1
|
Wu CH, Hu S, Li D, Jiang XW, Ou-Yang H, Bi GF, Wang P, Liang FT, Zhou WH, Yang X, Fang JH, Bi HC. Pregnane X receptor alleviates sepsis-induced liver injury through activation of yes-associated protein in mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01552-4. [PMID: 40234620 DOI: 10.1038/s41401-025-01552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
The severity of sepsis is attributed to excessive inflammatory responses leading to liver injury. Pregnane X receptor (PXR), a nuclear receptor that controls xenobiotic and endobiotic metabolism, has been implicated in regulating inflammation and liver regeneration. This study aimed to investigate the role of PXR in sepsis-induced liver injury and the underlying mechanisms. Sepsis models were established in mice, the mice were administered the typical mouse PXR agonist PCN (100 mg·kg-1·d-1, i.p.) for 3 consecutive days in advance, then subjected to CLP operation or LPS administration 1 h after the last administration of PCN. The results showed that PCN pretreatment significantly increased the survival rate of septic mice, while the survival rate was reduced after the knockout of Pxr. In addition, PCN pretreatment effectively alleviated sepsis-induced liver injury. In Pxr knockout mice, liver injury was more severe, whereas the protective effects of PCN pretreatment were abolished. Mechanistically, PCN pretreatment significantly upregulated the expression of yes-associated protein (YAP) and its downstream targets and decreased the level of phosphorylated nuclear factor-κB (NF-κB). Moreover, liver-specific knockdown of Yap blocked the protective effects of PCN pretreatment against sepsis-induced liver injury and downregulated the phosphorylation level of NF-κB. In summary, this study demonstrated that PXR activation protects against sepsis-induced liver injury through activation of the YAP signaling pathway, providing a new strategy for the diagnosis and treatment of sepsis-induced liver injury.
Collapse
Affiliation(s)
- Cheng-Hua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui Ou-Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guo-Fang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Feng-Ting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Hong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Chang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Gao X, Lin X, Wang Q, Chen J. Artemisinins: Promising drug candidates for the treatment of autoimmune diseases. Med Res Rev 2024; 44:867-891. [PMID: 38054758 DOI: 10.1002/med.22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Autoimmune diseases are characterized by the immune system's attack on one's own tissues which are highly diverse and diseases differ in severity, causing damage in virtually all human systems including connective tissue (e.g., rheumatoid arthritis), neurological system (e.g., multiple sclerosis) and digestive system (e.g., inflammatory bowel disease). Historically, treatments normally include pain-killing medication, anti-inflammatory drugs, corticosteroids, and immunosuppressant drugs. However, given the above characteristics, treatment of autoimmune diseases has always been a challenge. Artemisinin is a natural sesquiterpene lactone initially extracted and separated from Chinese medicine Artemisia annua L., which has a long history of curing malaria. Artemisinin's derivatives such as artesunate, dihydroartemisinin, artemether, artemisitene, and so forth, are a family of artemisinins with antimalarial activity. Over the past decades, accumulating evidence have indicated the promising therapeutic potential of artemisinins in autoimmune diseases. Herein, we systematically summarized the research regarding the immunoregulatory properties of artemisinins including artemisinin and its derivatives, discussing their potential therapeutic viability toward major autoimmune diseases and the underlying mechanisms. This review will provide new directions for basic research and clinical translational medicine of artemisinins.
Collapse
Affiliation(s)
- Xu Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| |
Collapse
|
3
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Liu J, Tian R, Sun C, Guo Y, Dong L, Li Y, Song X. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol 2023; 14:1290414. [PMID: 38169949 PMCID: PMC10758836 DOI: 10.3389/fimmu.2023.1290414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
5
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
6
|
Yokota H, Sato K, Sakamoto S, Okuda Y, Asano M, Takeda M, Nakayama K, Miura M. Effects of polymorphisms in pregnane X receptor and ABC transporters on afatinib in Japanese patients with non-small cell lung cancer: pharmacogenomic-pharmacokinetic and exposure-response analysis. Cancer Chemother Pharmacol 2023; 92:315-324. [PMID: 37500985 DOI: 10.1007/s00280-023-04569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Because of the large interindividual variability of afatinib pharmacokinetics and adverse events, we evaluated the effects of polymorphisms in pregnane X receptor (NR1I2) and ABC transporters (ABCB1, ABCG2, and ABCC2) on the pharmacokinetics of afatinib. METHODS The steady-state area under the concentration-time curve (AUC)0-24 of afatinib was analyzed using blood sampling just prior to and at 1, 2, 4, 6, 8, 12, and 24 h on day 15 after administration. RESULTS The median oral clearance (CL/F) of afatinib in patients with the NR1I2 7635A allele was significantly lower than those in patients with the 7635G/G genotype (42.0 and 60.0 L/h, respectively, P = 0.025). There were no significant differences in afatinib CL/F between genotypes for NR1I2 8055C > T, -25385C > T, ABCB1, ABCG2, and ABCC2 polymorphisms. Based on the area under the receiver-operating characteristic curve, the threshold afatinib AUC0-24 value for prediction of dose reduction or withdrawal was 689 ng·h/mL at the best sensitivity (81.0%) and specificity (72.7%). In multivariate logistic regression analysis, an afatinib AUC0-24 above 689 ng·h/mL was independently associated with increased risk of dose reduction or withdrawal (OR: 11.66, P = 0.012). CONCLUSIONS The NR1I2 7635A allele was related to a lower afatinib CL/F. Based on the AUC of 689 ng h/mL and CL/F, the optimal doses for patients with the NR1I2 7635G/G genotype and 7635A allele were recommended to be set at 40 and 30 mg/day, respectively, and subsequent adjustment of the maintenance dose based on the plasma concentrations of afatinib may be necessary to avoid afatinib-related adverse events.
Collapse
Affiliation(s)
- Hayato Yokota
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Kazuhiro Sato
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Sho Sakamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Yuji Okuda
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Mariko Asano
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Masahide Takeda
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Katsutoshi Nakayama
- Division of Respiratory Medicine, Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan.
- Department of Pharmacokinetics, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
7
|
Effects of NR1I2 and ABCB1 Genetic Polymorphisms on Everolimus Pharmacokinetics in Japanese Renal Transplant Patients. Int J Mol Sci 2022; 23:ijms231911742. [PMID: 36233042 PMCID: PMC9570057 DOI: 10.3390/ijms231911742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the effects of NR1I2 (7635G>A and 8055C>T) and ABCB1 (1236C>T, 2677G>T/A, and 3435C>T) genetic polymorphisms on everolimus pharmacokinetics in 98 Japanese renal transplant patients. On day 15 after everolimus administration, blood samples were collected just prior to and 1, 2, 3, 4, 6, 9, and 12 h after administration. The dose-adjusted area under the blood concentration−time curve (AUC0-12) of everolimus was significantly lower in patients with the NR1I2 8055C/C genotype than in those with other genotypes (p = 0.022) and was significantly higher in male patients than female patients (p = 0.045). Significant correlations between the dose-adjusted AUC0-12 of everolimus and age (p = 0.001), aspartate transaminase (p = 0.001), and alanine transaminase (p = 0.005) were found. In multivariate analysis, aging (p = 0.008) and higher alanine transaminase levels (p = 0.032) were independently predictive of a higher dose-adjusted everolimus AUC0-12. Aging and hepatic dysfunction in patients may need to be considered when evaluating dose reductions in everolimus. In renal transplant patients, management using everolimus blood concentrations after administration may be more important than analysis of NR1I2 8055C>T polymorphism before administration.
Collapse
|
8
|
Nieves KM, Hirota SA, Flannigan KL. Xenobiotic receptors and the regulation of intestinal homeostasis: harnessing the chemical output of the intestinal microbiota. Am J Physiol Gastrointest Liver Physiol 2022; 322:G268-G281. [PMID: 34941453 DOI: 10.1152/ajpgi.00160.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The commensal bacteria that reside in the gastrointestinal tract exist in a symbiotic relationship with the host, driving the development of the immune system and maintaining metabolic and tissue homeostasis in the local environment. The intestinal microbiota has the capacity to generate a wide array of chemical metabolites to which the cells of the intestinal mucosa are exposed. Host cells express xenobiotic receptors, such as the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR), that can sense and respond to chemicals that are generated by nonhost pathways. In this review, we outline the physiological and immunological processes within the intestinal environment that are regulated by microbial metabolites through the activation of the AhR and the PXR, with a focus on ligands generated by the stepwise catabolism of tryptophan.
