1
|
Mateo Orobia AJ, Benítez Del Castillo JM, Calonge M, Baudouin C, Labetoulle M. A narrative literature review about alpha-lipoic acid role in dry eye and ocular surface disease. Acta Ophthalmol 2025. [PMID: 40207422 DOI: 10.1111/aos.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Ocular surface diseases (OSD) include various conditions that affect the eye's surface, causing discomfort and pain. One such condition, dry eye disease (DED), is a multifactorial disorder that significantly impacts patients' quality of life, with prevalence rates ranging from 5% to 50% and higher incidence in women. DED involves tear film instability, inflammation and neurosensory abnormalities, making its management challenging due to diverse underlying mechanisms. Conventional treatments typically focus on symptom relief, but new approaches targeting the disease's pathogenesis are emerging. Alpha-lipoic acid (ALA) is gaining attention for its potential in treating OSD and DED. ALA acts as a potent antioxidant, neutralizing reactive oxygen species. It protects cell membranes by interacting with vitamin C and glutathione, potentially recycling vitamin E. Its antioxidative properties are particularly relevant in meibomian gland dysfunction, a condition implicated in DED. By scavenging free radicals and modulating redox status in the meibomian glands, ALA can reduce oxidative damage, preserve glandular function and decrease inflammation. In diabetic patients with DED, ALA administration has been found to improve tear film parameters, reduce corneal defects, enhance antioxidant status and potentially prevent diabetic retinopathy and keratopathy. Its therapeutic effects on neurosensory abnormalities, especially in diabetic polyneuropathy and other neuropathies, are primarily due to its antioxidant, anti-inflammatory and metal-chelating properties. In summary, ALA holds promise as a therapeutic agent for DED and OSD and could be a promising treatment option for diabetic retinopathy and keratopathy, although further research is needed to confirm its efficacy.
Collapse
Affiliation(s)
- Antonio J Mateo Orobia
- Hospital Universitario Miguel Servet Zaragoza, Instituto Oftalmológico Biotech-Visión. Quirónsalud Zaragoza, Zaragoza, Spain
| | | | - Margarita Calonge
- Universidad de Valladolid, Instituto Universitario de Oftalmología Aplicada Valladolid (IOBA), Valladolid, Spain
| | - Christophe Baudouin
- Department of Ophthalmology, Quinze-Vingts National OphthalmologyHospital and Vision Institute, Paris, France
| | - Marc Labetoulle
- Department of Ophthalmology, Quinze-Vingts National OphthalmologyHospital and Vision Institute, Paris, France
- Service d'Ophtalmologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Paris-Saclay University, Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Cioanca O, Lungu II, Batir-Marin D, Lungu A, Marin GA, Huzum R, Stefanache A, Sekeroglu N, Hancianu M. Modulating Polyphenol Activity with Metal Ions: Insights into Dermatological Applications. Pharmaceutics 2025; 17:194. [PMID: 40006561 PMCID: PMC11858937 DOI: 10.3390/pharmaceutics17020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The skin represents the first barrier of defense, and its integrity is crucial for overall health. Skin wounds present a considerable risk seeing how their progression is rapid and sometimes they are caused by comorbidities like diabetes and venous diseases. Nutraceutical combinations like the ones between polyphenols and metal ions present considerable applications thanks to their increased bioavailability and their ability to modulate intrinsic molecular pathways. METHODS The research findings presented in this paper are based on a systematic review of the current literature with an emphasis on nanotechnology and regenerative medicine strategies that incorporate polyphenols and metallic nanoparticles (NPs). The key studies which described the action mechanisms, efficacy, and safety of these hybrid formulations were reviewed. RESULTS Nanocomposites of polyphenol and metal promote healing by activating signaling pathways such as PI3K/Akt and ERK1/2, which in turn improve fibroblast migration and proliferation. Nanoparticles of silver and copper have antibacterial, angiogenesis-promoting, inflammation-modulating capabilities. With their ability to induce apoptosis and restrict cell growth, these composites have the potential to cure skin malignancies in addition to facilitating wound healing. CONCLUSIONS Nanocomposites of polyphenols and metals provide hope for the treatment of cancer and chronic wounds. Their antimicrobial capabilities, capacity to modulate inflammatory responses, and enhancement of fibroblast activity all point to their medicinal potential. Furthermore, these composites have the ability to decrease inflammation associated with tumors while simultaneously inducing cell death in cancer cells. Clarifying their mechanisms, guaranteeing stability, and enhancing effective delivery techniques for clinical usage should be the focus of future studies.
Collapse
Affiliation(s)
- Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut-Iulian Lungu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Denisa Batir-Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania
| | - Andreea Lungu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania
| | - George-Alexandru Marin
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Riana Huzum
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania
| | - Alina Stefanache
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nazim Sekeroglu
- Department of Food Engineering, Faculty of Engineering and Architecture, Kilis 7 Aralık University, 79000 Kilis, Turkey
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
3
|
Satpathy B, Sa N, Behera A, Sahu PK. Dose-Dependent Attenuation of the Efficacy of Clitoria ternatea by Cobalt Oxide Nanoparticles Against Diabetes-Induced Cognitive Impairment. Mol Neurobiol 2025; 62:2601-2616. [PMID: 39143449 DOI: 10.1007/s12035-024-04436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Diabetes mellitus is a metabolic disorder caused by insulin deficiency, insulin resistance, genetic alterations, and oxidative stress. The high glucose levels may impair the functioning of nerve cells, leading to neurodegenerative diseases, including cognitive impairment. Clitoria ternatea has various pharmacological activities, including antioxidant, anti-inflammatory, antidiabetic, and neuroprotective effects. The present study evaluates the efficacy of fresh flower aqueous extract of Clitoria ternatea against diabetes-induced cognitive impairment. The challenges in delivering drugs targeting the brain possess the limitations of crossing the blood-brain barrier. Metal nanoparticles are considered the most reliable brain drug delivery systems. Considering the neurotoxicity of cobalt oxide, whether it can be used to improve brain delivery is also evaluated. Cobalt oxide nanoparticles (Co3O4 NPs) of fresh flower aqueous extract of Clitoria ternatea are prepared by green synthesis and characterized. The effect of these nanoparticles is compared with Clitoria ternatea extract against Streptozotocin (STZ)-induced cognitive impairment. The behavioral, biochemical, in vivo antioxidant, total thiol content, estimation of proinflammatory cytokines, acetylcholine esterase, and nitrite levels in the brain of STZ-induced diabetic rats revealed that cobalt oxide nanoparticles showed neurotoxicity, whereas C. ternatea showed neuroprotective effect and also improved the cognitive function. The lower dose of cobalt oxide nanoparticles of C. ternatea (2 mg/kg) exhibited a neuroprotective and cognition improvement effect. However, the higher dose (4 mg/kg) of cobalt oxide nanoparticles of C. ternatea showed a neurotoxic effect. Since Co3O4 NPs are neuroprotective at low doses, they can be used for neuroprotective actions. However, dose optimization studies are required.
Collapse
Affiliation(s)
- Bibhanwita Satpathy
- School of Pharmaceutical Sciences, Siksha ' O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha ' O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, India
| | - Anindita Behera
- College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bengaluru, Karnataka, 560078, India.
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha ' O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Calcaterra V, Cena H, Loperfido F, Porri D, Basilico S, Gazzola C, Ricciardi Rizzo C, Conti MV, Luppino G, Wasniewska MG, Zuccotti G. Functional Gastrointestinal Disorders and Childhood Obesity: The Role of Diet and Its Impact on Microbiota. Nutrients 2024; 17:123. [PMID: 39796556 PMCID: PMC11722901 DOI: 10.3390/nu17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Introduction Emerging evidence suggests an association between obesity and Functional Gastrointestinal Disorders (FGIDs). Childhood obesity and FGIDs share many common features, such as high prevalence in the pediatric population, risk factors related to diet and lifestyle, gut microbiota impairments, and psychological distress. This narrative review aims to summarize the main evidence regarding FGIDs in childhood obesity, with a specific focus on the role of diet and its impact on the microbiota. Additionally, the review highlights potential common-ground solutions for preventing and managing both obesity and FGIDs. Methods A comprehensive PubMed search was conducted. Keywords used included terms related to children and adolescents, obesity, functional gastrointestinal disorders, and microbiota. Results The review emphasizes the importance of holistic, multidisciplinary approaches to managing symptoms. In addition to nutrition education, physical activity, and medical care, complementary strategies such as psychological interventions and personalized dietary modifications (e.g., low-FODMAP and fiber-enriched diets) are critical. Given the interplay between gut microbiota alterations, obesity, and FGIDs, microbiota modulation through probiotics, prebiotics, and integrative support shows significant promise. However, the variability in current evidence underlines the need for robust longitudinal studies to develop standardized protocols and maximize treatment efficacy. Conclusions Bridging gaps in knowledge and practice with an integrated, evidence-based framework could improve patient outcomes and deepen understanding of the complex relationship between metabolic and gastrointestinal health in children and adolescents.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (C.G.); (G.Z.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
| | - Debora Porri
- Pediatric Unit, AOU Policlinico “G. Martino”, 98122 Messina, Italy; (D.P.); (G.L.); (M.G.W.)
- Department of Human Pathology of Adulthood and Childhood, University of Messina, 98122 Messina, Italy
| | - Sara Basilico
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
| | - Cassandra Gazzola
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (C.G.); (G.Z.)
| | - Cecilia Ricciardi Rizzo
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
| | - Maria Vittoria Conti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (S.B.); (C.R.R.); (M.V.C.)
| | - Giovanni Luppino
- Pediatric Unit, AOU Policlinico “G. Martino”, 98122 Messina, Italy; (D.P.); (G.L.); (M.G.W.)
