1
|
Yamada A, Gautam M, Yamada AI, Ling J, Gupta S, Furue H, Luo W, Gu JG. Acid-Sensing Ion Channels Drive the Generation of Tactile Impulses in Merkel Cell-Neurite Complexes of the Glabrous Skin of Rodent Hindpaws. J Neurosci 2024; 44:e0885242024. [PMID: 39379156 PMCID: PMC11580779 DOI: 10.1523/jneurosci.0885-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Recently, we have shown with rodent whisker hair follicles that SA1 impulses are generated through fast excitatory synaptic transmission at MNCs and driven by acid-sensing ion channels (ASICs). However, it is currently unknown whether, besides whisker hair follicles, ASICs also play an essential role in generating SA1 impulses from MNCs of other body parts in mammals. In the present study, we attempted to address this question by using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of both male and female rodents and applying the pressure-clamped single-fiber recordings. We showed that SA1 impulses elicited by tactile stimulation to the rat hindpaw glabrous skin were largely diminished in the presence of amiloride and diminazene, two ASIC channel blockers. Furthermore, using the hindpaw glabrous skin and tibial nerve preparations made from the mice genetically deleted of ASIC3 channels (ASIC3-/-), we showed that the frequency of SA1 impulses was significantly lower in ASIC3-/- mice than in littermate wild-type ASIC3+/+ mice, a result consistent with the pharmacological experiments with ASIC channel blockers. Our findings suggest that ASIC channels are essential for generating SA1 impulses to underlie the sense of touch in the glabrous skin of rodent hindpaws.
Collapse
Affiliation(s)
- Akihiro Yamada
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mayank Gautam
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ayaka I Yamada
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer Ling
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Saurav Gupta
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Jianguo G Gu
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
2
|
Yamada A, Ling J, Yamada AI, Furue H, Gu JG. ASICs mediate fast excitatory synaptic transmission for tactile discrimination. Neuron 2024; 112:1286-1301.e8. [PMID: 38359825 PMCID: PMC11031316 DOI: 10.1016/j.neuron.2024.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Tactile discrimination, the ability to differentiate objects' physical properties such as texture, shape, and edges, is essential for environmental exploration, social interaction, and early childhood development. This ability heavily relies on Merkel cell-neurite complexes (MNCs), the tactile end-organs enriched in the fingertips of humans and the whisker hair follicles of non-primate mammals. Although recent studies have advanced our knowledge on mechanical transduction in MNCs, it remains unknown how tactile signals are encoded at MNCs. Here, using rodent whisker hair follicles, we show that tactile signals are encoded at MNCs as fast excitatory synaptic transmission. This synaptic transmission is mediated by acid-sensing ion channels (ASICs) located on the neurites of MNCs, with protons as the principal transmitters. Pharmacological inhibition or genetic deletion of ASICs diminishes the tactile encoding at MNCs and impairs tactile discrimination in animals. Together, ASICs are required for tactile encoding at MNCs to enable tactile discrimination in mammals.
Collapse
Affiliation(s)
- Akihiro Yamada
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer Ling
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ayaka I Yamada
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Jeon SM, Caterina MJ. pHeeling the pHorce. Neuron 2024; 112:1200-1202. [PMID: 38636452 DOI: 10.1016/j.neuron.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
In this issue of Neuron, Yamada et al.1 show that fast excitatory neurotransmission by protons acting at acid-sensing ion channels (ASICs) mediates mechanical force-evoked signaling at the Merkel cell-neurite complex, contributing to mammalian tactile discrimination.
Collapse
Affiliation(s)
- Sang-Min Jeon
- Department of Neurosurgery, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA; Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Michael J Caterina
- Department of Neurosurgery, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA; Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Lin Y, Lee C, Sung J, Chen C. Genetic exploration of roles of acid-sensing ion channel subtypes in neurosensory mechanotransduction including proprioception. Exp Physiol 2024; 109:66-80. [PMID: 37489658 PMCID: PMC10988671 DOI: 10.1113/ep090762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.
Collapse
Affiliation(s)
- Yi‐Chen Lin
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Cheng‐Han Lee
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
| | - Jia‐Ying Sung
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Department of Neurology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Cheng Chen
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
- Taiwan Mouse Clinic – National Comprehensive Mouse Phenotyping and Drug Testing CenterAcademia SinicaTaipeiTaiwan
- TMU Neuroscience Research Center, Taipei Medical UniversityNew Taipei CityTaiwan
| |
Collapse
|
5
|
Wolfson RL, Abdelaziz A, Rankin G, Kushner S, Qi L, Mazor O, Choi S, Sharma N, Ginty DD. DRG afferents that mediate physiologic and pathologic mechanosensation from the distal colon. Cell 2023; 186:3368-3385.e18. [PMID: 37541195 PMCID: PMC10440726 DOI: 10.1016/j.cell.2023.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/23/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
The properties of dorsal root ganglia (DRG) neurons that innervate the distal colon are poorly defined, hindering our understanding of their roles in normal physiology and gastrointestinal (GI) disease. Here, we report genetically defined subsets of colon-innervating DRG neurons with diverse morphologic and physiologic properties. Four colon-innervating DRG neuron populations are mechanosensitive and exhibit distinct force thresholds to colon distension. The highest threshold population, selectively labeled using Bmpr1b genetic tools, is necessary and sufficient for behavioral responses to high colon distension, which is partly mediated by the mechanosensory ion channel Piezo2. This Aδ-HTMR population mediates behavioral over-reactivity to colon distension caused by inflammation in a model of inflammatory bowel disease. Thus, like cutaneous DRG mechanoreceptor populations, colon-innervating mechanoreceptors exhibit distinct anatomical and physiological properties and tile force threshold space, and genetically defined colon-innervating HTMRs mediate pathophysiological responses to colon distension, revealing a target population for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Wolfson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Amira Abdelaziz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genelle Rankin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sarah Kushner
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Lijun Qi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ofer Mazor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Seungwon Choi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Nikhil Sharma
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Systems Biology, Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Zhang L, Zheng L, Yang X, Yao S, Wang H, An J, Jin H, Wen G, Tuo B. Pathology and physiology of acid‑sensitive ion channels in the digestive system (Review). Int J Mol Med 2022; 50:94. [PMID: 35616162 PMCID: PMC9170189 DOI: 10.3892/ijmm.2022.5150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
As a major proton-gated cation channel, acid-sensitive ion channels (ASICs) can perceive large extracellular pH changes. ASICs play an important role in the occurrence and development of diseases of various organs and tissues including in the heart, brain, and gastrointestinal tract, as well as in tumor proliferation, invasion, and metastasis in acidosis and regulation of an acidic microenvironment. The permeability of ASICs to sodium and calcium ions is the basis of their physiological and pathological roles in the body. This review summarizes the physiological and pathological mechanisms of ASICs in digestive system diseases, which plays an important role in the early diagnosis, treatment, and prognosis of digestive system diseases related to ASIC expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Liming Zheng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
7
|