Collapse
Affiliation(s)
- Kristoff M Nieves
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Simon A Hirota
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kyle L Flannigan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines 2022; 10:biomedicines10020289. [PMID: 35203499 PMCID: PMC8869546 DOI: 10.3390/biomedicines10020289] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal mucosal barrier, also referred to as intestinal barrier, is widely recognized as a critical player in gut homeostasis maintenance as it ensures the complex crosstalk between gut microbes (both commensals and pathogens) and the host immune system. Highly specialized epithelial cells constantly cope with several protective and harmful agents to maintain the multiple physiological functions of the barrier as well as its integrity. However, both genetic defects and environmental factors can break such equilibrium, thus promoting gut dysbiosis, dysregulated immune-inflammatory responses, and even the development of chronic pathological conditions. Here, we review and discuss the molecular and cellular pathways underlying intestinal barrier structural and functional homeostasis, focusing on potential alterations that may undermine this fine balance.
Collapse
|
10
|
Abstract
Bile acids (BAs) are a family of hydroxylated steroids secreted by the liver that aid in the breakdown and absorption of dietary fats. BAs also function as nutrient and inflammatory signaling molecules, acting through cognate receptors, to coordinate host metabolism. Commensal bacteria in the gastrointestinal tract are functional modifiers of the BA pool, affecting composition and abundance. Deconjugation of host BAs creates a molecular network that inextricably links gut microtia with their host. In this review we highlight the roles of BAs in mediating this mutualistic relationship with a focus on those events that impact host physiology and metabolism.
Collapse
Affiliation(s)
- James C Poland
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
11
|
Sun R, Xu C, Feng B, Gao X, Liu Z. Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol 2021; 14:17562848211018098. [PMID: 34104213 PMCID: PMC8165529 DOI: 10.1177/17562848211018098] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Bile acids are a class of cholesterol derivatives that have been known for a long time for their critical roles in facilitating the digestion and absorption of lipid from the daily diet. The transformation of primary bile acids produced by the liver to secondary bile acids appears under the action of microbiota in the intestine, greatly expanding the molecular diversity of the intestinal environment. With the discovery of several new receptors of bile acids and signaling pathways, bile acids are considered as a family of important metabolites that play pleiotropic roles in regulating many aspects of human overall health, especially in the maintenance of the microbiota homeostasis and the balance of the mucosal immune system in the intestine. Accordingly, disruption of the process involved in the metabolism or circulation of bile acids is implicated in many disorders that mainly affect the intestine, such as inflammatory bowel disease and colon cancer. In this review, we discuss the different metabolism profiles in diseases associated with the intestinal mucosa and the diverse roles of bile acids in regulating the intestinal immune system. Furthermore, we also summarize recent advances in the field of new drugs that target bile acid signaling and highlight the importance of bile acids as a new target for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Xiang Gao
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | | |
Collapse
|
12
|
Bioinformatis analysis reveals possible molecular mechanism of PXR on regulating ulcerative colitis. Sci Rep 2021; 11:5428. [PMID: 33686088 PMCID: PMC7940411 DOI: 10.1038/s41598-021-83742-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease of the gastrointestinal (GI) tract. Ulcerative colitis (UC) is a type of IBD. Pregnane X Receptor (PXR) is a member of the nuclear receptor superfamily. In order to deepen understanding and exploration of the molecular mechanism of regulation roles of PXR on UC, biological informatics analysis was performed. First, 878 overlapping differentially expressed genes (DEGs) between UC and normal samples were obtained from the Gene Expression Omnibus (GEO) database (GSE59071 and GSE38713) by using the "limma" R language package. Then WGCNA analysis was performed by 878 DEGs to obtain co-expression modules that were positively and negatively correlated with clinical traits. GSEA analysis of PXR results obtained the signal pathways enriched in the PXR high and low expression group and the active genes of each signal pathway. Then the association of PXR with genes that are both active in high expression group and negatively related to diseases (gene set 1), or both active in low expression group and negatively related to diseases (gene set 2) was analyzed by String database. Finally, carboxylesterase 2 (CES2), ATP binding cassette subfamily G member 2 (ABCG2), phosphoenolpyruvate carboxykinase (PCK1), PPARG coactivator 1 alpha (PPARGC1A), cytochrome P450 family 2 subfamily B member 6 (CYP2B6) from gene set 1 and C-X-C motif chemokine ligand 8 (CXCL8) from gene set 2 were screened out. After the above analysis and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) verification, we speculated that PXR may exert a protective role on UC by promoting CES2, ABCG2, PCK1, PPARGC1A, CYP2B6 expression and inhibiting CXCL8 expression in their corresponding signal pathway in intestinal tissue.
Collapse
|
13
|
Lipidomic profiling reveals triacylglycerol accumulation in the liver during pregnane X receptor activation-induced hepatomegaly. J Pharm Biomed Anal 2020; 195:113851. [PMID: 33387840 DOI: 10.1016/j.jpba.2020.113851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022]
Abstract
Pregnane X receptor (PXR) is highly expressed in the liver and plays an integral role in the control of xenobiotic and endobiotic metabolism to maintain homeostasis. We previously reported that activation of PXR significantly induced liver enlargement. But the lipid profiling during PXR-induced hepatomegaly remains unclear. This study aimed to characterize the effect of PXR activation on hepatic lipid homeostasis by lipidomics analysis. Mice were intraperitoneally administered with the typical mPXR agonist, pregnenolone 16α-carbonitrile (PCN, 100 mg/kg/d), for 5 days. Liver and serum were collected for further analysis. The results confirmed that PXR activation can significantly induce liver enlargement. An obvious hepatic lipid accumulation was observed in PCN-treated mice, as determined by H&E and Oil Red O staining. Ultra-high performance liquid chromatography-Q Exactive Orbitrap high-resolution mass spectrometer (UHPLC-Q Exactive Orbitrap HRMS)-based lipidomics was performed to characterize the change in lipid species. A total of 20 potential lipid biomarkers were significantly perturbed. The most significant change was found in the triacylglycerol (TG), which constituted with the lower number of carbon atoms and double bonds. Moreover, the mRNA expression levels showed that PCN-induced PXR activation significantly regulated the expression of genes involved in the uptake, synthesis and metabolism of TG, which was consistent with increased TG levels. Collectively, these findings demonstrated that lipids such as TG were significantly accumulated during PXR-induced hepatomegaly.
Collapse
|
14
|
de Jong LM, Jiskoot W, Swen JJ, Manson ML. Distinct Effects of Inflammation on Cytochrome P450 Regulation and Drug Metabolism: Lessons from Experimental Models and a Potential Role for Pharmacogenetics. Genes (Basel) 2020; 11:genes11121509. [PMID: 33339226 PMCID: PMC7766585 DOI: 10.3390/genes11121509] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Personalized medicine strives to optimize drug treatment for the individual patient by taking into account both genetic and non-genetic factors for drug response. Inflammation is one of the non-genetic factors that has been shown to greatly affect the metabolism of drugs—primarily through inhibition of cytochrome P450 (CYP450) drug-metabolizing enzymes—and hence contribute to the mismatch between the genotype predicted drug response and the actual phenotype, a phenomenon called phenoconversion. This review focuses on inflammation-induced drug metabolism alterations. In particular, we discuss the evidence assembled through human in-vitro models on the effect of inflammatory mediators on clinically relevant CYP450 isoform levels and their metabolizing capacity. We also present an overview of the current understanding of the mechanistic pathways via which inflammation in hepatocytes may modulate hepatic functions that are critical for drug metabolism. Furthermore, since large inter-individual variability in response to inflammation is observed in human in-vitro models and clinical studies, we evaluate the potential role of pharmacogenetic variability in the inflammatory signaling cascade and how this can modulate the outcome of inflammation on drug metabolism and response.