- Department of Human Pathology of Adulthood and Childhood, University of Messina, 98122 Messina, Italy
| | - Malgorzata Gabriela Wasniewska
- Pediatric Unit, AOU Policlinico “G. Martino”, 98122 Messina, Italy; (D.P.); (G.L.); (M.G.W.)
- Department of Human Pathology of Adulthood and Childhood, University of Messina, 98122 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (C.G.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| |
Collapse
|
5
|
Weinberg Sibony R, Segev O, Dor S, Raz I. Overview of oxidative stress and inflammation in diabetes. J Diabetes 2024; 16:e70014. [PMID: 39435991 PMCID: PMC11494684 DOI: 10.1111/1753-0407.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
The global prevalence of diabetes has increased significantly, leading to various complications and a negative impact on quality of life. Hyperglycemia hyperglycemic-induced oxidative stress (OS) and inflammation are closely associated with the development and progression of type 2 diabetes mellitus (T2D) and its complications. This review explores the effect of T2D on target organ damage and potential treatments to minimize this damage. The paper examines the pathophysiology of T2D, focusing on low-grade chronic inflammation and OS and on their impact on insulin resistance. The review discusses the role of inflammation and OS in the development of microvascular and macrovascular complications. The findings highlight the mechanisms by which inflammatory cytokines, stress kinases, and reactive oxygen species (ROS) interfere with insulin signaling pathways, leading to impaired glucose metabolism and organ dysfunction. Lifestyle interventions, including a balanced diet and exercise, can help reduce chronic inflammation and OS, thereby preventing and controlling T2D and its associated complications. Additionally, various antioxidants and anti-inflammatory agents show potential in reducing OS and inflammation. Some anti-diabetic drugs, like pioglitazone, metformin, and glucagon-like peptide-1 (GLP-1) agonists, may also have anti-inflammatory effects. Further research, including randomized controlled trials, is needed to evaluate the efficacy of these interventions.
Collapse
Affiliation(s)
| | - Omri Segev
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Saar Dor
- Faculty of MedicineBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Itamar Raz
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Diabetes Unit, Department of Endocrinology and MetabolismHadassah Medical CenterJerusalemIsrael
| |
Collapse
|
6
|
Kavyani Z, Najafi K, Naghsh N, Karvane HB, Musazadeh V. The effects of curcumin supplementation on biomarkers of inflammation, oxidative stress, and endothelial function: A meta-analysis of meta-analyses. Prostaglandins Other Lipid Mediat 2024; 174:106867. [PMID: 38945354 DOI: 10.1016/j.prostaglandins.2024.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Numerous interventional studies have revealed the beneficial impact of curcumin supplementation on inflammation, oxidative stress, and endothelial function biomarkers, but the findings are still inconsistent. Thus, this study was conducted to investigate the effects of curcumin supplementation on inflammation, oxidative stress, and endothelial function biomarkers. A meta-analyses of randomized clinical trials was performed by searching PubMed, Embase, Scopus, and Web of Science up to March 31, 2024. Pooled estimates of 21 meta-analyses revealed that curcumin significantly reduced CRP (weighted mean difference (WMD) = -0.87; 95 % CI: - 1.14, - 0.59, P< 0.001), tumor-necrosis factor-alpha (TNF-α) (WMD = -2.72; 95 % CI: -4.05, -1.38; P< 0.001), interleukin-6 (IL-6) (WMD = -0.97, 95 % CI: -1.40, -0.54; P< 0.001), malondialdehyde (MDA) (Effect size (ES) = -0.81; 95 % CI: -1.39, -0.23, P = 0.006) and pulse wave velocity (PWV) (WMD = -45.60; 95 % CI: -88.16, -3.04, P = 0.036), and increased flow-mediated dilation (FMD) (WMD = 1.64, 95 % CI: 1.06, 2.22, P < 0.001), catalase (CAT) (WMD = 10.26; 95 % CI: 0.92, 19.61, P= 0.03), glutathione peroxidase (GPx) (WMD = 8.90; 95 % CI: 6.62, 11.19, P <0.001), and superoxide dismutase (SOD) levels (WMD = 20.51; 95 % CI: 7.35, 33.67, P= 0.002 and SMD = 0.82; 95 % CI: 0.27, 1.38, P= 0.004). However, curcumin did not significantly change total antioxidant capacity (TAC) (ES = 0.29; 95 % CI: -0.09, 0.66, P= 0.059). These results suggest that curcumin has a beneficial effect on CRP, IL-6, TNF-α, SOD, GPx, CAT, MDA, PWV, and FMD levels and may be an effective adjunctive therapy for improving inflammation, oxidative stress, and endothelial function. Registration number: PROSPERO, CRD42024539018.
Collapse
Affiliation(s)
- Zeynab Kavyani
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Industries, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kianoosh Najafi
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Navid Naghsh
- Department of Pharmacy,Shahid Sadoughi University of Medical Sciences,Yazd, Iran
| | | | - Vali Musazadeh
- Student research committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
8
|
Rahayu I, Arfian N, Kustanti CY, Wahyuningsih MSH. The effectiveness of antioxidant agents in delaying progression of diabetic nephropathy: A systematic review of randomized controlled trials. BIOIMPACTS : BI 2024; 15:30129. [PMID: 39963561 PMCID: PMC11830129 DOI: 10.34172/bi.30129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 02/20/2025]
Abstract
Introduction Oxidative stress plays a central role in the pathophysiology of diabetes mellitus and its complications, including diabetic nephropathy. Excessive production of reactive oxygen species (ROS) alters renal metabolic pathways, leading to inflammation, endothelial dysfunction, and fibrosis, ultimately resulting in end-stage renal disease (ESRD). Studies have shown that exogenous antioxidants can improve the pathophysiological condition of patients with diabetic nephropathy. Objective: This systematic review aims to investigate the types of antioxidant agents that inhibit the development of diabetic nephropathy and the effectiveness of antioxidant agent interventions to repair kidney structure and function. Methods A systematic review of randomized controlled trials that examined the role of antioxidants in improving diabetic nephropathy was conducted. The literature search was performed on PubMed, ScienceDirect, and EBSCO. The inclusion criteria covered articles on the antioxidant activity of herbal extracts and compounds that inhibit the progression of diabetic nephropathy in humans. In addition, the articles were written in English and published between 2012 and 2022. The reporting of the systematic review followed the Preferred Reporting Elements for Systematic Review and Meta-Analysis (PRISMA) guideline. The full texts of all potentially relevant systematic reviews were assessed for quality using the Risk of Bias 2 (RoB 2) tool. Results A total of 2,367 articles were identified in the three databases, of which only 15 articles met the inclusion criteria. Antioxidant agents that inhibit diabetic nephropathy can be classified as single antioxidants (silymarin, baicalin, epigallocatechin gallate, vitamin E, selenium, curcumin, α-lipoic acid, and tocotrienol-rich vitamin E) and combined antioxidants (α-lipoic acid with vitamin B6, and resveratrol with losartan). Antioxidant agents have been shown to reduce oxidative stress and inflammation, but their role in the progression of fibrosis remains unclear. The oxidative stress marker MDA was significantly reduced by silymarin, curcumin, vitamin E, tocotrienol-rich vitamin E, selenium, ALA, vitamin B, resveratrol and losartan. Silymarin was found to be the most effective (-3.43 µmol/L; 6.02 to 0.83). Compared to silymarin and epigallocatechin gallate, vitamin E was more effective (at -35.4 ng/L; P < 0.001) in reducing inflammation by decreasing TNF-α levels. In addition, tocotrienol-rich vitamin E, silymarin, baicalin, and selenium showed a decrease TGF-β levels, but did not show statistically significant differences between the placebo and intervention groups. Conclusion Potential antioxidant agents, such as flavonoids, vitamins, fatty acids, and antioxidant minerals, were examined in this systematic review. These agents contribute to reducing markers of oxidative stress and hyperglycemia-induced inflammation. Although several antioxidants play a role in reducing fibrosis markers, the effect does not appear to be statistically significant.
Collapse
Affiliation(s)
- Ika Rahayu
- Doctoral Program of Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Universitas Kristen Krida Wacana, Jakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center for Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Christina Yeni Kustanti
- Sekolah Tinggi Ilmu Kesehatan Bethesda Yakkum, Yogyakarta, Indonesia
- Lotus Care, Private Clinic for Wound and Palliative Care, Homecare, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Center for Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Izadi M, Sadri N, Abdi A, Zadeh MMR, Jalaei D, Ghazimoradi MM, Shouri S, Tahmasebi S. Longevity and anti-aging effects of curcumin supplementation. GeroScience 2024; 46:2933-2950. [PMID: 38409646 PMCID: PMC11009219 DOI: 10.1007/s11357-024-01092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024] Open
Abstract
Aging is a gradual and irreversible process that is accompanied by an overall decline in cellular function and a significant increase in the risk of age-associated disorders. Generally, delaying aging is a more effective method than treating diseases associated with aging. Currently, researchers are focused on natural compounds and their therapeutic and health benefits. Curcumin is the main active substance that is present in turmeric, a spice that is made up of the roots and rhizomes of the Curcuma longa plant. Curcumin demonstrated a positive impact on slowing down the aging process by postponing age-related changes. This compound may have anti-aging properties by changing levels of proteins involved in the aging process, such as sirtuins and AMPK, and inhibiting pro-aging proteins, such as NF-κB and mTOR. In clinical research, this herbal compound has been extensively examined in terms of safety, efficacy, and pharmacokinetics. There are numerous effects of curcumin on mechanisms related to aging and human diseases, so we discuss many of them in detail in this review.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Raeis Zadeh
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorsa Jalaei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mahdi Ghazimoradi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Shouri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran.
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran.
