse 76, D-35041 Marburg, Germany
| | - Linda Johansson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Torsten G Loof
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.
| |
Collapse
|
41
|
Origins of the Vertebrate Erythro/Megakaryocytic System. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632171. [PMID: 26557683 PMCID: PMC4628740 DOI: 10.1155/2015/632171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
Vertebrate erythrocytes and thrombocytes arise from the common bipotent thrombocytic-erythroid progenitors (TEPs). Even though nonmammalian erythrocytes and thrombocytes are phenotypically very similar to each other, mammalian species have developed some key evolutionary improvements in the process of erythroid and thrombocytic differentiation, such as erythroid enucleation, megakaryocyte endoreduplication, and platelet formation. This brings up a few questions that we try to address in this review. Specifically, we describe the ontology of erythro-thrombopoiesis during adult hematopoiesis with focus on the phylogenetic origin of mammalian erythrocytes and thrombocytes (also termed platelets). Although the evolutionary relationship between mammalian and nonmammalian erythroid cells is clear, the appearance of mammalian megakaryocytes is less so. Here, we discuss recent data indicating that nonmammalian thrombocytes and megakaryocytes are homologs. Finally, we hypothesize that erythroid and thrombocytic differentiation evolved from a single ancestral lineage, which would explain the striking similarities between these cells.
Collapse
|
42
|
Doolittle RF. Bioinformatic Characterization of Genes and Proteins Involved in Blood Clotting in Lampreys. J Mol Evol 2015; 81:121-30. [PMID: 26437661 DOI: 10.1007/s00239-015-9701-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
Lampreys and hagfish are the earliest diverging of extant vertebrates and are obvious targets for investigating the origins of complex biochemical systems found in mammals. Currently, the simplest approach for such inquiries is to search for the presence of relevant genes in whole genome sequence (WGS) assemblies. Unhappily, in the past a high-quality complete genome sequence has not been available for either lampreys or hagfish, precluding the possibility of proving gene absence. Recently, improved but still incomplete genome assemblies for two species of lamprey have been posted, and, taken together with an extensive collection of short sequences in the NCBI trace archive, they have made it possible to make reliable counts for specific gene families. Particularly, a multi-source tactic has been used to study the lamprey blood clotting system with regard to the presence and absence of genes known to occur in higher vertebrates. As was suggested in earlier studies, lampreys lack genes for coagulation factors VIII and IX, both of which are critical for the "intrinsic" clotting system and responsible for hemophilia in humans. On the other hand, they have three each of genes for factors VII and X, participants in the "extrinsic" clotting system. The strategy of using raw trace sequence "reads" together with partial WGS assemblies for lampreys can be used in studies on the early evolution of other biochemical systems in vertebrates.
Collapse
Affiliation(s)
- Russell F Doolittle
- Departments of Chemistry & Biochemistry and Molecular Biology, University of California, San Diego, La Jolla, CA, 92093-0314, USA.
