1
|
Tajbakhsh J, Mortazavi F, Gupta NK. DNA methylation topology differentiates between normal and malignant in cell models, resected human tissues, and exfoliated sputum cells of lung epithelium. Front Oncol 2022; 12:991120. [DOI: 10.3389/fonc.2022.991120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlobal DNA hypomethylation is a prominent feature of cancer cells including lung cancer, that has not been widely explored towards cancer diagnosis. In this study we assess the comparative distribution of global DNA methylation in normal cells versus cancer cells in various specimen models.MethodsWe used in situ immunofluorescence labeling of overall 5-methylcytosine (5mC) and covisualization of global DNA (gDNA) by 4’,6-diamidino-2-phenylindole (DAPI), confocal microscopy and 3D image analysis to derive 5mC/DAPI colocalization patterns in human cell lines (BEAS-2B, A549, H157) and upper respiratory epithelial cells derived from various sources (i.e., sputum from healthy and cancer patients, and resected tissues from normal parenchyma and lung tumors).ResultsBy introducing 5mC/DAPI colocalization index as a metric we could distinguish between normal epithelial cells and aberrantly hypomethylated cancer cells. Cultured lung cancer cells (H157 and A549) had significantly lower indices compared to normal cells (BEAS-2B). Furthermore, we were able to identify such extensively hypomethylated low-index cells in tumor tissues and the matching sputum from cancer patients. In contrast, the indices of cells derived from sputum of healthy individuals had more similarity to epithelial cells of normal parenchyma and the phenotypically normal BEAS-2B cells.ConclusionsThe results suggest that 5mC topology using high-resolution image cytometry shows potential for identifying hypomethylated cancerous cells in human tissues and amongst normal cells in matching sputum, which may render a valuable surrogate for biopsied tissues. This promising feature deserves further validation in more comprehensive studies.
Collapse
|
2
|
Tan HW, Xu YM, Qin SH, Chen GF, Lau ATY. Epigenetic regulation of angiogenesis in lung cancer. J Cell Physiol 2021; 236:3194-3206. [PMID: 33078404 DOI: 10.1002/jcp.30104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, in which angiogenesis is highly required for lung cancer cell growth and metastasis. Genetic regulation of this multistep process is being studied extensively, however, relatively less is known about the epigenetic regulation of angiogenesis in lung cancer. Several epigenetic alterations contribute to regulating angiogenesis, such as epimodifications of DNA, posttranslational modification of histones, and expression of noncoding RNAs. Here, we review the current knowledge of the epigenetic regulation of angiogenesis and discuss the potential clinical applications of epigenetic-based anticancer therapy in lung cancer. Overall, epigenetic-based therapy will likely emerge as a prominent approach to treat lung cancer in the future.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - San-Hai Qin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Guo-Feng Chen
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Canberk S, Lima AR, Pinto M, Soares P, Máximo V. Epigenomics in Hurthle Cell Neoplasms: Filling in the Gaps Towards Clinical Application. Front Endocrinol (Lausanne) 2021; 12:674666. [PMID: 34108939 PMCID: PMC8181423 DOI: 10.3389/fendo.2021.674666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
It has been widely described that cancer genomes have frequent alterations to the epigenome, including epigenetic silencing of various tumor suppressor genes with functions in almost all cancer-relevant signalling pathways, such as apoptosis, cell proliferation, cell migration and DNA repair. Epigenetic alterations comprise DNA methylation, histone modification, and microRNAs dysregulated expression and they play a significant role in the differentiation and proliferation properties of TC. In this review, our group assessed the published evidence on the tumorigenic role of epigenomics in Hurthle cell neoplasms (HCN), highlighting the yet limited, heteregeneous and non-validated data preventing its current use in clinical practice, despite the well developed assessment techniques available. The identified evidence gaps call for a joint endeavour by the medical community towards a deeper and more systematic study of HCN, aiming at defining epigenetic markers in early diagnose, allowing for accurate stratification of maligancy and disease risk and for effective systemic treatment.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Mafalda Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- *Correspondence: Valdemar Máximo,
| |
Collapse
|
4
|
Tajbakhsh J. Covisualization of Global DNA Methylation/Hydroxymethylation and Protein Biomarkers for Ultrahigh-Definition Epigenetic Phenotyping of Stem Cells. Methods Mol Biol 2019; 2150:79-92. [PMID: 31768817 DOI: 10.1007/7651_2019_276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation and DNA hydroxymethylation are genomic-scale key regulatory modifications in cellular differentiation and are skewed in complex diseases. Therefore, analyzing the nuclear distribution of globally methylated and hydroxymethylated DNA in conjunction with relevant cellular components, such as protein biomarkers, may well add cell-by-cell-specific spatial and temporal information to quantitative molecular data for the discovery of signaling networks in stem cell differentiation and their exploitation in the therapeutic reprogramming of cells. Fluorescence imaging provides an optical approach that has become an essential tool in this context. The in situ fluorescent covisualization of globally methylated and hydroxymethylated DNA (5-methylcytosine = 5mC, 5-hydroxymethylcytosine = 5hmC), global DNA (gDNA), and proteins can be challenging, as the immunofluorescence detection of 5mC and 5hmC sites requires thorough denaturing of double-stranded DNA for antigen retrieval. The protocol we present overcomes this obstacle through optimization of the necessary cell processing to delineate cytosine variants and gDNA while preserving the three-dimensional (3-D) structure of the cells and in connection the immunostaining of protein biomarkers and DNA counterstaining, making it suitable for ultrahigh definition (UHD) imaging of single cells by confocal and super-resolution microscopy, 3-D visualization, and high-content cytometry.
Collapse
|
5
|
Lerner L, Winn R, Hulbert A. Lung cancer early detection and health disparities: the intersection of epigenetics and ethnicity. J Thorac Dis 2018; 10:2498-2507. [PMID: 29850158 DOI: 10.21037/jtd.2018.04.07] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung cancer is the most prominent cause of cancer-related mortality. Significant disparities in incidence and outcome characterize the disease's manifestations among ethnically and racially diverse populations. Complete surgical resection is the most effective curative treatment. However, success relies on early tumor detection. The National Lung Cancer Screening trial showed that lung cancer related mortality can be reduced by the use of low-dose CT (LDCT) screening. However, this test is plagued by a high false positive rate of 97% and the device itself is limited to designated cancer centers due to its expense and size. This restriction makes it difficult for underserved groups to access LDCT screening, the current standard of care. Highly sensitive and specific epigenetic DNA methylation-based biomarkers have the potential to work independently or in conjunction with LDCT screening to identify early-stage tumors. These tests could reduce unnecessary invasive confirmatory diagnostic tests and their associated morbidity and mortality. These tests also have the opportunity to bring lung cancer screening to the community thereby reducing unequal accessibility. However, epigenetic alterations are closely linked to the interplay between hereditary and environmental factors such as diet, lifestyle, ethnic ancestry, toxin exposure, residential segregation, and disparate community support structures. Despite this, the overwhelming number of early detection DNA methylation biomarker studies to date have either failed to control for ethnicity or have employed heavily Caucasian-biased patient cohorts. This review seeks to summarize the literature related to the early detection of lung cancer through molecular biomarkers among different ethnicities. Ethnical specific epigenetic biomarkers have the potential to be the first step towards an accessible, available personalized medicine approach to cancer through liquid biopsy.
Collapse
Affiliation(s)
- Lane Lerner
- 1University of Illinois at Chicago Cancer Center, 2Department of Surgery/Cancer Center University of Illinois at Chicago Cancer Center, University of Illinois Hospital and Health Sciences System, Chicago, USA
| | - Robert Winn
- 1University of Illinois at Chicago Cancer Center, 2Department of Surgery/Cancer Center University of Illinois at Chicago Cancer Center, University of Illinois Hospital and Health Sciences System, Chicago, USA
| | - Alicia Hulbert
- 1University of Illinois at Chicago Cancer Center, 2Department of Surgery/Cancer Center University of Illinois at Chicago Cancer Center, University of Illinois Hospital and Health Sciences System, Chicago, USA
| |
Collapse
|
6
|
Zhu K, Deng Y, Weng G, Hu D, Huang C, Matsumoto K, Nagayasu T, Koji T, Zheng X, Jiang W, Lin G, Cai Y, Weng G, Chen X. Analysis of H3K27me3 expression and DNA methylation at CCGG sites in smoking and non-smoking patients with non-small cell lung cancer and their clinical significance. Oncol Lett 2018; 15:6179-6188. [PMID: 29616099 PMCID: PMC5876441 DOI: 10.3892/ol.2018.8100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Smoking frequently leads to epigenetic alterations, including DNA methylation and histone modifications. The effect that smoking has on the DNA methylation levels at CCGG sites, the expression of trimethylation of histone H3 at lysine 27 (H3K27me3) and enhancer of zeste homolog 2 (EZH2), and their interactions in patients with non-small cell lung cancer (NSCLC) were analyzed. There were a total of 42 patients with NSCLC, 22 with adenocarcinomas and 20 with squamous cell carcinomas enrolled in the present study. Expression of H3K27me3, EZH2 and proliferating cellular nuclear antigen (PCNA) were immunohistochemically detected. DNA methylation at CCGG sites was evaluated via histoendonuclease-linked detection of DNA methylation sites. The apoptotic index of cancerous tissues obtained from patients of different smoking statuses was evaluated via the terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labeling method. The association with clinicopathological data was calculated relative to different smoking statuses. Compared with the non-smokers, smokers with NSCLC exhibited a significantly lower apoptotic index (P<0.05), and frequently had a lower level of DNA methylation at CCGG sites, lower H3K27me3 expression and a higher EZH2 expression (P<0.05). DNA methylation levels at CCGG sites were negatively correlated to the Brinkman index (P=0.017). Furthermore, there was a parallel association between the H3K27me3 and EZH2 expression levels in the majority of smokers, whereas in the majority of non-smokers, there was a diverging association (P=0.015). There was a diverging association between the PCNA and EZH2 expression levels in the majority of smokers; however, in the majority of non-smokers, there was a parallel association (P=0.048). In addition, the association between the CCGG methylation ratio and immunohistochemical expression of H3K27me3 was a parallel association in the majority of smokers, while in the majority of non-smokers there was a diverging association (P=0.049). Conclusively, patients with NSCLC and different smoking statuses exhibit different epigenetic characteristics. Additionally, DNA methylation levels at the CCGG sites may have the ability to determine associations between the expression levels of H3K27me3, EZH2 and PCNA.