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Lee YM, Kim Y. Is Curcumin Intake Really Effective for Chronic Inflammatory Metabolic Disease? A Review of Meta-Analyses of Randomized Controlled Trials. Nutrients 2024; 16:1728. [PMID: 38892660 PMCID: PMC11174746 DOI: 10.3390/nu16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This review aimed to examine the effects of curcumin on chronic inflammatory metabolic disease by extensively evaluating meta-analyses of randomized controlled trials (RCTs). We performed a literature search of meta-analyses of RCTs published in English in PubMed®/MEDLINE up to 31 July 2023. We identified 54 meta-analyses of curcumin RCTs for inflammation, antioxidant, glucose control, lipids, anthropometric parameters, blood pressure, endothelial function, depression, and cognitive function. A reduction in C-reactive protein (CRP) levels was observed in seven of ten meta-analyses of RCTs. In five of eight meta-analyses, curcumin intake significantly lowered interleukin 6 (IL-6) levels. In six of nine meta-analyses, curcumin intake significantly lowered tumor necrosis factor α (TNF-α) levels. In five of six meta-analyses, curcumin intake significantly lowered malondialdehyde (MDA) levels. In 14 of 15 meta-analyses, curcumin intake significantly reduced fasting blood glucose (FBG) levels. In 12 of 12 meta-analyses, curcumin intake significantly reduced homeostasis model assessment of insulin resistance (HOMA-IR). In seven of eight meta-analyses, curcumin intake significantly reduced glycated hemoglobin (HbA1c) levels. In eight of ten meta-analyses, curcumin intake significantly reduced insulin levels. In 14 of 19 meta-analyses, curcumin intake significantly reduced total cholesterol (TC) levels. Curcumin intake plays a protective effect on chronic inflammatory metabolic disease, possibly via improved levels of glucose homeostasis, MDA, TC, and inflammation (CRP, IL-6, TNF-α, and adiponectin). The safety and efficacy of curcumin as a natural product support the potential for the prevention and treatment of chronic inflammatory metabolic diseases.
Collapse
Affiliation(s)
- Young-Min Lee
- Department of Practical Science Education, Gyeongin National University of Education, Gyesan-ro 62, Gyeyang-gu, Incheon 21044, Republic of Korea;
| | - Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
11
|
Dinetz E, Zeballos-Palacios C, Martinez CA. Addressing the Missing Links in Cardiovascular Aging. Clin Interv Aging 2024; 19:873-882. [PMID: 38774249 PMCID: PMC11107914 DOI: 10.2147/cia.s457180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
The aim of this manuscript is to provide a review of available options to enhance cardiovascular health and prevent cardiovascular disease (CVD) in the aging population using a systems-biology approach. These include the role of the gut microbiome, the early identification and removal of environmental toxins, and finally age related sex hormones and supplement replacement which all influence aging. Implementing such a comprehensive approach has the potential to facilitate earlier risk assessment, disease prevention, and even improve mortality. Further study in these areas will continue to advance our understanding and refine therapeutic interventions for a healthier cardiovascular aging process.
Collapse
Affiliation(s)
- Elliot Dinetz
- Department of Integrative and Family Medicine, University of Miami Miller School of Medicine Miami, Miami, FL, USA
| | | | - Claudia A Martinez
- Department of Medicine, Cardiovascular Division, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
13
|
Ghosh M, Kumar Ghosh M, Devbhuti D, Dasgupta S, Devbhuti P. An In vitro Study on impact of Vitamin-C on Cefuroxime mediated alterations in Bio-parameters associated with free Radical linked Lipid Decomposition. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2024:1795-1798. [DOI: 10.52711/0974-360x.2024.00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Background: Lipid peroxidation can be interpreting as an oxidative degeneration of lipids. It happens when a hydroxyl radical removes an electron from polyunsaturated fatty acids (PUFAs), which can react with oxygen and other polyunsaturated fatty acids to produceperoxyl radicals and hydroperoxides, thus promulgating the injury. So this repeat cycle of lipid peroxidation process can be responsible of cellular damage. Drug-induced lipid peroxidation is an important phenomenon found to be involved behind it’s certain hazardous side effects due to the generation toxic end products of such peroxidation like malonaldehyde (MA), hydroxynonenal (HNE), etc. Antioxidants play a crucial role in modifying such processes due to their free radical scavenging capability. Objective: Keeping in mind the matter, thisin vitroinvestigation was conducted using cefuroxime, a cephalosporin antibiotic as drug of choice and vitamin C as antioxidant taking liver tissue of goat as lipid source. Methods: The liver homogenate was divided in certain experimental groups that were treated with cefuroxime and ascorbic acid for specific time periods. The level of MA and HNE in the samples was estimated and compared with control. Result: The result showed that Cefuroxime has lipid peroxidation induction capability that was counteracted by ascorbic acid. Conclusion: Thus cefuroxime-induced, peroxidation associated, toxicities may be managed well upon co-administration with the antioxidant vitamin C.
Collapse
Affiliation(s)
- Madhurima Ghosh
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - 700053, India
| | - Miltu Kumar Ghosh
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - 700053, India
| | - Debabrata Devbhuti
- Department of Pharmacy, Jnan Chandra Ghosh Polytechnic, Kolkata - 700023, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Haringhata, Nadia, India
| | - Pritesh Devbhuti
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - 700053, India
| |
Collapse
|
14
|
Chen Y, Liu L, Yu L, Li S, Zhu N, You J. Curcumin Supplementation Improves Growth Performance and Anticoccidial Index by Improving the Antioxidant Capacity, Inhibiting Inflammatory Responses, and Maintaining Intestinal Barrier Function in Eimeria tenella-Infected Broilers. Animals (Basel) 2024; 14:1223. [PMID: 38672370 PMCID: PMC11047685 DOI: 10.3390/ani14081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study was conducted to investigate the effects of dietary curcumin supplementation on growth performance, anticoccidial index, antioxidant capacity, intestinal inflammation, and cecum microbiota in broilers infected with Eimeria tenella. A total of 234 one-day-old broilers were categorized into three treatments, with six replicates per treatment containing 13 broilers each. The three treatments included the control group, Eimeria tenella group, and Eimeria tenella + curcumin (200 mg/kg) group. The feeding trial lasted for 42 days, during which the broilers were orally administered with 0.9% saline or 5 × 104Eimeria tenella oocysts on day 14 of the study. On day 17 and day 21, one bird per replicate was selected for slaughtering. Results indicated an increased survival rate and anticoccidial index and improved productive performance in coccidia-infected broilers with curcumin supplementation. Furthermore, curcumin enhanced the serum antioxidant capacity in Eimeria tenella-infected broilers, evidenced by increased serum catalase activity (3d, 7d), as well as decreased malondialdehyde level (3d, 7d) and nitric oxide synthase activity (7d) (p < 0.05). Curcumin also improved intestinal inflammation and barrier function, evidenced by the downregulation of interleukin (IL)-1β (3d, 7d), TNF-alpha (TNF-α) (3d, 7d), and IL-2 (7d) and the up-regulated mRNA levels of claudin-1 (7d), zonula occludens (ZO-1; 3d, 7d), and occludin (3d, 7d) in the ceca of infected broilers (p < 0.05). Eimeria tenella infection significantly disrupted cecum microbial balance, but curcumin did not alleviate cecum microbial disorder in broilers infected with Eimeria tenella. Collectively, curcumin supplementation enhanced growth performance and anticoccidial index in Eimeria tenella-infected broilers via improving antioxidant ability and cecum inflammation without affecting cecum microbiota.
Collapse
Affiliation(s)
- Yan Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Liheng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Longfei Yu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Shuo Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Nianhua Zhu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| |
Collapse
|
15
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
16
|
Xiong P, Zheng YY, Ouyang JM. Carboxylated Pocoa polysaccharides inhibited oxidative damage and inflammation of HK-2 cells induced by calcium oxalate nanoparticles. Biomed Pharmacother 2023; 169:115865. [PMID: 37972469 DOI: 10.1016/j.biopha.2023.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
The inhibitory effects of Chinese medicine Pocoa (PCPs) with different carboxyl group (-COOH) contents on oxidative damage and inflammatory response of renal epithelial cells and the influence of -COOH content in polysaccharides were investigated. HK-2 cell damage model was established by nanocalcium oxalate crystals (nanoCOM), and then PCPs with -COOH contents of 2.56% (PCP0), 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) were used to protect the cells. PCPs could inhibit the damage of nanoCOM to HK-2 cells, increase cell viability, restore cytoskeleton and morphology, and improve lysosomal integrity. PCPs can reduce the oxidative stress response of nanoCOM to cells, inhibit the opening of mPTP and cell necrotic apoptosis, reduce the level of Ca2+ ions in cells, the production of ATP and MDA, and increase SOD expression. PCPs can also reduce the cellular inflammatory response caused by oxidative damage, and reduce the expression of nitric oxide (NO), inflammatory factors TNF-α, IL-6, IL-1β and MCP-1, as well as the content of inflammasome NLRP3. After protection, PCPs can inhibit the endocytosis of nanoCOM crystals by cells. With the increase in -COOH content in PCPs, its ability to inhibit nanoCOM cell damage, reduce oxidative stress, reduce inflammatory response, and inhibit crystal endocytosis increases, that is, PCP3 with the highest -COOH content, shows the best biological activity. Inhibiting cell damage and inflammation and reducing a large amount of endocytosis of crystals by cells are beneficial to inhibit the formation of kidney stones.