| |
Collapse
|
43
|
Branchini A, Baroni M, Burini F, Puzzo F, Nicolosi F, Mari R, Gemmati D, Bernardi F, Pinotti M. The carboxyl-terminal region is NOT essential for secreted and functional levels of coagulation factor X. J Thromb Haemost 2015; 13:1468-74. [PMID: 26083275 DOI: 10.1111/jth.13034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The homologous coagulation factor X (FX), VII (FVII), IX (FIX) and protein C (PC) display striking differences in the carboxyl-terminus, with that of FX being the most extended. This region is essential for FVII, FIX and PC secretion. OBJECTIVES To provide experimental evidence for the role of the FX carboxyl-terminus. METHODS Recombinant FX (rFX) variants were expressed in multiple eukaryotic cell systems. Protein and activity levels were evaluated by ELISA, coagulant and amidolytic assays. RESULTS AND DISCUSSION Expression of a panel of progressively truncated rFX variants in HEK293 cells revealed that the deletion of up to 21 residues in the carboxyl-terminus did not significantly affect secreted protein levels, as confirmed in HepG2 and BHK21 cells. In contrast, chimeric rFX-FVII variants with swapped terminal residues showed severely reduced levels. The truncated rFX variants revealed normal amidolytic activity, suggesting an intact active site. Intriguingly, these variants, which included that resembling the activated FXβ form once cleaved, also displayed remarkable or normal pro-coagulant capacity in PT- and aPTT-based assays. This supports the hypothesis that subjects with nonsense mutations in the FX carboxyl-terminus, so far never identified, would be asymptomatic. CONCLUSIONS For the first time we demonstrate that the FX carboxyl-terminal region downstream of residue K467 is not essential for secretion and provides a modest contribution to pro-coagulant properties. These findings, which might suggest an involvement of the carboxyl-terminal region in the divergence of the homologous FX, FVII, FIX and PC, help to interpret the mutational pattern of FX deficiency.
Collapse
Affiliation(s)
- A Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- LTTA Centre, University of Ferrara, Ferrara, Italy
| | - M Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- LTTA Centre, University of Ferrara, Ferrara, Italy
| | - F Burini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - F Puzzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - F Nicolosi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - R Mari
- Centre for Haemostasis and Thrombosis, Haematology Section, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - D Gemmati
- Centre for Haemostasis and Thrombosis, Haematology Section, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - F Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- LTTA Centre, University of Ferrara, Ferrara, Italy
| | - M Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
44
|
Li J, van der Wal DE, Zhu G, Xu M, Yougbare I, Ma L, Vadasz B, Carrim N, Grozovsky R, Ruan M, Zhu L, Zeng Q, Tao L, Zhai ZM, Peng J, Hou M, Leytin V, Freedman J, Hoffmeister KM, Ni H. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun 2015; 6:7737. [PMID: 26185093 PMCID: PMC4518313 DOI: 10.1038/ncomms8737] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests that antibody-mediated platelet destruction occurs in the spleen, via macrophages through Fc-FcγR interactions. However, we and others have demonstrated that anti-GPIbα (but not GPIIbIIIa)-mediated ITP is often refractory to therapies targeting FcγR pathways. Here, we generate mouse anti-mouse monoclonal antibodies (mAbs) that recognize GPIbα and GPIIbIIIa of different species. Utilizing these unique mAbs and human ITP plasma, we find that anti-GPIbα, but not anti-GPIIbIIIa antibodies, induces Fc-independent platelet activation, sialidase neuraminidase-1 translocation and desialylation. This leads to platelet clearance in the liver via hepatocyte Ashwell-Morell receptors, which is fundamentally different from the classical Fc-FcγR-dependent macrophage phagocytosis. Importantly, sialidase inhibitors ameliorate anti-GPIbα-mediated thrombocytopenia in mice. These findings shed light on Fc-independent cytopenias, designating desialylation as a potential diagnostic biomarker and therapeutic target in the treatment of refractory ITP.