Collapse
Affiliation(s)
- Kunshou Zhu
- Department of Oncological Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yujie Deng
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Guoxing Weng
- Department of Cardiac Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Dan Hu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Cheng Huang
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Keitaro Matsumoto
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Nagasaki 852-8501, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Nagasaki 852-8501, Japan
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki 852-8523, Japan
| | - Xiongwei Zheng
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Wenhui Jiang
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Gen Lin
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital Fuzhou, Fuzhou, Fujian 350014, P.R. China
| | - Yibin Cai
- Department of Oncological Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Guibin Weng
- Department of Oncological Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Xiaohui Chen
- Department of Oncological Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
7
|
Genetic and epigenetic changes in host ABCB1 influences malaria susceptibility to Plasmodium falciparum. PLoS One 2017; 12:e0175702. [PMID: 28422980 PMCID: PMC5397027 DOI: 10.1371/journal.pone.0175702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/30/2017] [Indexed: 01/20/2023] Open
Abstract
Multiple mechanisms such as genetic and epigenetic variations within a key gene may play a role in malarial susceptibility and response to anti-malarial drugs in the population. ABCB1 is one of the well-studied membrane transporter genes that code for the P-glycoprotein (an efflux protein) and whose effect on malaria disease predisposition and susceptibility to drugs remains to be understood. We studied the association of single nucleotide variations in human ABCB1 that influences its function in subjects with uncomplicated and complicated malaria caused by Plasmodium falciparum (Pf). Global DNA methylation and ABCB1 DNA promoter methylation levels were performed along with transcriptional response and protein expression in subjects with malaria and healthy controls. The rs2032582 locus was significantly associated with complicated and combined malaria groups when compared to controls (p < 0.05). Significant DNA methylation difference was noticed between case and control (p < 0.05). In addition, global DNA methylation levels of the host DNA were inversely proportional to parasitemia in individuals with Pf infection. Our study also revealed the correlation between ABCB1 DNA promoter methylation with rs1128503 and rs2032582 polymorphisms in malaria and was related to increased expression of ABCB1 protein levels in complicated malaria group (p < 0.05) when compared to uncomplicated malaria and control groups. The study provides evidence for multiple mechanisms that may regulate the role of host ABCB1 function to mediate aetiology of malaria susceptibility, prognosis and drug response. These may have clinical implications and therapeutic application for various malarial conditions.
Collapse
|
8
|
Zhang X, Jia X, Mei L, Zheng M, Yu C, Ye M. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis. J Thorac Dis 2016; 8:2185-95. [PMID: 27621875 DOI: 10.21037/jtd.2016.07.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. METHODS We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. RESULTS We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. CONCLUSIONS Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein.
Collapse
Affiliation(s)
- Xianan Zhang
- Yanjing Medical College, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Liangying Mei
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Min Zheng
- Toxicology Department, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chen Yu
- Toxicology Department, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Meng Ye
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
9
|
Kim ST, Jang HL, Lee J, Park SH, Park YS, Lim HY, Choi MG, Bae JM, Sohn TS, Noh JH, Kim S, Kim KM, Kang WK, Park JO. Clinical Significance of IGFBP-3 Methylation in Patients with Early Stage Gastric Cancer. Transl Oncol 2015; 8:288-94. [PMID: 26310375 PMCID: PMC4562974 DOI: 10.1016/j.tranon.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/11/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND: IGFBP-3 is a multifunctional protein that inhibits growth and induces apoptosis of cancer cells. Hypermethylation of the promoter represses expression of the IGFBP-3 gene. We undertook this study to assess the impact of IGFBP-3 methylation on survival of early stage gastric cancer patients. METHODS: Of the 482 tissue samples from gastric cancer patients who underwent curative surgery, IGFBP-3 methylation was tested in 138 patients with stage IB/II gastric cancer. We also analyzed IGFBP-3 methylation in 26 gastric cancer cell lines. IGFBP-3 methylation was evaluated by methylation-specific polymerase chain reaction (MethyLight). Statistical analyses, all two-sided, were performed to investigate the prognostic effects of methylation status of the IGFBP-3 promoter on various clinical parameters. RESULTS: Hypermethylation of IGFBP-3 was observed in 26 (19%) of the 138 stage IB/II gastric cancer patients. Clinicopathological factors such as age, Lauren classification, sex, tumor infiltration, lymph node metastasis, and histologic grade did not show a statistically significant association with the methylation status of the IGFBP-3 promoter. Patients with a hypermethylated IGFBP-3 promoter had similar 8-year disease-free survival compared with those without a hypermethylated IGFBP-3 promoter (73% vs 75%, P = .78). In subgroup analyses, females, but not males, seemed to have poorer prognosis for DFS and OS in the subset of patients with IGFBP-3 methylation as compared with those without IGFBP-3 methylation (8-year DFS: 55.6% vs 71.6%, P = .3694 and 8-year overall survival: 55.6% vs 68.4%, P = .491, respectively) even with no statistical significance. CONCLUSIONS: The status of IGFBP-3 methylation as measured by methylation-specific polymerase chain reaction proposed the modest role for predicting survival in specific subgroups of patients with early-stage gastric cancer who undergo curative surgery. However, this needs further investigation.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye-Lim Jang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Samsung Biomedical Research Institute, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Gew Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Moon Bae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Sung Sohn
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hyung Noh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
He D, Zhang YW, Zhang NN, Zhou L, Chen JN, Jiang Y, Shao CK. Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein–Barr virus-associated gastric carcinomas. Med Oncol 2015; 32:92. [DOI: 10.1007/s12032-015-0525-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 01/17/2023]
|
11
|
HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer. Br J Cancer 2014; 110:2450-61. [PMID: 24755885 PMCID: PMC4021517 DOI: 10.1038/bjc.2014.168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 01/10/2023] Open
Abstract
Background: HAGE protein is a known immunogenic cancer-specific antigen. Methods: The biological, prognostic and predictive values of HAGE expression was studied using immunohistochemistry in three cohorts of patients with BC (n=2147): early primary (EP-BC; n=1676); primary oestrogen receptor-negative (PER-BC; n=275) treated with adjuvant anthracycline-combination therapies (Adjuvant-ACT); and primary locally advanced disease (PLA-BC) who received neo-adjuvant anthracycline-combination therapies (Neo-adjuvant-ACT; n=196). The relationship between HAGE expression and the tumour-infiltrating lymphocytes (TILs) in matched prechemotherapy and postchemotherapy samples were investigated. Results: Eight percent of patients with EP-BC exhibited high HAGE expression (HAGE+) and was associated with aggressive clinico-pathological features (Ps<0.01). Furthermore, HAGE+expression was associated with poor prognosis in both univariate and multivariate analysis (Ps<0.001). Patients with HAGE+did not benefit from hormonal therapy in high-risk ER-positive disease. HAGE+and TILs were found to be independent predictors for pathological complete response to neoadjuvant-ACT; P<0.001. A statistically significant loss of HAGE expression following neoadjuvant-ACT was found (P=0.000001), and progression-free survival was worse in those patients who had HAGE+residual disease (P=0.0003). Conclusions: This is the first report to show HAGE to be a potential prognostic marker and a predictor of response to ACT in patients with BC.
Collapse
|
12
|
Rager JE, Bauer RN, Müller LL, Smeester L, Carson JL, Brighton LE, Fry RC, Jaspers I. DNA methylation in nasal epithelial cells from smokers: identification of ULBP3-related effects. Am J Physiol Lung Cell Mol Physiol 2013; 305:L432-8. [PMID: 23831618 DOI: 10.1152/ajplung.00116.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously demonstrated that, in nasal epithelial cells (NECs) from smokers, methylation of an antiviral gene was associated with impaired antiviral defense responses. To expand these findings and better understand biological mechanisms underlying cigarette smoke (CS)-induced modifications of host defense responses, we aimed to compare DNA methylation of genes that may play a role in antiviral response. We used a two-tiered analytical approach, where we first implemented a genome-wide strategy. NECs from smokers differed in the methylation levels of 390 genes, the majority (84%) of which showed decreased methylation in smokers. Secondly, we generated an a priori set of 161 antiviral response-related genes, of which five were differentially methylated in NEC from smokers (CCL2, FDPS, GSK3B, SOCS3, and ULBP3). Assessing these genes at the systems biology level revealed a protein interaction network associated with CS-induced epigenetic modifications involving SOCS3 and ULBP3 signaling, among others. Subsequent confirmation studies focused on SOCS3 and ULBP3, which were hypomethylated and hypermethylated, respectively. Expression of SOCS3 was increased, whereas ULBP3 expression was decreased in NECs from smokers. Addition of the demethylating agent 5-Aza-2-deoxycytidine enhanced ULBP3 expression in NECs from smokers. Furthermore, infection of differentiated NECs with influenza virus resulted in significantly lower levels of ULBP3 in cells from smokers. Taken together, our findings show that genomic DNA methylation profiles are altered in NECs from smokers and that these changes are associated with decreased antiviral host defense responses, indicating that epigenenic dysregulation of genes such as SOCS3 and ULBP3 likely impacts immune responses in the epithelium.