Butenas ALE, Rollins KS, Parr SK, Hammond ST, Ade CJ, Hageman KS, Musch TI, Copp SW. Novel mechanosensory role for acid sensing ion channel subtype 1a in evoking the exercise pressor reflex in rats with heart failure. J Physiol 2022; 600:2105-2125. [PMID: 35343594 PMCID: PMC9893514 DOI: 10.1113/jp282923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fibre muscle afferents, which, in turn, generates reflex increases in sympathetic nerve activity (SNA) and blood pressure (the exercise pressor reflex; EPR). EPR activation in patients and animals with heart failure with reduced ejection fraction (HF-rEF) results in exaggerated increases in SNA and promotes exercise intolerance. In the healthy decerebrate rat, a subtype of acid sensing ion channel (ASIC) on the sensory endings of thin fibre muscle afferents, namely ASIC1a, has been shown to contribute to the metabolically sensitive portion of the EPR (i.e. metaboreflex), but not the mechanically sensitive portion of the EPR (i.e. the mechanoreflex). However, the role played by ASIC1a in evoking the EPR in HF-rEF is unknown. We hypothesized that, in decerebrate, unanaesthetized HF-rEF rats, injection of the ASIC1a antagonist psalmotoxin-1 (PcTx-1; 100 ng) into the hindlimb arterial supply would reduce the reflex increase in renal SNA (RSNA) evoked via 30 s of electrically induced static hindlimb muscle contraction, but not static hindlimb muscle stretch (model of mechanoreflex activation isolated from contraction-induced metabolite-production). We found that PcTx-1 reduced the reflex increase in RSNA evoked in response to muscle contraction (n = 8; mean (SD) ∫ΔRSNA pre: 1343 (588) a.u.; post: 816 (573) a.u.; P = 0.026) and muscle stretch (n = 6; ∫ΔRSNA pre: 688 (583) a.u.; post: 304 (370) a.u.; P = 0.025). Our data suggest that, in HF-rEF rats, ASIC1a contributes to activation of the exercise pressor reflex and that contribution includes a novel role for ASIC1a in mechanosensation that is not present in healthy rats. KEY POINTS: Skeletal muscle contraction results in exaggerated reflex increases in sympathetic nerve activity in heart failure patients compared to healthy counterparts, which likely contributes to increased cardiovascular risk and impaired tolerance for even mild exercise (i.e. activities of daily living) for patients suffering with this condition. Activation of acid sensing ion channel subtype 1a (ASIC1a) on the sensory endings of thin fibre muscle afferents during skeletal muscle contraction contributes to reflex increases in sympathetic nerve activity and blood pressure, at least in healthy subjects. In this study, we demonstrate that ASIC1a on the sensory endings of thin fibre muscle afferents plays a role in both the mechanical and metabolic components of the exercise pressor reflex in male rats with heart failure. The present data identify a novel role for ASIC1a in evoking the exercise pressor reflex in heart failure and may have important clinical implications for heart failure patients.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Korynne S Rollins
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Shannon K Parr
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Stephen T Hammond
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
8
|
Montalbetti N, Carattino MD. Acid-sensing ion channels modulate bladder nociception. Am J Physiol Renal Physiol 2021; 321:F587-F599. [PMID: 34514879 PMCID: PMC8813206 DOI: 10.1152/ajprenal.00302.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
Sensitization of neuronal pathways and persistent afferent drive are major contributors to somatic and visceral pain. However, the underlying mechanisms that govern whether afferent signaling will give rise to sensitization and pain are not fully understood. In the present report, we investigated the contribution of acid-sensing ion channels (ASICs) to bladder nociception in a model of chemical cystitis induced by cyclophosphamide (CYP). We found that the administration of CYP to mice lacking ASIC3, a subunit primarily expressed in sensory neurons, generates pelvic allodynia at a time point at which only modest changes in pelvic sensitivity are apparent in wild-type mice. The differences in mechanical pelvic sensitivity between wild-type and Asic3 knockout mice treated with CYP were ascribed to sensitized bladder C nociceptors. Deletion of Asic3 from bladder sensory neurons abolished their ability to discharge action potentials in response to extracellular acidification. Collectively, the results of our study support the notion that protons and their cognate ASIC receptors are part of a mechanism that operates at the nerve terminals to control nociceptor excitability and sensitization.NEW & NOTEWORTHY Our study indicates that protons and their cognate acid-sensing ion channel receptors are part of a mechanism that operates at bladder afferent terminals to control their function and that the loss of this regulatory mechanism results in hyperactivation of nociceptive pathways and the development of pain in the setting of chemical-induced cystitis.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Uray IP, Uray K. Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. Int J Mol Sci 2021; 22:11566. [PMID: 34768998 PMCID: PMC8584042 DOI: 10.3390/ijms222111566] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanical cues are crucial for survival, adaptation, and normal homeostasis in virtually every cell type. The transduction of mechanical messages into intracellular biochemical messages is termed mechanotransduction. While significant advances in biochemical signaling have been made in the last few decades, the role of mechanotransduction in physiological and pathological processes has been largely overlooked until recently. In this review, the role of interactions between the cytoskeleton and cell-cell/cell-matrix adhesions in transducing mechanical signals is discussed. In addition, mechanosensors that reside in the cell membrane and the transduction of mechanical signals to the nucleus are discussed. Finally, we describe two examples in which mechanotransduction plays a significant role in normal physiology and disease development. The first example is the role of mechanotransduction in the proliferation and metastasis of cancerous cells. In this system, the role of mechanotransduction in cellular processes, including proliferation, differentiation, and motility, is described. In the second example, the role of mechanotransduction in a mechanically active organ, the gastrointestinal tract, is described. In the gut, mechanotransduction contributes to normal physiology and the development of motility disorders.
Collapse
Affiliation(s)
- Iván P. Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
10
|
Drummond HA. What Evolutionary Evidence Implies About the Identity of the Mechanoelectrical Couplers in Vascular Smooth Muscle Cells. Physiology (Bethesda) 2021; 36:292-306. [PMID: 34431420 DOI: 10.1152/physiol.00008.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
11
|
Jiang Y, Castro J, Blomster LV, Agwa AJ, Maddern J, Schober G, Herzig V, Chow CY, Cardoso FC, Demétrio De Souza França P, Gonzales J, Schroeder CI, Esche S, Reiner T, Brierley SM, King GF. Pharmacological Inhibition of the Voltage-Gated Sodium Channel Na V1.7 Alleviates Chronic Visceral Pain in a Rodent Model of Irritable Bowel Syndrome. ACS Pharmacol Transl Sci 2021; 4:1362-1378. [PMID: 34423271 DOI: 10.1021/acsptsci.1c00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/12/2022]
Abstract
The human nociceptor-specific voltage-gated sodium channel 1.7 (hNaV1.7) is critical for sensing various types of somatic pain, but it appears not to play a primary role in acute visceral pain. However, its role in chronic visceral pain remains to be determined. We used assay-guided fractionation to isolate a novel hNaV1.7 inhibitor, Tsp1a, from tarantula venom. Tsp1a is 28-residue peptide that potently inhibits hNaV1.7 (IC50 = 10 nM), with greater than 100-fold selectivity over hNaV1.3-hNaV1.6, 45-fold selectivity over hNaV1.1, and 24-fold selectivity over hNaV1.2. Tsp1a is a gating modifier that inhibits NaV1.7 by inducing a hyperpolarizing shift in the voltage-dependence of channel inactivation and slowing recovery from fast inactivation. NMR studies revealed that Tsp1a adopts a classical knottin fold, and like many knottin peptides, it is exceptionally stable in human serum. Remarkably, intracolonic administration of Tsp1a completely reversed chronic visceral hypersensitivity in a mouse model of irritable bowel syndrome. The ability of Tsp1a to reduce visceral hypersensitivity in a model of irritable bowel syndrome suggests that pharmacological inhibition of hNaV1.7 at peripheral sensory nerve endings might be a viable approach for eliciting analgesia in patients suffering from chronic visceral pain.