Collapse
Affiliation(s)
- Peng Xiong
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Yu-Yun Zheng
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China.
| |
Collapse
|
17
|
Louisa M, Wanafri E, Arozal W, Sandhiutami NMD, Basalamah AM. Nanocurcumin preserves kidney function and haematology parameters in DMBA-induced ovarian cancer treated with cisplatin via its antioxidative and anti-inflammatory effect in rats. PHARMACEUTICAL BIOLOGY 2023; 61:298-305. [PMID: 36708211 PMCID: PMC9888479 DOI: 10.1080/13880209.2023.2166965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Cisplatin, as a first-line treatment for ovarian cancer, is associated with debilitating adverse effects, including nephrotoxic and haematotoxic effects. OBJECTIVE This study determines whether nanocurcumin, combined with cisplatin, would give additional benefit to kidney function and haematological parameters in rats with ovarian cancer. MATERIALS AND METHODS Twenty-five Wistar rats were divided into five untreated rats and 20-dimethylbenz(a)anthracene (DMBA)-induced ovarian cancer rats. The 20 ovarian cancer rats were divided into four treatment groups: vehicle, cisplatin, cisplatin-curcumin, and cisplatin-nanocurcumin. Cisplatin was given at the dose of 4 mg/kg BW once weekly, while curcumin or nanocurcumin was administered at 100 mg/kg BW daily for four weeks. At the end of treatment, we analysed kidney function, haematological parameters, and inflammatory and oxidative stress markers from plasma. RESULTS Nanocurcumin alleviates the increase in kidney function markers and abnormalities in haematological indices in rats treated with cisplatin. Compared to cisplatin-treated rats, plasma urea levels decreased from 66.4 to 47.7 mg/dL, creatinine levels lowered from 0.87 to 0.82 mg/dL, and neutrophil gelatinase-associated lipocalin (NGAL) levels declined from 8.51 to 3.59 mIU/mg protein. Furthermore, the therapy increased glutathione activities (from 2.02 to 3.23 U/µL), reduced lipid peroxidation (from 0.54 to 0.45 nmol/mL), and decreased plasma TNF-α (from 270.6 to 217.8 pg/mL). CONCLUSIONS Cisplatin with nanocurcumin in an ovarian cancer rat model may provide additional benefits as a preventive agent against renal impairment and cisplatin-induced haematological toxicity. However, further research is required to prove that using nanocurcumin for a more extended time would not affect its anticancer properties.
Collapse
Affiliation(s)
- Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Erico Wanafri
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | | |
Collapse
|
18
|
Shao S, Ye X, Su W, Wang Y. Curcumin alleviates Alzheimer's disease by inhibiting inflammatory response, oxidative stress and activating the AMPK pathway. J Chem Neuroanat 2023; 134:102363. [PMID: 37989445 DOI: 10.1016/j.jchemneu.2023.102363] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common degenerative brain disorder with limited therapeutic options. Curcumin (Cur) exhibits neuroprotective function in many diseases. We aimed to explore the role and mechanism of Cur in AD. MATERIALS AND METHODS Firstly, we established AD mice by injecting amyloid-β1-42 (Aβ1-42) solution into the hippocampus. Then, the AD mice received 150 mg/kg/d Cur for 10 consecutive days. The Morris water maze test was conducted to evaluate the cognitive function of the mice by hidden platform training and probe trials. To assess the spatial memory of the mice, spontaneous alternation behavior, the number of crossing the novel arm and the time spent in the novel arm during the Y-maze test was recorded. Hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNAL) assay were performed to assess the pathological damage and apoptosis of brain tissues. The number of damaged neurons was inspected by Nissl staining. Immunohistochemical staining was then performed to detect Aβ1-42 deposition. The levels of tumor necrosis factor-α (TNF-a), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in serum and hippocampus, the contents of super oxide dismutase (SOD) and malondialdehyde (MDA) in brain tissues were assessed by enzyme-linked immunosorbent assay (ELISA). Additionally, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), RelA (p65) protein expressions and Adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation were tested using Western blot. RESULTS Cur not only improved cognitive function and spatial memory, but also alleviated the pathological damage and apoptosis of brain tissues for AD mice. Meanwhile, upon Cur treatment, the number of damaged neurons in AD mice was decreased, the level of Aβ1-42 in AD mice was significantly decreased. Furthermore, the AD mice treated with Cur exhibited lower TNF-a, IL-6, IL-1β and MDA levels and a higher SOD content. Besides, Cur also downregulated p65 expression and upregulated AMPK phosphorylation. CONCLUSION Cur may improve AD via suppressing the inflammatory response, oxidative stress and activating the AMPK pathway, suggesting that Cur may be a potential drug for AD.
Collapse
Affiliation(s)
- Sen Shao
- Department of Neurology, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Ye
- Department of Neurology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenwen Su
- Department of Internal Medicine, CiXi Seventh People's Hospital, Ningbo, China
| | - Yanbo Wang
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China.
| |
Collapse
|
19
|
Tagrida M, Palamae S, Saetang J, Ma L, Hong H, Benjakul S. Comparative Study of Quercetin and Hyperoside: Antimicrobial Potential towards Food Spoilage Bacteria, Mode of Action and Molecular Docking. Foods 2023; 12:4051. [PMID: 38002109 PMCID: PMC10670185 DOI: 10.3390/foods12224051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The antibacterial activities of quercetin and hyperoside were evaluated towards two major spoilage bacteria in fish, Pseudomonas aeruginosa (PA) and Shewanella putrefaciens (SP). Hyperoside showed a lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) towards both spoilage bacteria, PA and SP, than quercetin. Cell membrane morphology was affected when treated with hyperoside and quercetin. The release of content from the treated cells occurred, as ascertained by the release of potassium and magnesium ions and the increase in conductivity of the culture media. The morphology of cells was significantly changed, in which shrinkage and pores were obtained, when observed using SEM. Both compounds negatively affected the motility, both swimming and swarming, and the formation of extracellular polymeric substance (EPS), thus confirming antibiofilm activities. Agarose gel analysis revealed that both compounds could bind to or degrade the genomic DNA of both bacteria, thereby causing bacterial death. Molecular docking indicated that the compounds interacted with the minor groove of the DNA, favoring the adenine-thymine-rich regions. Thus, both quercetin and hyperoside could serve as potential antimicrobial agents to retard the spoilage of fish or perishable products.
Collapse
Affiliation(s)
- Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Lucia Dos Santos Silva R, de Sousa Barberino R, Tavares de Matos MH. Impact of antioxidant supplementation during in vitro culture of ovarian preantral follicles: A review. Theriogenology 2023; 207:110-122. [PMID: 37290274 DOI: 10.1016/j.theriogenology.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The in vitro culture systems of ovarian preantral follicles have been developed for studying follicular and oocyte growth, for future use of immature oocytes as sources of fertilizable oocytes and for screening ovarian toxic substances. One of the key limitations of the in vitro culture of preantral follicles is the oxidative stress by accumulation of reactive oxygen species (ROS), which can impair follicular development and oocyte quality. Several factors are associated with oxidative stress in vitro, which implies the need for a rigorous control of the conditions as well as addition of antioxidant agents to the culture medium. Antioxidant supplementation can minimize or eliminate the damage caused by ROS, supporting follicular survival and development and producing mature oocytes competent for fertilization. This review focuses on the use of antioxidants and their role in preventing follicular damage caused by oxidative stress in the in vitro culture of preantral follicles.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil.
| |
Collapse
|
21
|
Ballester P, Cerdá B, Arcusa R, García-Muñoz AM, Marhuenda J, Zafrilla P. Antioxidant Activity in Extracts from Zingiberaceae Family: Cardamom, Turmeric, and Ginger. Molecules 2023; 28:4024. [PMID: 37241765 PMCID: PMC10220638 DOI: 10.3390/molecules28104024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
An increase in life expectancy leads to a greater impact of chronic non-communicable diseases. This is even more remarkable in elder populations, to whom these become main determinants of health status, affecting mental and physical health, quality of life, and autonomy. Disease appearance is closely related to the levels of cellular oxidation, pointing out the importance of including foods in one's diet that can prevent oxidative stress. Previous studies and clinical data suggest that some plant-based products can slow and reduce the cellular degradation associated with aging and age-related diseases. Many plants from one family present several applications that range from the food to the pharmaceutical industry due to their characteristic flavor and scents. The Zingiberaceae family, which includes cardamom, turmeric, and ginger, has bioactive compounds with antioxidant activities. They also have anti-inflammatory, antimicrobial, anticancer, and antiemetic activities and properties that help prevent cardiovascular and neurodegenerative diseases. These products are abundant sources of chemical substances, such as alkaloids, carbohydrates, proteins, phenolic acids, flavonoids, and diarylheptanoids. The main bioactive compounds found in this family (cardamom, turmeric, and ginger) are 1,8-cineole, α-terpinyl acetate, β-turmerone, and α-zingiberene. The present review gathers evidence surrounding the effects of dietary intake of extracts of the Zingiberaceae family and their underlying mechanisms of action. These extracts could be an adjuvant treatment for oxidative-stress-related pathologies. However, the bioavailability of these compounds needs to be optimized, and further research is needed to determine appropriate concentrations and their antioxidant effects in the body.
