1
|
Amini-Salehi E, Hassanipour S, Keivanlou MH, Shahdkar M, Orang Goorabzarmakhi M, Vakilpour A, Joukar F, Hashemi M, Sattari N, Javid M, Mansour-Ghanaei F. The impact of gut microbiome-targeted therapy on liver enzymes in patients with nonalcoholic fatty liver disease: an umbrella meta-analysis. Nutr Rev 2024; 82:815-830. [PMID: 37550264 DOI: 10.1093/nutrit/nuad086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is considered the leading cause of chronic liver disease worldwide. To date, no confirmed medication is available for the treatment of NAFLD. Previous studies showed the promising effects of gut microbiome-targeted therapies; however, the results were controversial and the strength of the evidence and their clinical significance remained unclear. OBJECTIVES This umbrella study summarizes the results of meta-analyses investigating the effects of probiotics, prebiotics, and synbiotics on liver enzymes in the NAFLD population. DATA SOURCE A comprehensive search of the PubMed, Scopus, Web of Science, and Cochrane Library databases was done up to December 20, 2022, to find meta-analyses on randomized control trials reporting the effects of gut microbial therapy on patients with NAFLD. DATA EXTRACTION Two independent investigators extracted data on the characteristics of meta-analyses, and any discrepancies were resolved by a third researcher. The AMSTAR2 checklist was used for evaluating the quality of studies. DATA ANALYSIS A final total of 15 studies were included in the analysis. Results showed that microbiome-targeted therapies could significantly reduce levels of alanine aminotransferase (ALT; effect size [ES], -10.21; 95% confidence interval [CI], -13.29, -7.14; P < 0.001), aspartate aminotransferase (AST; ES, -8.86; 95%CI, -11.39, -6.32; P < 0.001), and γ-glutamyltransferase (ES, -5.56; 95%CI, -7.92, -3.31; P < 0.001) in patients with NAFLD. Results of subgroup analysis based on intervention showed probiotics could significantly reduce levels of AST (ES, -8.69; 95%CI, -11.01, -6.37; P < 0.001) and ALT (ES, -9.82; 95%CI, -11.59, -8.05; P < 0.001). Synbiotics could significantly reduce levels of AST (ES, -11.40; 95%CI, -13.91, -8.88; P < 0.001) and ALT (ES, -11.87; 95%CI, -13.80, -9.95; P < 0.001). Prebiotics had no significant effects on AST and ALT levels (ES, -2.96; 95%CI, -8.12, 2.18, P = 0.259; and ES, -4.69; 95%CI, -13.53, 4.15, P = 0.299, respectively). CONCLUSION Gut microbiome-targeted therapies could be a promising therapeutic approach in the improvement of hepatic damage in patients with NAFLD. However, more studies are needed to better determine the best bacterial strains, duration of treatment, and optimum dosage of gut microbiome-targeted therapies in the treatment of the NAFLD population. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022346998.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Milad Shahdkar
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azin Vakilpour
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Jenkin KA, Han Y, Lin S, He P, Yun CC. Nedd4-2-dependent Ubiquitination Potentiates the Inhibition of Human NHE3 by Cholera Toxin and Enteropathogenic Escherichia coli. Cell Mol Gastroenterol Hepatol 2021; 13:695-716. [PMID: 34823064 PMCID: PMC8789535 DOI: 10.1016/j.jcmgh.2021.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Diarrhea is one of the most common illnesses and is often caused by bacterial infection. Recently, we have shown that human Na+/H+ exchanger NHE3 (hNHE3), but not non-human NHE3s, interacts with the E3 ubiquitin ligase Nedd4-2. We hypothesize that this property of hNHE3 contributes to the increased severity of diarrhea in humans. METHODS We used humanized mice expressing hNHE3 in the intestine (hNHE3int) to compare the contribution of hNHE3 and mouse NHE3 to diarrhea induced by cholera toxin (CTX) and enteropathogenic Escherichia coli (EPEC). We measured Na+/H+ exchange activity and fluid absorption. The role of Nedd4-2 on hNHE3 activity and ubiquitination was determined by knockdown in Caco-2bbe cells. The effects of protein kinase A (PKA), the primary mediator of CTX-induced diarrhea, on Nedd4-2 and hNHE3 phosphorylation and their interaction were determined. RESULTS The effects of CTX and EPEC were greater in hNHE3int mice than in control wild-type (WT) mice, resulting in greater inhibition of NHE3 activity and increased fluid accumulation in the intestine, the hallmark of diarrhea. Activation of PKA increased ubiquitination of hNHE3 and enhanced interaction of Nedd4-2 with hNHE3 via phosphorylation of Nedd4-2 at S342. S342A mutation mitigated the Nedd4-2-hNHE3 interaction and blocked PKA-induced inhibition of hNHE3. Unlike non-human NHE3s, inhibition of hNHE3 by PKA is independent of NHE3 phosphorylation, suggesting a distinct mechanism of hNHE3 regulation. CONCLUSIONS The effects of CTX and EPEC on hNHE3 are amplified, and the unique properties of hNHE3 may contribute to diarrheal symptoms occurring in humans.
