1
|
Zhou C, Bisseling TM, van der Post RS, Boleij A. The influence of Helicobacter pylori, proton pump inhibitor, and obesity on the gastric microbiome in relation to gastric cancer development. Comput Struct Biotechnol J 2024; 23:186-198. [PMID: 38075398 PMCID: PMC10704269 DOI: 10.1016/j.csbj.2023.11.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 05/11/2025] Open
Abstract
Helicobacter pylori infection is still the main risk factor for the development of gastric cancer (GC). We explore the scientific evidence for the role of the gastric microbiome beyond Helicobacter pylori (H. pylori) in gastric carcinogenesis. The composition of the gastric microbiome in healthy individuals, in presence and absence of H. pylori infection, in proton pump inhibitor (PPI)-users, obese individuals, and GC patients was investigated. Possible mechanisms for microbial involvement, limitations of available research and options for future studies are provided. A common finding amongst studies was increased levels of Streptococcus, Prevotella, Neisseria, and Actinomyces in healthy individuals or those with H. pylori-negative gastritis. In PPI-users the risk for GC increases with the treatment duration, and the gastric microbiome shifts, with the most consistent increase in the genus Streptococcus. Similarly, in obese individuals, Streptococcus was the most abundant genus, with an increased risk for cardia GC. The genera Streptococcus, Lactobacillus and Prevotella were found to be more prominent in GC patients in multiple studies. Potential mechanisms of non-H. pylori microbiota contributing to GC are linked to lipopolysaccharide production, contribution to inflammatory pathways, and the formation of N-nitroso compounds and reactive oxygen species. In conclusion, the knowledge of the gastric microbiome in GC is mainly descriptive and based on sequencing of gastric mucosal samples. For a better mechanistic understanding of microbes in GC development, longitudinal cohorts including precancerous lesions, different regions in the stomach, and subtypes of GC, and gastric organoid models for diffuse and intestinal type GC should be employed.
Collapse
Affiliation(s)
- Chengliang Zhou
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Pathology, P.O. box 9101, 6500 HB Nijmegen, the Netherlands
| | - Tanya M. Bisseling
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Gastroenterology and Hepatology, P.O. box 9101, 6500 HB Nijmegen, the Netherlands
| | - Rachel S. van der Post
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Pathology, P.O. box 9101, 6500 HB Nijmegen, the Netherlands
| | - Annemarie Boleij
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Pathology, P.O. box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
2
|
Sgamato C, Rocco A, Compare D, Priadko K, Romano M, Nardone G. Exploring the Link between Helicobacter pylori, Gastric Microbiota and Gastric Cancer. Antibiotics (Basel) 2024; 13:484. [PMID: 38927151 PMCID: PMC11201017 DOI: 10.3390/antibiotics13060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) still represents one of the leading causes of cancer-related mortality and is a major public health issue worldwide. Understanding the etiopathogenetic mechanisms behind GC development holds immense potential to revolutionize patients' treatment and prognosis. Within the complex web of genetic predispositions and environmental factors, the connection between Helicobacter pylori (H. pylori) and gastric microbiota emerges as a focus of intense research investigation. According to the most recent hypotheses, H. pylori triggers inflammatory responses and molecular alterations in gastric mucosa, while non-Helicobacter microbiota modulates disease progression. In this review, we analyze the current state of the literature on the relationship between H. pylori and non-Helicobacter gastric microbiota in gastric carcinogenesis, highlighting the mechanisms by which microecological dysbiosis can contribute to the malignant transformation of the mucosa.
Collapse
Affiliation(s)
- Costantino Sgamato
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| | - Alba Rocco
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| | - Debora Compare
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| | - Kateryna Priadko
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (K.P.); (M.R.)
| | - Marco Romano
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (K.P.); (M.R.)
| | - Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| |
Collapse
|
3
|
Zhang S, Shen Y, Liu H, Zhu D, Fang J, Pan H, Liu W. Inflammatory microenvironment in gastric premalignant lesions: implication and application. Front Immunol 2023; 14:1297101. [PMID: 38035066 PMCID: PMC10684945 DOI: 10.3389/fimmu.2023.1297101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Gastric precancerous lesions (GPL) are a major health concern worldwide due to their potential to progress to gastric cancer (GC). Understanding the mechanism underlying the transformation from GPL to GC can provide a fresh insight for the early detection of GC. Although chronic inflammation is prevalent in the GPL, how the inflammatory microenvironment monitored the progression of GPL-to-GC are still elusive. Inflammation has been recognized as a key player in the progression of GPL. This review aims to provide an overview of the inflammatory microenvironment in GPL and its implications for disease progression and potential therapeutic applications. We discuss the involvement of inflammation in the progression of GPL, highlighting Helicobacter pylori (H. pylori) as a mediator for inflammatory microenvironment and a key driver to GC progression. We explore the role of immune cells in mediating the progression of GPL, and focus on the regulation of inflammatory molecules in this disease. Furthermore, we discuss the potential of targeting inflammatory pathways for GPL. There are currently no specific drugs for GPL treatment, but traditional Chinese Medicine (TCM) and natural antioxidants, known as antioxidant and anti-inflammatory properties, exhibit promising effects in suppressing or reversing the progression of GPL. Finally, the challenges and future perspectives in the field are proposed. Overall, this review highlights the central role of the inflammatory microenvironment in the progression of GPL, paving the way for innovative therapeutic approaches in the future.
Collapse
Affiliation(s)
- Shengxiong Zhang
- Rehabilitation Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
- Department of Spleen and Stomach, GuangZhou Tianhe District Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Shen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Charlton-Howard HS, Bond AL, Rivers-Auty J, Lavers JL. 'Plasticosis': Characterising macro- and microplastic-associated fibrosis in seabird tissues. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131090. [PMID: 36867907 DOI: 10.1016/j.jhazmat.2023.131090] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
As biota are increasingly exposed to plastic pollution, there is a need to closely examine the sub-lethal 'hidden' impacts of plastic ingestion. This emerging field of study has been limited to model species in controlled laboratory settings, with little data available for wild, free-living organisms. Highly impacted by plastic ingestion, Flesh-footed Shearwaters (Ardenna carneipes) are thus an apt species to examine these impacts in an environmentally relevant manner. A Masson's Trichrome stain was used to document any evidence of plastic-induced fibrosis, using collagen as a marker for scar tissue formation in the proventriculus (stomach) of 30 Flesh-footed Shearwater fledglings from Lord Howe Island, Australia. Plastic presence was highly associated with widespread scar tissue formation and extensive changes to, and even loss of, tissue structure within the mucosa and submucosa. Additionally, despite naturally occurring indigestible items, such as pumice, also being found in the gastrointestinal tract, this did not cause similar scarring. This highlights the unique pathological properties of plastics and raises concerns for other species impacted by plastic ingestion. Further, the extent and severity of fibrosis documented in this study gives support for a novel, plastic-induced fibrotic disease, which we define as 'Plasticosis,'.
Collapse
Affiliation(s)
- Hayley S Charlton-Howard
- Institute for Marine and Antarctic Studies, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia
| | - Alexander L Bond
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom
| | - Jack Rivers-Auty
- Tasmanian School of Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jennifer L Lavers
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom; Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia; Esperance Tjaltjraak Native Title Aboriginal Corporation, 11A Shelden Road, 6450 Esperance, Western Australia, Australia.
| |
Collapse
|
6
|
Xi J, Li Y, Zhang H, Bai Z. Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade. Int J Cancer 2023; 152:1069-1084. [PMID: 36029278 DOI: 10.1002/ijc.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.
Collapse
Affiliation(s)
- Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumour, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Zi M, Zhang Y, Hu C, Zhang S, Chen J, Yuan L, Cheng X. A literature review on the potential clinical implications of streptococci in gastric cancer. Front Microbiol 2022; 13:1010465. [PMID: 36386672 PMCID: PMC9643750 DOI: 10.3389/fmicb.2022.1010465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 10/29/2023] Open
Abstract
Streptococcus is widely found in nature and the human body, and most species are not pathogenic. In recent years, studies have found that Streptococcus is associated with gastric cancer. Streptococcus was found to be enriched in the oral cavity, stomach and intestine of gastric cancer patients and found to be increased in gastric cancer tissues, suggesting that Streptococcus may be the pathogenic bacteria underlying gastric cancer. This review discusses the discovery of Streptococcus, the relationship between Streptococcus and gastric cancer, and the possible carcinogenic mechanism of Streptococcus and summarizes the progress of the research on the role of Streptococcus in gastric cancer to provide new ideas for the early detection, diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Mengli Zi
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanqiang Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Can Hu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jinxia Chen
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
8
|
Nezu Y, Manabe N, Yoda Y, Haruma K. Effectiveness of screening endoscopy for esophageal squamous cell carcinoma in Japanese males. United European Gastroenterol J 2022; 10:868-873. [PMID: 35976761 PMCID: PMC9557950 DOI: 10.1002/ueg2.12284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) has a poor prognosis; therefore, early detection is essential. In Japan, more than 90% of esophageal cancers are ESCC. Endoscopy is effective to detect ESCC in the early stage, but there is a limited number of reports examining its efficacy and effectiveness. OBJECTIVE This study aimed to evaluate the efficacy of screening endoscopy for detecting ESCC. METHODS This retrospective study analyzed the prevalence of ESCC, annual transition of prevalence, and the stage of each ESCC among 128,520 medical check-up patients who underwent esophagogastroduodenoscopy from April 2015 to March 2020 at Yamanashi Koseiren Health Care Center. Furthermore, a case-control study utilized the multivariate logistic regression analysis was performed to assess the risk factor of ESCC. RESULTS Among a total of 128,520 subjects, 42 ESCC patients were detected, with 95.2% being diagnosed at early stages. Annual prevalence in males was 0.015% (2/13,122) in 2015, 0.044% (6/13,562) in 2016, 0.044% (6/13,676) in 2017, 0.074% (10/13,488) in 2018%, and 0.11% (16/14,386) in 2019. ESCC prevalence has been increasing each year. A significant increase was observed between 2015 and 2018 (p = 0.039). ESCC prevalence was 0.102% (25/24,272) when focusing on males aged over 50 years with a history of smoking and drinking. Regarding the case-control study, the multivariate logistic regression analysis revealed smoking (p = 0.044), mean corpuscular volume (MCV) (p = 0.0018), and severe gastric atrophy (p = 0.048) as positively correlated with ESCC. CONCLUSION In conclusion, ESCC has been increasing in our center from 2015 to 2019, and the prevalence has been approaching that of gastric cancer in 2019 in male subjects. ESCC can be detected efficiently by targeting males with high MCV who have a history of drinking and smoking.