Collapse
Affiliation(s)
- June Li
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Dianne E van der Wal
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [3] Canadian Blood Services, Ottawa, Ontario, Canada K1G 4J5
| | - Guangheng Zhu
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Miao Xu
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Issaka Yougbare
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [3] Canadian Blood Services, Ottawa, Ontario, Canada K1G 4J5
| | - Li Ma
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [3] Canadian Blood Services, Ottawa, Ontario, Canada K1G 4J5
| | - Brian Vadasz
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Naadiya Carrim
- 1] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [2] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Renata Grozovsky
- Translational Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Min Ruan
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Lingyan Zhu
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Qingshu Zeng
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Lili Tao
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Zhi-min Zhai
- Department of Hematology, Anhui Medical University, Hefei 230032, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Valery Leytin
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - John Freedman
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [4] Department of Medicine, University of Toronto, Ontario, Canada M5S 1A8
| | - Karin M Hoffmeister
- Translational Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Heyu Ni
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada M5B 1W8 [3] Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8 [4] Canadian Blood Services, Ottawa, Ontario, Canada K1G 4J5 [5] Department of Medicine, University of Toronto, Ontario, Canada M5S 1A8 [6] Department of Physiology, University of Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
45
|
Balestra D, Barbon E, Scalet D, Cavallari N, Perrone D, Zanibellato S, Bernardi F, Pinotti M. Regulation of a strong F9 cryptic 5'ss by intrinsic elements and by combination of tailored U1snRNAs with antisense oligonucleotides. Hum Mol Genet 2015; 24:4809-16. [PMID: 26063760 PMCID: PMC4527485 DOI: 10.1093/hmg/ddv205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/29/2015] [Indexed: 01/18/2023] Open
Abstract
Mutations affecting specific splicing regulatory elements offer suitable models to better understand their interplay and to devise therapeutic strategies. Here we characterize a meaningful splicing model in which numerous Hemophilia B-causing mutations, either missense or at the donor splice site (5'ss) of coagulation F9 exon 2, promote aberrant splicing by inducing the usage of a strong exonic cryptic 5'ss. Splicing assays with natural and artificial F9 variants indicated that the cryptic 5'ss is regulated, among a network of regulatory elements, by an exonic splicing silencer (ESS). This finding and the comparative analysis of the F9 sequence across species showing that the cryptic 5'ss is always paralleled by the conserved ESS support a compensatory mechanism aimed at minimizing unproductive splicing. To recover splicing we tested antisense oligoribonucleotides masking the cryptic 5'ss, which were effective on exonic changes but promoted exon 2 skipping in the presence of mutations at the authentic 5'ss. On the other hand, we observed a very poor correction effect by small nuclear RNA U1 (U1snRNA) variants with increased or perfect complementarity to the defective 5'ss, a strategy previously exploited to rescue splicing. Noticeably, the combination of the mutant-specific U1snRNAs with antisense oligonucleotides produced appreciable amounts of correctly spliced transcripts (from 0 to 20-40%) from several mutants of the exon 2 5'ss. Based on the evidence of an altered interplay among ESS, cryptic and the authentic 5'ss as a disease-causing mechanism, we provide novel experimental insights into the combinatorial correction activity of antisense molecules and compensatory U1snRNAs.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Elena Barbon
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Nicola Cavallari
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Zanibellato
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA, Ferrara, Italy and
| |
Collapse
|
46
|
Fiusa MML, Carvalho-Filho MA, Annichino-Bizzacchi JM, De Paula EV. Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective. BMC Med 2015; 13:105. [PMID: 25943883 PMCID: PMC4422540 DOI: 10.1186/s12916-015-0327-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/16/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coagulation and innate immunity have been linked together for at least 450 million years of evolution. Sepsis, one of the world's leading causes of death, is probably the condition in which this evolutionary link is more evident. However, the biological and the clinical relevance of this association have only recently gained the attention of the scientific community. DISCUSSION During sepsis, the host response to a pathogen is invariably associated with coagulation activation. For several years, coagulation activation has been solely regarded as a mechanism of tissue damage, a concept that led to several clinical trials of anticoagulant agents for sepsis. More recently, this paradigm has been challenged by the failure of these clinical trials, and by a growing bulk of evidence supporting the concept that coagulation activation is beneficial for pathogen clearance. In this article we discuss recent basic and clinical data that point to a more balanced view of the detrimental and beneficial consequences of coagulation activation in sepsis. Reappraisal of the association between coagulation and immune activation from an evolutionary medicine perspective offers a unique opportunity to gain new insights about the pathogenesis of sepsis, paving the way to more successful approaches in both basic and clinical research in this field.