Collapse
Affiliation(s)
- Kayte A. Jenkin
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Yiran Han
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia
| | - Songbai Lin
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - C. Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia,Correspondence Address correspondence to: Chris Yun, PhD, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30324. fax: (404) 727-5767.
| |
Collapse
|
3
|
Iftekhar A, Sigal M. Defence and adaptation mechanisms of the intestinal epithelium upon infection. Int J Med Microbiol 2021; 311:151486. [PMID: 33684844 DOI: 10.1016/j.ijmm.2021.151486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a monolayer of polarized columnar cells that act as a border between the host and its environment and are the first line of defence against the luminal microbes. In addition to providing a physical barrier, the epithelium possesses a multitude of active mechanisms to fight invading pathogens and regulate the composition and spatial distribution of commensals. The different epithelial cell types have unique functions in this context, and crosstalk with the immune system further modulates their intricate antimicrobial responses. The epithelium is organized into clonal crypt units with a high cellular turnover that is driven by stem cells located at the base. There is increasing evidence that this anatomical organization, the stem cell turnover, and the lineage determination processes are essential for barrier maintenance. These processes can be modulated by microbes directly or by the immune responses to enteric pathogens, resulting in a rapid and efficient adaptation of the epithelium to environmental perturbations, injuries, and infections. Here we discuss the complex host-microbial interactions that shape the mucosa and how the epithelium maintains and re-establishes homeostasis after infection.
Collapse
Affiliation(s)
- Amina Iftekhar
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michael Sigal
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
4
|
YAP in epithelium senses gut barrier loss to deploy defenses against pathogens. PLoS Pathog 2020; 16:e1008766. [PMID: 32857822 PMCID: PMC7454999 DOI: 10.1371/journal.ppat.1008766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogens commonly disrupt the intestinal epithelial barrier; however, how the epithelial immune system senses the loss of intestinal barrier as a danger signal to activate self-defense is unclear. Through an unbiased approach in the model nematode Caenorhabditis elegans, we found that the EGL-44/TEAD transcription factor and its transcriptional activator YAP-1/YAP (Yes-associated protein) were activated when the intestinal barrier was disrupted by infections with the pathogenic bacterium Pseudomonas aeruginosa PA14. Gene Ontology enrichment analysis of the genes containing the TEAD-binding sites revealed that “innate immune response” and “defense response to Gram-negative bacterium” were two top significantly overrepresented terms. Genetic inactivation of yap-1 and egl-44 significantly reduced the survival rate and promoted bacterial accumulation in worms after bacterial infections. Furthermore, we found that disturbance of the E-cadherin-based adherens junction triggered the nuclear translocation and activation of YAP-1/YAP in the gut of worms. Although YAP is a major downstream effector of the Hippo signaling, our study revealed that the activation of YAP-1/YAP was independent of the Hippo pathway during disruption of intestinal barrier. After screening 10 serine/threonine phosphatases, we identified that PP2A phosphatase was involved in the activation of YAP-1/YAP after intestinal barrier loss induced by bacterial infections. Additionally, our study demonstrated that the function of YAP was evolutionarily conserved in mice. Our study highlights how the intestinal epithelium recognizes the loss of the epithelial barrier as a danger signal to deploy defenses against pathogens, uncovering an immune surveillance program in the intestinal epithelium. The intestinal epithelial barrier is an important line of defense against pathogenic bacteria infecting the intestine. Persistent bacterial infections can cause disruption of the intestinal barrier; however, how the epithelia immune system recognizes the loss of intestinal barrier as a danger signal to activate self-defense against pathogens is unclear. Using the nematode Caenorhabditis elegans as a model animal, we show that the EGL-44/TEAD transcription factor and its transcriptional activator YAP-1/YAP (Yes-associated protein) are activated when the intestinal barrier is disrupted by bacterial infections. Gene Ontology enrichment reveals that EGL-44/TEAD orchestrates a complex host response composed of innate immune response and defense response to Gram-negative bacteria. Furthermore, our data demonstrate that YAP-1/YAP and EGL-44/TEAD are required for resistance to infections with pathogenic bacteria when the intestinal barrier is disrupted in worms and mice. Our study reveals a novel strategy for the intestinal epithelium to sense danger through its internal architecture and initiate innate immunity.
Collapse
|
5
|
Enteropathogenic Escherichia coli (EPEC) Recruitment of PAR Polarity Protein Atypical PKCζ to Pedestals and Cell-Cell Contacts Precedes Disruption of Tight Junctions in Intestinal Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020527. [PMID: 31947656 PMCID: PMC7014222 DOI: 10.3390/ijms21020527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell–cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.