Collapse
Affiliation(s)
| | | | - Raúl Arcusa
- Faculty of Pharmacy and Nutrition, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe, 30107 Murcia, Spain; (P.B.); (B.C.); (A.M.G.-M.); (J.M.); (P.Z.)
| | | | | | | |
Collapse
|
22
|
Alvarado HL, Limón D, Calpena-Campmany AC, Mallandrich M, Rodríguez-Cid L, Aliaga-Alcalde N, González-Campo A, Pérez-García L. Intrinsic Permeation and Anti-Inflammatory Evaluation of Curcumin, Bisdemethoxycurcumin and Bisdemethylcurcumin by a Validated HPLC-UV Method. Int J Mol Sci 2023; 24:ijms24076640. [PMID: 37047613 PMCID: PMC10095365 DOI: 10.3390/ijms24076640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Curcumin shows anti-inflammatory activity, and it has been widely investigated for neurodegenerative diseases, adjuvant treatment in AIDS and antitumor activity against different tumors, among other activities. The goal of this work was to evaluate the capacity of curcumin and its derivatives (bisdemethoxycurcumin and bisdemethylcurcumin) in preventing the irritant effects of topically applied xylol and to assess the intrinsic capacity of curcuminoids in permeating human skin by ex vivo permeation tests. Its secondary goal was to validate an HPLC method to simultaneously determine the curcuminoids in the samples from the ex vivo permeation studies and drug extraction from the skin. Curcuminoid quantification was performed using an RP-C18 column, at isocratic conditions of elution and a detection wavelength of 265 nm. The method was specific with a suitable peak resolution, as well as linear, precise, and accurate in the range of 0.195–3.125 μg/mL for the three curcuminoids. Bisdemethylcurcumin showed the greatest permeation through the human skin, and it was the curcuminoid that was most retained within the human skin. The anti-inflammatory activity of the curcuminoids was evaluated in vivo using a xylol-induced inflammation model in rats. Histological studies were performed to observe any changes in morphology at the microscopic level, and these three curcuminoids were found to be respectful within the skin structure. These results show that these three curcuminoids are suitable for anti-inflammatory formulations for dermal applications, and they can be properly quantified using HPLC-UV.
Collapse
Affiliation(s)
- Helen-Lissette Alvarado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - David Limón
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Ana-Cristina Calpena-Campmany
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Laura Rodríguez-Cid
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus of the Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Núria Aliaga-Alcalde
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus of the Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA—Catalan Institution for Research and Advanced Studies, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Arántzazu González-Campo
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus of the Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluïsa Pérez-García
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Miao T, Song G, Yang J. Protective Effect of Apple Polyphenols on H<sub>2</sub>O<sub>2</sub>-Induced Oxidative Stress Damage in Human Colon Adenocarcinoma Caco-2 Cells. Chem Pharm Bull (Tokyo) 2023; 71:262-268. [PMID: 37005250 DOI: 10.1248/cpb.c22-00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Apple is an important dietary agent for human and apple polyphenols (AP) are the main secondary metabolites of apples. In this study, the protective effects of AP on hydrogen peroxide (H2O2)-induced oxidative stress damage in human colon adenocarcinoma Caco-2 cells were investigated by cell viability, oxidative stress change as well as cell apoptosis. Pre-adding AP could significantly increase the survival rate of H2O2-treated Caco-2 cells. Besides, the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) were elevated. While the malondialdehyde (MDA) content which is the major oxidant products of polyunsaturated fatty acids (PUFA) reduced after AP treatment. In addition, AP also suppressed the emergence of DNA fragment and decreased the expression of apoptosis-related protein Caspase-3. These results demonstrated that AP could ameliorate H2O2-induced oxidative stress damage in Caco-2 cells, which could serve as a reference for further studies of apple natural active products and deep study of the anti-oxidative stress mechanism.
Collapse
Affiliation(s)
- Tianyi Miao
- Department of Pharmacy, Northwest Women’s and Children’s Hospital
| | - Guangming Song
- Center for Drug Evaluation, National Medical Products Administration
| | - Jing Yang
- School of Chemical Engineering, Northwest University
| |
Collapse
|
24
|
Abu-Hijleh HM, Al-Zoubi RM, Zarour A, Al- Ansari A, Bawadi H. The Therapeutic Role of Curcumin in Inflammation and Post-Surgical Outcomes. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2166525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Haya M. Abu-Hijleh
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| | - Raed M. Al-Zoubi
- Department of biomedical Sciences, college of health Science, QU-Health, Qatar University, Doha, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Zarour
- Acute care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Abdulla Al- Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| |
Collapse
|
25
|
Damayanti IP, Susilaningsih N, Nugroho T, Suhartono S, Suryono S, Susanto H, Suwondo A, Mahati E. The Effect of Curcumin Nanoparticles on Paracetamol-induced Liver Injury in Male Wistar Rats. Pharm Nanotechnol 2023; 11:493-503. [PMID: 37264664 DOI: 10.2174/2211738511666230601105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Curcumin is a naturally occurring compound that has antioxidant properties, acts as a hepatoprotective, and lowers lipid peroxidation. However, curcumin's low solubility and bioavailability are its primary drawbacks and prevent its use as a therapeutic agent. In this study, curcumin nanoparticles will be created using the ultrasonic-assisted extraction method, and their effectiveness against paracetamol-induced changes in ALT, AST, SOD, MDA, and TNF-α will be compared to that of pure curcumin. PURPOSE This study aimed to determine the hepatoprotective effect of curcumin nanoparticles in paracetamol- induced rats as a model for liver injury. METHODS Thirty-six male Wistar rats, aged 6 to 8 weeks, with a minimum weight of 120 grams, were used in an experimental laboratory investigation with a post-test-only group design. Rats in each group received 100 mg/kgBW pure curcumin, 100 mg/kgBW curcumin nanoparticles, and 50 mg/kgBW curcumin nanoparticles for 7 days before paracetamol induction. On day 8, 300 mg/kgBW of paracetamol was intraperitoneally injected to cause liver damage. One of the groups received NAC as an antidote 10 hours after paracetamol induction. Detection of ALT and AST using a Chemistry Analyzer. ELISA approach for the detection of SOD, MDA, and TNF-α. The Roenigk score was calculated by two examiners after the liver histopathology preparations were stained using the Hematoxylin-Eosin method. Post hoc analyses were performed after the One Way Annova and Kruskal Wallis tests to examine the data. RESULTS According to PSA results, the smallest formula that formed curcumin nanoparticles (10.2 nm) was 8 g of curcumin formula mixed with a mixture of Tween 20 4.5 ml, Kolliphor EL 1.5 ml, Propylene Glycol 1.5 ml, and Capryol 90 1 ml for 21 minutes using an ultrasonic process. MDA and TNF-α levels, as well as the liver's histological Roenigk score, were significantly lower in the 100 mg/kgBB pure curcumin group (C100) when compared to the model group (model). The levels of AST, MDA, TNF-α, and the liver histopathology score were significantly lower in the 100 mg/kgBB (NC100) and 50 mg/kgBB (NC50) curcumin nanoparticle groups compared to the model group (model) and pure curcumin group (C100) (p< 0.05). CONCLUSION Curcumin nanoparticles showed better hepatoprotective ability than pure curcumin.
Collapse
Affiliation(s)
- Irma Putri Damayanti
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Neni Susilaningsih
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Trilaksana Nugroho
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Suhartono Suhartono
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Suryono Suryono
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Hardhono Susanto
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Ari Suwondo
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Endang Mahati
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| |
Collapse
|
26
|
β-Cell Autophagy Pathway and Endoplasmic Reticulum Stress Regulating-Role of Liposomal Curcumin in Experimental Diabetes Mellitus: A Molecular and Morphometric Study. Antioxidants (Basel) 2022; 11:antiox11122400. [PMID: 36552609 PMCID: PMC9774820 DOI: 10.3390/antiox11122400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Autophagy can confer protection to pancreatic β-cells from the harmful effects of metabolic stress by delaying apoptosis. Curcumin (CUR) alleviates oxidative and endoplasmic reticulum (ER) stress, activates autophagy, reduces inflammation, and decreases β-cell damage in type I diabetes. Liposomal CUR (LPs-CUR) has a higher therapeutic value and better pharmacokinetics than CUR. Objectives: We determined LPs-CUR’s ability to alleviate stress, reduce β-cell damage and unraveled the mechanism underlying its protective effect using a streptozotocin (STZ)-induced type I diabetic rat model. Methods: Sprague−Dawley rats were grouped into vehicle control, STZ-diabetic (STZ 65 mg/kg), STZ-diabetic-3-MA (3-methyladenine [3-MA] 10 mg/kg b.wt), STZ. diabetic-LPs-CUR (LPs-CUR 10 mg/kg b.wt), and STZ diabetic-LPs-CUR-3-MA (LPs-CUR 10 mg/kg b.wt; 3-MA 10 mg/kg b.wt). Results: LPs-CUR significantly reduced blood glucose, oxidative stress, and cellular inflammation in the pancreatic tissue (p < 0.001). ER stress-dependent genes included ATF-6, eIF-2, CHOP, JNK, BiP, and XBP LPs-CUR significantly suppressed fold changes, while it upregulated the autophagic markers Beclin-1 and LC3-II. Conclusions: LP-CUR ameliorates β-cell damage by targeting the autophagy pathway with the regulatory miRNAs miR-137 and miR-29b, which functionally abrogates ER stress in β-cells. This study presents a new therapeutic target for managing type I diabetes using miR-137 and miR-29b.
Collapse
|
27
|
Aurellia N, Susilaningsih N, Prabowo E, Muniroh M, Budiono BP. Effect of Curcumin on Interleukin-6 Expression and Malondialdehyde Levels in Liver Fibrosis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Chronic inflammation and excessive oxidative stress are the main mechanisms causing liver fibrosis. It releases anti-inflammatory cytokines, namely, interleukin 6 (IL-6), nitric oxide, and malondialdehyde (MDA). Curcumin acts as an anti-inflammatory, antioxidant, and antifibrotic.
AIM: This study is aimed to analyze differences in IL-6 expression and MDA levels in (Deutschland, Denken, and Yoken) DDY mice with liver fibrosis after common bile duct ligation between the curcumin-treated and control groups.