Collapse
Affiliation(s)
- Maiara Marx Luz Fiusa
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil.
| | - Marco Antonio Carvalho-Filho
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil.
| | - Joyce M Annichino-Bizzacchi
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil. .,Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil.
| | - Erich V De Paula
- Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, 13083-878, Campinas, SP, Brazil. .,Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
47
|
Abstract
Hemostasis, the process of blood clot formation and resolution in response to vascular injury, and thrombosis, the dysregulation of hemostasis leading to pathological clot formation, are widely studied. However, the genetic variability in hemostatic and thrombotic disorders is incompletely understood, suggesting that novel mediators have yet to be uncovered. The zebrafish is developing into a powerful in vivo model to study hemostasis, and its features as a model organism are well suited to (a) develop high-throughput screens to identify novel mediators of hemostasis and thrombosis, (b) validate candidate genes identified in human populations, and (c) characterize the structure/function relationship of gene products. In this review, we discuss conservation of the zebrafish hemostatic system, highlight areas for future study, and outline the utility of this model to study blood coagulation and its dysregulation.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Although the zebrafish has been established as a research tool over the past two to three decades, in hematology it has primarily been used to investigate areas distinct from coagulation. The advantages of this vertebrate model include high fecundity, rapid and external development, and conservation of virtually all clotting factors in the zebrafish genomic sequence. Here, we summarize the growing application of this technology to the study of hemostasis and thrombosis. RECENT FINDINGS Loss of function studies have demonstrated conservation of function for a number of zebrafish coagulation factors. These include positive and negative regulators of coagulation, as well as key components of the thrombus itself, such as von Willebrand factor, fibrinogen, and thrombocytes. Such analyses have also been leveraged to aid in the understanding of human variation and disease, as well as to perform in-vivo structure/function experiments. SUMMARY The zebrafish is an organism that lends itself to a number of unique and powerful approaches not possible in mammals. This review demonstrates that there is a high degree of genetic and functional conservation of coagulation, portending future insights into hemostasis and thrombosis through the use of this model.
Collapse
|
49
|
Hiong KC, Tan XR, Boo MV, Wong WP, Chew SF, Ip YK. Aestivation induces changes in transcription and translation of coagulation factor II and fibrinogen gamma chain in the liver of the African lungfish, Protopterus annectens. J Exp Biol 2015; 218:3717-28. [DOI: 10.1242/jeb.125260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022]
Abstract
This study aimed to sequence and characterize two pro-coagulant genes, coagulation factor II (f2) and fibrinogen gamma chain (fgg), from the liver of the African lungfish Protopterus annectens, and to determine their hepatic mRNA expression levels during three phases of aestivation. The protein abundances of F2 and Fgg in the liver and plasma were determined by immunoblotting. Results indicated that F2 and Fgg of P. annectens were phylogenetically closer to those of amphibians than those of teleosts. Three days of aestivation resulted in an up-regulation in the hepatic fgg mRNA expression level, while 6 days of aestivation led to a significant increase (3-fold) in the protein abundance of Fgg in the plasma. Hence, there could be an increase in the blood clotting ability in P. annectens during the induction phase of aestivation. By contrast, the blood clotting ability in P. annectens might be reduced in response to decreased blood flow and increased possibility of thrombosis during the maintenance phase of aestivation, as 6 months of aestivation led to significant decreases in mRNA expression levels of f2 and fgg in the liver. There could also be a decrease in the export of F2 and Fgg from the liver to the plasma so as to avert thrombosis. Upon 3-6 days of arousal from 6 months of aestivation, the protein abundances of F2 and Fgg recovered partially in the plasma of P. annectens, and a complete recovery of the transcription and translation of f2/F2 in the liver might occur only after refeeding.
Collapse
Affiliation(s)
- Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Xiang R. Tan
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V. Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
- The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore
| |
Collapse
|
50
|
New checkpoint of the coagulant phenotype. Blood 2014; 124:3511-3. [PMID: 25477483 DOI: 10.1182/blood-2014-10-606665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|