Collapse
Affiliation(s)
- Yan Jiang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Linda V Blomster
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Akello J Agwa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Paula Demétrio De Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Otorhinolaryngology & Head and Neck Surgery, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Junior Gonzales
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
12
|
Cheng S, Mao X, Lin X, Wehn A, Hu S, Mamrak U, Khalin I, Wostrack M, Ringel F, Plesnila N, Terpolilli NA. Acid-Ion Sensing Channel 1a Deletion Reduces Chronic Brain Damage and Neurological Deficits after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1572-1584. [PMID: 33779289 DOI: 10.1089/neu.2020.7568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes long-lasting neurodegeneration and cognitive impairments; however, the underlying mechanisms of these processes are not fully understood. Acid-sensing ion channels 1a (ASIC1a) are voltage-gated Na+- and Ca2+-channels shown to be involved in neuronal cell death; however, their role for chronic post-traumatic brain damage is largely unknown. To address this issue, we used ASIC1a-deficient mice and investigated their outcome up to 6 months after TBI. ASIC1a-deficient mice and their wild-type (WT) littermates were subjected to controlled cortical impact (CCI) or sham surgery. Brain water content was analyzed 24 h and behavioral outcome up to 6 months after CCI. Lesion volume was assessed longitudinally by magnetic resonance imaging and 6 months after injury by histology. Brain water content was significantly reduced in ASIC1a-/- animals compared to WT controls. Over time, ASIC1a-/- mice showed significantly reduced lesion volume and reduced hippocampal damage. This translated into improved cognitive function and reduced depression-like behavior. Microglial activation was significantly reduced in ASIC1a-/- mice. In conclusion, ASIC1a deficiency resulted in reduced edema formation acutely after TBI and less brain damage, functional impairments, and neuroinflammation up to 6 months after injury. Hence, ASIC1a seems to be involved in chronic neurodegeneration after TBI.
Collapse
Affiliation(s)
- Shiqi Cheng
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiangjiang Lin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
13
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
14
|
Neurogenic substance P-influences on action potential production in afferent neurons of the kidney? Pflugers Arch 2021; 473:633-646. [PMID: 33786667 PMCID: PMC8049925 DOI: 10.1007/s00424-021-02552-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022]
Abstract
We recently showed that a substance P (SP)–dependent sympatho-inhibitory mechanism via afferent renal nerves is impaired in mesangioproliferative nephritis. Therefore, we tested the hypothesis that SP released from renal afferents inhibits the action potential (AP) production in their dorsal root ganglion (DRG) neurons. Cultured DRG neurons (Th11-L2) were investigated in current clamp mode to assess AP generation during both TRPV1 stimulation by protons (pH 6) and current injections with and without exposure to SP (0.5 µmol) or CGRP (0.5 µmol). Neurons were classified as tonic (sustained AP generation) or phasic (≤ 4 APs) upon current injection; voltage clamp experiments were performed for the investigation of TRPV1-mediated inward currents due to proton stimulation. Superfusion of renal neurons with protons and SP increased the number of action potentials in tonic neurons (9.6 ± 5 APs/10 s vs. 16.9 ± 6.1 APs/10 s, P < 0.05, mean ± SD, n = 7), while current injections with SP decreased it (15.2 ± 6 APs/600 ms vs. 10.2 ± 8 APs/600 ms, P < 0.05, mean ± SD, n = 29). Addition of SP significantly reduced acid-induced TRPV1-mediated currents in renal tonic neurons (− 518 ± 743 pA due to pH 6 superfusion vs. − 82 ± 50 pA due to pH 6 with SP superfusion). In conclusion, SP increased action potential production via a TRPV1-dependent mechanism in acid-sensitive renal neurons. On the other hand, current injection in the presence of SP led to decreased action potential production. Thus, the peptide SP modulates signaling pathways in renal neurons in an unexpected manner leading to both stimulation and inhibition of renal neuronal activity in different (e.g., acidic) environmental contexts.
Collapse
|
15
|
Abstract
Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.
Collapse
|
16
|
DEG/ENaC Ion Channels in the Function of the Nervous System: From Worm to Man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:165-192. [DOI: 10.1007/978-981-16-4254-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Callejo G, Pattison LA, Greenhalgh JC, Chakrabarti S, Andreopoulou E, Hockley JRF, Smith ESJ, Rahman T. In silico screening of GMQ-like compounds reveals guanabenz and sephin1 as new allosteric modulators of acid-sensing ion channel 3. Biochem Pharmacol 2020; 174:113834. [PMID: 32027884 PMCID: PMC7068650 DOI: 10.1016/j.bcp.2020.113834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/31/2020] [Indexed: 11/25/2022]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent cation channels that detect decreases in extracellular pH. Dysregulation of ASICs underpins a number of pathologies. Of particular interest is ASIC3, which is recognised as a key sensor of acid-induced pain and is important in the establishment of pain arising from inflammatory conditions, such as rheumatoid arthritis. Thus, the identification of new ASIC3 modulators and the mechanistic understanding of how these compounds modulate ASIC3 could be important for the development of new strategies to counteract the detrimental effects of dysregulated ASIC3 activity in inflammation. Here, we report the identification of novel ASIC3 modulators based on the ASIC3 agonist, 2-guanidine-4-methylquinazoline (GMQ). Through a GMQ-guided in silico screening of Food and Drug administration (FDA)-approved drugs, 5 compounds were selected and tested for their modulation of rat ASIC3 (rASIC3) using whole-cell patch-clamp electrophysiology. Of the chosen drugs, guanabenz (GBZ), an α2-adrenoceptor agonist, produced similar effects to GMQ on rASIC3, activating the channel at physiological pH (pH 7.4) and potentiating its response to mild acidic (pH 7) stimuli. Sephin1, a GBZ derivative that lacks α2-adrenoceptor activity, has been proposed to act as a selective inhibitor of a regulatory subunit of the stress-induced protein phosphatase 1 (PPP1R15A) with promising therapeutic potential for the treatment of multiple sclerosis. However, we found that like GBZ, sephin1 activates rASIC3 at pH 7.4 and potentiates its response to acidic stimulation (pH 7), i.e. sephin1 is a novel modulator of rASIC3. Furthermore, docking experiments showed that, like GMQ, GBZ and sephin1 likely interact with the nonproton ligand sensor domain of rASIC3. Overall, these data demonstrate the utility of computational analysis for identifying novel ASIC3 modulators, which can be validated with electrophysiological analysis and may lead to the development of better compounds for targeting ASIC3 in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Gerard Callejo
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Jack C Greenhalgh
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Sampurna Chakrabarti
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Evangelia Andreopoulou
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - James R F Hockley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
18
|
Carattino MD, Montalbetti N. Acid-sensing ion channels in sensory signaling. Am J Physiol Renal Physiol 2020; 318:F531-F543. [PMID: 31984789 DOI: 10.1152/ajprenal.00546.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are cation-permeable channels that in the periphery are primarily expressed in sensory neurons that innervate tissues and organs. Soon after the cloning of the ASIC subunits, almost 20 yr ago, investigators began to use genetically modified mice to assess the role of these channels in physiological processes. These studies provide critical insights about the participation of ASICs in sensory processes, including mechanotransduction, chemoreception, and nociception. Here, we provide an extensive assessment of these findings and discuss the current gaps in knowledge with regard to the functions of ASICs in the peripheral nervous system.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Wang F, Meng J, Zhang L, Roy S. Opioid use potentiates the virulence of hospital-acquired infection, increases systemic bacterial dissemination and exacerbates gut dysbiosis in a murine model of Citrobacter rodentium infection. Gut Microbes 2019; 11:172-190. [PMID: 31379246 PMCID: PMC7053978 DOI: 10.1080/19490976.2019.1629237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 05/29/2019] [Indexed: 02/03/2023] Open
Abstract
Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit their use. It was recently demonstrated that morphine treatment results in a significant disruption in gut barrier function, leading to an increased translocation of gut commensal bacteria. Further studies have indicated distinct alterations in the gut microbiome and metabolome following morphine treatment, contributing to the negative consequences that are associated with opioid use. However, it is unclear how opioids modulate gut homeostasis in the context of a hospital-acquired bacterial infection. Citrobacter rodentium is an ideal murine model of human infections with enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). In the current study, a mouse model of C. rodentium infection was used to investigate the role of morphine in the modulation of gut homeostasis in the context of a hospital-acquired bacterial infection. Morphine treatment resulted in 1) the promotion of C. rodentium systemic dissemination, 2) an increase in the expression of the virulence factors of C. rodentium colonization in intestinal contents, 3) altered gut microbiome, 4) damaged integrity of gut epithelial barrier function, 5) inhibition of the C. rodentium-induced increase in goblet cells, and 6) dysregulated IL-17A immune response. This study demonstrates and further validates a positive correlation between opioid drug use/abuse and an increased risk of infections, suggesting that the overprescription of opioids may increase the susceptibility to hospital-acquired infection.