Collapse
Affiliation(s)
- Laura M. de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Jesse J. Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martijn L. Manson
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
15
|
Creamer BA, Sloan SNB, Dennis JF, Rogers R, Spencer S, McCuen A, Persaud P, Staudinger JL. Associations between Pregnane X Receptor and Breast Cancer Growth and Progression. Cells 2020; 9:cells9102295. [PMID: 33076284 PMCID: PMC7602492 DOI: 10.3390/cells9102295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Pregnane X receptor (PXR, NR1I2) is a member of the ligand-activated nuclear receptor superfamily. This receptor is promiscuous in its activation profile and is responsive to a broad array of both endobiotic and xenobiotic ligands. PXR is involved in pivotal cellular detoxification processes to include the regulation of genes that encode key drug-metabolizing cytochrome-P450 enzymes, oxidative stress response, as well as enzymes that drive steroid and bile acid metabolism. While PXR clearly has important regulatory roles in the liver and gastrointestinal tract, this nuclear receptor also has biological functions in breast tissue. In this review, we highlight current knowledge of PXR’s role in mammary tumor carcinogenesis. The elevated level of PXR expression in cancerous breast tissue suggests a likely interface between aberrant cell division and xeno-protection in cancer cells. Moreover, PXR itself exerts positive effect on the cell cycle, thereby predisposing tumor cells to unchecked proliferation. Activation of PXR also plays a key role in regulating apoptosis, as well as in acquired resistance to chemotherapeutic agents. The repressive role of PXR in regulating inflammatory mediators along with the existence of genetic polymorphisms within the sequence of the PXR gene may predispose individuals to developing breast cancer. Further investigations into the role that PXR plays in driving tumorigenesis are needed.
Collapse
|
16
|
Genetic variation in the farnesoid X-receptor predicts Crohn's disease severity in female patients. Sci Rep 2020; 10:11725. [PMID: 32678214 PMCID: PMC7366697 DOI: 10.1038/s41598-020-68686-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
The farnesoid X receptor (FXR) is implicated in Crohn's disease (CD) pathogenesis. It is unclear how genetic variation in FXR impacts CD severity versus genetic variation in nuclear receptors such as pregnane X receptor (PXR) and the multi-drug resistance protein 1 (MDR1, ABCB1). To evaluate FXR-1G > T as a genomic biomarker of severity in CD and propose a plausible molecular mechanism. A retrospective study (n = 542) was conducted in a Canadian cohort of CD patients. Genotypic analysis (FXR-1G > T, MDR1 3435C > T and PXR -25385C > T) as well as determination of the FXR downstream product, fibroblast growth factor (FGF) 19 was performed. Primary outcomes included risk and time to first CD-related surgery. The effect of estrogen on wild type and variant FXR activity was assessed in HepG2 cells. The FXR-1GT genotype was associated with the risk of (odds ratio, OR = 3.34, 95% CI = 1.58–7.05, p = 0.002) and earlier progression to surgery (hazard ratio, HR = 3.00, 95% CI = 1.86–4.83, p < 0.0001) in CD. Female carriers of the FXR-1GT genotype had the greatest risk of surgery (OR = 14.87 95% CI = 4.22–52.38, p < 0.0001) and early progression to surgery (HR = 6.28, 95% CI = 3.62–10.90, p < 0.0001). Women carriers of FXR-1GT polymorphism had a three-fold lower FGF19 plasma concentration versus women with FXR-1GG genotype (p < 0.0001). In HepG2 cells cotransfected with estrogen receptor (ER) and FXR, presence of estradiol further attenuated variant FXR activity. MDR1 and PXR genotypes were not associated with surgical risk. Unlike MDR1 and PXR, FXR-1GT genetic variation is associated with earlier and more frequent surgery in women with CD. This may be through ER-mediated attenuation of FXR activation.
Collapse
|
17
|
Yu Z, Yue B, Ding L, Luo X, Ren Y, Zhang J, Mani S, Wang Z, Dou W. Activation of PXR by Alpinetin Contributes to Abrogate Chemically Induced Inflammatory Bowel Disease. Front Pharmacol 2020; 11:474. [PMID: 32372959 PMCID: PMC7186371 DOI: 10.3389/fphar.2020.00474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
Alpinetin is a naturally occurring flavonoid from the ginger plants. We previously reported the identification of alpinetin as a ligand of human pregnane X receptor (hPXR). The current study investigated the role of alpinetin as a putative PXR activator in ameliorating chemically induced inflammatory bowel disease (IBD). We found that oral administration of alpinetin significantly alleviated the severity of dextran sulfate sodium (DSS)-induced colitis in mice by decreasing the inflammatory infiltration, the levels of the pro-inflammatory mediators, and the PXR target genes in the colon. In vitro, alpinetin blocked the nuclear translocation of p-p65 in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Further, alpinetin significantly upregulated PXR target genes and inhibited TNF-α-induced NF-κB-luciferase activity in LS174T colorectal cells; however, this regulatory effects were lost when cellular PXR gene was knocked down. In PXR transactivation assays, alpinetin increased both mouse and human PXR transactivation in a dose-dependent manner. Ligand occluding mutants, S247W/C284W and S247W/C284W/S208W, in hPXR-reporter assays, abrogated alpinetin-induced hPXR transactivation. Finally, alpinetin bound to the hPXR-ligand-binding domain (LBD) was confirmed by competitive ligand binding assay. The current study significantly extends prior observations by validating a PXR/NF-κB regulatory mechanism governing alpinetin's anti-inflammatory effects in a murine model of IBD.
Collapse
Affiliation(s)
- Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ding
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijing Ren
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Zhang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Egusquiza RJ, Ambrosio ME, Wang SG, Kay KM, Zhang C, Lehmler HJ, Blumberg B. Evaluating the Role of the Steroid and Xenobiotic Receptor (SXR/PXR) in PCB-153 Metabolism and Protection against Associated Adverse Effects during Perinatal and Chronic Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:47011. [PMID: 32352317 PMCID: PMC7228131 DOI: 10.1289/ehp6262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are environmental toxicants; PCB exposure has been associated with adverse effects on wildlife and humans. However, the mechanisms underlying these adverse effects are not fully understood. The steroid and xenobiotic receptor [SXR; also known as the pregnane X receptor (PXR) and formally known as NR1I2] is a nuclear hormone receptor that regulates inducible metabolism of drugs and xenobiotics and is activated or inhibited by various PCB congeners. OBJECTIVES The aim of this study was to investigate the effects of exposure to PCB-153, the most prevalent PCB congener in human tissues, on SXR knockout mice (SXRKO) and to elucidate the role of SXR in PCB-153 metabolism and promotion of its harmful effects. METHODS Wild-type (WT) and SXRKO mice were chronically or perinatally exposed to a low dose (54μg/kg/d) of PCB-153. Blood, livers, and spleens were analyzed using transcriptome sequencing (RNA-seq) and molecular techniques to investigate the impacts of exposure on metabolism, oxidative stress, and hematological parameters. RESULTS SXRKO mice perinatally exposed to PCB-153 displayed elevated oxidative stress, symptoms of hemolytic anemia, and premature death. Transcriptomal analysis revealed that expression of genes involved in metabolic processes was altered in SXRKO mice. Elevated levels of the PCB-153 metabolite, 3-OH-PCB-153, were found in exposed SXRKO mice compared to exposed WT mice. Blood hemoglobin (HGB) levels were lower throughout the lifespan, and the occurrence of intestinal tumors was larger in SXRKO mice chronically exposed to PCB-153 compared to vehicle and WT controls. DISCUSSION Our results suggest that altered metabolism induced by SXR loss of function resulted in the accumulation of hydroxylated metabolites upon exposure to PCB-153, leading to oxidative stress, hemolytic anemia, and tumor development in a mouse model. These results support a major role for SXR/PXR in protection against xenobiotic-induced oxidative stress by maintaining proper metabolism in response to PCB-153 exposure. This role of SXR could be generally applicable to other environmental toxicants as well as pharmaceutical drugs. https://doi.org/10.1289/EHP6262.
Collapse
Affiliation(s)
- Riann Jenay Egusquiza
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Maria Elena Ambrosio
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Shuyi Gin Wang
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Kaelen Marie Kay
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Bruce Blumberg
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| |
Collapse
|
19
|
Zhang G, Liu M, Song M, Wang J, Cai J, Lin C, Li Y, Jin X, Shen C, Chen Z, Cai D, Gao Y, Zhu C, Lin C, Liu C. Patchouli alcohol activates PXR and suppresses the NF-κB-mediated intestinal inflammatory. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112302. [PMID: 31614203 DOI: 10.1016/j.jep.2019.112302] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The pregnane-X-receptor (PXR) is involved in inflammatory bowel disease (IBD). Patchouli alcohol (PA) has anti-inflammatory effects; however, the effect of PA on IBD pathogenesis remains largely unknown. AIM OF THE STUDY The aim of the present study was to investigate the anti-inflammatory effect of PA, primarily focused on crosstalk between PA-mediated PXR activation and NF-κB inhibition. MATERIALS AND METHODS We evaluated the anti-inflammatory effect of PA with respect to PXR/NF-κB signalling using in vitro and in vivo models. In vitro, PA, identified as a PXR agonist, was evaluated by hPXR transactivation assays and through assessing for CYP3A4 expression and activity. NF-κB inhibition was analysed based on NF-κB luciferase assays, NF-κB-mediated pro-inflammatory gene expression, and NF-κB nuclear translocation after activation of PXR by PA. In vivo, colonic mPXR and NF-κB signalling were analysed to assess PA-mediated the protective effect against dextran sulphate sodium (DSS)-induced colitis. Furthermore, pharmacological inhibition of PXR was further evaluated by examining PA protection against DSS-induced colitis. RESULTS PA induced CYP3A4 expression and activity via an hPXR-dependent mechanism. PA-mediated PXR activation attenuated inflammation by inhibiting NF-κB activity and nuclear translocation. The anti-inflammatory effect of PA on NF-κB was abolished by PXR knockdown. PA prevented DSS-induced inflammation by regulating PXR/NF-κB signalling, whereas pharmacological PXR inhibition abated PA-mediated suppressive effects on NF-κB inflammation signalling. CONCLUSIONS PA activates PXR signalling and suppresses NF-κB signalling, consequently causing amelioration of inflammation. Our results highlight the importance of PXR-NF-κB crosstalk in colitis and suggest a novel therapeutic reagent.