Collapse
Affiliation(s)
- Julia E Rager
- Center for Environmental Medicine, Asthma, and Lung Biology, Univ. of North Carolina at Chapel Hill, 104 Mason Farm Rd; CB# 7310, Chapel Hill, NC 27599-7310.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Poloni A, Goteri G, Zizzi A, Serrani F, Trappolini S, Costantini B, Mariani M, Olivieri A, Catarini M, Centurioni R, Alesiani F, Giantomassi F, Stramazzotti D, Biagetti S, Alfonsi S, Berardinelli E, Leoni P. Prognostic role of immunohistochemical analysis of 5 mc in myelodysplastic syndromes. Eur J Haematol 2013; 91:219-227. [DOI: 10.1111/ejh.12145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Antonella Poloni
- Clinica di Ematologia; Dipartimento di Scienze Cliniche e Molecolari; Università Politecnica Marche; Ancona; Italy
| | - Gaia Goteri
- Anatomia Patologica; Dipartimento di Neuroscienze; Università Politecnica Marche; Ancona; Italy
| | - Antonio Zizzi
- Anatomia Patologica; Dipartimento di Neuroscienze; Università Politecnica Marche; Ancona; Italy
| | - Federica Serrani
- Clinica di Ematologia; Dipartimento di Scienze Cliniche e Molecolari; Università Politecnica Marche; Ancona; Italy
| | - Silvia Trappolini
- Clinica di Ematologia; Dipartimento di Scienze Cliniche e Molecolari; Università Politecnica Marche; Ancona; Italy
| | - Benedetta Costantini
- Clinica di Ematologia; Dipartimento di Scienze Cliniche e Molecolari; Università Politecnica Marche; Ancona; Italy
| | - Marianna Mariani
- Clinica di Ematologia; Dipartimento di Scienze Cliniche e Molecolari; Università Politecnica Marche; Ancona; Italy
| | - Attilio Olivieri
- Clinica di Ematologia; Dipartimento di Scienze Cliniche e Molecolari; Università Politecnica Marche; Ancona; Italy
| | | | | | | | - Federica Giantomassi
- Anatomia Patologica; Dipartimento di Neuroscienze; Università Politecnica Marche; Ancona; Italy
| | - Daniela Stramazzotti
- Anatomia Patologica; Dipartimento di Neuroscienze; Università Politecnica Marche; Ancona; Italy
| | - Simona Biagetti
- Anatomia Patologica; Dipartimento di Neuroscienze; Università Politecnica Marche; Ancona; Italy
| | - Simona Alfonsi
- Anatomia Patologica; Dipartimento di Neuroscienze; Università Politecnica Marche; Ancona; Italy
| | - Eleonora Berardinelli
- Clinica di Ematologia; Dipartimento di Scienze Cliniche e Molecolari; Università Politecnica Marche; Ancona; Italy
| | - Pietro Leoni
- Clinica di Ematologia; Dipartimento di Scienze Cliniche e Molecolari; Università Politecnica Marche; Ancona; Italy
| |
Collapse
|
14
|
Sirivanichsuntorn P, Keelawat S, Danuthai K, Mutirangura A, Subbalekha K, Kitkumthorn N. LINE-1 and Alu hypomethylation in mucoepidermoid carcinoma. BMC Clin Pathol 2013; 13:10. [PMID: 23510117 PMCID: PMC3610265 DOI: 10.1186/1472-6890-13-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/26/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mucoepidermoid carcinoma (MEC) can be classified into low-, intermediate-, and high-grade tumors based on its histological features. MEC is mainly composed of three cell types (squamous or epidermoid, mucous and intermediate cells), which correlates with the histological grade and reflects its clinical behavior. Most cancers exhibit reduced methylation of repetitive sequences such as Long INterspersed Element-1 (LINE-1) and Alu elements. However, to date very little information is available on the LINE-1 and Alu methylation status in MEC. The aim of this study was to investigate LINE-1 and Alu element methylation in MEC and compare if key differences in the methylation status exist between the three different cell types, and adjacent normal salivary gland cells, to see if this may reflect the histological grade. METHODS LINE-1 and Alu element methylation of 24 MEC, and 14 normal salivary gland tissues were compared using Combine Bisulfite Restriction Analysis (COBRA). Furthermore, the three different cell types from MEC samples were isolated for enrichment by laser capture microdissection (LCM), essentially to see if COBRA was likely to increase the predictive value of LINE-1 and Alu element methylation. RESULTS LINE-1 and Alu element methylation levels were significantly different (p<0.001) between the cell types, and showed a stepwise decrease from the adjacent normal salivary gland to the intermediate, mucous and squamous cells. The reduced methylation levels of LINE-1 were correlated with a poorer histological grade. In addition, MEC tissue showed a significantly lower level of LINE-1 and Alu element methylation overall compared to normal salivary gland tissue (p<0.001). CONCLUSIONS Our findings suggest that LINE-1 methylation differed among histological grade mucoepidermoid carcinoma. Hence, this epigenetic event may hold value for MEC diagnosis and prognostic prediction.
Collapse
Affiliation(s)
- Porntipa Sirivanichsuntorn
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | | | | | |
Collapse
|
15
|
Tajbakhsh J. Covisualization of methylcytosine, global DNA, and protein biomarkers for In Situ 3D DNA methylation phenotyping of stem cells. Methods Mol Biol 2013; 1052:77-88. [PMID: 23592032 DOI: 10.1007/7651_2013_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA methylation and histone modifications are key regulatory mechanisms in cellular differentiation, and are skewed in complex diseases. Therefore, analyzing the higher nuclear organization of methylated DNA in conjunction with relevant cellular components, such as protein biomarkers, may well add cell-by-cell-specific spatial and temporal information to quantitative molecular data for the discovery of stem cell differentiation-related signaling networks and their exploitation in the therapeutic reprogramming of cells. The in situ fluorescent covisualization of methylated DNA (methylated CG dinucleotides = MeC), global DNA (gDNA), and proteins has been challenging, as the immunofluorescence detection of MeC sites requires thorough denaturing of double-stranded DNA for antigen (methylated carbon-5 of cytosine) retrieval. The protocol we present overcomes this obstacle through optimization of cell membrane permeabilization, acid treatment, and intermediate fixation steps to preserve immunostaining of biomarkers and delineate MeC and gDNA, while conserving the captured three-dimensional (3D) structure of the cells; making it suitable for high-resolution confocal microscopy, 3D visualization, and topological analyses of fixed cultured cells as well as fresh and frozen tissue sections.
Collapse
Affiliation(s)
- Jian Tajbakhsh
- Translational Cytomics Group and Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
16
|
Abstract
The functional impact of aberrant DNA methylation and the widespread alterations in DNA methylation in cancer development have led to the development of a variety of methods to characterize the DNA methylation patterns. This chapter critiques and describes the major approaches to analyzing DNA methylation.
Collapse
|
17
|
Three-dimensional quantitative DNA methylation imagingfor chromatin texture analysis in pharmacoepigenomics and toxicoepigenomics. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
LINE-1 methylation in the peripheral blood mononuclear cells of cancer patients. Clin Chim Acta 2012; 413:869-74. [DOI: 10.1016/j.cca.2012.01.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/09/2012] [Accepted: 01/23/2012] [Indexed: 01/05/2023]
|
19
|
Abstract
DNA hypomethylation was the initial epigenetic abnormality recognized in human tumors. However, for several decades after its independent discovery by two laboratories in 1983, it was often ignored as an unwelcome complication, with almost all of the attention on the hypermethylation of promoters of genes that are silenced in cancers (e.g., tumor-suppressor genes). Because it was subsequently shown that global hypomethylation of DNA in cancer was most closely associated with repeated DNA elements, cancer linked-DNA hypomethylation continued to receive rather little attention. DNA hypomethylation in cancer can no longer be considered an oddity, because recent high-resolution genome-wide studies confirm that DNA hypomethylation is the almost constant companion to hypermethylation of the genome in cancer, just usually (but not always) in different sequences. Methylation changes at individual CpG dyads in cancer can have a high degree of dependence not only on the regional context, but also on neighboring sites. DNA demethylation during carcinogenesis may involve hemimethylated dyads as intermediates, followed by spreading of the loss of methylation on both strands. In this review, active demethylation of DNA and the relationship of cancer-associated DNA hypomethylation to cancer stem cells are discussed. Evidence is accumulating for the biological significance and clinical relevance of DNA hypomethylation in cancer, and for cancer-linked demethylation and de novo methylation being highly dynamic processes.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Hayward Genetics Program, Department of Biochemistry, Tulane Cancer Center, Tulane Medical School, 1430 TulaneAvenue, New Orleans, LA 70112, USA.
| |
Collapse
|
20
|
Mazzucchelli R, Scarpelli M, Lopez-Beltran A, Cheng L, Bartels H, Bartels PH, Alberts DS, Montironi R. Global acetylation and methylation changes predict papillary urothelial neoplasia of low malignant potential recurrence: a quantitative analysis. Int J Immunopathol Pharmacol 2011; 24:489-97. [PMID: 21658323 DOI: 10.1177/039463201102400222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Papillary urothelial neoplasia of low malignant potential (PUNLMP) recurs in approximately 35% of patients. Conventional histopathological assessment does not distinguish non-recurrent from recurrent PUNLMP. The aim of this study is to explore the differences in global histone acetylation and global DNA methylation between non-recurrent and recurrent PUNLMP. Acetylated histone H3 lysine 9 (AcH3K9) and 5-methylcytosine (5MeC) were investigated by immunohistochemistry (IHC) in 20 PUNLMP cases (10 non-recurrent and 10 recurrent), in 5 cases of normal urothelium (NU) and in 5 cases of muscle invasive pT2 urothelial carcinoma (UC). The total optical density of the nuclear staining was measured photometrically in at least 40 nuclei separately for the basal, intermediate and luminal positions in each case. Concerning the total optical density values for both acetylation and methylation, a decrease in staining is observed from non-recurrent PUNLMP to recurrent PUNLMP, at all nuclear locations. For acetylation the mean value in non-recurrent PUNLMP, intermediate between NU and UC, is closer to the former than to latter. The mean value in recurrent PUNLMP is closer to UC than to NU. In NU, non-recurrent and recurrent PUNLMP, the acetylation to methylation ratio decreased from the nuclei in basal position to those in the surface, the average for the above groups being 1.491, 1.611 and 1.746, respectively. Setting the observed values for NU at each sampling location to unity, acetylation shows a steady decrease, the percentages of changes in this nuclear location compared to NU being -5% in non-recurrent PUNLMP, -15% in recurrent PUNLMP and -24% in UC. Concerning methylation, there is a slight increase in non-recurrent PUNLMP (+5%), a decrease in recurrent PUNLMP (-19%) followed by a sharp rise for the UC (+61%). In conclusion, there are differences in global histone acetylation and DNA methylation patterns between non-recurrent and recurrent PUNLMP. Further studies are needed to elucidate the complex interplay between chromatin structure, its modifications and recurrence of PUNLMP.