Collapse
Affiliation(s)
- Fuyuan Wang
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jingjing Meng
- Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Li Zhang
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Sabita Roy
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Grayson M, Furr A, Ruparel S. Depiction of Oral Tumor-Induced Trigeminal Afferent Responses Using Single-Fiber Electrophysiology. Sci Rep 2019; 9:4574. [PMID: 30872649 PMCID: PMC6418205 DOI: 10.1038/s41598-019-39824-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 02/02/2023] Open
Abstract
Considerable gap in knowledge exists about the mechanisms by which oral tumors regulate peripheral sensory fibers to produce pain and altered sensations. To address this gap, we used a murine model of oral squamous cell carcinoma (OSCC) of the tongue to investigate changes in response properties of trigeminal afferent neurons. Using this model, we developed an ex vivo method for single neuron recordings of the lingual nerve from isolated tongue tissue. Our data demonstrated that the tongue tumor produced increased spontaneous firing of lingual fibers compared to control as well as produced mechanical hypersensitivity and reduced von Frey thresholds of C- and A-slow-high-threshold mechanoreceptors (HTMR) fibers but had no effect on C-LTMR, A-slow-LTMR and A-fast lingual fibers. Mechanically-insensitive fibers were also detected in lingual afferents of the control group, that were significantly decreased in tumor-bearing preparations. Collectively, using single fiber electrophysiology of lingual sensory fibers, we show that human OSCC tumors sensitize peripheral trigeminal nerve terminals, providing a unique opportunity to study mechanisms of oral cancer pain.
Collapse
Affiliation(s)
- Max Grayson
- Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Ashley Furr
- Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Shivani Ruparel
- Department of Endodontics, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
21
|
Fazia T, Pastorino R, Notartomaso S, Busceti C, Imbriglio T, Cannella M, Gentilini D, Morani G, Ticca A, Bitti P, Berzuini C, Dalmay T, Battaglia G, Bernardinelli L. Acid sensing ion channel 2: A new potential player in the pathophysiology of multiple sclerosis. Eur J Neurosci 2019; 49:1233-1243. [PMID: 30549327 PMCID: PMC6618268 DOI: 10.1111/ejn.14302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Acid‐sensing ion channels (ASICs) are proton‐gated channels involved in multiple biological functions such as: pain modulation, mechanosensation, neurotransmission, and neurodegeneration. Earlier, we described the genetic association, within the Nuoro population, between Multiple Sclerosis (MS) and rs28936, located in ASIC2 3′UTR. Here we investigated the potential involvement of ASIC2 in MS inflammatory process. We induced experimental autoimmune encephalomyelitis (EAE) in wild‐type (WT), knockout Asic1−/− and Asic2−/− mice and observed a significant reduction of clinical score in Asic1−/− mice and a significant reduction in the clinical score in Asic2−/− mice in a limited time window (i.e., at days 20–23 after immunization). Immunohistochemistry confirmed the reduction in adaptive immune cell infiltrates in the spinal cord of EAE Asic1−/− mice. Analysis of mechanical allodynia, showed a significant higher pain threshold in Asic2−/− mice under physiological conditions, before immunization, as compared to WT mice and Asic1−/−. A significant reduction in pain threshold was observed in all three strains of mice after immunization. More importantly, analysis of human autoptic brain tissue in MS and control samples showed an increase of ASIC2 mRNA in MS samples. Subsequently, in vitro luciferase reporter gene assays, showed that ASIC2 expression is under possible miRNA regulation, in a rs28936 allele‐specific manner. Taken together, these findings suggest a potential role of ASIC2 in the pathophysiology of MS.
Collapse
Affiliation(s)
- Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Roberta Pastorino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Tiziana Imbriglio
- I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, University Sapienza, Roma, Italy
| | | | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Unità di Bioinformatica e Statistica Genomica, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milano, Italy
| | - Gabriele Morani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Anna Ticca
- Azienda Tutela Salute Sardegna, ASSL Nuoro, Neurologia e Stroke Unit, Ospedale "San Francesco", Nuoro, Italy
| | - Pierpaolo Bitti
- Azienda Tutela Salute Sardegna, ASSL Nuoro, Immunoematologia e Medicina Trasfusionale, Ospedale "San Francesco", Nuoro, Italy
| | - Carlo Berzuini
- Centre for Biostatistics, University of Manchester, Manchester, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Brierley SM, Hibberd TJ, Spencer NJ. Spinal Afferent Innervation of the Colon and Rectum. Front Cell Neurosci 2018; 12:467. [PMID: 30564102 PMCID: PMC6288476 DOI: 10.3389/fncel.2018.00467] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite their seemingly elementary roles, the colon and rectum undertake a variety of key processes to ensure our overall wellbeing. Such processes are coordinated by the transmission of sensory signals from the periphery to the central nervous system, allowing communication from the gut to the brain via the "gut-brain axis". These signals are transmitted from the peripheral terminals of extrinsic sensory nerve fibers, located within the wall of the colon or rectum, and via their axons within the spinal splanchnic and pelvic nerves to the spinal cord. Recent studies utilizing electrophysiological, anatomical and gene expression techniques indicate a surprisingly diverse set of distinct afferent subclasses, which innervate all layers of the colon and rectum. Combined these afferent sub-types allow the detection of luminal contents, low- and high-intensity stretch or contraction, in addition to the detection of inflammatory, immune, and microbial mediators. To add further complexity, the proportions of these afferents vary within splanchnic and pelvic pathways, whilst the density of the splanchnic and pelvic innervation also varies along the colon and rectum. In this review we traverse this complicated landscape to elucidate afferent function, structure, and nomenclature to provide insights into how the extrinsic sensory afferent innervation of the colon and rectum gives rise to physiological defecatory reflexes and sensations of discomfort, bloating, urgency, and pain.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
23
|
Liu DS, Xu TL. Cell-Type Identification in the Autonomic Nervous System. Neurosci Bull 2018; 35:145-155. [PMID: 30171526 DOI: 10.1007/s12264-018-0284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
The autonomic nervous system controls various internal organs and executes crucial functions through sophisticated neural connectivity and circuits. Its dysfunction causes an imbalance of homeostasis and numerous human disorders. In the past decades, great efforts have been made to study the structure and functions of this system, but so far, our understanding of the classification of autonomic neuronal subpopulations remains limited and a precise map of their connectivity has not been achieved. One of the major challenges that hinder rapid progress in these areas is the complexity and heterogeneity of autonomic neurons. To facilitate the identification of neuronal subgroups in the autonomic nervous system, here we review the well-established and cutting-edge technologies that are frequently used in peripheral neuronal tracing and profiling, and discuss their operating mechanisms, advantages, and targeted applications.