METHODS: This research is an experimental study with a post-test-only control group design. Seventy-five male DDY mice 20–30g were used in this study (n = 5). Mice were randomly divided into five groups, each consisting of 15 mice. The first group healthy control (HC) was the HC group given phosphate-buffered saline (PBS) solution and did not perform the CBDL. The second group negative control (NC) was a NC group given PBS solution and completed the CBDL. The third group positive control (PC) was a PC group given oral ursodeoxycholic acid (UDCA) and performed CBDL. The fourth group (P1) was assigned oral curcumin and performed the CBDL. The fifth group (P2) was given oral curcumin and UDCA and performed the CBDL. Seven, fourteen, and 21 days after ligation, liver samples were taken to examine IL-6 expression and MDA levels.
RESULTS: There was a significant difference between the NC and PC groups (p = 0.00), NC and P1 (p = 0.00), NC with P2 (p = 0.00), PC with P1 (p = 0.04), PC with P2 (p = 0.04), on day 21 between the NC and PC groups (p = 0.00), NC with P1 (p = 0.00), and PC with P2 (p = 0.00). Statistical analysis of the comparison of MDA levels on days 7 and 14 found no significant difference. On day 21, there was a substantial difference between the NC group and P1 (p = 0.02).
CONCLUSION: This study concluded that curcumin effectively reduced IL-6 expression and MDA levels in liver fibrosis.
Collapse
|
28
|
Hamdalla HM, Ahmed RR, Galaly SR, Naguib IA, Alghamdi BS, Ahmed OM, Farghali A, Abdul-Hamid M. Ameliorative Effect of Curcumin Nanoparticles against Monosodium Iodoacetate-Induced Knee Osteoarthritis in Rats. Mediators Inflamm 2022; 2022:8353472. [PMID: 36578323 PMCID: PMC9792255 DOI: 10.1155/2022/8353472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 12/31/2022] Open
Abstract
AIM This study is aimed at evaluating the use of curcumin-loaded polylactic-co-glycolic acid nanoparticles (CUR-loaded PLGA NPs) as a treatment against monosodium iodoacetate- (MIA-) induced knee OA. MATERIALS AND METHODS Eighteen rats were assigned to three groups (n = 6), namely, normal control group that received intra-articular injections (IAIs) of saline, an OA control group that received an IAIs of MIA (2 mg/50 μL), and a treatment group (MIA+CUR-loaded PLGA NPs) that received IAIs of CUR-loaded PLGA NPs (200 mg/kg b.wt). RESULTS The CUR NP treatment against knee OA alleviated radiographic alternations and histopathological changes and inhibited the upregulation in the serum levels of interleukin-1β, tumor necrosis factor-α, interleukin-6, and transforming growth factor-beta and the downregulation in interleukin-10. CUR NP-treated joints also decreased the mRNA expression of nuclear factor-kappa B and inducible nitric oxide synthase and the protein expression of matrix metalloproteinase-13 and caspase-3. Finally, CUR-loaded PLGA NP treatment mitigated the loss of type II collagen, which resulted in a significant reduction in malondialdehyde level and increased the glutathione content and superoxide dismutase activity compared with that of the OA group. CONCLUSION This study demonstrated that the administration of CUR NPs could provide effective protection against MIA-induced OA and knee joint histological deteriorated changes due to its anti-inflammatory, antioxidant, and antiapoptotic properties.
Collapse
Affiliation(s)
- Hadeer M. Hamdalla
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Rasha R. Ahmed
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sanaa R. Galaly
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Ahmed Farghali
- Department of Material Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
29
|
Rieder AS, Deniz BF, Netto CA, Wyse ATS. A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease. Neurotox Res 2022; 40:1553-1569. [PMID: 35917086 PMCID: PMC9343570 DOI: 10.1007/s12640-022-00542-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 01/18/2023]
Abstract
Since the appearance of SARS-CoV-2 and the COVID-19 pandemic, the search for new approaches to treat this disease took place in the scientific community. The in silico approach has gained importance at this moment, once the methodologies used in this kind of study allow for the identification of specific protein-ligand interactions, which may serve as a filter step for molecules that can act as specific inhibitors. In addition, it is a low-cost and high-speed technology. Molecular docking has been widely used to find potential viral protein inhibitors for structural and non-structural proteins of the SARS-CoV-2, aiming to block the infection and the virus multiplication. The papain-like protease (PLpro) participates in the proteolytic processing of SARS-CoV-2 and composes one of the main targets studied for pharmacological intervention by in silico methodologies. Based on that, we performed a systematic review about PLpro inhibitors from the perspective of in silico research, including possible therapeutic molecules in relation to this viral protein. The neurological problems triggered by COVID-19 were also briefly discussed, especially relative to the similarities of neuroinflammation present in Alzheimer's disease. In this context, we focused on two molecules, curcumin and glycyrrhizinic acid, given their PLpro inhibitory actions and neuroprotective properties and potential therapeutic effects on COVID-19.
Collapse
Affiliation(s)
- Alessandra S Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Bruna F Deniz
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos Alexandre Netto
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
30
|
Ali Hosseinian S, Mehrzad J, Reza Mirhafez S, Saeedi J, Zhiani R, Sahebkar A. Evaluation of the effect of phytosomal curcuminoids on oxidative stress and inflammatory markers in NAFLD: A randomized double-blind placebo-controlled trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Hakim DDL, Gurnida DA, Nuraeny N, Susilaningsih FS, Herawati DMD. Serological Evidence of Herpes Simplex Virus-1 (HSV-1) Infection among Humans from Bandung, West Java Province, Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND: Toxoplasma gondii, Rubella virus, Cytomegalovirus, and herpes simplex virus (TORCH) infection is still a significant burden in developing countries since they potentially increase perinatal death and decrease life quality by causing congenital disorders. As part of TORCH and as one of the most common infections in humans, HSV Type 1 infection also should receive attention. HSV-1 infection induces an immediate reactive oxygen species (ROS) production, indicate that ROS plays beneficial effects in several biological functions, including innate immunity and antiviral responses. HSV-1 preferentially replicate and establish latency in different subtypes of sensory neurons and in neurons of the autonomic nervous system that are highly responsive to stress hormones, including cortisol.
AIM: The objective of the study was to detect the latent HSV-1 infection in adults population and its effect on ROS and cortisol levels.
PATIENTS AND METHODS: Subjects were enrolled with consecutive-sampling methods among the adults population age 18–40 years old, with no health complaints. We collected their blood to examined IgG HSV-1, ROS, and cortisol levels.
RESULTS: A total of 57 subjects with 27 subjects were reactive IgG HSV-1 (herpes group) and 30 subjects were non-reactive IgG HSV-1 (non herpes groups). Mean of cortisol and ROS was 223.2904 nmol/L and 2.23337 IU/mL, respectively. There was a very weak correlation between HSV-1 infection with ROS and cortisol.
CONCLUSION: There is a positive effect of latent HSV-1 infection in the adult population on cortisol ROS levels.
Collapse
|
32
|
Zhang X, Deng J, Tang Y, Guan X, Chen X, Fan J. Zingiberaceae plants/curcumin consumption and multiple health outcomes: An umbrella review of systematic reviews and meta-analyses of randomized controlled trials in humans. Phytother Res 2022; 36:3080-3101. [PMID: 35623903 DOI: 10.1002/ptr.7500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023]
Abstract
This umbrella review is to recapitulate and grade the available evidence of associations between consumption of Zingiberaceae plants/curcumin (Cur) and multiple health-related outcomes. This study included 161 meta-analyses of randomized controlled trials in 76 articles with 67 unique health outcomes. Data on heterogeneity and publication bias are considered to assess the quality of evidence. Based on the different impact of Zingiberaceae plants/Cur on human health, the advantages outweigh the disadvantages. Zingiberaceae plants/Cur can mainly improve metabolic syndrome, non-alcoholic fatty liver disease, cardiovascular disease, and some chronic inflammatory diseases, likewise, obviously relief the pain of osteoarthritis and related diseases. Ginger supplements have been shown to improve vomiting during pregnancy and to relieve nausea and vomiting caused by chemotherapy and surgery. The surgery is any type of surgery, including laparoscopic surgery, gynecological surgery and mixed surgery. Beneficial associations were found with Cur intervention in gastrointestinal, neurological and oral diseases. Zingiberaceae plants/Cur are generally safe and favorable for multiple health outcomes in humans. High-quality research is further needed to prove the observed associations.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yujun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoxian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jianming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Curcumin Induces Apoptosis of Chemoresistant Lung Cancer Cells via ROS-Regulated p38 MAPK Phosphorylation. Int J Mol Sci 2022; 23:ijms23158248. [PMID: 35897820 PMCID: PMC9367815 DOI: 10.3390/ijms23158248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to challenge chemoresistance by curcumin (CUR) with drug-selected human lung cancer A549 sublines that continuously proliferate in the present of docetaxel (DOC) and vincristine (VCR). Their sensitivities to CUR were measured by MTT assay and the particular intracellular reactive oxygen species (ROS) was detected by fluorescence activated cell sorting (FACS) analysis. Apoptosis was analyzed by Annexin V assay of the flow cytometry. Inhibitors and RNA interference were used to examine the signaling pathway regulated by the kinases. The obtained data demonstrated that CUR induces chemoresistant cell apoptosis by generating ROS and application of N-acetylcysteine (NAC) blocks ROS production, resulting in apoptosis suppression. Phosphorylation of extracellular regulated kinase (ERK), p38 MAPK, and eIF-2α were increased but c-Jun N-terminal kinase (JNK) did not increase when chemoresistant cells were treated with CUR. Downregulation of ERK and p38 MAPK phosphorylation by their inhibitors had no effect on CUR-induced apoptosis. Interestingly, the knockdown of p38 MAPK with shRNA significantly reduced CUR-induced apoptosis on the chemoresistant sublines. Phosphorylation of the eIF-2α protein was inhibited when p38 MAPK was knocked down in DOC-resistant A549 cells, but a high level of phosphorylated eIF-2α protein remained on the VCR-resistant A549 cells when p38 MAPK was knocked down. These data confirmed that CUR-augmented ROS potently induced apoptosis via upregulated p38 MAPK phosphorylation. Therefore, activated p38 MAPK is considered a pro-apoptotic signal for CUR-induced apoptosis of chemoresistant human lung cancer cells.