Collapse
|
6
|
Abstract
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Zihni C, Balda MS, Matter K. Signalling at tight junctions during epithelial differentiation and microbial pathogenesis. J Cell Sci 2015; 127:3401-13. [PMID: 25125573 DOI: 10.1242/jcs.145029] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tight junctions are a component of the epithelial junctional complex, and they form the paracellular diffusion barrier that enables epithelial cells to create cellular sheets that separate compartments with different compositions. The assembly and function of tight junctions are intimately linked to the actomyosin cytoskeleton and, hence, are under the control of signalling mechanisms that regulate cytoskeletal dynamics. Tight junctions not only receive signals that guide their assembly and function, but transmit information to the cell interior to regulate cell proliferation, migration and survival. As a crucial component of the epithelial barrier, they are often targeted by pathogenic viruses and bacteria, aiding infection and the development of disease. In this Commentary, we review recent progress in the understanding of the molecular signalling mechanisms that drive junction assembly and function, and the signalling processes by which tight junctions regulate cell behaviour and survival. We also discuss the way in which junctional components are exploited by pathogenic viruses and bacteria, and how this might affect junctional signalling mechanisms.
Collapse
Affiliation(s)
- Ceniz Zihni
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
8
|
Albanese A, Gerhardt E, García H, Amigo N, Cataldi A, Zotta E, Ibarra C. Inhibition of water absorption and selective damage to human colonic mucosa induced by Shiga toxin-2 are enhanced by Escherichia coli O157:H7 infection. Int J Med Microbiol 2015; 305:348-54. [DOI: 10.1016/j.ijmm.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 10/23/2022] Open
|
9
|
Protein kinase C mediates enterohemorrhagic Escherichia coli O157:H7-induced attaching and effacing lesions. Infect Immun 2014; 82:1648-56. [PMID: 24491575 DOI: 10.1128/iai.00534-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 causes outbreaks of diarrhea, hemorrhagic colitis, and the hemolytic-uremic syndrome. E. coli O157:H7 intimately attaches to epithelial cells, effaces microvilli, and recruits F-actin into pedestals to form attaching and effacing lesions. Lipid rafts serve as signal transduction platforms that mediate microbe-host interactions. The aims of this study were to determine if protein kinase C (PKC) is recruited to lipid rafts in response to E. coli O157:H7 infection and what role it plays in attaching and effacing lesion formation. HEp-2 and intestine 407 tissue culture epithelial cells were challenged with E. coli O157:H7, and cell protein extracts were then separated by buoyant density ultracentrifugation to isolate lipid rafts. Immunoblotting for PKC was performed, and localization in lipid rafts was confirmed with an anti-caveolin-1 antibody. Isoform-specific PKC small interfering RNA (siRNA) was used to determine the role of PKC in E. coli O157:H7-induced attaching and effacing lesions. In contrast to uninfected cells, PKC was recruited to lipid rafts in response to E. coli O157:H7. Metabolically active bacteria and cells with intact lipid rafts were necessary for the recruitment of PKC. PKC recruitment was independent of the intimin gene, type III secretion system, and the production of Shiga toxins. Inhibition studies, using myristoylated PKCζ pseudosubstrate, revealed that atypical PKC isoforms were activated in response to the pathogen. Pretreating cells with isoform-specific PKC siRNA showed that PKCζ plays a role in E. coli O157:H7-induced attaching and effacing lesions. We concluded that lipid rafts mediate atypical PKC signal transduction responses to E. coli O157:H7. These findings contribute further to the understanding of the complex array of microbe-eukaryotic cell interactions that occur in response to infection.
Collapse
|
10
|
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59. [PMID: 22782113 PMCID: PMC11113843 DOI: 10.1007/s00018-012-1070-x] [Citation(s) in RCA: 950] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
11
|
Chen P, Kartha S, Bissonnette M, Hart J, Toback FG. AMP-18 facilitates assembly and stabilization of tight junctions to protect the colonic mucosal barrier. Inflamm Bowel Dis 2012; 18:1749-59. [PMID: 22271547 PMCID: PMC3337967 DOI: 10.1002/ibd.22886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/28/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by an injured epithelium. Development of agents that could enhance mucosal healing is a major goal in IBD therapeutics. The 18-kDa antrum mucosal protein (AMP-18) and a 21-mer peptide derived from AMP-18 stimulate accumulation of tight junction (TJ) proteins in cultured epithelial cells and mouse colonic mucosa to protect the mucosal barrier, suggesting it might be a useful agent to treat IBD. METHODS We searched for molecular mechanisms by which AMP peptide or recombinant AMP-18 act on TJs in intact cell monolayers, or those disrupted by low-calcium medium. Roles of the p38 mitogen-activated protein kinase (MAPK) / heat shock protein (hsp)25 pathway and PKCζ were investigated by immunoblotting and confocal microscopy. RESULTS AMP peptide activated p38 MAPK, which subsequently phosphorylated hsp25. Accumulated phospho-hsp25 was associated with perijunctional actin. AMP-18 also induced rapid phosphorylation of PKCζ and its colocalization with perijunctional actin in Caco2/bbe cells, which was accompanied by translocation and formation of complexes of "polarity proteins" in the TJ-containing detergent-insoluble fraction. Treatment with AMP-18 also stimulated accumulation of ZO-1, ZO-2, and JAM-A in nascent TJs known to associate with the multimeric p-PKCζ/Par6/ Cdc42/ECT2·GTP/Par3 polarity protein complex. CONCLUSIONS AMP-18 facilitates translocation and assembly of multiple proteins into TJs and their association with and subsequent stabilization of the actin filament network. We speculate that improved barrier function induced by AMP-18 is mediated by enhanced TJ assembly. Thus, AMP-18 may provide a promising lead to develop agents effective in healing injured colonic epithelium in IBD.