Collapse
Affiliation(s)
- Yasuko Nezu
- Yamanashi Koseiren Health Care CenterYamanashiJapan
| | - Noriaki Manabe
- Division of Endoscopy and UltrasonographyDepartment of Clinical Pathology and Laboratory MedicineKawasaki Medical School General Medical CenterOkayamaJapan
| | | | - Ken Haruma
- Department of General Internal Medicine 2Kawasaki Medical School General Medical CenterOkayamaJapan
| |
Collapse
|
9
|
Fakharian F, Asgari B, Nabavi-Rad A, Sadeghi A, Soleimani N, Yadegar A, Zali MR. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front Cell Infect Microbiol 2022; 12:953718. [PMID: 36046747 PMCID: PMC9423097 DOI: 10.3389/fcimb.2022.953718] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
The human gut microbiota are critical for preserving the health status because they are required for digestion and nutrient acquisition, the development of the immune system, and energy metabolism. The gut microbial composition is greatly influenced by the colonization of the recalcitrant pathogen Helicobacter pylori (H. pylori) and the conventional antibiotic regimens that follow. H. pylori is considered to be the main microorganism in gastric carcinogenesis, and it appears to be required for the early stages of the process. However, a non-H. pylori microbiota profile is also suggested, primarily in the later stages of tumorigenesis. On the other hand, specific groups of gut microbes may produce beneficial byproducts such as short-chain fatty acids (acetate, butyrate, and propionate) that can modulate inflammation and tumorigenesis pathways. In this review, we aim to present how H. pylori influences the population of the gut microbiota to modify the host immunity and trigger the development of gastric carcinogenesis. We will also highlight the effect of the gut microbiota on immunotherapeutic approaches such as immune checkpoint blockade in cancer treatment to present a perspective for further development of innovative therapeutic paradigms to prevent the progression of H. pylori-induced stomach cancer.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoush Asgari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Gastric Non-Helicobacter pylori Urease-Positive Staphylococcus epidermidis and Streptococcus salivarius Isolated from Humans Have Contrasting Effects on H. pylori-Associated Gastric Pathology and Host Immune Responses in a Murine Model of Gastric Cancer. mSphere 2022; 7:e0077221. [PMID: 35138124 PMCID: PMC8826947 DOI: 10.1128/msphere.00772-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In populations with similar prevalence of Helicobacter pylori infection, cancer risk can vary dramatically. Changes in composition or structure of bacterial communities in the stomach, either at the time of exposure or over the course of H. pylori infection, may contribute to gastric pathology. In this study, a population of 37 patients from the low-gastric-cancer-risk (LGCR) region of Tumaco, Colombia, and the high-gastric-cancer-risk (HGCR) region of Túquerres, Colombia, were recruited for gastric endoscopy. Antral biopsy specimens were processed for histology and bacterial isolation. Fifty-nine distinct species among 26 genera were isolated by aerobic, anaerobic, and microaerobic culture and confirmed by 16S rRNA analysis. Urease-positive Staphylococcus epidermidis and Streptococcus salivarius were frequently isolated from gastric biopsy specimens. We asked whether coinfection of H. pylori with urease-positive S. salivarius and/or S. epidermidis had a demonstrable effect on H. pylori-induced gastritis in the germfree (GF) INS-GAS mouse model. Coinfections with S. salivarius and/or S. epidermidis did not affect gastric H. pylori colonization. At 5 months postinfection, GF INS-GAS mice coinfected with H. pylori and S. salivarius had statistically higher pathological scores in the stomachs than mice infected with H. pylori only or H. pylori with S. epidermidis (P < 0.05). S. epidermidis coinfection with H. pylori did not significantly change stomach pathology, but levels of the proinflammatory cytokine genes Il-1β, Il-17A , and Il-22 were significantly lower than in H. pylori-monoinfected mice. This study demonstrates that non-H. pylori urease-positive bacteria may play a role in the severity of H. pylori-induced gastric cancer in humans. IMPORTANCE Chronic infection with H. pylori is the main cause of gastric cancer, which is a global health problem. In two Colombian populations with high levels of H. pylori prevalence, the regional gastric cancer rates are considerably different. Host genetic background, H. pylori biotype, environmental toxins, and dietary choices are among the known risk factors for stomach cancer. The potential role of non-H. pylori gastric microbiota in gastric carcinogenesis is being increasingly recognized. In this study, we isolated 59 bacterial species from 37 stomach biopsy samples of Colombian patients from both low-gastric-cancer-risk and high-gastric-cancer-risk regions. Urease-positive S. epidermidis and S. salivarius commonly cultured from the stomachs, along with H. pylori, were inoculated into germfree INS-GAS mice. S. salivarius coinfection with H. pylori induced significantly higher gastric pathology than in H. pylori-monoinfected mice, whereas S. epidermidis coinfection caused significantly lower H. pylori-induced proinflammatory cytokine responses than in H. pylori-monoinfected mice. This study reinforces the argument that the non-H. pylori stomach microflora play a role in the severity of H. pylori-induced gastric cancer.
Collapse
|
11
|
Gunathilake M, Lee J, Choi IJ, Kim YI, Kim J. Association between bacteria other than Helicobacter pylori and the risk of gastric cancer. Helicobacter 2021; 26:e12836. [PMID: 34268831 DOI: 10.1111/hel.12836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The gastric microbiota, including Helicobacter pylori (HP), has a remarkable role in gastric cancer (GC) occurrence. Evidence for the role of non-HP bacteria in GC risk is limited. We aimed to observe the association between bacteria other than HP and risk of GC in a Korean population. METHODS In this study, 268 GC cases and 288 healthy controls were included. Demographic data and total energy intake data were collected using a general questionnaire and a semiquantitative food frequency questionnaire, respectively. 16S rRNA gene sequencing was performed using DNA extracted from gastric biopsy samples. RESULTS Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and non-HP Proteobacteria were the five main phyla in the gastric environment. The five phyla were negatively related to the relative abundance of Helicobacter species (all p < 0.001). The Shannon index, richness, and Pilou-evenness were negatively correlated with Helicobacter species (all p < 0.001), while the microbial dysbiosis index was positively correlated with Helicobacter species (p < 0.001). Participants with a higher relative abundance of Actinobacteria species showed a significantly increased risk of GC (OR: 3.16, 95% CI = 1.92-5.19, p-trend<0.001). The non-HP microbiota composition among the four groups (HP+cases, HP- cases, HP+controls, and HP- controls) was significantly different (ANOSIM R = 0.10, p = 0.001). CONCLUSION Other than HP, several bacterial species might be associated with GC risk. HP status and GC status could determine the differences in microbial compositions. Further large prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Madhawa Gunathilake
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, South Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, South Korea
| | - Il Ju Choi
- Center for Gastric Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, South Korea
| | - Young-Il Kim
- Center for Gastric Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, South Korea
| |
Collapse
|
12
|
Li ZP, Liu JX, Lu LL, Wang LL, Xu L, Guo ZH, Dong QJ. Overgrowth of Lactobacillus in gastric cancer. World J Gastrointest Oncol 2021; 13:1099-1108. [PMID: 34616515 PMCID: PMC8465450 DOI: 10.4251/wjgo.v13.i9.1099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Dysbiosis of the gastric microbiome is involved in the development of gastric cancer (GC). A number of studies have demonstrated an increase in the relative abundance of Lactobacillus in GC. In this review, we present data that support the overgrowth of Lactobacillus in GC from studies on molecular and bacterial culture of the gastric microbiome, discuss the heterogenic effects of Lactobacillus on the health of human stomach, and explore the potential roles of the overgrowth of Lactobacillus in gastric carcinogenesis. Further studies are required to examine the association between Lactobacillus and GC at strain and species levels, which would facilitate to elucidate its role in the carcinogenic process.
Collapse
Affiliation(s)
- Zhi-Peng Li
- Department of Gastroenterology and Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Ju-Xin Liu
- Clinical Laboratories, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| | - Lin-Lin Lu
- Department of Gastroenterology and Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Li-Li Wang
- Department of Gastroenterology and Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Lin Xu
- Department of Gastroenterology and Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Zong-Hao Guo
- Department of Clinical Medicine, Jining Medical University, Jining 272000, Shandong Province, China
| | - Quan-Jiang Dong
- Department of Gastroenterology and Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
13
|
Serrano C, Harris PR, Smith PD, Bimczok D. Interactions between H. pylori and the Gastric Microbiome: Impact on Gastric Homeostasis and Disease. CURRENT OPINION IN PHYSIOLOGY 2021; 21:57-64. [PMID: 34113748 PMCID: PMC8186273 DOI: 10.1016/j.cophys.2021.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Like many seemingly inhospitable environments on our planet, the highly acidic human stomach harbors a diverse bacterial microflora. The best-known member of the human gastric flora, Helicobacter pylori, causes a number of gastric diseases, including peptic ulcer disease and gastric adenocarcinoma. In the absence of Helicobacter pylori infection, the gastric microbiota displays some features similar to the oral cavity with Firmicutes the most common phylum, followed by Proteobacteria and Bacteroidetes. When present, H. pylori dominates the gastric microbiome and reduces diversity and composition of other taxa. The composition of the gastric microbiome also is altered in the setting of proton pump inhibitor therapy and gastric neoplasia. This review summarizes foundational and recent studies that have investigated the composition of the human gastric microbiome in a variety of patient groups, with a focus on potential mechanisms involved in regulation of gastric microbial community structure.