Collapse
Affiliation(s)
- Di-Shi Liu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tian-Le Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
24
|
Tu H, Zhang D, Li YL. Cellular and Molecular Mechanisms Underlying Arterial Baroreceptor Remodeling in Cardiovascular Diseases and Diabetes. Neurosci Bull 2018; 35:98-112. [PMID: 30146675 DOI: 10.1007/s12264-018-0274-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 01/23/2023] Open
Abstract
Clinical trials and animal experimental studies have demonstrated an association of arterial baroreflex impairment with the prognosis and mortality of cardiovascular diseases and diabetes. As a primary part of the arterial baroreflex arc, the pressure sensitivity of arterial baroreceptors is blunted and involved in arterial baroreflex dysfunction in cardiovascular diseases and diabetes. Changes in the arterial vascular walls, mechanosensitive ion channels, and voltage-gated ion channels contribute to the attenuation of arterial baroreceptor sensitivity. Some endogenous substances (such as angiotensin II and superoxide anion) can modulate these morphological and functional alterations through intracellular signaling pathways in impaired arterial baroreceptors. Arterial baroreceptors can be considered as a potential therapeutic target to improve the prognosis of patients with cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
25
|
Aktar R, Peiris M, Fikree A, Cibert-Goton V, Walmsley M, Tough IR, Watanabe P, Araujo EJA, Mohammed SD, Delalande JM, Bulmer DC, Scott SM, Cox HM, Voermans NC, Aziz Q, Blackshaw LA. The extracellular matrix glycoprotein tenascin-X regulates peripheral sensory and motor neurones. J Physiol 2018; 596:4237-4251. [PMID: 29917237 PMCID: PMC6117562 DOI: 10.1113/jp276300] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Tenascin-X (TNX) is an extracellular matrix glycoprotein with anti-adhesive properties in skin and joints. Here we report the novel finding that TNX is expressed in human and mouse gut tissue where it is exclusive to specific subpopulations of neurones. Our studies with TNX-deficient mice show impaired defecation and neural control of distal colonic motility that can be rescued with a 5-HT4 receptor agonist. However, colonic secretion is unchanged. They are also susceptible to internal rectal intussusception. Colonic afferent sensitivity is increased in TNX-deficient mice. Correspondingly, there is increased density of and sensitivity of putative nociceptive fibres in TNX-deficient mucosa. A group of TNX-deficient patients report symptoms highly consistent with those in the mouse model. These findings suggest TNX plays entirely different roles in gut to non-visceral tissues - firstly a role in enteric motor neurones and secondly a role influencing nociceptive sensory neurones Studying further the mechanisms by which TNX influences neuronal function will lead to new targets for future treatment. ABSTRACT The extracellular matrix (ECM) is not only an integral structural molecule, but is also critical for a wide range of cellular functions. The glycoprotein tenascin-X (TNX) predominates in the ECM of tissues like skin and regulates tissue structure through anti-adhesive interactions with collagen. Monogenic TNX deficiency causes painful joint hypermobility and skin hyperelasticity, symptoms characteristic of hypermobility Ehlers Danlos syndrome (hEDS). hEDS patients also report consistently increased visceral pain and gastrointestinal (GI) dysfunction. We investigated whether there is a direct link between TNX deficiency and GI pain or motor dysfunction. We set out first to learn where TNX is expressed in human and mouse, then determine how GI function, specifically in the colon, is disordered in TNX-deficient mice and humans of either sex. In human and mouse tissue, TNX was predominantly associated with cholinergic colonic enteric neurones, which are involved in motor control. TNX was absent from extrinsic nociceptive peptidergic neurones. TNX-deficient mice had internal rectal prolapse and a loss of distal colonic contractility which could be rescued by prokinetic drug treatment. TNX-deficient patients reported increased sensory and motor GI symptoms including abdominal pain and constipation compared to controls. Despite absence of TNX from nociceptive colonic neurones, neuronal sprouting and hyper-responsiveness to colonic distension was observed in the TNX-deficient mice. We conclude that ECM molecules are not merely support structures but an integral part of the microenvironment particularly for specific populations of colonic motor neurones where TNX exerts functional influences.
Collapse
Affiliation(s)
- Rubina Aktar
- Blizard Institute, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Blizard Institute, Queen Mary University of London, London, UK
| | - Asma Fikree
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Maxim Walmsley
- Blizard Institute, Queen Mary University of London, London, UK
| | - Iain R Tough
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Paulo Watanabe
- Blizard Institute, Queen Mary University of London, London, UK.,Department of Histology, Centre for Biological Sciences, State University of Londrina, Brazil
| | - Eduardo J A Araujo
- Blizard Institute, Queen Mary University of London, London, UK.,Department of Histology, Centre for Biological Sciences, State University of Londrina, Brazil
| | | | | | - David C Bulmer
- Blizard Institute, Queen Mary University of London, London, UK
| | - S Mark Scott
- Blizard Institute, Queen Mary University of London, London, UK
| | - Helen M Cox
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Nicol C Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Qasim Aziz
- Blizard Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
26
|
Cheng YR, Jiang BY, Chen CC. Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci 2018; 25:46. [PMID: 29793480 PMCID: PMC5966886 DOI: 10.1186/s12929-018-0448-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
Background Acid-sensing ion channels (ASICs) are a group of amiloride-sensitive ligand-gated ion channels belonging to the family of degenerin/epithelial sodium channels. ASICs are predominantly expressed in both the peripheral and central nervous system and have been characterized as potent proton sensors to detect extracellular acidification in the periphery and brain. Main body Here we review the recent studies focusing on the physiological roles of ASICs in the nervous system. As the major acid-sensing membrane proteins in the nervous system, ASICs detect tissue acidosis occurring at tissue injury, inflammation, ischemia, stroke, and tumors as well as fatiguing muscle to activate pain-sensing nerves in the periphery and transmit pain signals to the brain. Arachidonic acid and lysophosphocholine have been identified as endogenous non-proton ligands activating ASICs in a neutral pH environment. On the other hand, ASICs are found involved in the tether model mechanotransduction, in which the extracellular matrix and cytoplasmic cytoskeletons act like a gating-spring to tether the mechanically activated ion channels and thus transmit the stimulus force to the channels. Accordingly, accumulating evidence has shown ASICs play important roles in mechanotransduction of proprioceptors, mechanoreceptors and nociceptors to monitor the homoeostatic status of muscle contraction, blood volume, and blood pressure as well as pain stimuli. Conclusion Together, ASICs are dual-function proteins for both chemosensation and mechanosensation involved in monitoring physiological homoeostasis and pathological signals.
Collapse
Affiliation(s)
- Yuan-Ren Cheng
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan
| | - Bo-Yang Jiang
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan
| | - Chih-Cheng Chen
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan. .,Taiwan Mouse Clinic - National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
27
|
Reznikov LR, Meyerholz DK, Adam RJ, Abou Alaiwa M, Jaffer O, Michalski AS, Powers LS, Price MP, Stoltz DA, Welsh MJ. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice. PLoS One 2016; 11:e0166089. [PMID: 27820848 PMCID: PMC5098826 DOI: 10.1371/journal.pone.0166089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/22/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma.
Collapse
Affiliation(s)
- Leah R. Reznikov
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan J. Adam
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Mahmoud Abou Alaiwa
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Omar Jaffer
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew S. Michalski
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Linda S. Powers
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Margaret P. Price
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David A. Stoltz
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.
Collapse
Affiliation(s)
- Sanjeev S Ranade
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ruhma Syeda
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Kentish SJ, Frisby CL, Kritas S, Li H, Hatzinikolas G, O'Donnell TA, Wittert GA, Page AJ. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice. PLoS One 2015; 10:e0135892. [PMID: 26285043 PMCID: PMC4540489 DOI: 10.1371/journal.pone.0135892] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022] Open
Abstract
Aim Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1) are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice. Methods TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined. Results Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet. Conclusion TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.