Collapse
Affiliation(s)
- Peili Chen
- Department of Medicine, University of Chicago, Illinois 60637
| | | | | | - John Hart
- Department of Pathology, University of Chicago, Illinois 60637
| | - F. Gary Toback
- Department of Medicine, University of Chicago, Illinois 60637
| |
Collapse
|
12
|
Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rho-associated kinase and protein kinase C zeta. Crit Care Med 2011; 39:2087-98. [PMID: 21552122 DOI: 10.1097/ccm.0b013e31821cb40e] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Gut barrier dysfunction and bacterial translocation occur in various disorders, including intestinal obstruction. Overexpression of inducible nitric oxide synthase is implicated in the pathogenesis of bacterial translocation, of which the molecular mechanism remains unclear. Epithelial permeability is regulated by tight junction reorganization and myosin light chain phosphorylation. Our aim was to investigate the roles of Rho-associated kinase and protein kinase C ζ in epithelial nitric oxide synthase-mediated barrier damage. DESIGN Animal study and cell cultures. SETTING Research laboratory. SUBJECTS BALB/c mice. INTERVENTIONS : Mouse distal small intestine was obstructed in vivo by a 10-cm loop ligation in which vehicle, L-Nil (a nitric oxide synthase inhibitor), or Y27632 (a Rho-associated kinase inhibitor) was luminally administered. After obstruction for 24 hrs, intestinal tissues were mounted on Ussing chambers for macromolecular flux. Liver and spleen tissues were assessed for bacterial counts. Caco-2 cells were exposed to 1 mM S-nitroso-N-acetylpenicillamine (a nitric oxide donor) for 24 hrs, and transepithelial resistance and permeability were evaluated. MEASUREMENTS AND MAIN RESULTS Mice with intestinal obstruction displayed epithelial barrier dysfunctions, such as permeability rise and bacterial translocation, associated with tight junction disruption and myosin light chain phosphorylation. Increased inducible nitric oxide synthase and phosphorylated protein kinase C ζ were observed in villus epithelium. Enteric instillation of L-Nil and Y27632 attenuated the functional and structural barrier damage caused by intestinal obstruction. L-Nil decreased intestinal obstruction-induced myosin light chain, myosin phosphatase target subunit 1, and protein kinase C ζ phosphorylation, suggesting that inducible nitric oxide synthase is upstream of Rho-associated kinase and protein kinase C ζ signaling. The intestinal phosphorylated myosin light chain level did not increase in inducible nitric oxide synthase(-/-) mice following intestinal obstruction. In vitro studies showed that S-nitroso-N-acetylpenicillamine-induced transepithelial resistance drop and permeability rise was independent of cell apoptosis. Y27632 inhibited S-nitroso-N-acetylpenicillamine-induced myosin light chain phosphorylation and permeability rise. S-nitroso-N-acetylpenicillamine also triggered phosphorylation and membrane translocation of protein kinase C ζ. Inhibitory protein kinase C ζ pseudosubstrate blocked S-nitroso-N-acetylpenicillamine-induced tight junction reorganization, but not myosin light chain phosphorylation. CONCLUSIONS Epithelial inducible nitric oxide synthase activates two distinct signals, protein kinase C ζ and Rho-associated kinase, to disrupt tight junctions leading to bacterial influx.