Collapse
Affiliation(s)
- Carolina Serrano
- Department of Pediatric Gastroenterology and Nutrition, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul R. Harris
- Department of Pediatric Gastroenterology and Nutrition, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Phillip D. Smith
- Department of Medicine, Division of Gastroenterology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
14
|
Jiang Y, Meng F, Liu Y, Zheng L, Ye S, Zhang J. Does Helicobacter pylori infection affect the structure of bacteria in the gastric mucosa and fluid in patients with chronic antral gastritis? J GEN APPL MICROBIOL 2021; 67:179-185. [PMID: 34053980 DOI: 10.2323/jgam.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study aimed to evaluate the composition of the gastric microbiota in the gastric mucosa and gastric fluid of patients with chronic antral gastritis. Specifically, we sought to determine whether Helicobacter pylori (Hp) infection changes the bacterial community in the gastric mucosa or alters the microbiota in the gastric fluid. The bacterial community at another site in the stomach was also investigated. DNA was extracted from 160 samples collected from 40 patients with chronic antral gastritis (20 Hp-positive and 20 Hp-negative cases). Three tissue samples of the gastric mucosa (gastric angle, body, and antral mucosa) and one tube of gastric fluid were collected from every patient. A 16S rRNA amplification library was created, and high-throughput sequencing was performed. A profile of the community composition was obtained using bioinformatics methods, including cluster, taxonomy, and diversity analyses. Analysis of the gastric bacterial community revealed that the community compositions of the gastric mucosa and gastric fluid of patients without Hp are similar to but show differences from those of Hp-positive patients. The microbiota in Hp-positive patients exhibited reduced microbial diversity, and the gastric fluid of these patients contained a small proportion of Hp. The richness of Leptotrichia in mucosal samples was greater than that in gastric fluid samples from Hp-negative patients with chronic antral gastritis. Hp changes the growth of other microbiota in the mucosa and affects the microbiota in the gastric fluid of patients with chronic antral gastritis. In addition to Hp, the presence of other bacteria might be related to the development of chronic antral gastritis.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Science and Education, Tongde Hospital of Zhejiang Province
| | - Fei Meng
- Department of Research service, Zhiyuan Medical Inspection Institute CO., LTD
| | - Ying Liu
- Department of Basic Sciences, Zhejiang Tongji Vocational College of Science and Technology
| | - Liyun Zheng
- Department of Research service, Zhiyuan Medical Inspection Institute CO., LTD
| | - Shufang Ye
- Department of Gastroenterology, People's Hospital of Lishui City
| | - Jianmei Zhang
- Department of Gastroenterology, People's Hospital of Lishui City
| |
Collapse
|
15
|
Palrasu M, Zaika E, El-Rifai W, Que J, Zaika AI. Role of Bacterial and Viral Pathogens in Gastric Carcinogenesis. Cancers (Basel) 2021; 13:1878. [PMID: 33919876 PMCID: PMC8070847 DOI: 10.3390/cancers13081878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. In contrast to many other tumor types, gastric carcinogenesis is tightly linked to infectious events. Infections with Helicobacter pylori (H. pylori) bacterium and Epstein-Barr virus (EBV) are the two most investigated risk factors for GC. These pathogens infect more than half of the world's population. Fortunately, only a small fraction of infected individuals develops GC, suggesting high complexity of tumorigenic processes in the human stomach. Recent studies suggest that the multifaceted interplay between microbial, environmental, and host genetic factors underlies gastric tumorigenesis. Many aspects of these interactions still remain unclear. In this review, we update on recent discoveries, focusing on the roles of various gastric pathogens and gastric microbiome in tumorigenesis.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Elena Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - Alexander I. Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| |
Collapse
|
16
|
Shin CM, Kim N, Park JH, Lee DH. Changes in Gastric Corpus Microbiota With Age and After Helicobacter pylori Eradication: A Long-Term Follow-Up Study. Front Microbiol 2021; 11:621879. [PMID: 33633697 PMCID: PMC7900007 DOI: 10.3389/fmicb.2020.621879] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori infection changes gastric microbiota profiles. However, it is not clear whether H. pylori eradication can restore the healthy gastric microbiota. Moreover, there has been no study regarding the changes in gastric microbiota with aging. The objective of this study was to investigate the changes in gastric corpus microbiota with age and following H. pylori eradication. Changes in corpus mucosa-associated microbiota were evaluated in 43 individuals with endoscopic follow-up > 1 year, including 8 H. pylori-uninfected and 15 H. pylori-infected subjects with no atrophy/metaplasia by histology and pepsinogen I/II ratio > 4.0; 17 H. pylori-infected subjects with atrophy/metaplasia and pepsinogen I/II ratio < 2.5; and 3 subjects with atrophy/metaplasia, no evidence of active H. pylori infection, negative for anti-H. pylori immunoglobulin G (IgG) antibody testing, and no previous history of H. pylori eradication. Successful H. pylori eradication was achieved in 21 patients. The gastric microbiota was characterized using an Illumina MiSeq platform targeting 16S ribosomal DNA (rDNA). The mean follow-up duration was 57.4 months (range, 12-145 months), and median follow-up visit was 1 (range, 1-3). Relative abundance of Lactobacillales and Streptococcus was increased with atrophy/metaplasia. In H. pylori-uninfected subjects (n = 8), an increase in Proteobacteria (Enhydrobacter, Comamonadaceae, Sphingobium); a decrease in Firmicutes (Streptococcus, Veillonella), Fusobacteria (Fusobacterium), Nocardioidaceae, Rothia, and Prevotella; and a decrease in microbial diversity were observed during the follow-up (p trend < 0.05). In 10 of 21 subjects (47.6%), H. pylori eradication induced restoration of microbial diversity; however, a predominance of Acinetobacter with a decrease in microbial diversity occurred in 11 subjects (52.3%). The presence of atrophy/metaplasia at baseline and higher neutrophil infiltration in the corpus were associated with the restoration of gastric microbiota after successful eradication, whereas a higher relative abundance of Acinetobacter at baseline was associated with the predominance of Acinetobacter after H. pylori eradication (p < 0.05). To conclude, in H. pylori-uninfected stomach, relative abundance of Proteobacteria increases, relative abundance of Firmicutes and Fusobacteria decreases, and microbial diversity decreases with aging. H. pylori eradication does not always restore gastric microbiota; in some individuals, gastric colonization by Acinetobacter species occurs after anti-Helicobacter treatment.
Collapse
Affiliation(s)
- Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Mohammadi SO, Yadegar A, Kargar M, Mirjalali H, Kafilzadeh F. The impact of Helicobacter pylori infection on gut microbiota-endocrine system axis; modulation of metabolic hormone levels and energy homeostasis. J Diabetes Metab Disord 2020; 19:1855-1861. [PMID: 33553045 DOI: 10.1007/s40200-020-00608-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiota is a complex ecosystem that is involved in the development and preservation of the immune system, energy homeostasis and nutritional status of the host. The crosstalk between gut microbiota and the host cells modulates host physiology and metabolism through different mechanisms. Helicobacter pylori (H. pylori) is known to reside in the gastric mucosa, induce inflammation, and alter both gastric and intestinal microbiota resulting in a broad spectrum of diseases, in particular metabolic syndrome-related disorders. Infection with H. pylori have been shown to affect production level and physiological regulation of the gut metabolic hormones such as ghrelin and leptin which are involved in food intake, energy expenditure and body mass. In this study, we reviewed and discussed data from the literature and follow-up investigations that links H. pylori infection to alterations of the gut microbiota and metabolic hormone levels, which can exert broad influences on host metabolism, energy homeostasis, behavior, appetite, growth, reproduction and immunity. Also, we discussed the strong potential of fecal microbiota transplantation (FMT) as an innovative and promising investigational treatment option for homeostasis of metabolic hormone levels to overcome H. pylori-associated metabolic syndrome-related disorders.
Collapse
Affiliation(s)
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Kafilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| |
Collapse
|
18
|
Nguyen PA, Islam M, Galvin CJ, Chang CC, An SY, Yang HC, Huang CW, Li YCJ, Iqbal U. Meta-analysis of proton pump inhibitors induced risk of community-acquired pneumonia. Int J Qual Health Care 2020; 32:292-299. [PMID: 32436582 DOI: 10.1093/intqhc/mzaa041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 01/05/2025] Open
Abstract
PURPOSE Proton pump inhibitors (PPIs), one of the most widely used medications, are commonly used to suppress several acid-related upper gastrointestinal disorders. Acid-suppressing medication use could be associated with increased risk of community-acquired pneumonia (CAP), although the results of clinical studies have been conflicting. DATA SOURCES A comprehensive search of MEDLINE, EMBASE and Cochrane library and Database of Systematic Reviews from the earliest available online year of indexing up to October 2018. STUDY SELECTION We performed a systematic review and meta-analysis of observational studies to evaluate the risk of PPI use on CAP outcomes. DATA EXTRACTION Included study location, design, population, the prevalence of CAP, comparison group and other confounders. We calculated pooled odds ratio (OR) using a random-effects meta-analysis. RESULTS OF DATA SYNTHESIS Of the 2577 studies screening, 11 papers were included in the systematic review and 7 studies with 65 590 CAP cases were included in the random-effects meta-analysis. In current PPI users, pooled OR for CAP was 1.86 (95% confidence interval (CI), 1.30-2.66), and in the case of recent users, OR for CAP was 1.66 (95% CI, 1.22-2.25). In the subgroup analysis of CAP, significance association is also observed in both high-dose and low-dose PPI therapy. When stratified by duration of exposure, 3-6 months PPIs users group was associated with increased risk of developing CAP (OR, 2.05; 95% CI, 1.22-3.45). There was a statistically significant association between the PPI users and the rate of hospitalization (OR, 2.59; 95% CI, 1.83-3.66). CONCLUSION We found possible evidence linking PPI use to an increased risk of CAP. More randomized controlled studies are warranted to clarify an understanding of the association between PPI use and risk of CAP because observational studies cannot clarify whether the observed epidemiologic association is a causal effect or a result of unmeasured/residual confounding.