Collapse
Affiliation(s)
- R Mazzucchelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Piyathilake CJ, Macaluso M, Alvarez RD, Chen M, Badiga S, Siddiqui NR, Edberg JC, Partridge EE, Johanning GL. A higher degree of LINE-1 methylation in peripheral blood mononuclear cells, a one-carbon nutrient related epigenetic alteration, is associated with a lower risk of developing cervical intraepithelial neoplasia. Nutrition 2011; 27:513-9. [PMID: 21463750 DOI: 10.1016/j.nut.2010.08.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective of the study was to evaluate LINE-1 methylation as an intermediate biomarker for the effect of folate and vitamin B12 on the occurrence of higher grades of cervical intraepithelial neoplasia (CIN ≥ 2). METHODS This study included 376 women who tested positive for high-risk human papillomaviruses and were diagnosed with CIN ≥ 2 (cases) or CIN ≤ 1 (non-cases). CIN ≥ 2 (yes/no) was the dependent variable in logistic regression models that specified the degree of LINE-1 methylation of peripheral blood mononuclear cells (PBMCs) and of exfoliated cervical cells (CCs) as the independent predictors of primary interest. In analyses restricted to non-cases, PBMC LINE-1 methylation (≥ 70% versus <70%) and CC LINE-1 methylation (≥ 54% versus <54%) were the dependent variables in logistic regression models that specified the circulating concentrations of folate and vitamin B12 as the primary independent predictors. RESULTS Women in the highest tertile of PBMC LINE-1 methylation had 56% lower odds of being diagnosed with CIN ≥ 2 (odds ratio 0.44, 95% confidence interval 0.24-0.83, P = 0.011), whereas there was no significant association between degree of CC LINE-1 methylation and CIN ≥ 2 (odds ratio 0.86, 95% confidence interval 0.51-1.46, P = 0.578). Among non-cases, women with supraphysiologic concentrations of folate (>19.8 ng/mL) and sufficient concentrations of plasma vitamin B12 (≥ 200.6 ng/mL) were significantly more likely to have highly methylated PBMCs compared with women with lower folate and lower vitamin B12 (odds ratio 3.92, 95% confidence interval 1.06-14.52, P = 0.041). None of the variables including folate and vitamin B12 were significantly associated with CC LINE-1 methylation. CONCLUSION These results suggest that a higher degree of LINE-1 methylation in PBMCs, a one-carbon nutrient-related epigenetic alteration, is associated with a lower risk of developing CIN.
Collapse
Affiliation(s)
- Chandrika J Piyathilake
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu WB, Ao L, Cui ZH, Zhou ZY, Zhou YH, Yuan XY, Xiang YL, Cao J, Liu JY. Molecular analysis of DNA repair gene methylation and protein expression during chemical-induced rat lung carcinogenesis. Biochem Biophys Res Commun 2011; 408:595-601. [PMID: 21530494 DOI: 10.1016/j.bbrc.2011.04.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/15/2011] [Indexed: 12/17/2022]
Abstract
A defective ratio between DNA damage and repair may result in the occurrence of a malignant phenotype. Previous studies have found that many genetic alterations in DNA repair genes occur frequently in lung cancer. However, the epigenetic mechanisms underlying this tumorigenesis are not clear. Herein, we have used a chemical-induced rat lung carcinogenesis model to study the evolution of methylation alterations of DNA repair genes BRCA1, ERCC1, XRCC1, and MLH1. Methylation-specific PCR and immunohistochemistry were used to analyze gene methylation status and protein expression during the progression of lung carcinogenesis. Promoter hypermethylation of BRCA1 was only detected in three samples of infiltrating carcinoma. CpG island hypermethylation of ERCC1, XRCC1, and MLH1 was found to increase gradually throughout lung carcinogenesis progression. Both the prevalence of at least one methylated gene and the average number of methylated genes were heightened in squamous metaplasia and dysplasia compared with normal tissue and hyperplasia, and was further increased in carcinoma in situ (CIS) and infiltrating carcinoma. Immunohistochemical analysis showed that BRCA1 and MLH1 protein expression decreased progressively during the stages of lung carcinogenesis, whereas ERCC1 and XRCC1 expression were only found in later stages. Although methylation levels were elevated for ERCC1 and XRCC1 during carcinogenesis, an inverse correlation with protein expression was found only for BRCA1 and MLH1. These results suggest that a continuous accumulation of DNA repair gene hypermethylation and the consequent protein alterations might be a vital molecular mechanism during the process of multistep chemical-induced rat lung carcinogenesis.
Collapse
Affiliation(s)
- Wen-bin Liu
- Department of Hygiene Toxicology, Preventive Medical College, Third Military Medical University, Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Detection of global DNA methylation and paternally imprinted H19 gene methylation in preeclamptic placentas. Hypertens Res 2011; 34:655-61. [PMID: 21326306 DOI: 10.1038/hr.2011.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Preeclampsia (PE) is a severe hypertensive disorder associated with pregnancy; despite substantial research effort in the past several years, the etiology of PE is still unclear. The role of epigenetic factors in the etiology of PE, including DNA methylation, has been poorly characterized. In the present study, we investigated global DNA methylation as well as DNA methylation of the paternally imprinted H19 gene in preeclamptic placentas. Using 5-methylcytosine immunohistochemistry and Alu and LINE-1 repeat pyrosequencing, we found that the global DNA methylation level and the DNA (cytosine-5) methyltransferase 1 mRNA level were significantly higher in the early-onset preeclamptic placentas when compared with the normal controls. Data from methylation-sensitive high resolution melting demonstrated hypermethylation of the promoter region of the H19 gene, and results of real-time PCR showed decreased mRNA expression of H19 gene in the early-onset preeclamptic placentas as compared with the normal controls. Our results suggest that abnormal DNA methylation during placentation might be involved in the pathophysiology of PE, especially early-onset preeclampsia.
Collapse
|
24
|
DNA methylation in thoracic neoplasms. Cancer Lett 2010; 301:7-16. [PMID: 21087818 DOI: 10.1016/j.canlet.2010.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/14/2010] [Accepted: 10/20/2010] [Indexed: 12/31/2022]
Abstract
Thoracic neoplasms, which include lung cancers, esophageal carcinoma, and thymic epithelial tumors, are the leading causes of tumor-related death and a major health concern worldwide. The development of neoplasms is a multistep process involving both genetic and epigenetic alterations. A growing body of research provides evidence that aberrant DNA methylation, including DNA hypermethylation in promoter regions, global DNA hypomethylation and the overexpression of DNA methyltransferases, plays an important role in tumorigenesis. In this review, we summarize published observations of methylation pattern disruptions in thoracic tumors, and discuss how these abnormalities contribute to the development of cancers. We review recent findings showing that suppressing the activity of the DNA methylating enzymes DNMTs can have potent anti-cancer effects, and discuss the possibility of developing novel therapies for thoracic tumors based on DNMT inhibition.
Collapse
|
25
|
Sanders YY, Tollefsbol TO, Varisco BM, Hagood JS. Epigenetic regulation of thy-1 by histone deacetylase inhibitor in rat lung fibroblasts. Am J Respir Cell Mol Biol 2010; 45:16-23. [PMID: 20724553 DOI: 10.1165/rcmb.2010-0154oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Thy-1 is a cell surface glycoprotein present on normal lung fibroblasts but absent from the fibroblastic foci of idiopathic pulmonary fibrosis. Thy-1 correlates inversely with fibrogenic phenotypic characteristics and functions as a "fibrosis suppressor." Promoter region hypermethylation can silence Thy-1 expression in fibroblastic foci, suggesting that epigenetic regulation is important in programming the fibrotic phenotype. We examined whether histone modifications are important in regulating Thy-1 expression in lung fibroblasts. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) restored Thy-1 expression in Thy-1(-) cells in a time-dependent and concentration-dependent fashion and was associated with enrichment of histone acetylation. Chromatin immunoprecipitation demonstrated Thy-1 depletion of trimethylated H3K27 after 24 hours of TSA treatment, concurrent with enrichment of trimethylated H3K4 and acetylated H4. Bisulfite sequencing of the Thy-1 promoter region revealed demethylation of the previously hypermethylated CpG sites after treatment with TSA. Although Thy-1 was hypermethylated in Thy-1(-) lung fibroblasts, we observed that Thy-1(-) cells have lower global DNA methylation compared with Thy-1(+) lung fibroblasts, which was partially reversed by TSA treatment. TSA treatment up-regulates total methyltransferase activity in these cells. Our data indicate that Thy-1 silencing is regulated by histone modifications in addition to promoter hypermethylation in lung fibroblasts. Additionally, our findings indicate that alteration of histone modifications alters DNA methylation. Understanding the molecular hierarchy of events with respect to reactivation of transcription and reversal of histone modification will be critical to understand and modify the regulated expression of Thy-1, a tumor-supressor and fibrosis-suppressor gene.