Collapse
|
13
|
Intestinal epithelial barrier dysfunction in food hypersensitivity. J Allergy (Cairo) 2011; 2012:596081. [PMID: 21912563 PMCID: PMC3170794 DOI: 10.1155/2012/596081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial barrier plays a critical role in the maintenance of gut homeostasis by limiting the penetration of luminal bacteria and dietary allergens, yet allowing antigen sampling for the generation of tolerance. Undigested proteins normally do not gain access to the lamina propria due to physical exclusion by tight junctions at the cell-cell contact sites and intracellular degradation by lysosomal enzymes in enterocytes. An intriguing question then arises: how do macromolecular food antigens cross the epithelial barrier? This review discusses the epithelial barrier dysfunction in sensitized intestine with special emphasis on the molecular mechanism of the enhanced transcytotic rates of allergens. The sensitization phase of allergy is characterized by antigen-induced cross-linking of IgE bound to high affinity FcεRI on mast cell surface, leading to anaphylactic responses. Recent studies have demonstrated that prior to mast cell activation, food allergens are transported in large quantity across the epithelium and are protected from lysosomal degradation by binding to cell surface IgE and low-affinity receptor CD23/FcεRII. Improved immunotherapies are currently under study including anti-IgE and anti-CD23 antibodies for the management of atopic disorders.
Collapse
|
14
|
Suzuki T, Hara H. Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem 2010; 22:401-8. [PMID: 21167699 DOI: 10.1016/j.jnutbio.2010.08.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 08/23/2010] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract provides a physical barrier to the diffusion of foreign materials from the lumen into the circulatory system. Impairment of the intercellular tight junction (TJ) shield, which is the major determinant of intestinal barrier function, is associated with various diseases. Dietary flavonoids demonstrate various beneficial effects on our health; however, the information regarding their effects on TJ function is quite limited. To date, four flavonoids - epigallocatechin gallate (EGCG), genistein, myricetin and quercetin - have been reported to exhibit promotive and protective effects on intestinal TJ barrier functions. Genistein, a major soybean isoflavone, protects TJ barrier function against oxidative stress, acetaldehyde, enteric bacteria and inflammatory cytokines. Genistein blocks the tyrosine phosphorylation of the TJ proteins induced by oxidative stress and acetaldehyde, which results in the disassembly of the proteins from the junctional complex. Quercetin, a flavonol, enhances intestinal TJ barrier function through the assembly and expression of TJ proteins. The change in phosphorylation status is responsible for the quercetin-mediated assembly of TJ proteins. TJ protein induction has an additional role in this effect. This review presents the recent advances in our understanding of the flavonoid-mediated promotive and protective effects on intestinal TJ barrier function with a particular focus on intracellular molecular mechanisms.
Collapse
Affiliation(s)
- Takuya Suzuki
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | |
Collapse
|
15
|
Im E, Pothoulakis C. [Recent advances in Saccharomyces boulardii research]. GASTROENTEROLOGIE CLINIQUE ET BIOLOGIQUE 2010; 34 Suppl 1:S62-70. [PMID: 20889007 DOI: 10.1016/s0399-8320(10)70023-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review summarizes the probiotic mechanisms of action of Saccharomyces boulardii (S. boulardii) against inflammatory and non-inflammatory diarrheal conditions. S. boulardii is distributed in lyophilized form in many countries and used for the prevention of diarrhea in children and adults, including Clostridium difficile (C. difficile) associated infection. The main mechanisms of action of S. boulardii include inhibition of activities of bacterial pathogenic products, trophic effects on the intestinal mucosa, as well as modification of host signaling pathways involved in inflammatory and non-inflammatory intestinal diseases. S. boulardii inhibits production of pro-inflammatory cytokines by inhibiting main regulators of inflammation, including nuclear factor κB (NF-κB), and mitogen-activated protein kinases (MAP kinases), ERK1/2 and p38, but stimulates production of anti-inflammatory molecules such as peroxisome proliferator-activated receptor-gamma (PPAR-γ). Moreover, S. boulardii suppresses bacterial infection by inhibiting adhesion and/or overgrowth of bacteria, produces a serine protease that cleaves C. difficile toxin A, and stimulates antibody production against this toxin. Furthermore, S. boulardii may interfere with pathogenesis of Inflammatory Bowel Disease (IBD) by acting on T cells and acts in diarrheal conditions by improving the fecal biostructure in patients with diarrhea. These diverse mechanisms exerted by S. boulardii provide molecular clues for its effectiveness in diarrheal diseases and intestinal inflammatory conditions with an inflammatory component.
Collapse
Affiliation(s)
- E Im
- Section of Inflammatory Bowel Disease and Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, United States
| | | |
Collapse
|
16
|
Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2010; 298:G807-19. [PMID: 20299599 DOI: 10.1152/ajpgi.00243.2009] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal tract is a diverse microenvironment where more than 500 species of bacteria thrive. A single layer of epithelium is all that separates these commensal microorganisms and pathogens from the underlying immune cells, and thus epithelial barrier function is a key component in the arsenal of defense mechanisms required to prevent infection and inflammation. The epithelial barrier consists of a dense mucous layer containing secretory IgA and antimicrobial peptides as well as dynamic junctional complexes that regulate permeability between cells. Probiotics are live microorganisms that confer benefit to the host and that have been suggested to ameliorate or prevent diseases including antibiotic-associated diarrhea, irritable bowel syndrome, and inflammatory bowel disease. Probiotics likely function through enhancement of barrier function, immunomodulation, and competitive adherence to the mucus and epithelium. This review summarizes the evidence about effects of the many available probiotics with an emphasis on intestinal barrier function and the mechanisms affected by probiotics.