Collapse
Affiliation(s)
- Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Zhuhai Precision Medicine Center, Zhuhai People(')s Hospital, Zhuhai, China
| | - Meijing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiazhong Cai
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuanquan Lin
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanwu Li
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Jin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhao Chen
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 500095, China
| | - Dake Cai
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 500095, China
| | - Yong Gao
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
20
|
Yoshinari K. Role of Nuclear Receptors PXR and CAR in Xenobiotic-Induced Hepatocyte Proliferation and Chemical Carcinogenesis. Biol Pharm Bull 2020; 42:1243-1252. [PMID: 31366862 DOI: 10.1248/bpb.b19-00267] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear receptors pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR) are xenobiotic-responsible transcriptional factors that belong to the same subfamily and are expressed abundantly in the liver. They play crucial roles in various liver functions including xenobiotic disposition and energy metabolism. CAR is also involved in xenobiotic-induced hepatocyte proliferation and hepatocarcinogenesis in rodents. However, there are some open questions on the association between chemical carcinogenesis and these nuclear receptors. These include the molecular mechanism for CAR-mediated hepatocyte proliferation and hepatocarcinogenesis. Another important question is whether PXR is associated with hepatocyte proliferation. We have recently reported a novel and unique function of PXR associated with murine hepatocyte proliferation: PXR activation alone does not induce hepatocyte proliferation but accelerates hepatocyte proliferation induced by various types of stimuli including CAR- or peroxisome proliferator-activated receptor alpha activating compounds, liver injury, and growth factors. We have also reported a role of yes-associated protein (YAP), a transcriptional cofactor controlling organ size and cell growth under the Hippo pathway, in CAR-mediated hepatocyte proliferation in mice. In this review, I will introduce our recent results as well as related studies on the roles of PXR and CAR in xenobiotic-induced hepatocyte proliferation and their molecular mechanisms.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
21
|
Pregnane X receptor activation constrains mucosal NF-κB activity in active inflammatory bowel disease. PLoS One 2019; 14:e0221924. [PMID: 31581194 PMCID: PMC6776398 DOI: 10.1371/journal.pone.0221924] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background The Pregnane X Receptor (PXR) is a principal signal transducer in mucosal responses to xenobiotic stress. It is well-recognized that inflammatory bowel disease is accompanied by xenobiotic stress, but the importance of the PXR in limiting inflammatory responses in inflammatory bowel disease remains obscure at best. Methods We stimulate a total of 106 colonic biopsies from 19 Crohn’s disease patients with active disease, 36 colonic biopsies from 8 control patients, colonic organoids and various cell culture models (either proficient or genetically deficient with respect to PXR) in vitro with the PXR ligand rifampicin or vehicle. Effects on NF-κB activity are assessed by measuring interleukin-8 (IL-8) and interleukin-1ß (IL-1ß) mRNA levels by qPCR and in cell culture models by NF-κB reporter-driven luciferase activity and Western blot for signal transduction elements. Results We observe a strict inverse correlation between colonic epithelial PXR levels and NF-κB target gene expression in colonic biopsies from Crohn’s disease patients. PXR, activated by rifampicin, is rate-limiting for mucosal NF-κB activation in IBD. The correlation between colonic epithelial PXR levels and NF-κB target gene expression was also observed in intestinal organoids system. Furthermore, in preclinical in vitro models of intestinal inflammation, including intestinal organoids, genetic inactivation of PXR unleashes NF-κB-dependent signal transduction whereas conversely NF-κB signaling reduces levels of PXR expression. Conclusions Our data indicate that the PXR is a major and clinically relevant antagonist of NF-κB activity in the intestinal epithelial compartment during inflammatory bowel disease.
Collapse
|
22
|
Liu T, Song X, Khan S, Li Y, Guo Z, Li C, Wang S, Dong W, Liu W, Wang B, Cao H. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. Int J Cancer 2019; 146:1780-1790. [DOI: 10.1002/ijc.32563] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Tianyu Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Samiullah Khan
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Yun Li
- Department of Pharmacy, General HospitalTianjin Medical University Tianjin China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Chuqiao Li
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| |
Collapse
|
23
|
Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 2019; 12:851-861. [PMID: 30952999 DOI: 10.1038/s41385-019-0162-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023]
Abstract
Bile acids are cholesterol-derived surfactants that circulate actively between the liver and ileum and that are classically recognized for emulsifying dietary lipids to facilitate absorption. More recent studies, however, have revealed new functions of bile acids; as pleotropic signaling metabolites that regulate diverse metabolic and inflammatory pathways in multiple cell types and tissues through dynamic interactions with both germline-encoded host receptors and the microbiota. Accordingly, perturbed bile acid circulation and/or metabolism is now implicated in the pathogenesis of cholestatic liver diseases, metabolic syndrome, colon cancer, and inflammatory bowel diseases (IBDs). Here, we discuss the three-dimensional interplay between bile acids, the microbiota, and the mucosal immune system, focusing on the mechanisms that regulate intestinal homeostasis and inflammation. Although the functions of bile acids in mucosal immune regulation are only beginning to be appreciated, targeting bile acids and their cellular receptors has already proven an important area of new drug discovery.
Collapse
|
24
|
Uehara D, Tojima H, Kakizaki S, Yamazaki Y, Horiguchi N, Takizawa D, Sato K, Yamada M, Uraoka T. Constitutive androstane receptor and pregnane X receptor cooperatively ameliorate DSS-induced colitis. Dig Liver Dis 2019; 51:226-235. [PMID: 30442521 DOI: 10.1016/j.dld.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nuclear receptor pregnane X receptor (PXR) was shown to be protective in case of dextran sulfate sodium (DSS)-induced colitis. Constitutive androstane receptor (CAR) belongs to the same nuclear receptor subfamily with PXR. The roles of both receptors in DSS-induced colitis were evaluated. METHODS Wild-type, Car-null, Pxr-null, and Car/Pxr-null mice were treated with a CAR/PXR agonist or vehicle and administered 2.5% DSS in the drinking water. The typical clinical symptoms, histological scoring, proinflammatory cytokine, and apoptosis were analyzed. RESULTS Mice treated with the PXR agonist pregnenolone-16α-carbonitrile (PCN) were protected from DSS-induced colitis, as in a previous study. Mice treated with the CAR agonist, 4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) were also protected from DSS-induced colitis. Interestingly, the protective effects of PCN in the Car-null mice and those of TCPOBOP in the Pxr-null mice both decreased. PCN or TCPOBOP pretreatment significantly decreased the macrophage and monocyte infiltration in DSS-induced colitis. PXR and CAR agonists reduced the mRNA expression of several proinflammatory cytokines in a PXR- and CAR-dependent manner, respectively. CAR inhibited apoptosis by inducing Gadd45b. PXR inhibited TNF-α and IL-1b and CAR induced Gadd45b in in vitro cell analyses. CONCLUSIONS We showed that CAR and PXR cooperatively ameliorate DSS-induced colitis. PXR and CAR protected against DSS-induced colitis by inhibiting proinflammatory cytokines and apoptosis, respectively.