Collapse
Affiliation(s)
- Phung Anh Nguyen
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
| | - Mohaimenul Islam
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
| | - Cooper J Galvin
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, 235 New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
| | - Soo Yeon An
- Department of Cardiology, Chungnam National University Hospital, 35015 Daejeon, South Korea
| | - Hsuan-Chia Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
| | - Chih-Wei Huang
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
| | - Yu-Chuan Jack Li
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Dermatology, Wan Fang Hospital, 116 Taipei, Taiwan
| | - Usman Iqbal
- International Center for Health Information Technology, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
- Global Health and Development Department, Global Health and Health Security, College of Public Health, Taipei Medical University, 11031 Taipei, Taiwan
| |
Collapse
|
19
|
Gantuya B, El-Serag HB, Yamaoka Y. Letter: are microbes other than Helicobacter pylori associated with gastric cancer? Authors' reply. Aliment Pharmacol Ther 2020; 51:1447-1449. [PMID: 32445529 DOI: 10.1111/apt.15757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Boldbaatar Gantuya
- Department of Gastroenterology, Mongolian National University of Medical sciences, Ulaanbaatar, Mongolia.,Endoscopy Unit, Mongolia-Japan Teaching Hospital, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yoshio Yamaoka
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Environmental and Preventive Medicine, Oita University of Medicine, Yufu, Japan
| |
Collapse
|
20
|
de Leeuw MA, Duval MX. The Presence of Periodontal Pathogens in Gastric Cancer. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-10. [DOI: 10.14218/erhm.2020.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Seeger AY, Ringling MD, Zohair H, Blanke SR. Risk factors associated with gastric malignancy during chronic Helicobacter pylori Infection. MEDICAL RESEARCH ARCHIVES 2020; 8:2068. [PMID: 37655156 PMCID: PMC10470974 DOI: 10.18103/mra.v8i3.2068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chronic Helicobacter pylori (Hp) infection is considered to be the single most important risk factor for the development of gastric adenocarcinoma in humans, which is a leading cause of cancer-related death worldwide. Nonetheless, Hp infection does not always progress to malignancy, and, gastric adenocarcinoma can occur in the absence of detectable Hp carriage, highlighting the complex and multifactorial nature of gastric cancer. Here we review known contributors to gastric malignancy, including Hp virulence factors, host genetic variation, and multiple environmental variables. In addition, we assess emerging evidence that resident gastric microflora in humans might impact disease progression in Hp-infected individuals. Molecular approaches for microbe identification have revealed differences in the gastric microbiota composition between cancer and non-cancerous patients, as well as infected and uninfected individuals. Although the reasons underlying differences in microbial community structures are not entirely understood, gastric atrophy and hypochlorhydria that accompany chronic Hp infection may be a critical driver of gastric dysbiosis that promote colonization of microbes that contribute to increased risk of malignancy. Defining the importance and role of the gastric microbiota as a potential risk factor for Hp-associated gastric cancer is a vital and exciting area of current research.
Collapse
Affiliation(s)
- Ami Y. Seeger
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Megan D. Ringling
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Huzaifa Zohair
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Steven R. Blanke
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Biomedical and Translational Sciences Department, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
22
|
Miao R, Wan C, Wang Z. The relationship of gastric microbiota and Helicobacter pylori infection in pediatrics population. Helicobacter 2020; 25:e12676. [PMID: 31762120 DOI: 10.1111/hel.12676] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND In recent years, the impact of Helicobacter pylori (H pylori) on the gut microbiota has attracted more attention; however, the relationship in pediatric population rarely was reported. METHODS Endoscopic gastric mucosal biopsy specimens from 55 children with gastrointestinal symptoms were collected, 37 of them were H pylori-positive (23 nonpeptic ulcer and 14 peptic ulcer) and 18 were H pylori-negative. In addition, 11 specimens were collected from H pylori-positive children who performed second endoscopy in 4 weeks after therapy. Microbial abundance and compositions were analyzed by 16S ribosomal RNA amplification and microbial functions were predicted using the software PICRUSt. RESULTS The gastric microbiota of H pylori-positive children were mainly dominated by Helicobacter in genus (95.43%). The microbiota richness and diversity of H pylori-positive children were lower than that of H pylori-negative children. No difference was found in microbiota structure between H pylori-positive children with or without peptic ulcer. The richness and compositions after therapy were closer to the characteristics of H pylori-negative children. For predicted functions, higher abundance in pathways of infection diseases, cancer and lower abundance in the pathways of amino acid, lipid, and carbohydrate metabolism were found in H pylori-positive group than H pylori-negative group. CONCLUSION The characteristics of gastric microbiota were affected by H pylori infection rather than disease states, and the richness and diversity of gastric species were inverse correlation with H pylori infection in children. Eradication therapy was helpful to restore shifted gastric microbiota.
Collapse
Affiliation(s)
- Ruixue Miao
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Chaomin Wan
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhiling Wang
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
23
|
Schulz C, Schütte K, Mayerle J, Malfertheiner P. The role of the gastric bacterial microbiome in gastric cancer: Helicobacter pylori and beyond. Therap Adv Gastroenterol 2019; 12:1756284819894062. [PMID: 31897087 PMCID: PMC6920592 DOI: 10.1177/1756284819894062] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/11/2019] [Indexed: 02/04/2023] Open
Abstract
A link between chronic inflammation and carcinogenesis has been depicted in many organ systems. Helicobacter pylori is the most prevalent bacterial pathogen, induces chronic gastritis and is associated with more than 90% of cases of gastric cancer (GC). However, the introduction of nucleotide sequencing techniques and the development of biocomputional tools have surpassed traditional culturing techniques and opened a wide field for studying the mucosal and luminal composition of the bacterial gastric microbiota beyond H. pylori. In studies applying animal models, a potential role in gastric carcinogenesis for additional bacteria besides H. pylori has been demonstrated. At different steps of gastric carcinogenesis, changes in bacterial communities occur. Whether these microbial changes are a driver of malignant disease or a consequence of the histologic progression along the precancerous cascade, is not clear at present. It is hypothesized that atrophy, as a consequence of chronic gastric inflammation, alters the gastric niche for commensals that might further urge the development of H. pylori-induced GC. Here, we review the current state of knowledge on gastric bacteria other than H. pylori and on their synergism with H. pylori in gastric carcinogenesis.
Collapse
Affiliation(s)
| | - Kerstin Schütte
- Department of Internal Medicine and
Gastroenterology, Niels-Stensen-Kliniken, Marienhospital Osnabrück,
Osnabrück, Germany,Department of Gastroenterology, Hepatology and
Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital,
LMU Munich, Germany
| | - Peter Malfertheiner
- Department of Medicine II, University Hospital,
LMU Munich, Germany,Department of Gastroenterology, Hepatology and
Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
24
|
Choi S, Lee JG, Lee AR, Eun CS, Han DS, Park CH. Helicobacter pylori antibody and pepsinogen testing for predicting gastric microbiome abundance. PLoS One 2019; 14:e0225961. [PMID: 31800638 PMCID: PMC6892531 DOI: 10.1371/journal.pone.0225961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/16/2019] [Indexed: 01/11/2023] Open
Abstract
Background Although the high-throughput sequencing technique is useful for evaluating gastric microbiome, it is difficult to use clinically. We aimed to develop a predictive model for gastric microbiome based on serologic testing. Methods This study was designed to analyze sequencing data obtained from the Hanyang University Gastric Microbiome Cohort, which was established initially to investigate gastric microbial composition according to the intragastric environment. We evaluated the relationship between the relative abundance of potential gastric cancer-associated bacteria (nitrosating/nitrate-reducing bacteria or type IV secretion system [T4SS] protein gene-contributing bacteria) and serologic markers (IgG anti-Helicobacter pylori [HP] antibody or pepsinogen [PG] levels). Results We included 57 and 26 participants without and with HP infection, respectively. The relative abundance of nitrosating/nitrate-reducing bacteria was 4.9% and 3.6% in the HP-negative and HP-positive groups, respectively, while that of T4SS protein gene-contributing bacteria was 20.5% and 6.5% in the HP-negative and HP-positive groups, respectively. The relative abundance of both nitrosating/nitrate-reducing bacteria and T4SS protein gene-contributing bacteria increased exponentially as PG levels decreased. Advanced age (only for nitrosating/nitrate-reducing bacteria), a negative result of IgG anti-HP antibody, low PG levels, and high Charlson comorbidity index were associated with a high relative abundance of nitrosating/nitrate-reducing bacteria and T4SS protein gene-contributing bacteria. The adjusted coefficient of determination (R2) was 53.7% and 70.0% in the model for nitrosating/nitrate-reducing bacteria and T4SS protein gene-contributing bacteria, respectively. Conclusion Not only the negative results of IgG anti-HP antibody but also low PG levels were associated with a high abundance of nitrosating/nitrate-reducing bacteria and T4SS protein gene-contributing bacteria.
Collapse
Affiliation(s)
- Saemi Choi
- Department of Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jae Gon Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - A-reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- * E-mail:
| |
Collapse
|
25
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) 2019; 11:677. [PMID: 31752394 PMCID: PMC6891454 DOI: 10.3390/toxins11110677] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonizes the gastric epithelial cells of at least half of the world's population, and it is the strongest risk factor for developing gastric complications like chronic gastritis, ulcer diseases, and gastric cancer. To successfully colonize and establish a persistent infection, the bacteria must overcome harsh gastric conditions. H. pylori has a well-developed mechanism by which it can survive in a very acidic niche. Despite bacterial factors, gastric environmental factors and host genetic constituents together play a co-operative role for gastric pathogenicity. The virulence factors include bacterial colonization factors BabA, SabA, OipA, and HopQ, and the virulence factors necessary for gastric pathogenicity include the effector proteins like CagA, VacA, HtrA, and the outer membrane vesicles. Bacterial factors are considered more important. Here, we summarize the recent information to better understand several bacterial virulence factors and their role in the pathogenic mechanism.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabaru, Sabah 88400, Malaysia
| |
Collapse
|
26
|
Abstract
PURPOSE The role of Helicobacter pylori as key factor in gastric inflammation and the development of (pre-)cancerous lesions is undisputable. As an open system, the human upper gastrointestinal tract harbors a complex bacterial community which is highly impacted by the absence or presence of H. pylori. The interaction between other bacteria and H. pylori might impact on gastric carcinogenesis. RECENT FINDINGS Several studies demonstrated differences in the composition of the gastric bacterial community in different stages of gastritis and between samples from tumor and adjacent tissue. In addition, animal studies demonstrated an increased and accelerated development of precancerous lesions in mice colonized with intestinal flora and H. pylori compared with mice mono-infected with H. pylori. CONCLUSION Other bacteria beyond H. pylori enter the focus in research on gastric carcinogenesis. However, we are still far from a thorough understanding of the pathophysiology of host-microbiota interaction and its impact on the development of malignant and precancerous changes.