Collapse
Affiliation(s)
- Christina L Ohland
- Department of Physiology and Pharmacology, Univ. of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
17
|
Lutgendorff F, Nijmeijer RM, Sandström PA, Trulsson LM, Magnusson KE, Timmerman HM, van Minnen LP, Rijkers GT, Gooszen HG, Akkermans LMA, Söderholm JD. Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis. PLoS One 2009; 4:e4512. [PMID: 19223985 PMCID: PMC2639703 DOI: 10.1371/journal.pone.0004512] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 01/18/2009] [Indexed: 12/20/2022] Open
Abstract
Background During acute pancreatitis (AP), oxidative stress contributes to intestinal barrier failure. We studied actions of multispecies probiotics on barrier dysfunction and oxidative stress in experimental AP. Methodology/Principal Findings Fifty-three male Spraque-Dawley rats were randomly allocated into five groups: 1) controls, non-operated, 2) sham-operated, 3) AP, 4) AP and probiotics and 5) AP and placebo. AP was induced by intraductal glycodeoxycholate infusion and intravenous cerulein (6 h). Daily probiotics or placebo were administered intragastrically, starting five days prior to AP. After cerulein infusion, ileal mucosa was collected for measurements of E. coli K12 and 51Cr-EDTA passage in Ussing chambers. Tight junction proteins were investigated by confocal immunofluorescence imaging. Ileal mucosal apoptosis, lipid peroxidation, and glutathione levels were determined and glutamate-cysteine-ligase activity and expression were quantified. AP-induced barrier dysfunction was characterized by epithelial cell apoptosis and alterations of tight junction proteins (i.e. disruption of occludin and claudin-1 and up-regulation of claudin-2) and correlated with lipid peroxidation (r>0.8). Probiotic pre-treatment diminished the AP-induced increase in E. coli passage (probiotics 57.4±33.5 vs. placebo 223.7±93.7 a.u.; P<0.001), 51Cr-EDTA flux (16.7±10.1 vs. 32.1±10.0 cm/s10−6; P<0.005), apoptosis, lipid peroxidation (0.42±0.13 vs. 1.62±0.53 pmol MDA/mg protein; P<0.001), and prevented tight junction protein disruption. AP-induced decline in glutathione was not only prevented (14.33±1.47 vs. 8.82±1.30 nmol/mg protein, P<0.001), but probiotics even increased mucosal glutathione compared with sham rats (14.33±1.47 vs. 10.70±1.74 nmol/mg protein, P<0.001). Glutamate-cysteine-ligase activity, which is rate-limiting in glutathione biosynthesis, was enhanced in probiotic pre-treated animals (probiotics 2.88±1.21 vs. placebo 1.94±0.55 nmol/min/mg protein; P<0.05) coinciding with an increase in mRNA expression of glutamate-cysteine-ligase catalytic (GCLc) and modifier (GCLm) subunits. Conclusions Probiotic pre-treatment diminished AP-induced intestinal barrier dysfunction and prevented oxidative stress via mechanisms mainly involving mucosal glutathione biosynthesis.
Collapse
Affiliation(s)
- Femke Lutgendorff
- Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Linköping, Sweden
- Gastrointestinal Research Unit, Department of Surgery, University Medical Center, Utrecht, the Netherlands
| | - Rian M. Nijmeijer
- Gastrointestinal Research Unit, Department of Surgery, University Medical Center, Utrecht, the Netherlands
| | - Per A. Sandström
- Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Linköping, Sweden
| | - Lena M. Trulsson
- Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Linköping, Sweden
| | - Karl-Eric Magnusson
- Department of Clinical and Experimental Medicine, Division of Medical Microbiology, Linköping University, Linköping, Sweden
| | - Harro M. Timmerman
- Gastrointestinal Research Unit, Department of Surgery, University Medical Center, Utrecht, the Netherlands
| | - L. Paul van Minnen
- Gastrointestinal Research Unit, Department of Surgery, University Medical Center, Utrecht, the Netherlands
| | - Ger T. Rijkers
- Gastrointestinal Research Unit, Department of Surgery, University Medical Center, Utrecht, the Netherlands
| | - Hein G. Gooszen
- Gastrointestinal Research Unit, Department of Surgery, University Medical Center, Utrecht, the Netherlands
| | - Louis M. A. Akkermans
- Gastrointestinal Research Unit, Department of Surgery, University Medical Center, Utrecht, the Netherlands
| | - Johan D. Söderholm
- Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
18
|
Shen L, Weber CR, Turner JR. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. ACTA ACUST UNITED AC 2008; 181:683-95. [PMID: 18474622 PMCID: PMC2386107 DOI: 10.1083/jcb.200711165] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tight junction defines epithelial organization. Structurally, the tight junction is comprised of transmembrane and membrane-associated proteins that are thought to assemble into stable complexes to determine function. In this study, we measure tight junction protein dynamics in live confluent Madin–Darby canine kidney monolayers using fluorescence recovery after photobleaching and related methods. Mathematical modeling shows that the majority of claudin-1 (76 ± 5%) is stably localized at the tight junction. In contrast, the majority of occludin (71 ± 3%) diffuses rapidly within the tight junction with a diffusion constant of 0.011 μm2s−1. Zonula occludens-1 molecules are also highly dynamic in this region, but, rather than diffusing within the plane of the membrane, 69 ± 5% exchange between membrane and intracellular pools in an energy-dependent manner. These data demonstrate that the tight junction undergoes constant remodeling and suggest that this dynamic behavior may contribute to tight junction assembly and regulation.