Collapse
Affiliation(s)
- Stephen J Kentish
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Claudine L Frisby
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Stamatiki Kritas
- Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Hui Li
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - George Hatzinikolas
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Tracey A O'Donnell
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Gary A Wittert
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Amanda J Page
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Omerbašić D, Schuhmacher LN, Bernal Sierra YA, Smith ESJ, Lewin GR. ASICs and mammalian mechanoreceptor function. Neuropharmacology 2015; 94:80-6. [DOI: 10.1016/j.neuropharm.2014.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
|
31
|
Baron A, Lingueglia E. Pharmacology of acid-sensing ion channels – Physiological and therapeutical perspectives. Neuropharmacology 2015; 94:19-35. [DOI: 10.1016/j.neuropharm.2015.01.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/15/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
|
32
|
Deval E, Lingueglia E. Acid-Sensing Ion Channels and nociception in the peripheral and central nervous systems. Neuropharmacology 2015; 94:49-57. [PMID: 25724084 DOI: 10.1016/j.neuropharm.2015.02.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 11/17/2022]
Abstract
Since their molecular cloning in the late 90's, Acid-Sensing Ion Channels (ASICs) have been shown to be involved in many aspects of nociception, both in peripheral and central neurons. In rodents, the combination of specific or non-specific pharmacological modulators of ASICs, together with in vivo knockdown and/or knockout animals has revealed their contribution to the detection, the modulation and the sensitization of the pain message by primary and secondary sensory neurons. Functional ASICs are homo or heterotrimers of different homologous subunits (ASIC1-3). Channels containing ASIC3 or ASIC1 subunits, appear to be important in peripheral nociceptors, where they are subject to intense regulation, while ASIC1a-containing channels also have a prominent role in central neurons, including spinal cord neurons that modulate and transmit the pain signal to the brain. In humans, experiments performed in healthy volunteers using drugs already used in the clinic and acting as poorly-selective inhibitors of ASICs, together with recent in vitro data obtained from stem cell-derived sensory neurons both support a role for these channels in nociception. These data thus suggest a real translational potential in the development of inhibitory strategies of ASICs for the treatment of pain. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Emmanuel Deval
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, 06560 Valbonne, France; Université de Nice Sophia Antipolis, UMR 7275, 06560 Valbonne, France; LabEx Ion Channel Science and Therapeutics, UMR 7275, 06560 Valbonne, France.
| | - Eric Lingueglia
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, 06560 Valbonne, France; Université de Nice Sophia Antipolis, UMR 7275, 06560 Valbonne, France; LabEx Ion Channel Science and Therapeutics, UMR 7275, 06560 Valbonne, France
| |
Collapse
|
33
|
Vig PJS, Hearst SM, Shao Q, Lopez ME. Knockdown of acid-sensing ion channel 1a (ASIC1a) suppresses disease phenotype in SCA1 mouse model. THE CEREBELLUM 2015; 13:479-90. [PMID: 24788087 DOI: 10.1007/s12311-014-0563-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mutated ataxin-1 protein in spinocerebellar ataxia 1 (SCA1) targets Purkinje cells (PCs) of the cerebellum and causes progressive ataxia due to loss of PCs and neurons of the brainstem. The exact mechanism of this cellular loss is still not clear. Currently, there are no treatments for SCA1; however, understanding of the mechanisms that regulate SCA1 pathology is essential for devising new therapies for SCA1 patients. We previously established a connection between the loss of intracellular calcium-buffering and calcium-signalling proteins with initiation of neurodegeneration in SCA1 transgenic (Tg) mice. Recently, acid-sensing ion channel 1a (ASIC1a) have been implicated in calcium-mediated toxicity in many brain disorders. Here, we report generating SCA1 Tg mice in the ASIC1a knockout (KO) background and demonstrate that the deletion of ASIC1a gene expression causes suppression of the SCA1 disease phenotype. Loss of the ASIC1a channel in SCA1/ASIC1a KO mice resulted in the improvement of motor deficit and decreased PC degeneration. Interestingly, the expression of the ASIC1 variant, ASIC1b, was upregulated in the cerebellum of both SCA1/ASIC1a KO and ASIC1a KO animals as compared to the wild-type (WT) and SCA1 Tg mice. Further, these SCA1/ASIC1a KO mice exhibited translocation of PC calcium-binding protein calbindin-D28k from the nucleus to the cytosol in young animals, which otherwise have both cytosolic and nuclear localization. Furthermore, in addition to higher expression of calcium-buffering protein parvalbumin, PCs of the older SCA1/ASIC1a KO mice showed a decrease in morphologic abnormalities as compared to the age-matched SCA1 animals. Our data suggest that ASIC1a may be a mediator of SCA1 pathogenesis and targeting ASIC1a could be a novel approach to treat SCA1.
Collapse
Affiliation(s)
- Parminder J S Vig
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA,
| | | | | | | |
Collapse
|
34
|
Lin SH, Sun WH, Chen CC. Genetic exploration of the role of acid-sensing ion channels. Neuropharmacology 2015; 94:99-118. [PMID: 25582292 DOI: 10.1016/j.neuropharm.2014.12.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/27/2022]
Abstract
Advanced gene targeting technology and related tools in mice have been incorporated into studies of acid-sensing ion channels (ASICs). A single ASIC subtype can be knocked out specifically and screened thoroughly for expression in the nervous system at the cellular level. Mapping studies have further shed light on the initiation and identification of related behavioral phenotypes. Here we review studies involving genetically engineered mouse models used to investigate the physiological function of individual ASIC subtypes: ASIC1 (and ASIC1a), ASIC2, ASIC3 and ASIC4. We discuss the detailed expression studies and significant phenotypes revealed with gene knockout for most known Asic subtypes. Each strategy designed to manipulate mouse genetics has advantages and disadvantages. We discuss the limitations of these Asic-knockout models and propose future directions to solve the genetic issues. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Shing-Hong Lin
- Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Wei-Hsin Sun
- Department of Life Sciences, National Central University, Jhongli 32054, Taiwan.
| | - Chih-Cheng Chen
- Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
35
|
Dusenkova S, Ru F, Surdenikova L, Nassenstein C, Hatok J, Dusenka R, Banovcin P, Kliment J, Tatar M, Kollarik M. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes. Am J Physiol Gastrointest Liver Physiol 2014; 307:G922-30. [PMID: 25190475 PMCID: PMC4216991 DOI: 10.1152/ajpgi.00129.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%-95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65-75%). ASIC1, ASIC2, and ASIC3 were expressed in 65-75%, 55-70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression.
Collapse
Affiliation(s)
- Svetlana Dusenkova
- 1Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; ,2Department of Pathophysiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia;
| | - Fei Ru
- 1Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Lenka Surdenikova
- 2Department of Pathophysiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia;
| | - Christina Nassenstein
- 1Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; ,6Institute of Anatomy and Cell Biology-Cardiopulmonary Neurobiology, Justus-Liebig-University, Giessen, Germany
| | - Jozef Hatok
- 3Department of Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia;
| | - Robert Dusenka
- 3Department of Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia; ,4Department of Urology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia;
| | - Peter Banovcin
- 5Department of Gastroenterology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia;
| | - Jan Kliment
- 4Department of Urology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia;
| | - Milos Tatar
- 2Department of Pathophysiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia;
| | - Marian Kollarik
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathophysiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia;
| |
Collapse
|
36
|
Su YS, Sun WH, Chen CC. Molecular mechanism of inflammatory pain. World J Anesthesiol 2014; 3:71-81. [DOI: 10.5313/wja.v3.i1.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/20/2013] [Accepted: 11/03/2013] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory pain resulting from arthritis, nerve injury and tumor growth is a serious public health issue. One of the major challenges in chronic inflammatory pain research is to develop new pharmacologic treatments with long-term efficacy and few side effects. The mediators released from inflamed sites induce complex changes in peripheral and central processing by directly acting on transducer receptors located on primary sensory neurons to transmit pain signals or indirectly modulating pain signals by activating receptors coupled with G-proteins and second messengers. High local proton concentration (acidosis) is thought to be a decisive factor in inflammatory pain and other mediators such as prostaglandin, bradykinin, and serotonin enhance proton-induced pain. Proton-sensing ion channels [transient receptor potential V1 (TRPV1) and the acid-sensing ion channel (ASIC) family] are major receptors for direct excitation of nociceptive sensory neurons in response to acidosis or inflammation. G-protein-coupled receptors activated by prostaglandin, bradykinin, serotonin, and proton modulate functions of TRPV1, ASICs or other ion channels, thus leading to inflammation- or acidosis-linked hyperalgesia. Although detailed mechanisms remain unsolved, clearly different types of pain or hyperalgesia could be due to complex interactions between a distinct subset of inflammatory mediator receptors expressed in a subset of nociceptors. This review describes new directions for the development of novel therapeutic treatments in pain.