Collapse
|
27
|
Park CH, Lee JG, Lee AR, Eun CS, Han DS. Network construction of gastric microbiome and organization of microbial modules associated with gastric carcinogenesis. Sci Rep 2019; 9:12444. [PMID: 31455798 PMCID: PMC6712011 DOI: 10.1038/s41598-019-48925-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
In addition to Helicobacter pylori infection, nitrosating/nitrate-reducing bacteria and type IV secretion system (T4SS) protein gene-contributing bacteria have been proposed as potential causes of gastric cancer development. However, bacterial modules related with gastric carcinogenesis have not been clarified. In this study, we analyzed gastric microbiome using the gastric mucosal samples obtained from the Hanyang University Gastric Microbiome Cohort by 16S rRNA gene sequencing. Weighted correlation network analysis was performed to construct a microbiome network and to identify microbial modules associated with gastric carcinogenesis. At the family level, 420 bacterial taxa were identified in the gastric microbiome of 83 participants. Through network analysis, 18 microbial modules were organized. Among them, two modules-pink and brown-were positively correlated with a higher-risk of gastric cancer development such as intestinal metaplasia with no current H. pylori infection (correlation coefficient [γ]: pink module, 0.31 [P = 0.004], brown module, 0.26 [P = 0.02]). At the family level, twenty-two and thirty-two bacterial taxa belonged to the pink and brown modules, respectively. They included nitrosating/nitrate-reducing bacteria, T4SS protein gene-contributing bacteria, and various other bacteria, including Gordoniaceae, Tsukamurellaceae, Prevotellaceae, Cellulomonadaceae, Methylococcaceae, and Procabacteriaceae. The blue module, which included H. pylori, was correlated negatively with intestinal metaplasia (γ = -0.49 [P < 0.001]). In conclusion, intragastric bacterial taxa associated with gastric carcinogenesis can be classified by network analysis. Microbial modules may provide an integrative view of the microbial ecology relevant to precancerous lesions in the stomach.
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Jae Gon Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - A-Reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea.
| |
Collapse
|
28
|
El-Shaheny R, Radwan M, Yamada K, El-Maghrabey M. Estimation of nizatidine gastric nitrosatability and product toxicity via an integrated approach combining HILIC, in silico toxicology, and molecular docking. J Food Drug Anal 2019; 27:915-925. [PMID: 31590763 PMCID: PMC9306978 DOI: 10.1016/j.jfda.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 01/05/2023] Open
Abstract
The liability of the H2-receptor antagonist nizatidine (NZ) to nitrosation in simulated gastric juice (SGJ) and under WHO-suggested conditions was investigated for the first time. For monitoring the nitrosatability of NZ, a hydrophilic interaction liquid chromatography (HILIC) method was optimized and validated according to FDA guidance. A Cosmosil HILIC® column and a mobile phase composed of acetonitrile: 0.04 M acetate buffer pH 6.0 (92:8, v/v) were used for the separation of NZ and its N-nitroso derivative (NZ-NO) within 6 min with LODs of 0.02 and 0.1 μg/mL, respectively. NZ was found highly susceptible to nitrosation in SGJ reaching 100% nitrosation in 10 min, while only 18% nitrosation was observed after 160 min under the WHO-suggested conditions. The chemical structure of NZ-NO was clarified by ESI+/MS. In silico toxicology study confirmed the mutagenicity and toxicity of NZ-NO. Experiments evidenced that ascorbic acid strongly suppresses the nitrosation of NZ suggesting their co-administration for protection from potential risks. In addition, the impacts of the HILIC method on safety, health, and environment were favorably evaluated by three green analytical chemistry metrics and it was proved that, unlike the popular impression, HILIC methods could be green to the environment.
Collapse
Affiliation(s)
- Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Hygienic Chemistry and Toxicology, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Mohamed Radwan
- Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan; Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto 862-0973, Japan; Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Koji Yamada
- Medical Plant Laboratory, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Mahmoud El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
29
|
Microbial carcinogenesis: Lactic acid bacteria in gastric cancer. Biochim Biophys Acta Rev Cancer 2019; 1872:188309. [PMID: 31394110 DOI: 10.1016/j.bbcan.2019.07.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023]
Abstract
While Helicobacter pylori is a fundamental risk factor, gastric cancer (GC) aetiology involves combined effects of microbial (both H. pylori and non-H. pylori), host and environmental factors. Significant differences exist between the gastric microbiome of those with gastritis, intestinal metaplasia and GC, suggesting that dysbiosis in the stomach is dynamic and correlates with progression to GC. Most notably, a consistent increase in abundance of lactic acid bacteria (LAB) has been observed in GC patients including Streptococcus, Lactobacillus, Bifidobacterium and Lactococcus. This review summarises how LAB can influence GC by a number of mechanisms that include supply of exogenous lactate -a fuel source for cancer cells that promotes inflammation, angiogenesis, metastasis, epithelial-mesenchymal transition and immune evasion-, production of reactive oxygen species and N-nitroso compounds, as well as anti-H. pylori properties that enable colonization by other non-H. pylori carcinogenic pathobionts.
Collapse
|
30
|
Pero R, Brancaccio M, Laneri S, Biasi MGD, Lombardo B, Scudiero O. A Novel View of Human Helicobacter pylori Infections: Interplay between Microbiota and Beta-Defensins. Biomolecules 2019; 9:biom9060237. [PMID: 31216758 PMCID: PMC6627275 DOI: 10.3390/biom9060237] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is significantly involved in the preservation of the immune system of the host, protecting it against the pathogenic bacteria of the stomach. The correlation between gut microbiota and the host response supports human gastric homeostasis. Gut microbes may be shifted in Helicobacter pylori (Hp)-infected individuals to advance gastric inflammation and distinguished diseases. Particularly interesting is the establishment of cooperation between gut microbiota and antimicrobial peptides (AMPs) of the host in the gastrointestinal tract. AMPs have great importance in the innate immune reactions to Hp and participate in conservative co-evolution with an intricate microbiome. β-Defensins, a class of short, cationic, arginine-rich proteins belonging to the AMP group, are produced by epithelial and immunological cells. Their expression is enhanced during Hp infection. In this review, we discuss the impact of the gut microbiome on the host response, with particular regard to β-defensins in Hp-associated infections. In microbial infections, mostly in precancerous lesions induced by Hp infection, these modifications could lead to different outcomes.
Collapse
Affiliation(s)
- Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
| | - Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via Montesano 49, 80131 Napoli, Italy.
| | | | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
31
|
Chen XH, Wang A, Chu AN, Gong YH, Yuan Y. Mucosa-Associated Microbiota in Gastric Cancer Tissues Compared With Non-cancer Tissues. Front Microbiol 2019; 10:1261. [PMID: 31231345 PMCID: PMC6560205 DOI: 10.3389/fmicb.2019.01261] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
The link between microbiota and gastric cancer (GC) has attracted widespread attention. However, the phylogenetic profiles of niche-specific microbiota in the tumor microenvironment is still unclear. Here, mucosa-associated microorganisms from 62 pairs of matched GC tissues and adjacent non-cancerous tissues were characterized by 16S rRNA gene sequencing. Functional profiles of the microbiota were predicted using PICRUSt, and a co-occurrence network was constructed to analyze interactions among gastric microbiota. Results demonstrated that mucosa-associated microbiota from cancerous and non-cancerous tissues established micro-ecological systems that differed in composition, structure, interaction networks, and functions. Microbial richness and diversity were increased in cancerous tissues, with the co-occurrence network exhibiting greater complexity compared with that in non-cancerous tissue. The bacterial taxa enriched in the cancer samples were predominantly represented by oral bacteria (such as Peptostreptococcus, Streptococcus, and Fusobacterium), while lactic acid-producing bacteria (such as Lactococcus lactis and Lactobacillus brevis) were more abundant in adjacent non-tumor tissues. Colonization by Helicobacter pylori, which is a GC risk factor, also impacted the structure of the microbiota. Enhanced bacterial purine metabolism, carbohydrate metabolism and denitrification functions were predicted in the cancer associated microbial communities, which was consistent with the increased energy metabolism and concentration of nitrogen-containing compounds in the tumor microenvironment. Furthermore, the microbial co-occurrence networks in cancerous and non-cancerous tissues of GC patients were described for the first time. And differential taxa and functions between the two groups were identified. Changes in the abundance of certain bacterial taxa, especially oral microbiota, may play a role in the maintenance of the local microenvironment, which is associated with the development or progression of GC.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ai-Ning Chu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yue-Hua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Kobayashi J, Uchida H, Ito J. Long-term proton pump inhibitor use after Helicobacter pylori eradication may create a gastric environment for N-nitrosamine formation and gastric cancer development. Gut 2019; 68:1131. [PMID: 29802173 DOI: 10.1136/gutjnl-2018-316592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jun Kobayashi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama, Japan
| | - Hiroyuki Uchida
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama, Japan
| | - Junta Ito
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, Saitama, Japan
| |
Collapse
|
33
|
Risk Factors Linking Esophageal Squamous Cell Carcinoma With Head and Neck Cancer or Gastric Cancer. J Clin Gastroenterol 2019; 53:e164-e170. [PMID: 29498952 DOI: 10.1097/mcg.0000000000001019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GOALS To investigate retrospectively the risk factors for synchronous and metachronous cancers in the upper gastrointestinal tract in patients with superficial esophageal squamous cell carcinoma (ESCC). BACKGROUND In patients who have received endoscopic resection (ER) for ESCC, synchronous and metachronous cancers are frequently detected not only in the esophagus but also in the head and neck area and the stomach. STUDY A total of 285 patients who received ER for superficial ESCC were enrolled in this analysis. These patients were periodically followed-up endoscopically. Cumulative occurrence rates of the metachronous second primary cancers were determined by Kaplan-Meier method. Risk factors for synchronous and metachronous cancers in the head and neck area and the stomach were determined by logistic regression analyses. RESULTS During a mean follow-up period of 76 months, the 5-year cumulative occurrence of metachronous esophageal, head and neck, and stomach cancer was 14.0%, 2.8%, and 4.1%, respectively. Although the presence of multiple lugol-voiding lesions in the esophagus was a significant risk factor for synchronous and metachronous head and neck cancers (odds ratio, 3.8; 95% confidence interval, 1.7-9.0), older age (>65 y) was a significant risk factor for synchronous and metachronous gastric cancer (odds ratio, 3.1; 95% confidence interval, 1.2-9.3). CONCLUSIONS The risk factors for the cooccurrence of head and neck cancer and that of gastric cancer in patients with ESCC differ. This information will likely be useful for managing patients who have been treated with ER for ESCC and who possess carcinogenic potential throughout the upper gastrointestinal tract.