Collapse
|
34
|
Antioxidant Effects of Curcumin Gel in Experimental Induced Diabetes and Periodontitis in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7278064. [PMID: 35592526 PMCID: PMC9113860 DOI: 10.1155/2022/7278064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This study aimed to evaluate the effect of curcumin gel on antioxidant marker level in experimental induced diabetes and periodontitis (EDP) in rats. Adult Wistar rats were randomized into five groups (20 each): (1) EDP treated with scaling and root planing (SRP) + curcumin gel (CU), (2) EDP treated with CU, (3) EDP treated with SRP, (4) EDP without treatment, and (5) systemically healthy and without ligature (control). Each group was subdivided equally into 4 subgroups of 5 rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ), and periodontitis was induced by a ligature. Blood samples were collected by cardiac puncture at 0, 7, 14, and 21 days to assess oxidative stress of malondialdehyde (MDA) and antioxidant enzymes of glutathione peroxidase (GPx), catalase (CAT), and suproxidase dismutase (SOD) levels. The results showed a significant increase in serum MDA and antioxidant enzyme levels in the untreated EDP group compared to the control group (
). The adjuvant use of CU to SRP resulted in a significant reduction of MDA and CAT levels as compared to the SRP group (
); however, significant reduction of GPX and SOD levels can be found only at day 7. It can be concluded that the decreased level of antioxidant enzymes can be construed as a result of decreased oxidative stress by curcumin therapy.
Collapse
|
35
|
Therapeutic Applications of Curcumin in Diabetes: A Review and Perspective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1375892. [PMID: 35155670 PMCID: PMC8828342 DOI: 10.1155/2022/1375892] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/28/2021] [Accepted: 01/22/2022] [Indexed: 12/14/2022]
Abstract
Diabetes is a metabolic disease with multifactorial causes which requires lifelong drug therapy as well as lifestyle changes. There is now growing scientific evidence to support the effectiveness of the use of herbal supplements in the prevention and control of diabetes. Curcumin is one of the most studied bioactive components of traditional medicine, but its physicochemical characteristics are represented by low solubility, poor absorption, and low efficacy. Nanotechnology-based pharmaceutical formulations can help overcome the problems of reduced bioavailability of curcumin and increase its antidiabetic effects. The objectives of this review were to review the effects of nanocurcumin on DM and to search for databases such as PubMed/MEDLINE and ScienceDirect. The results showed that the antidiabetic activity of nanocurcumin is due to complex pharmacological mechanisms by reducing the characteristic hyperglycemia of DM. In light of these results, nanocurcumin may be considered as potential agent in the pharmacotherapeutic management of patients with diabetes.
Collapse
|
36
|
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel) 2022; 11:antibiotics11020135. [PMID: 35203738 PMCID: PMC8868220 DOI: 10.3390/antibiotics11020135] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a natural lipophilic polyphenol that exhibits significant pharmacological effects in vitro and in vivo through various mechanisms of action. Numerous studies have identified and characterised the pharmacokinetic, pharmacodynamic, and clinical properties of curcumin. Curcumin has an anti-inflammatory, antioxidative, antinociceptive, antiparasitic, antimalarial effect, and it is used as a wound-healing agent. However, poor curcumin absorption in the small intestine, fast metabolism, and fast systemic elimination cause poor bioavailability of curcumin in human beings. In order to overcome these problems, a number of curcumin formulations have been developed. The aim of this paper is to provide an overview of recent research in biological and pharmaceutical aspects of curcumin, methods of sample preparation for its isolation (Soxhlet extraction, ultrasound extraction, pressurised fluid extraction, microwave extraction, enzyme-assisted aided extraction), analytical methods (FTIR, NIR, FT-Raman, UV-VIS, NMR, XRD, DSC, TLC, HPLC, HPTLC, LC-MS, UPLC/Q-TOF-MS) for identification and quantification of curcumin in different matrices, and different techniques for developing formulations. The optimal sample preparation and use of an appropriate analytical method will significantly improve the evaluation of formulations and the biological activity of curcumin.
Collapse
|
37
|
Turmeric extract alleviates endocrine-metabolic disturbances in letrozole-induced PCOS by increasing adiponectin circulation: A comparison with Metformin. Metabol Open 2022; 13:100160. [PMID: 35005596 PMCID: PMC8717583 DOI: 10.1016/j.metop.2021.100160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
One of the most common causes of female infertility is polycystic ovarian syndrome, which affects 6–21% of the population. Regrettably, the currently available treatments are mostly symptomatic and ineffective. As a result, safer options are needed now more than ever. In a letrozole PCOS albino mouse model, the current study compares the therapeutic advantages of Turmeric extract (Curcuma longa) to metformin. Adiponectin is a circulating protein generated by adipocytes that has been linked to metabolic diseases (MDs) in an inverse relationship. The effects of Turmeric Extract (Curcuma Longa) in contrast to Metformin, as well as the involvement of adiponectin in endocrine-metabolic abnormalities in experimentally induced PCOS mice model, were studied in this study. Letrozole (6 mg/kg) was administered orally (p.o) for 21 days to induce PCOS, followed by a dose of Turmeric Extract (Curcuma longa) (175 mg/kg and p.o) and Metformin (150 mg/kg) for 30 days, both with normal saline water (0.9%) as the carrier. The findings revealed that LET-treated mice displayed PCOS-like characteristics, such as higher LH levels, increased body weight growth, and ovarian morphology with numerous cysts, increase in fasting blood glucose, lipid profile, plasma lipid peroxidation (MDA) and IL-6, as well as a decrease in serum Progesterone, Estrogen, FSH, SOD and GSH levels in the ovary. These changes were linked to lower levels of circulating adiponectin and were reversed when treated Turmeric extract. By altering circulating androgen-adiponectin balance, the data implies that Turmeric extract alleviates endocrine-metabolic abnormalities and inflammation-related comorbidities associated with LET-induced PCOS.
Collapse
|
38
|
Mokgalaboni K, Ntamo Y, Ziqubu K, Nyambuya TM, Nkambule BB, Mazibuko-Mbeje SE, Gabuza KB, Chellan N, Tiano L, Dludla PV. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence. Food Funct 2021; 12:12235-12249. [PMID: 34847213 DOI: 10.1039/d1fo02696h] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress and inflammation remain the major complications implicated in the development and progression of metabolic complications, including obesity, type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). In fact, due to their abundant antioxidant and anti-inflammatory properties, there is a general interest in understanding the therapeutic effects of some major food-derived bioactive compounds like curcumin against diverse metabolic diseases. Hence, a systematic search, through prominent online databases such as MEDLINE, Scopus, and Google Scholar was done focusing on randomized controlled trials (RCTs) reporting on the impact of curcumin supplementation in individuals with diverse metabolic complications, including obesity, T2D and NAFLD. Summarized findings suggest that curcumin supplementation can significantly reduce blood glucose and triglycerides levels, including markers of liver function like alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in patients with T2D and NAFLD. Importantly, this effect was consistent with the reduction of predominant markers of oxidative stress and inflammation, such as the levels of malonaldehyde (MDA), tumor necrosis factor-alpha (TNF-α), high sensitivity C-reactive protein (hs-CRP) and monocyte chemoattractant protein-1 (MCP-1) in these patients. Although RCTs suggest that curcumin is beneficial in ameliorating some metabolic complications, future research is still necessary to enhance its absorption and bioavailability profile, while also optimizing the most effective therapeutic doses.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Kwazikwakhe B Gabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
39
|
Zhang HA, Kitts DD. Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem 2021; 476:3785-3814. [PMID: 34106380 PMCID: PMC8187459 DOI: 10.1007/s11010-021-04201-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 01/22/2023]
Abstract
Turmeric, the rhizome of Curcuma longa plant belonging to the ginger family Zingiberaceae, has a history in Ayurvedic and traditional Chinese medicine for treatment of chronic diseases, including metabolic and cardiovascular diseases (CVD). This parallels a prevalence of age- and lifestyle-related diseases, especially CVD and type 2 diabetes (T2D), and associated mortality which has occurred in recent decades. While the chemical composition of turmeric is complex, curcuminoids and essential oils are known as two major groups that display bioactive properties. Curcumin, the most predominant curcuminoid, can modulate several cell signaling pathways involved in the etiology and pathogenesis of CVD, T2D, and related morbidities. Lesser bioactivities have been reported from other curcuminoids and essential oils. This review examines the chemical compositions of turmeric, and related bioactive constituents. A focus was placed on the cellular and molecular mechanisms that underlie the protective effects of turmeric and turmeric-derived compounds against diabetes and CVD, compiled from the findings obtained with cell-based and animal models. Evidence from clinical trials is also presented to identify potential preventative and therapeutic efficacies. Clinical studies with longer intervention durations and specific endpoints for assessing health outcomes are warranted in order to fully evaluate the long-term protective efficacy of turmeric.