Collapse
|
37
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
38
|
Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 2014; 115:189-209. [PMID: 24467911 DOI: 10.1016/j.pneurobio.2013.12.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022]
Abstract
Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na(+)/H(+) exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H(+)-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca(2+), Na(+), and Zn(2+), and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention.
Collapse
|
39
|
Noël J, Salinas M, Baron A, Diochot S, Deval E, Lingueglia E. Current perspectives on acid-sensing ion channels: new advances and therapeutic implications. Expert Rev Clin Pharmacol 2014; 3:331-46. [DOI: 10.1586/ecp.10.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Lewin GR, Lechner SG, Smith ESJ. Nerve growth factor and nociception: from experimental embryology to new analgesic therapy. Handb Exp Pharmacol 2014; 220:251-282. [PMID: 24668476 DOI: 10.1007/978-3-642-45106-5_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nerve growth factor (NGF) is central to the development and functional regulation of sensory neurons that signal the first events that lead to pain. These sensory neurons, called nociceptors, require NGF in the early embryo to survive and also for their functional maturation. The long road from the discovery of NGF and its roles during development to the realization that NGF plays a major role in the pathophysiology of inflammatory pain will be reviewed. In particular, we will discuss the various signaling events initiated by NGF that lead to long-lasting thermal and mechanical hyperalgesia in animals and in man. It has been realized relatively recently that humanized function blocking antibodies directed against NGF show remarkably analgesic potency in human clinical trials for painful conditions as varied as osteoarthritis, lower back pain, and interstitial cystitis. Thus, anti-NGF medication has the potential to make a major impact on day-to-day chronic pain treatment in the near future. It is therefore all the more important to understand the precise pathways and mechanisms that are controlled by NGF to both initiate and sustain mechanical and thermal hyperalgesia. Recent work suggests that NGF-dependent regulation of the mechanosensory properties of sensory neurons that signal mechanical pain may open new mechanistic avenues to refine and exploit relevant molecular targets for novel analgesics.
Collapse
Affiliation(s)
- Gary R Lewin
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13122, Berlin, Germany,
| | | | | |
Collapse
|
41
|
Price MP, Gong H, Parsons MG, Kundert JR, Reznikov LR, Bernardinelli L, Chaloner K, Buchanan GF, Wemmie JA, Richerson GB, Cassell MD, Welsh MJ. Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. GENES BRAIN AND BEHAVIOR 2013; 13:179-94. [PMID: 24256442 DOI: 10.1111/gbb.12108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/25/2013] [Accepted: 11/18/2013] [Indexed: 12/21/2022]
Abstract
Acid-sensing ion channels (ASICs) generate H(+) -gated Na(+) currents that contribute to neuronal function and animal behavior. Like ASIC1, ASIC2 subunits are expressed in the brain and multimerize with ASIC1 to influence acid-evoked currents and facilitate ASIC1 localization to dendritic spines. To better understand how ASIC2 contributes to brain function, we localized the protein and tested the behavioral consequences of ASIC2 gene disruption. For comparison, we also localized ASIC1 and studied ASIC1(-/-) mice. ASIC2 was prominently expressed in areas of high synaptic density, and with a few exceptions, ASIC1 and ASIC2 localization exhibited substantial overlap. Loss of ASIC1 or ASIC2 decreased freezing behavior in contextual and auditory cue fear conditioning assays, in response to predator odor and in response to CO2 inhalation. In addition, loss of ASIC1 or ASIC2 increased activity in a forced swim assay. These data suggest that ASIC2, like ASIC1, plays a key role in determining the defensive response to aversive stimuli. They also raise the question of whether gene variations in both ASIC1 and ASIC2 might affect fear and panic in humans.
Collapse
Affiliation(s)
- M P Price
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Effect of deep tissue incision on pH responses of afferent fibers and dorsal root ganglia innervating muscle. Anesthesiology 2013; 119:1186-97. [PMID: 23732174 DOI: 10.1097/aln.0b013e31829bd791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Understanding the mechanisms underlying deep tissue pain in the postoperative period is critical to improve therapies. Using the in vitro plantar flexor digitorum brevis muscle-nerve preparation and patch clamp recordings from cultured dorsal root ganglia neurons innervating incised and unincised muscle, the authors investigated responses to various pH changes. METHODS Incision including the plantar flexor digitorum brevis muscle or sham operation was made in the rat hind paw. On postoperative day 1, in vitro single-fiber recording was undertaken. On the basis of previous studies, the authors recorded from at least 40 fibers per group. Also DiI-labeled dorsal root ganglia innervating muscle from rats undergoing incision and a sham operation were cultured and tested for acid responses, using whole cell patch clamp recordings. RESULTS The prevalence of responsive group IV afferents to lactic acid pH 6.5 in the incision group (15 of 67; 22.3%) was greater than that in the control group (2 of 35; 5.7%; P=0.022). In dorsal root ganglia neurons innervating muscle, incision increased mean current amplitudes of acid-evoked currents; the acid-sensing ion channel blocker, amiloride 300 μM, inhibited more than 75% of the acid-evoked current, whereas, the transient receptor vanilloid receptor 1 blocker (AMG9810 1 μM) did not cause significant inhibition. CONCLUSION The authors' experiments demonstrated that incision increases the responses of flexor digitorum brevis muscle afferent fibers to weak acid solutions, and increased acid-evoked currents in dorsal root ganglia innervating muscle. The authors' data suggest that up-regulation of acid-sensing ion channels might underlie this increased chemosensitivity caused by surgery.
Collapse
|
43
|
Kozlenkov A, Lapatsina L, Lewin GR, Smith ESJ. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1. J Physiol 2013; 592:557-69. [PMID: 24247984 PMCID: PMC3934701 DOI: 10.1113/jphysiol.2013.258657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- Department of Neuroscience, Growth Factor & Regeneration Group, Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, D-13092 Berlin, Germany. or
| | | | | | | |
Collapse
|
44
|
Li H, Kentish SJ, Kritas S, Young RL, Isaacs NJ, O'Donnell TA, Blackshaw LA, Wittert GA, Page AJ. Modulation of murine gastric vagal afferent mechanosensitivity by neuropeptide W. Acta Physiol (Oxf) 2013; 209:179-91. [PMID: 23927541 DOI: 10.1111/apha.12154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/09/2013] [Accepted: 07/31/2013] [Indexed: 12/22/2022]
Abstract
AIM Neuropeptide W (NPW) is an endogenous ligand for the receptors GPR7 and GPR8 and is involved in central regulation of energy homeostasis. NPW in the periphery is found in gastric gastrin (G) cells. In the stomach, energy intake is influenced by vagal afferent signals, so we aimed to determine the effect of NPW on mechanosensitive gastric vagal afferents under different feeding conditions. METHODS Female C57BL/6 mice (N > 10 per group) were fed a standard laboratory diet (SLD), high-fat diet (HFD) or were food restricted. The relationship between NPW immunopositive cells and gastric vagal afferent endings was determined by anterograde tracing and NPW immunohistochemistry. An in vitro gastro-oesophageal preparation was used to determine the functional effects of NPW on gastric vagal afferents. Expression of NPW in the gastric mucosa and GPR7 in whole nodose ganglia was determined by quantitative RT-PCR (QRT-PCR). The expression of GPR7 in gastric vagal afferent neurones was determined by retrograde tracing and QRT-PCR. RESULTS Neuropeptide W immunoreactive cells were found in close proximity to traced vagal afferents. NPW selectively inhibited responses of gastric vagal tension receptors to stretch in SLD but not HFD or fasted mice. In the nodose ganglia, GPR7 mRNA was specifically expressed in gastric vagal afferent neurones. In fasted mice gastric mucosal NPW and nodose GPR7, mRNA was reduced compared with SLD. A HFD had no effect on gastric NPW mRNA, but down-regulated nodose GPR7 expression. CONCLUSION Neuropeptide W modulates gastric vagal afferent activity, but the effect is dynamic and related to feeding status.