Collapse
|
34
|
Zhang S, Shi D, Li M, Li Y, Wang X, Li W. The relationship between gastric microbiota and gastric disease. Scand J Gastroenterol 2019; 54:391-396. [PMID: 30945954 DOI: 10.1080/00365521.2019.1591499] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traditionally, the stomach was believed to be a sterile organ unsuitable for microbiota growth. However, the discovery of H. pylori subverted this conception. With the development of molecular techniques, an abundance of microbiota of great diversity was found in the stomach. In addition, various lines of evidence suggest that the gastric microbiota plays a critical role in the development and progression of the gastric disease.The gastrointestinal microbiome plays an important role in various physiologic and pathologic processes.
Collapse
Affiliation(s)
- Shuyi Zhang
- a Endoscopy Center, Tianjin Union Medical Center , Tianjin , China
| | - Dan Shi
- b Tianjin Medical University Graduate School , Tianjin , China
| | - Muran Li
- c Department of gastroenterology , Tianjin Union Medical Center , Tianjin , China
| | - Yanru Li
- a Endoscopy Center, Tianjin Union Medical Center , Tianjin , China
| | - Ximo Wang
- d Tianjin Clinical Medicine Research Centre for ITCWM Acute abdomen Tianjin Hospital of ITCWM Nankai Hospital , Tianjin , China
| | - Wen Li
- a Endoscopy Center, Tianjin Union Medical Center , Tianjin , China.,b Tianjin Medical University Graduate School , Tianjin , China
| |
Collapse
|
35
|
Park CH, Lee A, Lee Y, Eun CS, Lee SK, Han DS. Evaluation of gastric microbiome and metagenomic function in patients with intestinal metaplasia using 16S rRNA gene sequencing. Helicobacter 2019; 24:e12547. [PMID: 30440093 PMCID: PMC6587566 DOI: 10.1111/hel.12547] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite recent advances in studies on the gastric microbiome, the role of the non-Helicobacter pylori gastric microbiome in gastric carcinogenesis remains unclear. We evaluated the characteristics of the gastric microbiome and metagenomic functions in patients with IM. METHODS Participants were classified into six groups according to disease status (chronic superficial gastritis [CSG], intestinal metaplasia [IM], and cancer) and H. pylori- infection status (H. pylori-positive and H. pylori-negative). The gastric microbiome was analyzed in mucosal tissues at the gastric antrum by 16S rRNA gene sequencing. Moreover, we assessed the metagenome including the type IV secretion system (T4SS) gene, as T4SS proteins are essential for transferring CagA from H. pylori- into the human gastric epithelium. RESULTS Among the 138 included patients, 48, 9, 23, 14, 12, and 32 were classified into the H. pylori-negative CSG, H. pylori-negative IM, H. pylori-negative cancer, H. pylori-positive CSG, H. pylori-positive IM, and H. pylori-positive cancer groups, respectively. Cyanobacteria were predominant in the H. pylori-negative CSG group compared to in the H. pylori-negative IM and H. pylori-negative cancer groups (H. pylori-negative CSG vs H. pylori-negative IM vs H. pylori-negative cancer: 14.0% vs 4.2% vs 0.04%, P < 0.001). In contrast, Rhizobiales were commonly observed in the H. pylori-negative IM group (H. pylori-negative CSG vs H. pylori-negative IM vs H. pylori-negative cancer: 1.9% vs 15.4% vs 2.8%, P < 0.001). The relative abundance of Rhizobiales increased as H. pylori-infected stomachs progressed from gastritis to IM. In the H. pylori-negative IM group, genes encoding T4SS were prevalent among the metagenome. Additionally, after H. pylori- eradication therapy, the gastric microbiome was similar to the microbiome observed after spontaneous clearance of H. pylori-. CONCLUSIONS The relative abundance of Rhizobiales was higher in patients with H. pylori-negative IM than in those with H. pylori-negative CSG or cancer. Additionally, T4SS genes were highly observed in the metagenome of patients with IM. Highly abundant T4SS proteins in these patients may promote gastric carcinogenesis.
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
- Department of Medicine, The Graduate SchoolYonsei UniversitySeoulKorea
| | - A‐reum Lee
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| | - Yu‐ra Lee
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| | - Chang Soo Eun
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| | - Sang Kil Lee
- Division of Gastroenterology, Department of Internal MedicineSeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Dong Soo Han
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| |
Collapse
|
36
|
Microbiota and gastrointestinal cancer. J Formos Med Assoc 2019; 118 Suppl 1:S32-S41. [PMID: 30655033 DOI: 10.1016/j.jfma.2019.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays important roles in many diseases, including cancer. It may promote carcinogenesis by inducing oxidative stress, genotoxicity, host immune response disturbance, and chronic inflammation. Colorectal cancer, hepatocellular carcinoma, and gastric cancer are the major gastrointestinal tract cancers in Taiwan. The microbiota detected in patients with tubular adenoma and villous/tubulovillous polyps is different from that in healthy controls and patients with hyperplastic polyps. Normalization of the microbiota is observed in patients after colorectal cancer treatment. Furthermore, the liver is exposed to microbiota-associated molecular patterns (MAMPs), bacterial metabolites, and toxins, as it is anatomically connected to the gut via the portal vein. Patients with cirrhosis have significantly higher plasma endotoxin levels than healthy controls. Helicobacter pylori is a well-established risk factor for gastric cancer. Some nitrosating bacteria convert nitrogen compounds in gastric fluid to potentially carcinogenic N-nitroso compounds, which also contribute to gastric cancer development. Growing evidence demonstrates that gut microbiota promotes carcinogenesis. In this review, we discuss the mechanisms and types of microbiota changes involved in these gastrointestinal cancers and the future treatment choices.
Collapse
|
37
|
Pereira-Marques J, Ferreira RM, Pinto-Ribeiro I, Figueiredo C. Helicobacter pylori Infection, the Gastric Microbiome and Gastric Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:195-210. [PMID: 31016631 DOI: 10.1007/5584_2019_366] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After a long period during which the stomach was considered as an organ where microorganisms could not thrive, Helicobacter pylori was isolated in vitro from gastric biopsies, revolutionising the fields of Microbiology and Gastroenterology. Since then, and with the introduction of high-throughput sequencing technologies that allowed deep characterization of microbial communities, a growing body of knowledge has shown that the stomach contains a diverse microbial community, which is different from that of the oral cavity and of the intestine. Gastric cancer is a heterogeneous disease that is the end result of a cascade of events arising in a small fraction of patients colonized with H. pylori. In addition to H. pylori infection and to multiple host and environmental factors that influence disease development, alterations to the composition and function of the normal gastric microbiome, also known as dysbiosis, may also contribute to malignancy. Chronic inflammation of the mucosa in response to H. pylori may alter the gastric environment, paving the way to the growth of a dysbiotic gastric bacterial community. This dysbiotic microbiome may promote the development of gastric cancer by sustaining inflammation and/or inducing genotoxicity. This chapter summarizes what is known about the gastric microbiome in the context of H. pylori-associated gastric cancer, introducing the emerging dimension of the microbiome into the pathogenesis of this highly incident and deadly disease.
Collapse
Affiliation(s)
- Joana Pereira-Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Rui M Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ines Pinto-Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
38
|
Mohn ES, Kern HJ, Saltzman E, Mitmesser SH, McKay DL. Evidence of Drug-Nutrient Interactions with Chronic Use of Commonly Prescribed Medications: An Update. Pharmaceutics 2018; 10:E36. [PMID: 29558445 PMCID: PMC5874849 DOI: 10.3390/pharmaceutics10010036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
The long-term use of prescription and over-the-counter drugs can induce subclinical and clinically relevant micronutrient deficiencies, which may develop gradually over months or even years. Given the large number of medications currently available, the number of research studies examining potential drug-nutrient interactions is quite limited. A comprehensive, updated review of the potential drug-nutrient interactions with chronic use of the most often prescribed medications for commonly diagnosed conditions among the general U.S. adult population is presented. For the majority of the interactions described in this paper, more high-quality intervention trials are needed to better understand their clinical importance and potential consequences. A number of these studies have identified potential risk factors that may make certain populations more susceptible, but guidelines on how to best manage and/or prevent drug-induced nutrient inadequacies are lacking. Although widespread supplementation is not currently recommended, it is important to ensure at-risk patients reach their recommended intakes for vitamins and minerals. In conjunction with an overall healthy diet, appropriate dietary supplementation may be a practical and efficacious way to maintain or improve micronutrient status in patients at risk of deficiencies, such as those taking medications known to compromise nutritional status. The summary evidence presented in this review will help inform future research efforts and, ultimately, guide recommendations for patient care.