Collapse
Affiliation(s)
- Daisuke Uehara
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroki Tojima
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Satoru Kakizaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Yuichi Yamazaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Norio Horiguchi
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Daichi Takizawa
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Sato
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
25
|
Nuclear Receptors in the Pathogenesis and Management of Inflammatory Bowel Disease. Mediators Inflamm 2019; 2019:2624941. [PMID: 30804707 PMCID: PMC6360586 DOI: 10.1155/2019/2624941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/01/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that regulate the transcription of target genes. Previous epidemiological and genetic studies have documented the association of NRs with the risk of inflammatory bowel disease (IBD). Although the mechanisms of action of NRs in IBD have not been fully established, accumulating evidence has demonstrated that NRs play complicated roles in regulating intestinal immunity, mucosal barriers, and intestinal flora. As one of the first-line medications for the treatment of IBD, 5-aminosalicylic acid (5-ASA) activates peroxisome proliferator-activated receptor gamma (PPARγ) to attenuate colitis. The protective roles of rifaximin and rifampicin partly depend on promoting pregnane X receptor (PXR) expression. The aims of this review are to discuss the roles of several important NRs, such as PPARγ, PXR, vitamin D receptor (VDR), farnesoid X receptor (FXR), and RAR-related orphan receptor gammat (RORγt), in the pathogenesis of IBD and management strategies based on targeting these receptors.
Collapse
|
26
|
Jiang Y, Feng D, Ma X, Fan S, Gao Y, Fu K, Wang Y, Sun J, Yao X, Liu C, Zhang H, Xu L, Liu A, Gonzalez FJ, Yang Y, Gao B, Huang M, Bi H. Pregnane X Receptor Regulates Liver Size and Liver Cell Fate by Yes-Associated Protein Activation in Mice. Hepatology 2019; 69:343-358. [PMID: 30048004 PMCID: PMC6324985 DOI: 10.1002/hep.30131] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
Activation of pregnane X receptor (PXR), a nuclear receptor that controls xenobiotic and endobiotic metabolism, is known to induce liver enlargement, but the molecular signals and cell types responding to PXR-induced hepatomegaly remain unknown. In this study, the effect of PXR activation on liver enlargement and cell change was evaluated in several strains of genetically modified mice and animal models. Lineage labeling using AAV-Tbg-Cre-treated Rosa26EYFP mice or Sox9-CreERT , Rosa26EYFP mice was performed and Pxr-null mice or AAV Yap short hairpin RNA (shRNA)-treated mice were used to confirm the role of PXR or yes-associated protein (YAP). Treatment with selective PXR activators induced liver enlargement and accelerated regeneration in wild-type (WT) and PXR-humanized mice, but not in Pxr-null mice, by increase of cell size, induction of a regenerative hybrid hepatocyte (HybHP) reprogramming, and promotion of hepatocyte and HybHP proliferation. Mechanistically, PXR interacted with YAP and PXR activation induced nuclear translocation of YAP. Blockade of YAP abolished PXR-induced liver enlargement in mice. Conclusion: These findings revealed a function of PXR in enlarging liver size and changing liver cell fate by activation of the YAP signaling pathway. These results have implications for understanding the physiological functions of PXR and suggest the potential for manipulation of liver size and liver cell fate.
Collapse
Affiliation(s)
- Yiming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kaili Fu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ying Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahong Sun
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xinpeng Yao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Conghui Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Leqian Xu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yingzi Yang
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Correspondence to: Hui-chang Bi, Ph.D., School of Pharmaceutical Sciences, Sun Yat-sen University, 132# Waihuandong Road, Guangzhou University City, Guangzhou 510006, P. R. China, Phone: +86-20-39943470, Fax: +86-20-39943000,
| |
Collapse
|
27
|
Liu M, Zhang G, Zheng C, Song M, Liu F, Huang X, Bai S, Huang X, Lin C, Zhu C, Hu Y, Mi S, Liu C. Activating the pregnane X receptor by imperatorin attenuates dextran sulphate sodium-induced colitis in mice. Br J Pharmacol 2018; 175:3563-3580. [PMID: 29945292 PMCID: PMC6086988 DOI: 10.1111/bph.14424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of the human pregnane X receptor (PXR; NR1I2) has potential therapeutic uses for inflammatory bowel disease (IBD). Imperatorin (IMP), a naturally occurring coumarin, is the main bioactive ingredient of Angelica dahurica Radix, which is regularly used to treat the common cold and intestinal disorders. However, there are no data on the protective effects of IMP against IBD. EXPERIMENTAL APPROACH The effects of IMP on PXR-modulated cytochrome P450 3A4 (CYP3A4) expression were assessed using a PXR transactivation assay, a mammalian two-hybrid assay, a competitive ligand-binding assay, analysis of CYP3A4 mRNA and protein expression levels and measurement of CYP3A4 activity using a cell-based reporter gene assay and in vitro model. The inhibitory effects of IMP on NF-κB activity were evaluated by a reporter assay and NF-κB p65 nuclear translocation. The anti-IBD effects of IMP were investigated in a dextran sulphate sodium (DSS)-induced colitis mouse model. Colon inflammatory cytokines were assessed by elisa. KEY RESULTS IMP activated CYP3A4 promoter activity, recruited steroid receptor coactivator 1 to the ligand-binding domain of PXR and increased the expression and activity of CYP3A4. PXR knockdown substantially reduced IMP-induced increase in CYP3A4 expression. Furthermore, IMP-mediated PXR activation suppressed the nuclear translocation of NF-κB and down-regulated LPS-induced expression of pro-inflammatory genes. Nevertheless, PXR knockdown partially reduced the IMP-mediated inhibition of NF-κB. IMP ameliorated DSS-induced colitis by PXR/NF-κB signalling. CONCLUSIONS AND IMPLICATIONS IMP acts as a PXR agonist to attenuate DSS-induced colitis by suppression of the NF-κB-mediated pro-inflammatory response in a PXR/NF-κB-dependent manner.
Collapse
Affiliation(s)
- Meijing Liu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Guohui Zhang
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chunge Zheng
- Institute of Tropical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Meng Song
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Fangle Liu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaotao Huang
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Shasha Bai
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xinan Huang
- Institute of Tropical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chaozhan Lin
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chenchen Zhu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yingjie Hu
- Institute of Tropical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Suiqing Mi
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Changhui Liu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
28
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
29
|
Effects of polymorphisms in NR1I2, CYP3A4, and ABC transporters on the steady-state plasma trough concentrations of bosutinib in Japanese patient with chronic myeloid leukemia. Med Oncol 2018; 35:90. [PMID: 29736778 DOI: 10.1007/s12032-018-1146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
We investigated the effects of polymorphisms in NR1I2 (7635A>G, 8055C>T), CYP3A4 (20230G>A), ABCB1 (1199G>A, 1236C>T, 2677G>T/A, 3435C>T), and ABCG2 (421C>A) on the mean plasma trough concentrations (C0) of bosutinib at the steady-state in 30 Japanese patients with chronic myeloid leukemia. Bosutinib C0 values were monitored using high-performance liquid chromatography. The median coefficient of variation (CV) value of the bosutinib C0 for one patient (intrapatient) during bosutinib therapy was 25.9% (range: 7.66-44.24%). During bosutinib therapy, 17 of 30 patients received 300 mg/day bosutinib. The interpatient CV value for the bosutinib C0 after administration of 300 mg/day was 45.0%. There were no significant differences in the bosutinib C0 between genotypes for ABCB1, ABCG2, and CYP3A4 polymorphisms. However, the bosutinib C0 in patients with the NR1I2 7635G/G or 8055T/T genotype was significantly lower than those in patients with the 7635A allele or 8055C allele, respectively (P = 0.050 and 0.022, respectively). In addition, the bosutinib C0 in patients with both NR1I2 7635G/G and 8055T/T genotypes was significantly lower than those in patients with other genotypes (P = 0.022). Because patients with the NR1I2 7635G/G or 8055T/T genotype may have increased activity of pregnane X receptor-regulated genes and thereafter higher intestinal expression of CYP3A4 and ABC efflux drug transporters, these patients may have a lower bosutinib C0. Therefore, information on the NR1I2 genotype may be useful for achieving optimal systemic exposure of bosutinib.