Collapse
Affiliation(s)
- Yan Y Sanders
- Department of Pediatrics, University of California-San Diego, 9500 Gilman Dr., MC 0731, San Diego, CA 92093-0731, USA
| | | | | | | |
Collapse
|
26
|
Kitkumthorn N, Mutirangura A. LINE-1 methylation difference between ameloblastoma and keratocystic odontogenic tumor. Oral Dis 2010; 16:286-91. [DOI: 10.1111/j.1601-0825.2009.01640.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Abstract
Our understanding of epigenetics has been transformed in recent years by the advance of technological possibilities based primarily on a powerful tool, chromatin immunoprecipitation (ChIP). However, in many cases, the detection of epigenetic changes requires methods providing a high-throughput (HTP) platform. Cytometry has opened a novel approach for the quantitative measurement of molecules, including PCR products, anchored to appropriately addressed microbeads (Pataki et al. 2005. Cytometry 68, 45-52). Here we show selected examples for the utility of two different cytometry-based platforms of epigenetic analysis: ChIP-on-beads, a flow-cytometric test of local histone modifications (Szekvolgyi et al. 2006. Cytometry 69, 1086-1091), and the laser scanning cytometry-based measurement of global epigenetic modifications that might help predict clinical behavior in different pathological conditions. We anticipate that such alternative tools may shortly become indispensable in clinical practice, translating the systematic screening of epigenetic tags from basic research into routine diagnostics of HTP demand.
Collapse
|
28
|
Shigematsu Y, Hanagiri T, Shiota H, Kuroda K, Baba T, Mizukami M, So T, Ichiki Y, Yasuda M, So T, Takenoyama M, Yasumoto K. Clinical significance of cancer/testis antigens expression in patients with non-small cell lung cancer. Lung Cancer 2009; 68:105-10. [PMID: 19545928 DOI: 10.1016/j.lungcan.2009.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/12/2009] [Accepted: 05/17/2009] [Indexed: 12/15/2022]
Abstract
Cancer/testis antigens (CT antigens) are thought to be suitable targets for antigen-specific immunotherapy, because of the cancer-specific expression except for the testis among various normal tissues and no-expression of HLA class I in the testis. In the present study, the expressions of CT antigens (MAGE-A3, MAGE-A4, NY-ESO-1 and KK-LC-1) in non-small cell lung cancer (NSCLC) were analyzed by RT-PCR. The subjects were 239 patients with NSCLC who underwent surgery from 2001 to 2005 in our department. The expression rates of MAGE-A3, MAGE-A4, NY-ESO-1 and KK-LC-1 were 23.8%, 20.1%, 10.5% and 32.6% in patients with NSCLC, respectively. MAGE-A4 was expressed more frequently in male (25.3%) than in female (10.6%) (p<0.01). The positive proportion of MAGE-A4 was higher in stages II-IV (30.6%) than in stage I (12.8%) (p<0.01). Both of MAGE-A3 and MAGE-A4 were expressed more frequently in squamous cell carcinoma than in adenocarcinoma (p<0.01). Such tendency was not observed among NY-ESO-1 and KK-LC-1 expression. KK-LC-1 was expressed in 32.1% of patients with adenocarcinoma and in 36.5% of patients with squamous cell carcinoma. Patients with positive MAGE-A4 expression showed significantly poorer overall survival than those without MAGE-A4 expression (p=0.013), and such effect on survival was also observed, when the analysis was limited to patients at stage I (p=0.0037). Expression of MAGE-A3, NY-ESO-1 or KK-LC-1 did not affect survival of patients with NSCLC significantly, however, expression of at least one of such CT antigens negatively affect survival of patients with NSCLC (p=0.045).
Collapse
Affiliation(s)
- Yoshiki Shigematsu
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen C, Yin B, Wei Q, Li D, Hu J, Yu F, Lu Q. Aberrant DNA methylation in thymic epithelial tumors. Cancer Invest 2009; 27:582-91. [PMID: 19340654 DOI: 10.1080/07357900802620869] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aberrant DNA methylation plays a critical role in the development and progression of many types of cancer. To investigate whether DNA methylation is abnormal in thymic epithelial tumors (TETs), we analyzed global methylation levels and the methylation status of 9 tumor suppressor gene (TSG) promoters in 65 TET samples. We found evidence of TSG promoter hypermethylation and decreased TSG expression in severe TETs. Furthermore, relative to early-stage TETs, global DNA methylation levels were reduced and DNA methyltransferase expression was increased in advanced-stage TETs. Our results suggest that aberrant DNA methylation is associated with TET development.
Collapse
Affiliation(s)
- Chen Chen
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Dynamic changes in DNA methylation during multistep rat lung carcinogenesis induced by 3-methylcholanthrene and diethylnitrosamine. Toxicol Lett 2009; 189:5-13. [PMID: 19409458 DOI: 10.1016/j.toxlet.2009.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 01/19/2023]
Abstract
3-methylcholanthrene (MCA) and diethylnitrosamine (DEN) are typical genotoxic carcinogens that can induce tumors in a variety of human and rodent tissues. However, the epigenetic mechanisms underlying their tumorigenesis are unclear. In this study we used a MCA/DEN-induced multistep lung carcinogenesis rat model to study the evolution of alterations in DNA methylation. Rats were treated with a single dose of MCA and DEN in iodized oil by left intra-bronchial instillation. The animals were killed on days 15, 35, 55, 65 and 75 and samples of various pathological phases during carcinogenesis were obtained on these days. The status of global methylation was analyzed for each sample using a monoclonal antibody specific for 5-methycytosine (5-mC) and quantified by image analysis software. We found that the degree of global methylation was, in general, higher in basal cells compared to luminal cells of normal, precancerous and tumor tissues. The combined 5-mC scores of different types of tissues decreased gradually during the progression of carcinogenesis. We also used methylation-sensitive arbitrarily primed PCR (MS-AP-PCR) to screen a total of eight differentially methylated DNA fragments in both precancerous and tumor tissues isolated using laser capture microdissection (LCM), and observed that both unique hypomethylation and hypermethylation fragments coexist after exposure to genotoxic carcinogens. Remarkably, epigenetic alterations in p16 (CDKN2A), but not in p15 (CDKN2B), were observed, and these correlated with the presence of pathologic lung lesions and loss of p16 protein expression. Moreover, defective expression of p16 in methylated primary tumor cell lines recovered markedly after treated with 5-aza-2'-deoxycytidine (5-aza-dC). These results suggest that DNA methylation alterations are an early event in tumorigenesis and play an important role during MCA/DEN-induced multistep rat lung carcinogenesis.
Collapse
|
31
|
Jiang L, Gonda TA, Gamble MV, Salas M, Seshan V, Tu S, Twaddell WS, Hegyi P, Lazar G, Steele I, Varro A, Wang TC, Tycko B. Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res 2008; 68:9900-9908. [PMID: 19047171 PMCID: PMC2670548 DOI: 10.1158/0008-5472.can-08-1319] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Global hypomethylation has long been recognized as a feature of the malignant epithelial component in human carcinomas. Here we show evidence for this same type of epigenetic alteration in cancer-associated stromal myofibroblasts. We used methylation-sensitive SNP array analysis (MSNP) to profile DNA methylation in early-passage cultures of stromal myofibroblasts isolated from human gastric cancers. The MSNP data indicated widespread hypomethylation in these cells, with rare focal gains of methylation, conclusions that were independently validated by bisulfite sequencing and by a methylation-sensitive cytosine incorporation assay. Immunohistochemistry with anti-5-methylcytosine (anti-5-methyl-C) in a series of gastrectomy specimens showed frequent loss of methylation in nuclei of both the malignant epithelial cells and alpha-smooth muscle actin (ASMA)-positive stromal myofibroblasts of both intestinal-type and diffuse carcinomas. We confirmed this phenomenon and established its onset at the stage of noninvasive dysplastic lesions by immunohistochemistry for anti-5-methyl-C in a transgenic mouse model of multistage gastric carcinogenesis. These findings indicate similar general classes of epigenetic alterations in carcinoma cells and their accompanying reactive stromal cells and add to accumulating evidence for biological differences between normal and cancer-associated myofibroblasts.
Collapse
Affiliation(s)
- Le Jiang
- Institute for Cancer Genetics and Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Netto GJ, Nakai Y, Nakayama M, Jadallah S, Toubaji A, Nonomura N, Albadine R, Hicks JL, Epstein JI, Yegnasubramanian S, Nelson WG, De Marzo AM. Global DNA hypomethylation in intratubular germ cell neoplasia and seminoma, but not in nonseminomatous male germ cell tumors. Mod Pathol 2008; 21:1337-44. [PMID: 18622385 PMCID: PMC4086525 DOI: 10.1038/modpathol.2008.127] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alterations in methylation of CpG dinucleotides at the 5 position of deoxycytidine residues (5(m)C) are a hallmark of cancer cells, including testicular germ cell tumors. Virtually all testicular germ cell tumors are believed to be derived from intratubular germ cell neoplasia unclassified (IGCNU), which is thought to arise from primordial germ cells. Prior studies revealed that seminomas contain reduced levels of global DNA methylation as compared with nonseminomatous germ cell tumors. Smiraglia et al have proposed a model whereby seminomas arise from IGCNU cells derived from primordial germ cells that have undergone 5(m)C erasure, and nonseminomas arise from IGCNU cells derived from primordial germ cells that have already undergone de novo methylation after the original erasure of methylation and contain normal 5(m)C levels. Yet the methylation status of IGCNU has not been determined previously. We used immunohistochemical staining against 5(m)C to evaluate global methylation in IGCNU and associated invasive testicular germ cell tumors. Strikingly, staining for 5(m)C was undetectable (or markedly reduced) in the majority of IGCNU and seminomas, yet there was robust staining in nonseminomatous germ cell tumors. The lack of staining for 5(m)C in IGCNU and seminomas was also found in mixed germ cell tumors containing both seminomatous and nonseminomatous components. Lack of 5(m)C staining was not related to a lack of the maintenance methyltransferase (DNA methyltransferase 1) protein. We conclude that testicular germ cell tumors are derived in most cases from IGCNU cells that have undergone developmentally programmed 5(m)C erasure and that the degree of subsequent de novo methylation is most closely related to the differentiation state of the neoplastic cells. That is, IGCNU cells and seminoma cells remain unmethylated, whereas all other histological types appear to arise after de novo methylation.