Collapse
Affiliation(s)
- Emily S Mohn
- Jean Mayer USDA Human Nutrition Research Center on Aging, and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA.
| | - Hua J Kern
- Nutrition & Scientific Affairs, Nature's Bounty Co., Ronkonkoma, NY 11779, USA.
| | - Edward Saltzman
- Jean Mayer USDA Human Nutrition Research Center on Aging, and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA.
| | - Susan H Mitmesser
- Nutrition & Scientific Affairs, Nature's Bounty Co., Ronkonkoma, NY 11779, USA.
| | - Diane L McKay
- Jean Mayer USDA Human Nutrition Research Center on Aging, and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
39
|
Hissong E, Jessurun J, Yantiss RK. Findings in exudates can help distinguish benign gastric ulcers from ulcerated adenocarcinomas. Histopathology 2018. [PMID: 29516528 DOI: 10.1111/his.13510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Most gastric carcinomas develop in association with mucosal atrophy and hypochlorhydria, whereas benign peptic ulcers are acid-related. Given that acid sterilises the gastric contents, we hypothesised that ulcerated gastric cancers may be associated with increased numbers of luminal microorganisms as compared with peptic ulcers, and that this feature may represent a helpful diagnostic clue to the presence of malignancy. We performed this study to determine whether the features of luminal debris, including microorganisms, from ulcerated gastric cancers were significantly different from those of debris associated with benign ulcers. METHODS AND RESULTS We retrospectively identified 50 ulcerated adenocarcinomas and 50 site-matched peptic ulcers. Luminal debris was evaluated for the nature of inflammation, necrosis, and the presence of mixed bacterial colonies or yeasts. Non-lesional mucosa was assessed for chronic gastritis, Helicobacter pylori, chemical gastropathy, and intestinal metaplasia. Patients in both groups were adults (mean age: 69 years and 62 years, respectively) with similar amounts of inflammation and cellular necrosis in biopsy material. However, 76% of ulcerated cancers harboured non-H. pylori bacterial colonies, as compared with only 22% of peptic ulcers (P < 0.01). Filamentous bacteria and fungi were highly specific for carcinoma (98% and P = 0.02 for both comparisons). Background intestinal metaplasia was more common among gastric cancers than among peptic ulcers (50% versus 26%, P = 0.02), whereas chemical gastropathy was more commonly associated with the latter (50% versus 10%, P < 0.01). CONCLUSION Gastric cancers may be colonised by non-H. pylori microorganisms. Detection of numerous bacterial colonies, filamentous bacteria or fungi in biopsy material obtained from ulcerated gastric lesions should raise suspicion for underlying malignancy.
Collapse
Affiliation(s)
- Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jose Jessurun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rhonda K Yantiss
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
40
|
Hill TL, Lascelles BDX, Blikslager AT. Effect of sucralfate on gastric permeability in an ex vivo model of stress-related mucosal disease in dogs. J Vet Intern Med 2018; 32:670-678. [PMID: 29460464 PMCID: PMC5866966 DOI: 10.1111/jvim.15076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/19/2017] [Accepted: 01/22/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Sucralfate is a gastroprotectant with no known systemic effects. The efficacy of sucralfate for prevention and treatment of stress-related mucosal diseases (SRMD) in dogs is unknown. HYPOTHESIS/OBJECTIVES To develop a canine ex vivo model of SRMD and to determine the effect of sucralfate on mucosal barrier function in this model. ANIMALS Gastric antral mucosa was collected immediately postmortem from 29 random-source apparently healthy dogs euthanized at a local animal control facility. METHODS Randomized experimental trial. Sucralfate (100 mg/mL) was applied to ex vivo canine gastric mucosa concurrent with and after acid injury. Barrier function was assessed by measurement of transepithelial electrical resistance (TER) and radiolabeled mannitol flux. RESULTS Application of acidified Ringers solution to the mucosal side of gastric antrum caused a reduction in gastric barrier function, and washout of acidified Ringers solution allowed recovery of barrier function (TER: 34.0 ± 2.8% of control at maximum injury, 71.3 ± 5.5% at recovery, P < .001). Sucralfate application at the time of injury or after injury significantly hastened recovery of barrier function (TER: 118.0 ± 15.2% of control at maximum injury, P < .001 and 111.0 ± 15.5% at recovery, P = .35). CONCLUSIONS AND CLINICAL IMPORTANCE Sucralfate appeared effective at restoring defects in gastric barrier function induced by acid and accelerating repair of tissues subjected to acid in this model, suggesting that sucralfate could have utility for the treatment and prevention of SRMD in dogs.
Collapse
Affiliation(s)
- Tracy L. Hill
- Department of Small Animal Medicine and Surgery, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgia
| | - B. Duncan X. Lascelles
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth Carolina
- Center for Pain Research and InnovationUNC School of DentistryChapel HillNorth Carolina
- Department of Anesthesiology, Center for Translational Pain ResearchDuke UniversityDurhamNorth Carolina
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth Carolina
- Center for Gastrointestinal Biology and Disease, Large Animal Models CoreNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
41
|
Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado JC, Figueiredo C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018; 67:226-236. [PMID: 29102920 PMCID: PMC5868293 DOI: 10.1136/gutjnl-2017-314205] [Citation(s) in RCA: 462] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Gastric carcinoma development is triggered by Helicobacter pylori. Chronic H. pylori infection leads to reduced acid secretion, which may allow the growth of a different gastric bacterial community. This change in the microbiome may increase aggression to the gastric mucosa and contribute to malignancy. Our aim was to evaluate the composition of the gastric microbiota in chronic gastritis and in gastric carcinoma. DESIGN The gastric microbiota was retrospectively investigated in 54 patients with gastric carcinoma and 81 patients with chronic gastritis by 16S rRNA gene profiling, using next-generation sequencing. Differences in microbial composition of the two patient groups were assessed using linear discriminant analysis effect size. Associations between the most relevant taxa and clinical diagnosis were validated by real-time quantitative PCR. Predictive functional profiling of microbial communities was obtained with PICRUSt. RESULTS The gastric carcinoma microbiota was characterised by reduced microbial diversity, by decreased abundance of Helicobacter and by the enrichment of other bacterial genera, mostly represented by intestinal commensals. The combination of these taxa into a microbial dysbiosis index revealed that dysbiosis has excellent capacity to discriminate between gastritis and gastric carcinoma. Analysis of the functional features of the microbiota was compatible with the presence of a nitrosating microbial community in carcinoma. The major observations were confirmed in validation cohorts from different geographic origins. CONCLUSIONS Detailed analysis of the gastric microbiota revealed for the first time that patients with gastric carcinoma exhibit a dysbiotic microbial community with genotoxic potential, which is distinct from that of patients with chronic gastritis.
Collapse
Affiliation(s)
- Rui M Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Joana Pereira-Marques
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ines Pinto-Ribeiro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jose L Costa
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fatima Carneiro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine, University of Porto, Porto, Portugal,Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Jose C Machado
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
42
|
Noto JM, Peek RM. The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLoS Pathog 2017; 13:e1006573. [PMID: 28982167 PMCID: PMC5629027 DOI: 10.1371/journal.ppat.1006573] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jennifer M. Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
43
|
Abstract
This narrative review summarises the benefits, risks and appropriate use of acid-suppressing drugs (ASDs), proton pump inhibitors and histamine-2 receptor antagonists, advocating a rationale balanced and individualised approach aimed to minimise any serious adverse consequences. It focuses on current controversies on the potential of ASDs to contribute to infections-bacterial, parasitic, fungal, protozoan and viral, particularly in the elderly, comprehensively and critically discusses the growing body of observational literature linking ASD use to a variety of enteric, respiratory, skin and systemic infectious diseases and complications (Clostridium difficile diarrhoea, pneumonia, spontaneous bacterial peritonitis, septicaemia and other). The proposed pathogenic mechanisms of ASD-associated infections (related and unrelated to the inhibition of gastric acid secretion, alterations of the gut microbiome and immunity), and drug-drug interactions are also described. Both probiotics use and correcting vitamin D status may have a significant protective effect decreasing the incidence of ASD-associated infections, especially in the elderly. Despite the limitations of the existing data, the importance of individualised therapy and caution in long-term ASD use considering the balance of benefits and potential harms, factors that may predispose to and actions that may prevent/attenuate adverse effects is evident. A six-step practical algorithm for ASD therapy based on the best available evidence is presented.