Collapse
|
30
|
Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. Pediatr Res 2018; 83:1031-1040. [PMID: 29360809 PMCID: PMC5959752 DOI: 10.1038/pr.2018.14] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
BackgroundThere is substantial evidence that signaling through Toll-like receptor 4 (TLR4) contributes to the pathogenesis of necrotizing enterocolitis (NEC). Pregnane X receptor (PXR), a xenobiotic sensor and signaling intermediate for certain host-bacterial metabolites, has been shown to negatively regulate TLR4 signaling. Here we investigated the relationship between PXR and TLR4 in the developing murine intestine and explored the capacity of PXR to modulate inflammatory pathways involved in experimental NEC.MethodsWild-type and PXR-/- mice were studied at various time points of development in an experimental model of NEC. In addition, we studied the ability of the secondary bile acid lithocholic acid (LCA), a known PXR agonist in liver, to activate intestinal PXR and reduce NEC-related intestinal inflammation.ResultsWe found a reciprocal relationship between the developmental expression of PXR and TLR4 in wild-type murine intestine, with PXR acting to reduce TLR4 expression by decreasing TLR4 mRNA stability. In addition, PXR-/- mice exhibited a remarkably heightened severity of disease in experimental NEC. Moreover, LCA attenuated intestinal proinflammatory responses in the early stages of experimental NEC.ConclusionThese findings provide proactive insights into the regulation of TLR4 in the developing intestine. Targeting PXR may be a novel approach for NEC prevention.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To provide an update on the prevalence, pathophysiology, disease associations, and treatment options for bile acid malabsorption (BAM). RECENT FINDINGS •Molecular mechanisms-BAs prevent water reabsorption and increase water secretion by intracellular mediators, increasing aquaporin channels and intracellular permeability. •Inflammatory bowel disease-new molecular mechanisms of BAM are identified in patients without ileal disease, including changes in expression of ileal BA transporter and nuclear receptors involved in BA homeostasis. •Microscopic colitis-BAM is one of the mechanisms leading to microscopic colitis. •Diagnostic testing-new diagnostic tests have been launched in the USA (serum C4 and fecal 48-h BA excretion); stimulated FGF19 has higher detection of BAM compared to fasting sample alone. •Treatment-investigational FXR agonists may provide a daily, oral option for treatment of BAM instead of BA sequestrants. There is a greater appreciation of the biological role of bile acids across multiple fields of medicine, including gastrointestinal indications.
Collapse
Affiliation(s)
- Priya Vijayvargiya
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton Bldg., Rm. 8-110, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton Bldg., Rm. 8-110, 200 First Street S.W, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Dothel G, Barbaro MR, Raschi E, Barbara G, De Ponti F. Advancements in drug development for diarrhea-predominant irritable bowel syndrome. Expert Opin Investig Drugs 2018; 27:251-263. [PMID: 29451407 DOI: 10.1080/13543784.2018.1442434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common disorder characterized by a complex pathophysiology hampering optimal targeted drug development. Recent advances in our understanding of key underlying mechanisms prompted novel therapeutics including novel pharmacological approaches. AREAS COVERED This review summarizes the latest advancements in the pipeline of IBS-D drugs focusing on new pharmacological targets, efficacy and safety of medicinal products considering the recent harmonization of regulatory requirements by the FDA and the EMA. EXPERT OPINION The new 5-HT3 receptor antagonist ramosetron appears a promising therapeutic approach devoid of significant adverse events, although it is presently unavailable in Western countries, most likely because of the precautionary approach taken by regulatory agencies with this drug class. New pharmacological concepts on full agonists/antagonists, mixed-receptor activity and novel drug targets may streamline the present drug pipeline along with the adherence on new regulatory guidelines on outcome measures. Eluxadoline can be taken as an example of this paradigm shift. It has now been granted marketing authorization for IBS-D on both sides of the Atlantic, but it is still considered as a second-line agent by the NICE. There is still much work to be done to fully cover clinical needs of patients with IBS-D.
Collapse
Affiliation(s)
- Giovanni Dothel
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | | | - Emanuel Raschi
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | - Giovanni Barbara
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| | - Fabrizio De Ponti
- a Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
33
|
Rifaximin decreases virulence of Crohn's disease-associated Escherichia coli and epithelial inflammatory responses. J Antibiot (Tokyo) 2018; 71:485-494. [PMID: 29410518 DOI: 10.1038/s41429-017-0022-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/17/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
Escherichia coli with an adherent and invasive pathotype (AIEC) is implicated in the pathogenesis of Crohn's disease (CD). Rifaximin improves symptoms in mild-to-moderate CD. It is unclear if this outcome is due to its effects on bacteria or intestinal epithelial inflammatory responses. We examined the effects of rifaximin on the growth and virulence of CD-associated E. coli and intestinal epithelial inflammatory responses. Seven well-characterized CD-associated E. coli strains (six AIEC, one non-AIEC; four rifaximin-resistant, three sensitive) were evaluated. We assessed the effects of rifaximin on CD-associated E. coli growth, adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and survival in macrophages. Additionally, we determined the effects of rifaximin on intestinal epithelial inflammatory responses. In vitro rifaximin exerted a dose-dependent effect on the growth of sensitive strains but did not affect the growth of resistant strains. Rifaximin reduced adhesion, invasion, virulence gene expression and motility of CD-associated E. coli in a manner that was independent of its antimicrobial effect. Furthermore, rifaximin reduced IL-8 secretion from pregnane X receptor-expressing T84 colonic epithelial cells. The effect of rifaximin on adhesion was largely attributable to its action on bacteria, whereas decreases in invasion and cytokine secretion were due to its effect on the epithelium. In conclusion, our results show that rifaximin interferes with multiple steps implicated in host-AIEC interactions related to CD, including adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and pro-inflammatory cytokine secretion. Further study is required to determine the relationship of these effects to clinical responses in CD patients.
Collapse
|
34
|
Oladimeji PO, Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol Pharmacol 2018; 93:119-127. [PMID: 29113993 PMCID: PMC5767680 DOI: 10.1124/mol.117.110155] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is a nuclear receptor considered to be a master xenobiotic receptor that coordinately regulates the expression of genes encoding drug-metabolizing enzymes and drug transporters to essentially detoxify and eliminate xenobiotics and endotoxins from the body. In the past several years, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied, and the role of PXR as a xenobiotic sensor has been well established. It is now clear, however, that PXR plays many other roles in addition to its xenobiotic-sensing function. For instance, recent studies have discovered previously unidentified roles of PXR in inflammatory response, cell proliferation, and cell migration. PXR also contributes to the dysregulation of these processes in diseases states. These recent discoveries of the role of PXR in the physiologic and pathophysiologic conditions of other cellular processes provides the possibility of novel targets for drug discovery. This review highlights areas of PXR regulation that require further clarification and summarizes the recent progress in our understanding of the nonxenobiotic functions of PXR that can be explored for relevant therapeutic applications.
Collapse
Affiliation(s)
- Peter O Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
35
|
Activation of PXR inhibits LPS-induced NF-κB activation by increasing IκBα expression in HepG2 cells. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0012-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol 2017; 9:1210-1226. [PMID: 29184608 PMCID: PMC5696604 DOI: 10.4254/wjh.v9.i32.1210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial translocation (BT) has been impeccably implicated as a driving factor in the pathogenesis of a spectrum of chronic liver diseases (CLD). Scientific evidence accumulated over the last four decades has implied that the disease pathologies in CLD and BT are connected as a loop in the gut-liver axis and exacerbate each other. Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor that is expressed ubiquitously along the gut-liver-axis. PXR has been intricately associated with the regulation of various mechanisms attributed in causing BT. The importance of PXR as the mechanistic linker molecule in the gut-liver axis and its role in regulating bacterial interactions with the host in CLD has not been explored. PubMed was used to perform an extensive literature search using the keywords PXR and bacterial translocation, PXR and chronic liver disease including cirrhosis. In an adequate expression state, PXR acts as a sensor for bile acid dysregulation and bacterial derived metabolites, and in response shapes the immune profile beneficial to the host. Activation of PXR could be therapeutic in CLD as it counter-regulates endotoxin mediated inflammation and maintains the integrity of intestinal epithelium. This review mainly focuses PXR function and its regulation in BT in the context of chronic liver diseases.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| |
Collapse
|
37
|
Choi S, Neequaye P, French SW, Gonzalez FJ, Gyamfi MA. Pregnane X receptor promotes ethanol-induced hepatosteatosis in mice. J Biol Chem 2017; 293:1-17. [PMID: 29123032 DOI: 10.1074/jbc.m117.815217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-sensing nuclear receptor that modulates the metabolic response to drugs and toxic agents. Both PXR activation and deficiency promote hepatic triglyceride accumulation, a hallmark feature of alcoholic liver disease. However, the molecular mechanism of PXR-mediated activation of ethanol (EtOH)-induced steatosis is unclear. Here, using male wildtype (WT) and Pxr-null mice, we examined PXR-mediated regulation of chronic EtOH-induced hepatic lipid accumulation and hepatotoxicity. EtOH ingestion for 8 weeks significantly (1.8-fold) up-regulated Pxr mRNA levels in WT mice. The EtOH exposure also increased mRNAs encoding hepatic constitutive androstane receptor (3-fold) and its target, Cyp2b10 (220-fold), in a PXR-dependent manner. Furthermore, WT mice had higher serum EtOH levels and developed hepatic steatosis characterized by micro- and macrovesicular lipid accumulation. Consistent with the development of steatosis, lipogenic gene induction was significantly increased in WT mice, including sterol regulatory element-binding protein 1c target gene fatty-acid synthase (3.0-fold), early growth response-1 (3.2-fold), and TNFα (3.0-fold), whereas the expression of peroxisome proliferator-activated receptor α target genes was suppressed. Of note, PXR deficiency suppressed these changes and steatosis. Protein levels, but not mRNAs levels, of EtOH-metabolizing enzymes, including alcohol dehydrogenase 1, aldehyde dehydrogenase 1A1, and catalase, as well as the microsomal triglyceride transfer protein, involved in regulating lipid output were higher in Pxr-null than in WT mice. These findings establish that PXR signaling contributes to ALD development and suggest that PXR antagonists may provide a new approach for ALD therapy.