Collapse
Affiliation(s)
- Huiying Amelie Zhang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - David D. Kitts
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
40
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
41
|
Guo SP, Chang HC, Lu LS, Liu DZ, Wang TJ. Activation of kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant response element pathway by curcumin enhances the anti-oxidative capacity of corneal endothelial cells. Biomed Pharmacother 2021; 141:111834. [PMID: 34153850 DOI: 10.1016/j.biopha.2021.111834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 01/24/2023] Open
Abstract
Fuchs endothelial corneal dystrophy is one of the most common indications for corneal transplantation, and impaired anti-oxidative function is observed in corneal endothelial cells (CECs). Curcumin is well-known for its anti-oxidative property; but, no study has examined the effect of curcumin on anti-oxidative therapeutic roles in corneal endothelial disease. In our experiments, oxidative stress 0.25 mM tert-butyl hydroperoxide for 2 h was induced in immortalized human CECs pretreated with curcumin. Cell behavior and viability, reactive oxygen species production, and the protein expression of the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element (ARE) pathway were examined; the Keap1/Nrf2/ARE pathway is crucial anti-oxidative pathway of curcumin. The results showed that pretreatment with 12.5 μM curcumin significantly reduced the ROS production and improved the survival of CECs under oxidative stress. In addition, curcumin pretreatment significantly increased the expression of nuclear Nrf2, and the productions of superoxide dismutase 1 and heme oxygenase-1, which were the target anti-oxidative enzymes of the Keap1/Nrf2/ARE pathway. Our findings showed that curcumin enhanced the growth and differentiation of CECs under oxidative stress. The activation of Keap1/Nrf2/ARE pathway by curcumin was crucial for CECs to improve their anti-oxidative capacity.
Collapse
Affiliation(s)
- Siao-Pei Guo
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110301, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Hua-Ching Chang
- Department of Dermatology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan; Medical and Pharmaceutical Industry Technology and Development Center, New Taipei City 248, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110301, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110301, Taiwan.
| |
Collapse
|
42
|
Park JH, Lee BM, Kim HS. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:95-118. [PMID: 33357071 DOI: 10.1080/10937404.2020.1860842] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Curcumin, used as a spice and traditional medicine in India, exerts beneficial effects against several diseases, owing to its antioxidant, analgesic, and anti-inflammatory properties. Evidence indicates that curcumin might protect against heavy metal-induced organ toxicity by targeting biological pathways involved in anti-oxidation, anti-inflammation, and anti-tumorigenesis. Curcumin has received considerable attention owing to its therapeutic properties, and the mechanisms underlying some of its actions have been recently investigated. Cadmium (Cd) is a heavy metal found in the environment and used extensively in industries. Chronic Cd exposure induces damage to bones, liver, kidneys, lungs, testes, and the immune and cardiovascular systems. Because of its long half-life, exposure to even low Cd levels might be harmful. Cd-induced toxicity involves the overproduction of reactive oxygen species (ROS), resulting in oxidative stress and damage to essential biomolecules. Dietary antioxidants, such as chelating agents, display the potential to reduce Cd accumulation and metal-induced toxicity. Curcumin scavenges ROS and inhibits oxidative damage, thus resulting in many therapeutic properties. This review aims to address the effectiveness of curcumin against Cd-induced organ toxicity and presents evidence supporting the use of curcumin as a protective antioxidant.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| |
Collapse
|
43
|
Jakubczyk K, Drużga A, Katarzyna J, Skonieczna-Żydecka K. Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9111092. [PMID: 33172016 PMCID: PMC7694612 DOI: 10.3390/antiox9111092] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Antioxidant potential is defined as the ability to neutralize oxygen free radicals that are generated in excess due to environmental influences. The body’s defense mechanisms often require support in preventing the effects of oxidative stress. The literature data suggest that curcumin has antioxidant activity that can significantly reduce oxidative stress levels. The aim was to assess the impact of curcumin on oxidative stress markers. Methods: PubMed and Embase were searched from database inception until 27 September 2019 for randomized clinical trials in >20 patients treated with curcumin supplements and randomized to placebo/no intervention/physical activity to verify the antioxidant potential of curcumin. Results: Four studies were included in the meta-analysis, three of which were double-blind and one single-blind. A total of 308 participants took part in the research. A total of 40% of the respondents were men. The average age of participants was 27.60 ± 3.79 years. The average supplementation time was 67 days and the average dose of curcumin administered was 645 mg/24 h. Curcumin significantly increased total antioxidant capacity (TAC) (SMD = 2.696, Z = 2.003, CI = 95%, p = 0.045) and had a tendency to decrease malondialdehyde (MDA) concentration (SMD = −1.579, Z = −1.714, CI = 95%, p = 0.086). Conclusions: Pure curcumin has the potential to reduce MDA concentration and increase total antioxidant capacity.
Collapse
|
44
|
Clarke H, Kim DH, Meza CA, Ormsbee MJ, Hickner RC. The Evolving Applications of Creatine Supplementation: Could Creatine Improve Vascular Health? Nutrients 2020; 12:nu12092834. [PMID: 32947909 PMCID: PMC7551337 DOI: 10.3390/nu12092834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Creatine is a naturally occurring compound, functioning in conjunction with creatine kinase to play a quintessential role in both cellular energy provision and intracellular energy shuttling. An extensive body of literature solidifies the plethora of ergogenic benefits gained following dietary creatine supplementation; however, recent findings have further indicated a potential therapeutic role for creatine in several pathologies such as myopathies, neurodegenerative disorders, metabolic disturbances, chronic kidney disease and inflammatory diseases. Furthermore, creatine has been found to exhibit non-energy-related properties, such as serving as a potential antioxidant and anti-inflammatory. Despite the therapeutic success of creatine supplementation in varying clinical populations, there is scarce information regarding the potential application of creatine for combatting the current leading cause of mortality, cardiovascular disease (CVD). Taking into consideration the broad ergogenic and non-energy-related actions of creatine, we hypothesize that creatine supplementation may be a potential therapeutic strategy for improving vascular health in at-risk populations such as older adults or those with CVD. With an extensive literature search, we have found only four clinical studies that have investigated the direct effect of creatine on vascular health and function. In this review, we aim to give a short background on the pleiotropic applications of creatine, and to then summarize the current literature surrounding creatine and vascular health. Furthermore, we discuss the varying mechanisms by which creatine could benefit vascular health and function, such as the impact of creatine supplementation upon inflammation and oxidative stress.
Collapse
Affiliation(s)
- Holly Clarke
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
| | - Do-Houn Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
| | - Cesar A. Meza
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
| | - Michael J. Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
- Department of Biokenetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville 4041, South Africa
- Institute of Sports Sciences and Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL 32306, USA
| | - Robert C. Hickner
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA; (H.C.); (D.-H.K.); (C.A.M.); (M.J.O.)
- Department of Biokenetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville 4041, South Africa
- Institute of Sports Sciences and Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL 32306, USA
- Correspondence:
| |
Collapse
|
45
|
Scazzocchio B, Minghetti L, D’Archivio M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 2020; 12:E2499. [PMID: 32824993 PMCID: PMC7551052 DOI: 10.3390/nu12092499] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Curcumin, a lipophilic polyphenol contained in the rhizome of Curcuma longa (turmeric), has been used for centuries in traditional Asian medicine, and nowadays it is widely used in food as dietary spice worldwide. It has received considerable attention for its pharmacological activities, which appear to act primarily through anti-inflammatory and antioxidant mechanisms. For this reason, it has been proposed as a tool for the management of many diseases, among which are gastrointestinal and neurological diseases, diabetes, and several types of cancer. However, the pharmacology of curcumin remains to be elucidated; indeed, a discrepancy exists between the well-documented in vitro and in vivo activities of curcumin and its poor bioavailability and chemical instability that should limit any therapeutic effect. Recently, it has been hypothesized that curcumin could exert direct regulative effects primarily in the gastrointestinal tract, where high concentrations of this polyphenol have been detected after oral administration. Consequently, it might be hypothesized that curcumin directly exerts its regulatory effects on the gut microbiota, thus explaining the paradox between its low systemic bioavailability and its wide pharmacological activities. It is well known that the microbiota has several important roles in human physiology, and its composition can be influenced by a multitude of environmental and lifestyle factors. Accordingly, any perturbations in gut microbiome profile or dysbiosis can have a key role in human disease progression. Interestingly, curcumin and its metabolites have been shown to influence the microbiota. It is worth noting that from the interaction between curcumin and microbiota two different phenomena arise: the regulation of intestinal microflora by curcumin and the biotransformation of curcumin by gut microbiota, both of them potentially crucial for curcumin activity. This review summarizes the most recent studies on this topic, highlighting the strong connection between curcumin and gut microbiota, with the final aim of adding new insight into the potential mechanisms by which curcumin exerts its effects.
Collapse
Affiliation(s)
- Beatrice Scazzocchio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Massimo D’Archivio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
46
|
Effect of Morning vs. Evening Turmeric Consumption on Urine Oxidative Stress Biomarkers in Obese, Middle-Aged Adults: A Feasibility Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17114088. [PMID: 32521782 PMCID: PMC7312995 DOI: 10.3390/ijerph17114088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
The circadian rhythm of biological systems is an important consideration in developing health interventions. The immune and oxidative defense systems exhibit circadian periodicity, with an anticipatory increase in activity coincident with the onset of the active period. Spice consumption is associated with enhanced oxidative defense. The objective of this study was to test the feasibility of a protocol, comparing the effects of morning vs. evening consumption of turmeric on urine markers of oxidative stress in obese, middle-aged adults. Using a within-sample design, participants received each of four clock time x treatment administrations, each separated by one week: morning turmeric; evening turmeric; morning control; evening control. Participants prepared for each lab visit by consuming a low-antioxidant diet for two days and fasting for 12 h. Urine was collected in the lab at baseline and one-hour post-meal and at home for the following five hours. The results showed that the processes were successful in executing the protocol and collecting the measurements and that participants understood and adhered to the instructions. The findings also revealed that the spice treatment did not elicit the expected antioxidant effect and that the six-hour post-treatment urine collection period did not detect differences in urine endpoints across treatments. This feasibility study revealed that modifications to the spice treatment and urine sampling timeline are needed before implementing a larger study.
Collapse
|