Collapse
Affiliation(s)
- Leon Fisher
- Frankston Hospital, Peninsula Health, Melbourne, Australia.
| | - Alexander Fisher
- The Canberra Hospital, ACT Health, Canberra, Australia
- Australian National University Medical School, Canberra, Australia
| |
Collapse
|
44
|
Sohn SH, Kim N, Jo HJ, Kim J, Park JH, Nam RH, Seok YJ, Kim YR, Lee DH. Analysis of Gastric Body Microbiota by Pyrosequencing: Possible Role of Bacteria Other Than Helicobacter pylori in the Gastric Carcinogenesis. J Cancer Prev 2017; 22:115-125. [PMID: 28698866 PMCID: PMC5503224 DOI: 10.15430/jcp.2017.22.2.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Background Gastric microbiota along with Helicobacter pylori (HP) plays a key role in gastric disease. The aim of our study is to investigate the difference of human gastric microbiota between antrum and body according to disease (control vs. gastric cancer) and HP status. Methods Each antrum and body biopsy was collected from 12 subjects at Seoul National University Bundang Hospital. Gastric microbiota was analyzed by bar-coded 454 pyrosequencing of the 16S rRNA gene. Twelve subjects consisted of HP-negative control (n = 2), HP-negative cancer (n = 2), HP-positive control (n = 3), and HP-positive cancer (n = 5). The analysis was focused on non-HP urease-producing bacteria (UB) and non-HP nitrosating or nitroreducing bacteria (NB) between antrum and body. Results Gastric body samples showed higher diversity compared to gastric antrum mucosa samples but there was no significant difference. The mean of operational taxonomic units was higher in HP(−) cancer than HP(+) cancer (antrum, 273.5 vs. 228.2, P = 0.439; body, 585.5 vs. 183.2, P = 0.053). The number of non-HP UB and non-HP NB was higher in HP(−) cancer groups than the others. These differences were more pronounced in the body (P = 0.051 and P = 0.081, respectively). Analysis of overlap of non-HP UB and non-HP NB revealed the higher composition of Streptococcus pseudopneumoniae, S. parasanguinis, and S. oralis in HP(−) cancer groups than the others, only in the body (P = 0.030) but not in the antrum (P = 0.123). Conclusions Higher diversity and higher composition of S. pseudopneumoniae, S. parasanguinis, and S. oralis in HP(−) cancer group than the other groups in the body suggest that analysis of microbiota from body mucosa could be beneficial to identify a role of non-HP bacteria in the gastric carcinogenesis.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jin Jo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jaeyeon Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Yeon-Ran Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Abstract
Microorganisms in humans form complex communities with important functions and differences in each part of the body. The stomach was considered to be a sterile organ until the discovery of Helicobacter pylori, but nowadays, it is possible to demonstrate that other microorganisms beyond H. pylori can colonize the gastric mucosa and that the diverse microbiota ecosystem of the stomach is different from the mouth and the esophagus, and also from the small intestine and large intestine. H. pylori seems to be the most important member of the gastric microbiota with the highest relative abundance when present, but when it is absent, the stomach has a diverse microbiota. Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Fusobacteria are the most abundant phyla in both H. pylori-positive and H. pylori-negative patients. The gastric commensal flora may play some role in the H. pylori-associated carcinogenicity, and differences in the gastric microbiota composition of patients with gastric cancer, intestinal metaplasia, and chronic gastritis are described. The gastric microbiota changed gradually from non-atrophic gastritis to intestinal metaplasia, and to gastric cancer (type intestinal).
Collapse
|
46
|
Peng X, Zhou L, Gong Y, Song Z, He L, Lin S, Zhang J. Non- pylori Helicobacters (NHPHs) Induce Shifts in Gastric Microbiota in Helicobacter pylori-Infected Patients. Front Microbiol 2017. [PMID: 28642750 PMCID: PMC5462978 DOI: 10.3389/fmicb.2017.01038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To explore the effects of gastric non-H. pylori Helicobacter species(NHPH) on the structure and potential function of gastric microbiota, we employed 16S rRNA gene sequencing on 164 gastric biopsy specimens from NHPH (H. suis, H. felis, H. salomonis) /H. pylori coinfection individuals, H. pylori monoinfection individuals and healthy controls. The results demonstrated that marked structural and functional variations between H. pylori mono- and coinfection samples (HPHS, HPHF, HPHM). The changes in bacterial structure induced by NHPH are mainly attributed to their ability of gastric acid secretion inhibition as well as bacterial chemotaxis. Both the HPHS and HPHF groups showed significant increases in phylotype richness and significant decreases in β diversity, but this trend was not found in HPHM group. Regarding the top five phyla and top thirty-five genera, the HPHS and HPHF groups had similar variation trends in relative abundance. The increased relative abundance levels of the genera Vibrio, Pseudoalteromonas, Photobacterium, and Clostridium were associated with increases in predicted signal transduction/metabolic pathways among the three coinfection groups. The relative abundance levels of bacteria involved in the formation of N-nitroso compounds were significantly decreased in the HPHS and HPHF groups (e.g., Streptococcus, Neisseria, Haemophilus, Veillonella, Clostridium, etc.). The significantly decreased relative abundance levels of the phyla Firmicutes and Bacteroidetes in the HPHS and HPHF groups were associated with the observed increases in predicted lipid metabolism pathways. The results in this study implied that NHPH can arouse the variation of structure and function of gastric microbiota, which may pave the way to further research on the pathogenesis of gastric diseases.
Collapse
Affiliation(s)
- Xianhui Peng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third HospitalBeijing, China
| | - Yanan Gong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Zhiqiang Song
- Department of Gastroenterology, Peking University Third HospitalBeijing, China
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Sanren Lin
- Department of Gastroenterology, Peking University Third HospitalBeijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| |
Collapse
|
47
|
Dong T, Feng Q, Liu F, Chang LK, Zhou X, Han M, Tian X, Zhong N, Liu S. Alteration of stomach microbiota compositions in the progression of gastritis induces nitric oxide in gastric cell. Exp Ther Med 2017; 13:2793-2800. [PMID: 28587343 PMCID: PMC5450739 DOI: 10.3892/etm.2017.4373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Atrophic gastritis is considered to be an antecedent to intestinal metaplasia and gastric cancer. A previous study identified that Helicobacter pylori was absent at the severe atrophic gastritis stage, and alterations in the gastric microbial composition resembled those in gastric cancer. To explore the role of the bacteria absence of H. pylori in gastric carcinogenesis, in the current study, we compared the microbiota of clinically collected H. pylori-free gastric fluids from 30 patients with non-atrophic gastritis (N) and 22 patients with severe atrophic gastritis (S). We estimated the bacterial loads in the N and S groups by colony counting in culture agar as well as by measuring the concentration of the extracted DNA. The results showed a significant increase in bacterial load in patients with atrophic gastritis in comparison to non-atrophic gastritis. Then, we analyzed the microbial communities of the gastric fluids from all 52 patients using high-throughput sequencing of 16S rRNA amplicons. The Chao 1, Shannon and Simpson diversity indexes demonstrated that the bacterial richness and diversity were not significantly different between the N and S groups. Moreover, principal component analysis illustrated that the microbiomes from the S group were more scattered. Microbiota composition analysis showed that the entire dataset was clustered into 27 phyla, 61 classes, 106 orders, 177 families, 292 genera and 121 species. At the genus level, only the abundance of Prevotella was significantly different between the N and S groups. Further analysis showed that all the higher taxonomic categories were significantly different between the N and S groups. To assess the effects of the metabolic products of Prevotella spp. on gastric cell physiology, we treated the human gastric epithelial cell line AGS with acetic acid and monitored nitric oxide (NO) production. The results showed that acetic acid at low concentrations (0.5 and 5 µM) significantly inhibited AGS cells to secrete NO compared to phosphate buffer saline-treated control cells. These results suggest that the microbiota in non-atrophic gastritis may influence gastric epithelial cell physiology.
Collapse
Affiliation(s)
- Tianyi Dong
- Department of Medical Microbiology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Breast Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qiang Feng
- Department of Human Microbiome, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250021, P.R. China
| | - Fengyan Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lap Kam Chang
- Department of Medical Microbiology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiangyu Zhou
- Department of Medical Microbiology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mingyong Han
- Department of Breast Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xingsong Tian
- Department of Breast Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ning Zhong
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shili Liu
- Department of Medical Microbiology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
48
|
Zhang C, Powell SE, Betel D, Shah MA. The Gastric Microbiome and Its Influence on Gastric Carcinogenesis: Current Knowledge and Ongoing Research. Hematol Oncol Clin North Am 2017; 31:389-408. [PMID: 28501083 DOI: 10.1016/j.hoc.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric malignancies are a leading cause of cancer-related death worldwide. At least 2 microbial species are currently linked to carcinogenesis and the development of cancer within the human stomach. These include the bacterium Helicobacter pylori and the Epstein-Barr virus. In recent years, there has been increasing evidence that within the human gastrointestinal tract it is not only pathogenic microbes that impact human health but also the corresponding autochthonous microbial communities. This article reviews the gastrointestinal microbiome as it relates primarily to mechanisms of disease and carcinogenesis within the upper gastrointestinal tract.
Collapse
Affiliation(s)
- Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sarah Ellen Powell
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manish A Shah
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Gastrointestinal Oncology Program, Center for Advanced Digestive Care, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
49
|
Nardone G, Compare D, Rocco A. A microbiota-centric view of diseases of the upper gastrointestinal tract. Lancet Gastroenterol Hepatol 2017; 2:298-312. [PMID: 28404159 DOI: 10.1016/s2468-1253(16)30108-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/03/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The distinctive anatomy and physiology of the upper gastrointestinal tract and the difficulty of obtaining samples led to the theory that it was bacteria free. However, multiomics studies are indicating otherwise. Although influenced by both oral and gastric bacteria, the resident microbial ecosystem in the oesophagus is dominated by Streptococcus. A shift from Gram-positive to Gram-negative bacteria occurs in oesophagitis and Barrett's oesophagus, and this shift might be involved in the pathogenesis of oesophageal adenocarcinoma. The gastric microenvironment is populated by microbial communities mainly of the Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria phyla and species of the Lactobacillus, Streptococcus, and Propionibacterium genera. The composition of gastric microbiota is highly dynamic, and is influenced by acid suppression, gastric inflammation, and Helicobacter pylori. Duodenal microbes are also implicated in the onset and outcome of coeliac disease. Bacteria of the genera Bacteroides, Clostridium, and Staphylococcus dominate the duodenal flora in active coeliac disease whereas lactobacilli and bifidobacteria decrease. Although knowledge of the composition of the microbiota of the upper gastrointestinal tract has advanced substantially, this information is far from being translated to the clinical setting. In this Review, we assess the data related to the potential contribution of microbes to the susceptibility for and pathogenesis of upper gastrointestinal diseases.
Collapse
Affiliation(s)
- Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, University Federico II of Naples, Naples, Italy
| | - Debora Compare
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, University Federico II of Naples, Naples, Italy
| | - Alba Rocco
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, University Federico II of Naples, Naples, Italy
| |
Collapse
|
50
|
Tavares M, Dias JA. Long-Term Effects of Achlorhydria on the Stomach (Helicobacter pylori and PPI Therapy). ESOPHAGEAL AND GASTRIC DISORDERS IN INFANCY AND CHILDHOOD 2017:1387-1395. [DOI: 10.1007/978-3-642-11202-7_121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|