Collapse
Affiliation(s)
- Georges J Netto
- Department of Pathology, Division of Genitourinary Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Yasutomo Nakai
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masashi Nakayama
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sana Jadallah
- Department of Pathology, Division of Genitourinary Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antoun Toubaji
- Department of Pathology, Division of Genitourinary Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Roula Albadine
- Department of Pathology, Division of Genitourinary Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica L Hicks
- Department of Pathology, Division of Genitourinary Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan I Epstein
- Department of Pathology, Division of Genitourinary Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, Johns Hopkins University, Baltimore, MD, USA,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Nelson
- Department of Pathology, Division of Genitourinary Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, Johns Hopkins University, Baltimore, MD, USA,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Division of Genitourinary Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, Johns Hopkins University, Baltimore, MD, USA,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Subbalekha K, Pimkhaokham A, Pavasant P, Chindavijak S, Phokaew C, Shuangshoti S, Matangkasombut O, Mutirangura A. Detection of LINE-1s hypomethylation in oral rinses of oral squamous cell carcinoma patients. Oral Oncol 2008; 45:184-91. [PMID: 18715815 DOI: 10.1016/j.oraloncology.2008.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 01/07/2023]
Abstract
This study aimed to (i) investigate long interspersed nuclear element-1 (LINE-1) methylation levels of oral squamous cell carcinomas (OSCCs), the major type of oral malignancies; and (ii) investigate whether the hypomethylation of LINE-1s can be detected in oral rinses of OSCC patients. The combined bisulfite restriction analysis polymerase chain reaction (PCR) of LINE-1s (COBRALINE-1) was used. We found that tissues from OSCC specimens had lower methylation levels of LINE-1s than cells collected from the oral rinses of normal volunteers. Interestingly, cells collected from oral rinses of OSCC patients also revealed hypomethylated LINE-1s at the same level as OSCC tissues. There was no difference in the level of hypomethylation due to stages, locations, histological grades, and history of betel chewing, smoking and/or alcohol consumption. In conclusion, OSCCs possessed global hypomethylation and this alteration could be detected from oral rinses of OSCC patients by a simple PCR technique, COBRALINE-1. Therefore, COBRALINE-1 of oral rinses may be applied for non-invasive detection of oral malignancies.
Collapse
Affiliation(s)
- Keskanya Subbalekha
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yu Y, Zhang H, Tian F, Zhang W, Fang H, Song J. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines. PLoS One 2008; 3:e2672. [PMID: 18648519 PMCID: PMC2481300 DOI: 10.1371/journal.pone.0002672] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 06/12/2008] [Indexed: 11/20/2022] Open
Abstract
Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their relationships with chicken neoplastic disease resistance and susceptibility are not yet defined. In the present study, we analyzed the complexity of the DNA methylation variations and DNA mutations in the first exon of three DNMTs genes over generations, tissues, and ages among chickens of two highly inbred White Leghorn lines, Marek's disease-resistant line 6(3) and -susceptible line 7(2), and six recombinant congenic strains (RCSs). Among them, tissue-specific methylation patterns of DNMT3a were disclosed in spleen, liver, and hypothalamus in lines 6(3) and 7(2). The methylation level of DNMT3b on four CpG sites was not significantly different among four tissues of the two lines. However, two line-specific DNA transition mutations, CpG-->TpG (Chr20:10203733 and 10203778), were discovered in line 7(2) compared to the line 6(3) and RCSs. The methylation contents of DNMT1 in blood cell showed significant epimutations in the first CpG site among the two inbred lines and the six RCSs (P<0.05). Age-specific methylation of DNMT1 was detected in comparisons between 15 month-old and 2 month-old chickens in both lines except in spleen samples from line 7(2). No DNA mutations were discovered on the studied regions of DNMT1 and DNMT3a among the two lines and the six RCSs. Moreover, we developed a novel method that can effectively test the significance of DNA methylation patterns consisting of continuous CpG sites. Taken together, these results highlight the potential of epigenetic alterations in DNMT1 and DNMT3a, as well as the DNA mutations in DNMT3b, as epigenetic and genetic factors to neoplastic diseases of chickens.
Collapse
Affiliation(s)
- Ying Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United State of America
| | - Huanmin Zhang
- Agriculture Research Service (ARS), United States Department of Agriculture (USDA), Avian Disease and Oncology Laboratory, East Lansing, Michigan, United State of America
| | - Fei Tian
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United State of America
| | - Wensheng Zhang
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United State of America
| | - Hongbin Fang
- Division of Biostatistics of The University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United State of America
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United State of America
| |
Collapse
|
35
|
Barbisan F, Mazzucchelli R, Santinelli A, Stramazzotti D, Scarpelli M, Lopez-Beltran A, Cheng L, Montironi R. Immunohistochemical Evaluation of Global DNA Methylation and Histone Acetylation in Papillary Urothelial Neoplasm of Low Malignant Potential. Int J Immunopathol Pharmacol 2008; 21:615-23. [DOI: 10.1177/039463200802100315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A preceding study has shown that karyometry detected subvisual differences in chromatin organization status between non-recurrent and recurrent papillary urothelial neoplasm of low malignant potential (PUNLMP). The status of chromatin organization depends on epigenetic events, such as DNA methylation and histone acetylation. The aim of this study is to explore global DNA methylation and global histone acetylation in non-recurrent and recurrent PUNLMP. 5-methylcytosine (5MeC) and acetylated histone H3 lysine 9 (AcH3K9) were investigated by immunohistochemistry (IHC) in 20 PUNLMP cases (10 non-recurrent and 10 recurrent), in 5 cases of normal urothelium (NU) and in 5 cases of muscle invasive pT2 urothelial carcinoma (UC). For global DNA methylation, the mean percentage of positive nuclei in the cells adjacent to the stroma increased from NU (79%) through non-recurrent and recurrent PUNLMP (86% and 93%, respectively) to UC (97%). The percentages of positive nuclei in the intermediate cell layers and in the superficial cells in the four groups were similar to those adjacent to the stroma. The proportion of nuclei with weak-to-moderate intensity was far greater than that of those strongly stained and increased steadily from NU to UC. For global histone acetylation, the mean percentage of positive nuclei was highest in non-recurrent PUNLMP (i.e. 90%) and lowest in recurrent PUNLMP (i.e. 81%). In NU and UC the mean percentages of positive nuclei were 84% and 86%, respectively. The percentage of positive nuclei decreased from the cell layer adjacent to the stroma to the superficial cell layer. The proportion of nuclei with weak-to-moderate intensity was slightly greater than that of those strongly stained. In comparison with global DNA methylation, the proportion of strongly stained nuclei was much higher. In conclusion, there are differences in global DNA methylation and histone acetylation patterns between non-recurrent and recurrent PUNLMP. Further studies are needed to elucidate the complex interplay between chromatin structure, its modifications and recurrence of PUNLMP.
Collapse
Affiliation(s)
| | | | | | | | | | - A. Lopez-Beltran
- Department of Pathology, Reina Sofia University Hospital and Faculty of Medicine, Cordoba, Spain
| | - L. Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
36
|
Global DNA methylation is influenced by smoking behaviour. Eur Neuropsychopharmacol 2008; 18:295-8. [PMID: 18242065 DOI: 10.1016/j.euroneuro.2007.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/05/2007] [Accepted: 12/20/2007] [Indexed: 01/25/2023]
Abstract
The level of epigenetic DNA methylation is an important factor in the pathogenesis of various human diseases. As smoking may influence DNA methylation, we investigated the effect of smoking habits on global DNA methylation in 298 genomic DNA samples (73 fathers, 69 mothers and 156 offspring). We did not find a direct effect of smoking on global DNA methylation. However, there was an association of the offspring's DNA methylation with paternal DNA methylation that was strongest if both had never smoked (R2corr=0.41, Beta=0.68, p=0.02) and completely vanished if the offspring smoked or had ever smoked. These findings suggest an association between smoking behaviour and global DNA methylation, which may be of importance for a wide range of diseases.
Collapse
|
37
|
Bromberg A, Levine J, Nemetz B, Belmaker RH, Agam G. No association between global leukocyte DNA methylation and homocysteine levels in schizophrenia patients. Schizophr Res 2008; 101:50-7. [PMID: 18276118 DOI: 10.1016/j.schres.2008.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/30/2007] [Accepted: 01/04/2008] [Indexed: 12/11/2022]
Abstract
Meta-analysis recently suggested that a 5 muM increase in homocysteine is associated with a 70% higher risk for schizophrenia. Elevated homocysteine is reported to alter macromolecule methylation. We studied whether elevated plasma homocysteine levels in schizophrenia are associated with altered leukocyte global DNA methylation. DNA was extracted from peripheral blood leukocytes of 28 schizophrenia patients vs. 26 matched healthy controls. Percent of global genome DNA methylation was measured using the cytosine-extension method. Homocysteine levels were higher in schizophrenia patients than in controls. No difference in global DNA methylation between schizophrenia patients and control subjects was found (74.0%+/-14.8 vs. 69.4+/-22.0, p=0.31). A significant interaction between diagnosis and smoking on DNA methylation was obtained (F=6.8, df=1,47, p=0.032). Although leukocytes may be a useful cell model to evaluate epigenetic changes such as global DNA methylation in brain, future studies should compare global DNA methylation in peripheral tissue vs. brain in laboratory animals.