Collapse
Affiliation(s)
- Le Shen
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
19
|
Flynn AN, Buret AG. Tight junctional disruption and apoptosis in an in vitro model of Citrobacter rodentium infection. Microb Pathog 2008; 45:98-104. [PMID: 18504087 DOI: 10.1016/j.micpath.2007.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/27/2007] [Accepted: 12/14/2007] [Indexed: 12/12/2022]
Abstract
The murine model of Citrobacter rodentium infection has been used to complement in vitro studies of enteropathogenic Escherichia coli (EPEC) infections of human intestinal epithelial cells (IECs). However, the differences in epithelial cell responses between these two models are not fully understood. We used an in vitro model of C. rodentium infection to examine important, yet incompletely understood, cellular responses of murine IECs to this pathogen. C. rodentium attached to CMT-93 cells and disrupted their tight junctional expression of claudins-4 and -5. This was associated with a loss of barrier function that required live bacteria and was partially prevented by the inhibition of Rho kinase. Furthermore, C. rodentium caused an upregulation of IEC apoptosis that was associated with the cytoplasmic accumulation of apoptosis-inducing factor, but not with the activation of caspase-3. These studies demonstrate for the first time that C. rodentium affects murine IECs in ways that may be similar, but distinct, to the effects of EPEC on human IECs.
Collapse
Affiliation(s)
- Andrew N Flynn
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
20
|
McKay DM, Watson JL, Wang A, Caldwell J, Prescott D, Ceponis PMJ, Di Leo V, Lu J. Phosphatidylinositol 3'-kinase is a critical mediator of interferon-gamma-induced increases in enteric epithelial permeability. J Pharmacol Exp Ther 2007; 320:1013-22. [PMID: 17178936 DOI: 10.1124/jpet.106.113639] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The epithelial lining of mucosal surfaces acts as a barrier to regulate the entry of antigen and pathogens. Nowhere is this function of the contiguous epithelium more important than in the gut, which is continually exposed to a huge antigenic load and, in the colon, an immense commensal microbiota. We assessed the intracellular signaling events that underlie interferon (IFN) gamma-induced increases in epithelial permeability using monolayers of the human colonic T84 epithelial cell line. Confluent epithelial monolayers on semipermeable supports were treated with IFNgamma (20 ng/ml), and barrier function was assessed 48 h later by measuring transepithelial electrical resistance (TER: reflects passive ion flux), fluxes of (51)Cr-EDTA and horseradish peroxidase (HRP), and transcytosis of noninvasive, nonpathogenic Escherichia coli (strain HB101). Exposure to IFNgamma decreased barrier function as assessed by all four markers. The phosphatidylinositol 3'-kinase (PI-3K) inhibitors, LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride] and wortmannin, did not affect baseline permeability characteristics but completely blocked the drop in TER, increased fluxes of (51)Cr-EDTA and HRP, and significantly reduced E. coli transcytosis evoked by IFNgamma. In addition, use of the pan-protein kinase C (PKC) inhibitor, bisindolylmaleimide I (5 muM), but not rottlerin (blocks PKCdelta), partially ameliorated the drop in TER and inhibited increased E. coli transcytosis. Addition of the PI-3K and PKC inhibitors to epithelia 6 h after IFNgamma exposure still prevented the increase in paracellular permeability but not E. coli transcytosis. Thus, IFNgamma-induced increases in epithelial paracellular and transcellular permeability are critically dependent on PI-3K activity, which may represent an epithelial-specific target to treat immune-mediated loss of barrier function.