Collapse
Affiliation(s)
- H. Li
- Nerve-Gut Research Laboratory; University of Adelaide; Adelaide; Australia
| | - S. J. Kentish
- Nerve-Gut Research Laboratory; University of Adelaide; Adelaide; Australia
| | - S. Kritas
- Women's & Children's Hospital; University of Adelaide; Adelaide; Australia
| | | | - N. J. Isaacs
- Nerve-Gut Research Laboratory; University of Adelaide; Adelaide; Australia
| | | | - L. A. Blackshaw
- Wingate Institute of Neurogastroenterology; Blizard Institute; Barts and The London School of Medicine & Dentistry; Queen Mary, University of London; London; UK
| | - G. A. Wittert
- Nerve-Gut Research Laboratory; University of Adelaide; Adelaide; Australia
| | | |
Collapse
|
45
|
Abstract
Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.
Collapse
|
46
|
Moshourab RA, Wetzel C, Martinez-Salgado C, Lewin GR. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol 2013; 591:5555-74. [PMID: 23959680 PMCID: PMC3853495 DOI: 10.1113/jphysiol.2013.261180] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3−/−:stomatin−/−, asic3−/−:stoml3−/− and asic2−/−:stomatin−/− double mutant mice to characterize the functional consequences of stomatin–ASIC protein interactions on sensory afferent mechanosensitivity. The absence of ASIC3 led to a clear increase in mechanosensitivity in rapidly adapting mechanoreceptors (RAMs) and a decrease in the mechanosensitivity in both Aδ- and C-fibre nociceptors. The increased mechanosensitivity of RAMs could be accounted for by a loss of adaptation which could be mimicked by local application of APETx2 a toxin that specifically blocks ASIC3. There is a substantial loss of mechanosensitivity in stoml3−/− mice in which ∼35% of the myelinated fibres lack a mechanosensitive receptive field and this phenotype was found to be identical in asic3−/−:stoml3−/− mutant mice. However, Aδ-nociceptors showed much reduced mechanosensitivity in asic3−/−:stoml3−/− mutant mice compared to asic3−/− controls. Interestingly, in asic2−/−:stomatin−/− mutant mice many Aδ-nociceptors completely lost their mechanosensitivity which was not observed in asic2−/− or stomatin−/− mice. Examination of stomatin−/−:stoml3−/− mutant mice indicated that a stomatin/STOML3 interaction is unlikely to account for the greater Aδ-nociceptor deficits in double mutant mice. A key finding from these studies is that the loss of stomatin or STOML3 in asic3−/− or asic2−/− mutant mice markedly exacerbates deficits in the mechanosensitivity of nociceptors without affecting mechanoreceptor function.
Collapse
Affiliation(s)
- Rabih A Moshourab
- G. R. Lewin: Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| | | | | | | |
Collapse
|
47
|
|
48
|
Roudaut Y, Lonigro A, Coste B, Hao J, Delmas P, Crest M. Touch sense: functional organization and molecular determinants of mechanosensitive receptors. Channels (Austin) 2013; 6:234-45. [PMID: 23146937 DOI: 10.4161/chan.22213] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.
Collapse
Affiliation(s)
- Yann Roudaut
- Aix-Marseille Université, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
49
|
Chen CC, Wong CW. Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med 2013; 17:337-49. [PMID: 23490035 PMCID: PMC3823015 DOI: 10.1111/jcmm.12025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels responding to extracellular acidification. ASIC proteins have two transmembrane domains and a large extracellular domain. The molecular topology of ASICs is similar to that of the mechanosensory abnormality 4- or 10-proteins expressed in touch receptor neurons and involved in neurosensory mechanotransduction in nematodes. The ASIC proteins are involved in neurosensory mechanotransduction in mammals. The ASIC isoforms are expressed in Merkel cell-neurite complexes, periodontal Ruffini endings and specialized nerve terminals of skin and muscle spindles, so they might participate in mechanosensation. In knockout mouse models, lacking an ASIC isoform produces defects in neurosensory mechanotransduction of tissue such as skin, stomach, colon, aortic arch, venoatrial junction and cochlea. The ASICs are thus implicated in touch, pain, digestive function, baroreception, blood volume control and hearing. However, the role of ASICs in mechanotransduction is still controversial, because we lack evidence that the channels are mechanically sensitive when expressed in heterologous cells. Thus, ASIC channels alone are not sufficient to reconstruct the path of transducing molecules of mechanically activated channels. The mechanotransducers associated with ASICs need further elucidation. In this review, we discuss the expression of ASICs in sensory afferents of mechanoreceptors, findings of knockout studies, technical issues concerning studies of neurosensory mechanotransduction and possible missing links. Also we propose a molecular model and a new approach to disclose the molecular mechanism underlying the neurosensory mechanotransduction.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
50
|
Wang W, Tan W, Luo D, Lin J, Yu Y, Wang Q, Zhao W, Wu B, Chen J, He J. Acute pressure on the sciatic nerve results in rapid inhibition of the wide dynamic range neuronal response. BMC Neurosci 2012; 13:147. [PMID: 23211003 PMCID: PMC3538510 DOI: 10.1186/1471-2202-13-147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 11/29/2012] [Indexed: 12/26/2022] Open
Abstract
Background Acute pressure on the sciatic nerve has recently been reported to provide rapid short-term relief of pain in patients with various pathologies. Wide dynamic range (WDR) neurons transmit nociceptive information from the dorsal horn to higher brain centers. In the present study, we examined the effect of a 2-min application of sciatic nerve pressure on WDR neuronal activity in anesthetized male Sprague–Dawley rats. Results Experiments were carried out on 41 male Sprague–Dawley albino rats weighing 160–280 grams. Dorsal horn WDR neurons were identified on the basis of characteristic responses to mechanical stimuli applied to the cutaneous receptive field. Acute pressure was applied for 2 min to the sciatic nerve using a small vascular clip. The responses of WDR neurons to three mechanical stimuli applied to the cutaneous receptive field were recorded before, and 2, 5 and 20 min after cessation of the 2-min pressure application on the sciatic nerve. Two-min pressure applied to the sciatic nerve caused rapid attenuation of the WDR response to pinching, pressure and brushing stimuli applied to the cutaneous receptive field. Maximal attenuation of the WDR response to pinching and pressure was noted 5 min after release of the 2-min pressure on the sciatic nerve. The mean firing rate decreased from 31.7±1.7 Hz to 13±1.4 Hz upon pinching (p < 0.001), from 31.2±2.3 Hz to 10.9±1.4 Hz (p < 0.001) when pressure was applied, and from 18.9±1.2 Hz to 7.6±1.1 Hz (p < 0.001) upon brushing. Thereafter, the mean firing rates gradually recovered. Conclusions Our results indicate that acute pressure applied to the sciatic nerve exerts a rapid inhibitory effect on the WDR response to both noxious and innocuous stimuli. Our results may partially explain the rapid analgesic effect of acute sciatic nerve pressure noted in clinical studies, and also suggest a new model for the study of pain.
Collapse
Affiliation(s)
- Wenxue Wang
- Department of Physiology, School of Life Science, Kuning 605000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|