Collapse
Affiliation(s)
- A Bromberg
- Faculty of Health Sciences, Stanley Research Center, Ben-Gurion University of the Negev & Beersheva Mental Health Center, Beersheva, Israel
| | | | | | | | | |
Collapse
|
38
|
Piyathilake CJ, Bell WC, Jones J, Henao OL, Heimburger DC, Niveleau A, Grizzle WE. Pattern of nonspecific (or global) DNA methylation in oral carcinogenesis. Head Neck 2006; 27:1061-7. [PMID: 16155917 PMCID: PMC1853326 DOI: 10.1002/hed.20288] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although alterations in nonspecific (or global) DNA methylation (GDM) in specific cells are known to be involved in the process of lung carcinogenesis, similar associations have not been evaluated in other smoking-related cancers of the head and neck. METHODS We evaluated the status of GDM by using monoclonal antibodies specific for 5-methylcytosine (5-mc) in oral squamous cell carcinoma (SCC) specimens of 48 cigarette smokers who had SCC develop and in 93 age-, race-, and sex-matched smokers who did not. RESULTS Percentages of cells positive for 5-mc immunostaining of DNA of SCC and dysplastic lesions were significantly higher than those of normal oral epithelial cells from cancer subjects and from noncancer subjects. The degree of DNA methylation was unrelated to DNA content. CONCLUSIONS The pattern of GDM in oral SCCs is different from that of lung SCCs. The differences in nutrient risk factor profiles that are related to GDM and differential activity of DNA methyltranferases between oral and lung SCCs may explain these observations.
Collapse
Affiliation(s)
- Chandrika J. Piyathilake
- Department of Nutrition Sciences, Division of Nutritional Biochemistry and Molecular Biology, University of Alabama at Birmingham, University Station, Birmingham, AL 35294. E-mail:
| | - Walter C. Bell
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer Jones
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Olga L. Henao
- School of Public Health of The University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas C. Heimburger
- Department of Nutrition Sciences, Division of Nutritional Biochemistry and Molecular Biology, University of Alabama at Birmingham, University Station, Birmingham, AL 35294. E-mail:
| | - Alain Niveleau
- Laboratory of Virology, Faculty of Medicine, University Joseph Fourier of Grenoble, Avenue Gresivaudan, 38706 La Tronche France
| | - William E. Grizzle
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
39
|
Gure AO, Chua R, Williamson B, Gonen M, Ferrera CA, Gnjatic S, Ritter G, Simpson AJG, Chen YT, Old LJ, Altorki NK. Cancer-Testis Genes Are Coordinately Expressed and Are Markers of Poor Outcome in Non–Small Cell Lung Cancer. Clin Cancer Res 2005; 11:8055-62. [PMID: 16299236 DOI: 10.1158/1078-0432.ccr-05-1203] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer-testis genes mapping to the X chromosome have common expression patterns and show similar responses to modulators of epigenetic mechanisms. We asked whether cancer-testis gene expression occurred coordinately, and whether it correlated with variables of disease and clinical outcome of non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Tumors from 523 NSCLC patients undergoing surgery were evaluated for the expression of nine cancer-testis genes (NY-ESO-1, LAGE-1, MAGE-A1, MAGE-A3, MAGE-A4, MAGE-A10, CT7/MAGE-C1, SSX2, and SSX4) by semiquantitative PCR. Clinical data available for 447 patients were used to correlate cancer-testis expression to variables of disease and clinical outcome. RESULTS At least one cancer-testis gene was expressed by 90% of squamous carcinoma, 62% of bronchioloalveolar cancer, and 67% of adenocarcinoma samples. Statistically significant coexpression was observed for 34 of the 36 possible cancer-testis combinations. Cancer-testis gene expression, either cumulatively or individually, showed significant associations with male sex, smoking history, advanced tumor, nodal and pathologic stages, pleural invasion, and the absence of ground glass opacity. Cox regression analysis revealed the expression of NY-ESO-1 and MAGE-A3 as markers of poor prognosis, independent of confounding variables for adenocarcinoma of the lung. CONCLUSIONS Cancer-testis genes are coordinately expressed in NSCLC, and their expression is associated with advanced disease and poor outcome.
Collapse
Affiliation(s)
- Ali O Gure
- Ludwig Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Galusca B, Dumollard JM, Lassandre S, Niveleau A, Prades JM, Estour B, Peoc'h M. Global DNA methylation evaluation: potential complementary marker in differential diagnosis of thyroid neoplasia. Virchows Arch 2005; 447:18-23. [PMID: 15891902 DOI: 10.1007/s00428-005-1268-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 04/03/2005] [Indexed: 02/07/2023]
Abstract
The implications of global DNA hypomethylation were recently reported in several models of tumorigenesis. Little is known about this epigenetic event in thyroid neoplasia. The study aimed to evaluate the status of global DNA methylation in several types of thyroid tumors using a monoclonal antibody specific for 5-methylcytidine (5-mc) and to define the diagnosis potential of this marker. 5-mc immunostaining scores were calculated in 17 papillary thyroid carcinomas (PTC), 6 follicular thyroid carcinomas (FTC), 16 follicular adenomas (FA), 19 nodular goiters (NG) and ten Hürthle cells adenomas (HCA). The expression of galectin-3 was also evaluated. Computerized image analysis showed a significant lower level of 5-mc immunostaining in thyroid carcinoma when compared with benign tumors or adjacent normal thyroid parenchyma (P<0.0001). Overall, 5-mc accuracy to distinguish malign from benign thyroid tumors was similar to that of galectin-3 (89% versus 87%, P>0.05). The combination of 5-mc with galectin-3 led to an excellent accuracy level of 96%. Among follicular neoplasia 5-mc accuracy to differentiate malign tumors trends to be higher than galectin-3 one (90% versus 66%, P=0.06). These data stress the necessity of epigenetic events evaluation among thyroid nodules and propose global DNA methylation assessment as a potential diagnostic tool to combine with other valuable markers.
Collapse
|
41
|
Brothman AR, Swanson G, Maxwell TM, Cui J, Murphy KJ, Herrick J, Speights VO, Isaac J, Rohr LR. Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome? ACTA ACUST UNITED AC 2005; 156:31-6. [PMID: 15588853 DOI: 10.1016/j.cancergencyto.2004.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 04/04/2004] [Accepted: 04/07/2004] [Indexed: 01/02/2023]
Abstract
This study was designed to determine if cytological detection of 5-methylcytosine (5MC) was feasible on prostate tumor sections and to determine if levels of 5MC differed in malignant compared to normal prostate tissue. We further sought to see if 5MC levels correlated with any clinical outcome data. Thirty prostate tumor sections were obtained from patients who underwent radical prostatectomies from 1988 to 1995; these represented a mix of low to high grade tumors. Clinical data were maintained for each of these patients with a minimum of 7 years of follow up. Sections were stained with a commercially available antibody to 5MC and immunocytochemistry levels were subsequently quantified using a computer-assisted true-color imaging system. Tumor and benign regions of the same archived sections were compared, in addition to a series of 12 normal prostate samples. Prostate cancer cells exhibited a pronounced global decrease in methylation compared with benign and normal tissue. This was observed in 29 of 30 patients (96.7%) studied and densitometric scanning of methylation staining indicated that this value was quantifiable. Overall, higher methylation values were detected in men who had positive surgical margins and recurrent disease. These data suggest that loss of methylation is a feature of prostate cancer, and partial gain of methylation (presumably at promoters of specific genes) is associated with clinical outcome and is measurable using whole-cell assays.
Collapse
Affiliation(s)
- Arthur R Brothman
- Department of Pediatrics, University of Utah School of Medicine, 1C210 SOM, 30 North 1900 East, Salt Lake City, UT 84132-2117, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Baker K, Zhang Y, Jin C, Jass JR. Proximal versus distal hyperplastic polyps of the colorectum: different lesions or a biological spectrum? J Clin Pathol 2004; 57:1089-93. [PMID: 15452166 PMCID: PMC1770443 DOI: 10.1136/jcp.2004.016600] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2004] [Indexed: 01/31/2023]
Abstract
BACKGROUND Because of their suggested link with microsatellite instability high colorectal cancers, right sided hyperplastic polyps (HPs) may differ from their distally located counterparts. This is highlighted by the recognition of a variant HP, termed sessile serrated adenoma (SSA), which predominates in the proximal colon. HPs displaying the morphological features now associated with SSAs have been shown to have altered expression of "cancer associated" markers, but no studies have investigated whether this is dependent on anatomical location of the polyps. AIMS To evaluate morphological and functional features in right versus left sided HPs from patients without colorectal cancer with the aim of identifying distinguishing characteristics. METHODS HPs originating in the proximal and distal colorectum were histochemically and immunohistochemically stained to evaluate a panel of markers related to proliferation and differentiation. In addition, a series of morphological features was evaluated for each polyp. RESULTS Crypt serration, crypt dilatation, and horizontal crypt growth were more common among HPs from the right side, whereas histochemical factors including mucin changes, global methylation status, and expression of carcinoembryonic antigen were not significantly different. An age disparity was also seen between patients with right versus left sided lesions, with patients with right sided lesions being an average of more than 10 years younger than those with left sided lesions. CONCLUSIONS These findings suggest that right and left sided HPs differ mainly in terms of growth regulation rather than cellular differentiation, implying that these lesions belong to a continuous spectrum of serrated polyps that differ quantitatively rather than qualitatively.