Collapse
Affiliation(s)
- Derek M McKay
- Intestinal Disease Research Programme, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 2006; 9:804-16. [PMID: 17087734 DOI: 10.1111/j.1462-5822.2006.00836.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The probiotic Escherichia coli strain Nissle 1917 (EcN) has been used for decades in human medicine in Central Europe for the treatment and prevention of intestinal disorders and diseases. However, the molecular mechanisms underlying its beneficial effects are only partially understood. To identify molecular responses induced by EcN that might contribute to its probiotic properties polarized T84 cells were investigated employing DNA microarrays, quantitative RT-PCR, Western blotting, immunofluorescence and specific protein kinase C (PKC) inhibitors. Polarized T84 epithelial cell monolayers were used as a model to monitor barrier disruption by infection with the enteropathogenic E. coli (EPEC) strain E2348/69. Co-incubation of EPEC with EcN or addition of EcN following EPEC infection abolished barrier disruption and, moreover, restored barrier integrity as monitored by transepithelial resistance. DNA-microarray analysis of T84 cells incubated with EcN identified 300+ genes exhibiting altered expression. EcN altered the expression, distribution of zonula occludens-2 (ZO-2) protein and of distinct PKC isotypes. ZO-2 expression was enhanced in parallel to its redistribution towards the cell boundaries. This study provides evidence that EcN induces an overriding signalling effect leading to restoration of a disrupted epithelial barrier. This is transmitted via silencing of PKCzeta and the redistribution of ZO-2. We suggest that these properties contribute to the reported efficacy in the treatment of inflammatory bowel diseases and in part rationalize the probiotic nature of EcN.
Collapse
Affiliation(s)
- Agata A Zyrek
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität/Universitätsklinikum Münster, von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 2006; 119:2095-106. [PMID: 16638813 DOI: 10.1242/jcs.02915] [Citation(s) in RCA: 352] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epithelial tight junctions form a barrier against passive paracellular flux. This barrier is regulated by complex physiologic and pathophysiologic signals that acutely fine-tune tight junction permeability. Although actomyosin contraction and myosin light chain phosphorylation are clearly involved in some forms of tight junction regulation, the contributions of other signaling events and the role of myosin light chain phosphorylation in this response are poorly understood. Here we ask if activation of myosin light chain kinase alone is sufficient to induce downstream tight junction regulation. We use a confluent polarized intestinal epithelial cell model system in which constitutively active myosin light chain kinase, tMLCK, is expressed using an inducible promoter. tMLCK expression increases myosin light chain phosphorylation, reorganizes perijunctional F-actin, and increases tight junction permeability. TJ proteins ZO-1 and occludin are markedly redistributed, morphologically and biochemically, but effects on claudin-1 and claudin-2 are limited. tMLCK inhibition prevents changes in barrier function and tight junction organization induced by tMLCK expression, suggesting that these events both require myosin light chain phosphorylation. We conclude that myosin light chain phosphorylation alone is sufficient to induce tight junction regulation and provide new insights into the molecular mechanisms that mediate this regulation.
Collapse
Affiliation(s)
- Le Shen
- Department of Pathology, The University of Chicago, 5841 South Maryland Avenue, MC 1089,Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Shifflett DE, Clayburgh DR, Koutsouris A, Turner JR, Hecht GA. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. J Transl Med 2005; 85:1308-24. [PMID: 16127426 DOI: 10.1038/labinvest.3700330] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) infection disrupts tight junctions (TJs) and perturbs intestinal barrier function in vitro. E. coli secreted protein F (EspF) is, in large part, responsible for these physiological and morphological alterations. We recently reported that the C57BL/6J mouse is a valid in vivo model of EPEC infection as EPEC colonizes the intestinal epithelium and effaces microvilli. Our current aim was to examine the effects of EPEC on TJ structure and barrier function of the mouse intestine and to determine the role of EspF in vivo. C57BL/6J mice were gavaged with approximately 2 x 10(8) EPEC organisms or PBS. At 1 or 5 days postinfection, mice were killed and ileal and colonic tissue was mounted in Ussing chambers to determine barrier function (measured as transepithelial resistance) and short circuit current. TJ structure was analyzed by immunofluorescence microscopy. Wild-type (WT) EPEC significantly diminished the barrier function of ileal and colonic mucosa at 1 and 5 days postinfection. Deficits in barrier function correlated with redistribution of occludin in both tissues. Infection with an EPEC strain deficient of EspF (delta espF) had no effect on barrier function at 1 day postinfection. Furthermore, delta espF had no effect on ileal TJ morphology and minor alterations of colonic TJ morphology at 1 day postinfection. In contrast, at 5 days postinfection, WT EPEC and delta espF had similar effects on barrier function and occludin localization. In both cases this was associated with immune activation, as demonstrated by increased mucosal tumor necrosis factor-alpha levels 5 days postinfection. In conclusion, these data demonstrate that WT EPEC infection of 6-8-week-old C57BL/6J mice (1) significantly decreases barrier function in the ileum and colon (2) redistributes occludin in the ileum and colon and (3) is dependent upon EspF to induce TJ barrier defects at early, but not late, times postinfection.
Collapse
Affiliation(s)
- Donnie E Shifflett
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|