Collapse
Affiliation(s)
- Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California 90509
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707.
| |
Collapse
|
38
|
Guo BJ, Bian ZX, Qiu HC, Wang YT, Wang Y. Biological and clinical implications of herbal medicine and natural products for the treatment of inflammatory bowel disease. Ann N Y Acad Sci 2017; 1401:37-48. [DOI: 10.1111/nyas.13414] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Bao-Jian Guo
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Taipa Macao SAR China
| | - Zhao-Xiang Bian
- School of Chinese Medicine and Hong Kong Chinese Medicine Study Centre; Hong Kong Baptist University; Kowloon Tong Hong Kong China
| | - Hong-Cong Qiu
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences and Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards; Nanning China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Taipa Macao SAR China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Taipa Macao SAR China
| |
Collapse
|
39
|
Guo X, Yan M. Pregnane X Receptor Polymorphisms and Risk of Inflammatory Bowel Disease: A Meta-Analysis. Immunol Invest 2017; 46:566-576. [PMID: 28742404 DOI: 10.1080/08820139.2017.1322101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaolan Guo
- Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ming Yan
- Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Geriatric Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
40
|
Cuomo R, Barbara G, Annibale B. Rifaximin and diverticular disease: Position paper of the Italian Society of Gastroenterology (SIGE). Dig Liver Dis 2017; 49:595-603. [PMID: 28215517 DOI: 10.1016/j.dld.2017.01.164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 02/08/2023]
Abstract
Management of diverticular disease has significantly improved in the last decade. Antibiotic treatment is used for symptom relief and prevention of complications. In Italy, the non-absorbable antibiotic rifaximin is one of the most frequently used drugs, and it is perceived as the reference drug to treat symptomatic diverticular disease. Its non-systemic absorption and high faecal concentrations have oriented rifaximin use to the gastrointestinal tract, where rifaximin exerts eubiotic effects representing an additional value to its antibiotic activity. This position paper was commissioned by the Italian Society of Gastroenterology governing board for a panel of experts (RC, GB, BA) to highlight the indications for treatment of diverticular disease. There is a lack of rationale for drug use for the primary prevention of diverticulitis in patients with diverticulosis; thus, rifaximin use should be avoided. The cyclic use of rifaximin, in association with high-fibre intake, is safe and useful for the treatment of symptomatic uncomplicated diverticular disease, even if the cost-efficacy of long-term treatment remains to be determined. The use of rifaximin in the prevention of diverticulitis recurrence is promising, but the low therapeutic advantage needs to be verified. No evidence is available on the efficacy of rifaximin treatment on acute uncomplicated diverticulitis.
Collapse
Affiliation(s)
- Rosario Cuomo
- Department of Clinical Medicine and Surgery, Federico II University, Napoli, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Bruno Annibale
- Medical-Surgical Science and Translational Medicine Department, Sapienza University, Rome, Italy.
| |
Collapse
|
41
|
Van den Bossche L, Borsboom D, Devriese S, Van Welden S, Holvoet T, Devisscher L, Hindryckx P, De Vos M, Laukens D. Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis. J Transl Med 2017; 97:519-529. [PMID: 28165466 DOI: 10.1038/labinvest.2017.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/06/2016] [Accepted: 12/23/2016] [Indexed: 02/06/2023] Open
Abstract
Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD). Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and β was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNFΔARE/WT mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction. TNFΔARE/WT mice and wild-type littermates were treated with TUDCA or placebo for 11 weeks and ileal histopathology and expression of the aforementioned genes were determined. Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation. TNFΔARE/WT mice displayed altered ileal bile acid homeostasis that mimicked the situation in human CD ileitis. Administration of TUDCA attenuated ileitis and alleviated the downregulation of nuclear receptors and bile acid transporters in these mice. These results show that TUDCA protects bile acid homeostasis under inflammatory conditions and suppresses CD-like ileitis. Together with previous observations showing similar efficacy in experimental colitis, we conclude that TUDCA could be a promising therapeutic agent for inflammatory bowel disease, warranting a clinical trial.
Collapse
Affiliation(s)
| | - Daniel Borsboom
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Sarah Devriese
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Sophie Van Welden
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Tom Holvoet
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Martine De Vos
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Debby Laukens
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
42
|
Hudson GM, Flannigan KL, Erickson SL, Vicentini FA, Zamponi A, Hirota CL, Alston L, Altier C, Ghosh S, Rioux KP, Mani S, Chang TK, Hirota SA. Constitutive androstane receptor regulates the intestinal mucosal response to injury. Br J Pharmacol 2017; 174:1857-1871. [PMID: 28320072 DOI: 10.1111/bph.13787] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of the inflammatory bowel diseases (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), involves aberrant interactions between a genetically susceptible individual, their microbiota and environmental factors. Alterations in xenobiotic receptor expression and function are associated with increased risk for IBD. Here, we have assessed the role of the constitutive androstane receptor (CAR), a xenobiotic receptor closely related to the pregnane X receptor, in the regulation of intestinal mucosal homeostasis. EXPERIMENTAL APPROACH CAR expression was assessed in intestinal mucosal biopsies obtained from CD and UC patients, and in C57/Bl6 mice exposed to dextran sulphate sodium (DSS; 3.5% w/v in drinking water) to evoke intestinal inflammation and tissue damage. CAR-deficient mice were exposed to DSS and mucosal healing assessed. Modulation of wound healing by CAR was assessed in vitro. The therapeutic potential of CAR activation was evaluated, using 3,3',5,5'-tetrachloro-1,4-bis(pyridyloxy)benzene (TCPOBOP), a selective rodent CAR agonist. KEY RESULTS CAR expression was reduced in CD and UC samples, compared with expression in healthy controls. This was reproduced in our DSS studies, where CAR expression was reduced in colitic mice. CAR-deficient mice exhibited reduced healing following DSS exposure. In vitro, CAR activation accelerated intestinal epithelial wound healing by enhancing cell migration. Lastly, treating mice with TCPOBOP, following induction of colitis, enhanced mucosal healing. CONCLUSION AND IMPLICATIONS Our results support the notion that xenobiotic sensing is altered during intestinal inflammation, and suggest that CAR activation may prove effective in enhancing mucosal healing in patients with IBD.