Collapse
Affiliation(s)
- K Baker
- Department of Pathology, McGill University, Montreal, Quebec Canada.
| | | | | | | |
Collapse
|
43
|
Ghabreau L, Roux JP, Niveleau A, Fontanière B, Mahe C, Mokni M, Frappart L. Correlation between the DNA global methylation status and progesterone receptor expression in normal endometrium, endometrioid adenocarcinoma and precursors. Virchows Arch 2004; 445:129-34. [PMID: 15221375 DOI: 10.1007/s00428-004-1059-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 05/18/2004] [Indexed: 11/29/2022]
Abstract
Endometrial carcinomas are the most common malignancy of the female genital tract and the third most common cancer in women. Progesterone and oestrogen receptors (PRs, ERs) are the most widely documented prognostic and predictive factors in endometrioid adenocarcinoma. Besides the hormonal pathway involved in the progression of preneoplastic and neoplastic lesions, alterations of the DNA methylation status have been shown to be an early signal of tumorigenesis. In this study, we show that in normal endometrium, during the proliferative phase, DNA methylation and PR expression are high, with a significant decline towards the end of the secretory phase and a gradual increase in non-atypical and atypical endometrial hyperplasia; they reach their highest level in grade I, then decrease significantly in grade-II and grade-III endometrioid adenocarcinomas. During each stage, a significant positive correlation is observed between DNA methylation and PR (P<0.0001). The strong parallelism between DNA methylation and PR expression precludes establishing a precise determination regarding the timing of these events, clearly involved in the genesis of endometrioid adenocarcinoma.
Collapse
Affiliation(s)
- Lina Ghabreau
- Anatomie Pathologique, Bat 10, Hôpital Edouard Herriot, 69003 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Mittal A, Piyathilake C, Hara Y, Katiyar SK. Exceptionally high protection of photocarcinogenesis by topical application of (--)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 2004; 5:555-65. [PMID: 14965448 PMCID: PMC1502572 DOI: 10.1016/s1476-5586(03)80039-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
(--)-Epigallocatechin-3-gallate (EGCG) has been shown to have potent antiphotocarcinogenic activity, but it was required to develop a cream-based formulation for topical application. For topical application, we tested hydrophilic cream as a vehicle for EGCG. Treatment with EGCG ( approximately 1 mg/cm(2) skin area) in hydrophilic cream resulted in exceptionally high protection against photocarcinogenesis when determined in terms of tumor incidence, tumor multiplicity, and tumor size in a SKH-1 hairless mouse model. EGCG also inhibited malignant transformation of ultraviolet B (UVB)-induced papillomas to carcinomas. In order to determine the mechanism of prevention of photocarcinogenesis, we determined the effect of EGCG on global DNA methylation pattern using monoclonal antibodies against 5-methyl cytosine and DNA methyltransferase in the long-term UV-irradiated skin because altered DNA methylation silencing is recognized as a molecular hallmark of human cancer. We found that treatment with EGCG resulted in significant inhibition of UVB-induced global DNA hypomethylation pattern. Long-term application of EGCG did not show any apparent sign of toxicity in mice when determined in terms of skin appearance, lean mass, total bone mineral content, and total bone mineral density but showed reduction in fat mass when analyzed using dual-energy X-ray absorptiometry. These data suggest that hydrophilic cream could be a suitable vehicle for topical application of EGCG, and that EGCG is a promising candidate for future cancer therapies based on its influence on the epigenetic pathway.
Collapse
Affiliation(s)
- Anshu Mittal
- Department of Dermatology University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chandrika Piyathilake
- Department of Nutritional Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Santosh K. Katiyar
- Department of Dermatology University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Environmental Health Sciences University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
45
|
Milutinovic S, Zhuang Q, Niveleau A, Szyf M. Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J Biol Chem 2003; 278:14985-95. [PMID: 12576480 DOI: 10.1074/jbc.m213219200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The DNA methylation pattern is an important component of the epigenome that regulates and maintains gene expression programs. In this paper, we test the hypothesis that vertebrate cells possess mechanisms protecting them from epigenomic stress similar to DNA damage checkpoints. We show that knockdown of DNMT1 (DNA methyltransferase 1) by an antisense oligonucleotide triggers an intra-S-phase arrest of DNA replication that is not observed with control oligonucleotide. The cells are arrested at different positions throughout the S-phase of the cell cycle, suggesting that this response is not specific to distinct classes of origins of replication. The intra-S-phase arrest of DNA replication is proposed to protect the genome from extensive DNA demethylation that could come about by replication in the absence of DNMT1. This protective mechanism is not induced by 5-aza-2'-deoxycytidine, a nucleoside analog that inhibits DNA methylation by trapping DNMT1 in the progressing replication fork, but does not reduce de novo synthesis of DNMT1. Our data therefore suggest that the intra-S-phase arrest is triggered by a reduction in DNMT1 and not by demethylation of DNA. DNMT1 knockdown also leads to an induction of a set of genes that are implicated in genotoxic stress response such as NF-kappaB, JunB, ATF-3, and GADD45beta (growth arrest DNA damage 45beta gene). Based on these data, we suggest that this stress response mechanism evolved to guard against buildup of DNA methylation errors and to coordinate inheritance of genomic and epigenomic information.
Collapse
Affiliation(s)
- Snezana Milutinovic
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
46
|
Piyathilake CJ, Frost AR, Manne U, Weiss H, Heimburger DC, Grizzle WE. Nuclear accumulation of p53 is a potential marker for the development of squamous cell lung cancer in smokers. Chest 2003; 123:181-6. [PMID: 12527620 DOI: 10.1378/chest.123.1.181] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES To determine whether the nuclear accumulation of p53 in patients with early bronchial neoplasia represents an altered susceptibility for the development of lung cancer. PATIENTS AND MEASUREMENTS We evaluated the percentage of cells accumulating nuclear p53 immunohistochemically in squamous cell carcinoma (SCC) of the lung, the associated uninvolved bronchial mucosa, and epithelial hyperplasia in 60 archival lung specimens of smokers and in the normal bronchial epithelium and hyperplastic lesions of 60 smokers who had not developed lung cancer. RESULTS The percentage of cells accumulating p53 was significantly higher in SCC-associated uninvolved bronchial epithelia of (mean [+/- SD], 4 +/- 0.9%) and in specimens from patients with epithelial hyperplasia (mean, 9 +/- 2%) compared to the percentage of cells from the bronchial epithelia of (mean, 0.5 +/- 0.2%) and in specimens from patients with epithelial hyperplasia (mean, 1.5 +/- 0.5%) who were smokers who had not developed lung cancer (p = 0.0002 and p = 0.0004, respectively). We also observed a statistically significant stepwise increase in the percentage of cells accumulating p53 from SCC-associated uninvolved bronchial epithelium to those from a patient with epithelial hyperplasia to those from a patient with SCC (mean, 35 +/- 4%), suggesting the involvement of p53 accumulation in the development of SCC (p <or= 0.05 for all comparisons). The accumulation of p53 in SCC cells was not significantly associated with the size of the tumor, nodal involvement, the stage of the disease, the presence or absence of metastasis, the grade of differentiation, or survival of the disease, indicating its lack of association with the clinical progression of the disease. CONCLUSIONS These results suggested that p53 accumulation is an early event in lung carcinogenesis and potentially could be useful in the identification of smokers who are at risk of developing SCC, but not in the estimation of survival of the disease.
Collapse
|
47
|
Abstract
The studies reviewed here investigate the association between folate status and DNA methylation in cancer tissues. We evaluated tissue vitamin levels and global DNA methylation, a biomarker of neoplasia, in normal lung and lung cancer tissues. Lung squamous cell carcinoma tissues exhibited global DNA hypomethylation, with decreased folate and vitamin B-12 concentrations, and increased vitamin C concentrations, relative to matched uninvolved control tissues. Breast cancer tissues also had globally hypomethylated DNA and decreased vitamin B-12 and vitamin C levels, but folate concentrations were elevated in breast cancer tissues. Global DNA methylation status in buccal mucosal cells may reflect global methylation status in lung tissues, because there was a significant association between global DNA methylation in buccal mucosal cells and malignant tissues of the lung, but not between methylation in peripheral leukocytes and lung tissues. We found that global DNA hypomethylation, as assessed by a radiolabeled 5-methylcytosine technique, was associated with susceptibility for development of lung cancer, which is involved in the progression of the disease. DNA methylation was also associated with the development of squamous cell carcinomas in whites but not in blacks. Overall, these studies suggest that global DNA methylation patterns may vary depending on the type of cancer, that tissue vitamin levels are associated with global DNA methylation status and that ethnicity should be considered in studies of DNA methylation.
Collapse
Affiliation(s)
- Gary L Johanning
- Department of Nutrition Sciences, The University of Alabama at Birmingham, USA.
| | | | | |
Collapse
|
48
|
Abstract
The overall goal of this research is to evaluate interactions among cellular vitamin levels and global DNA hypomethylation and the impact of these variables on human cancer risk. Global DNA methylation was determined by two methods: a radiolabeled methyl incorporation (RMI) assay and an immunohistochemical assay using an antibody to 5-methylcytosine (5-MC). The RMI assay is useful for evaluating methylation of DNA in tissue samples, whereas the 5-MC assay clearly reveals DNA methylation in specific types of cells and has minimal day-to-day variability. We have observed significant interactions among cancer-protective vitamins and global DNA methylation at the level of tissues. A significant positive association was observed between global DNA methylation in buccal mucosal cells and malignant tissues, but not between global DNA methylation in peripheral leukocytes and malignant tissues of the lung. These results suggest that changes in global methylation in buccal mucosal cells may reflect changes in tissues at high risk of developing lung cancer. With the antibody technique, we have demonstrated that alterations in global DNA methylation are associated with epigenetic differences in susceptibility for development of lung cancer, which is involved in the progression of the disease. The effect of race on these relationships also is discussed. Significant associations observed between expression of epidermal growth factor receptor and global DNA methylation, as assessed by the 5-MC assay but not by the RMI assay, indicate that evaluation of global methylation and biomarkers in specific types of cells may shed light on the associations between global DNA methylation and other intermediate endpoint biomarkers in the future.
Collapse
|