Collapse
Affiliation(s)
- Grace M Hudson
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.,Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Kyle L Flannigan
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.,Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Sarah L Erickson
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.,Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Fernando A Vicentini
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.,Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Alexandra Zamponi
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.,Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Canada
| | | | - Laurie Alston
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.,Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Christophe Altier
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
| | - Subrata Ghosh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kevin P Rioux
- Department of Medicine, University of Calgary, Calgary, Canada
| | - Sridhar Mani
- Department of Medicine & Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas K Chang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Simon A Hirota
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.,Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
43
|
Ding YP, Ladeiro Y, Morilla I, Bouhnik Y, Marah A, Zaag H, Cazals-Hatem D, Seksik P, Daniel F, Hugot JP, Wainrib G, Tréton X, Ogier-Denis E. Integrative Network-based Analysis of Colonic Detoxification Gene Expression in Ulcerative Colitis According to Smoking Status. J Crohns Colitis 2017; 11:474-484. [PMID: 27702825 DOI: 10.1093/ecco-jcc/jjw179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUNDS AND AIMS The effect of cigarette smoking [CS] is ambivalent since smoking improves ulcerative colitis [UC] while it worsens Crohn's disease [CD]. Although this clinical relationship between inflammatory bowel disease [IBD] and tobacco is well established, only a few experimental works have investigated the effect of smoking on the colonic barrier homeostasis focusing on xenobiotic detoxification genes. METHODS A comprehensive and integrated comparative analysis of the global xenobiotic detoxification capacity of the normal colonic mucosa of healthy smokers [n = 8] and non-smokers [n = 9] versus the non-affected colonic mucosa of UC patients [n = 19] was performed by quantitative real-time polymerase chain reaction [qRT PCR]. The detoxification gene expression profile was analysed in CD patients [n = 18], in smoking UC patients [n = 5], and in biopsies from non-smoking UC patients cultured or not with cigarette smoke extract [n = 8]. RESULTS Of the 244 detoxification genes investigated, 65 were dysregulated in UC patients in comparison with healthy controls or CD patients. The expression of ≥ 45/65 genes was inversed by CS in biopsies of smoking UC patients in remission and in colonic explants of UC patients exposed to cigarette smoke extract. We devised a network-based data analysis approach for differentially assessing changes in genetic interactions, allowing identification of unexpected regulatory detoxification genes that may play a major role in the beneficial effect of smoking on UC. CONCLUSIONS Non-inflamed colonic mucosa in UC is characterised by a specifically altered detoxification gene network, which is partially restored by tobacco. These mucosal signatures could be useful for developing new therapeutic strategies and biomarkers of drug response in UC.
Collapse
Affiliation(s)
- Yong-Ping Ding
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France
| | - Yannick Ladeiro
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France
| | - Ian Morilla
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| | - Yoram Bouhnik
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de gastroentérologie, MICI et assistance nutritive, Hôpital Beaujon, Clichy la Garenne, France
| | - Assiya Marah
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France
| | - Hatem Zaag
- Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| | - Dominique Cazals-Hatem
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Service d'anatomopathologie, Hôpital Beaujon, Clichy la Garenne, France
| | - Philippe Seksik
- INSERM U1157, UMR 7203, F-7502, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Fanny Daniel
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France
| | - Jean-Pierre Hugot
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Gilles Wainrib
- Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France.,Département d'Informatique, Equipe DATA, Ecole Normale Supérieure, Paris, France
| | - Xavier Tréton
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de gastroentérologie, MICI et assistance nutritive, Hôpital Beaujon, Clichy la Garenne, France
| | - Eric Ogier-Denis
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Sorbonne-Paris- Cité, Paris, France
| |
Collapse
|
44
|
Rana M, Coshic P, Goswami R, Tyagi RK. Influence of a critical single nucleotide polymorphism on nuclear receptor PXR-promoter function. Cell Biol Int 2017; 41:570-576. [DOI: 10.1002/cbin.10744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/13/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Manjul Rana
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi 110067 India
| | - Poonam Coshic
- Department of Transfusion Medicine; All India Institute of Medical Sciences; New Delhi 110029 India
| | - Ravinder Goswami
- Department of Endocrinology and Metabolism; All India Institute of Medical Sciences; New Delhi 110029 India
| | - Rakesh K. Tyagi
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
45
|
Choi Y, Jiang F, An H, Park HJ, Choi JH, Lee H. A pharmacogenomic study on the pharmacokinetics of tacrolimus in healthy subjects using the DMET TM Plus platform. THE PHARMACOGENOMICS JOURNAL 2017; 17:174-179. [PMID: 26882121 DOI: 10.1038/tpj.2015.99] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/22/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022]
Abstract
Genetic association studies on the pharmacokinetics of tacrolimus have reported conflicting results, except for the role of the CYP3A5*3 polymorphism. The objective of this study was to identify genetic variants affecting the pharmacokinetics of tacrolimus using the DMETTM Plus microarray in 42 healthy males. Aside from CYP3A5*3, the rs3814055 polymorphism in the NR1I2 gene was associated with the tacrolimus pharmacokinetics based on false discovery rate-corrected multiple tests and the least absolute shrinkage and selection operator analysis. The area under the concentration-time curve to the last quantifiable time point (AUClast) was 3.42 times greater in subjects with homozygous mutations in both genes (CYP3A5*3/*3 and NR1I2 T/T) than in wild-type subjects. The two variants explained the 54% variability in the tacrolimus AUClast. An in vitro luciferase reporter assay indicated that downregulation of PXR expression is the likely molecular mechanism responsible for the increased exposure to tacrolimus in subjects carrying the rs3814055 C>T variant.
Collapse
Affiliation(s)
- Y Choi
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - F Jiang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - H An
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
- Department of Statistics, Seoul National University, Seoul, Korea
| | - H J Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - J H Choi
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - H Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
46
|
Sun MY, Lin JN. Relationship between NR1I2 polymorphisms and inflammatory bowel disease risk: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2017; 41:230-239. [PMID: 27894906 DOI: 10.1016/j.clinre.2016.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/21/2016] [Accepted: 10/18/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Inconsistent results regarding an association between polymorphisms within the Homo sapiens nuclear receptor subfamily 1 group I member 2 (NR1I2) gene and susceptibility to inflammatory bowel disease (IBD) have been reported. A systematic review and meta-analysis was thus undertaken to determine whether NR1I2 gene polymorphisms are associated with an increased risk of IBD. METHODS Article retrieval was performed using on-line databases, such as PubMed, Embase, CENTRAL, and WOS. After extracting eligible data, Mantel-Haenszel statistics were applied to calculate the odds radio (OR), 95% confidence interval (95% CI) and P value under a random or fixed-effects model. RESULTS A total of seven articles with 4410 IBD subjects and 4028 controls were included. Compared with the control group, no significant increase in IBD susceptibility was observed for the -25385C/T (OR=0.92, 95% CI=0.78∼1.07, P=0.259), -24381A/C (OR=0.96, 95% CI=0.87∼1.06, P=0.378), +8055C/T (OR=1.06, 95% CI=0.97∼1.15, P=0.186), or +7635A/G (OR=0.96, 95% CI=0.87∼1.05, P=0.348) polymorphisms within the NR1I2 gene under the allele model. CONCLUSIONS Our meta-analysis failed to demonstrate an association between -25385C/T, -24381A/C, +8055C/T, or +7635A/G polymorphisms within the NR1I2 gene and overall IBD risk. A larger sample size is needed to validate our conclusion.
Collapse
Affiliation(s)
- Man-Yi Sun
- Department of Gastroenterology, Tianjin Union Medicine Center & Tianjin People's Hospital, 300121 Tianjin, PR China
| | - Jing-Na Lin
- Department of Endocrinology, Tianjin Union Medicine Center & Tianjin People's Hospital, Hongqiao District, Jieyuan Road No. 190, 300121 Tianjin, PR China.
| |
Collapse
|
47
|
Kodama S, Shimura T, Kuribayashi H, Abe T, Yoshinari K. Pregnenolone 16α-carbonitrile ameliorates concanavalin A-induced liver injury in mice independent of the nuclear receptor PXR activation. Toxicol Lett 2017; 271:58-65. [PMID: 28237809 DOI: 10.1016/j.toxlet.2017.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/02/2017] [Accepted: 02/20/2017] [Indexed: 12/19/2022]
Abstract
The pregnane X receptor (PXR) is well-known as a key regulator of drug/xenobiotic clearance. Upon activation by ligand, PXR transcriptionally upregulates the expression of drug-metabolizing enzymes and drug transporters. Recent studies have revealed that PXR also plays a role in regulating immune/inflammatory responses. Specific PXR activators, including synthetic ligands and phytochemicals, have been shown to ameliorate chemically induced colitis in mice. In this study, we investigated an anti-inflammatory effect of pregnenolone 16α-carbonitrile (PCN), a prototypical activator for rodent PXR, in concanavalin A (Con A)-induced liver injury, a model of immune-mediated liver injury, using wild-type and Pxr-/- mice. Unexpectedly, pretreatment with PCN significantly ameliorated Con A-induced liver injury in not only wild-type but Pxr-/- mice as well, accompanied with lowered plasma ALT levels and histological improvements. Pretreatment with PCN was found to significantly repress the induction of Cxcl2 and Ccl2 mRNA expression and neutrophil infiltration into the liver of both wild-type and Pxr-/- mice at the early time point of Con A-induced liver injury. Our results indicate that PCN has unexpected immunosuppressive activity independent of PXR activation to protect mice from immune-mediated liver injury induced by Con A.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Laboratory of Pharmacotherapy of Life-Style Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Takuto Shimura
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hideaki Kuribayashi
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Taiki Abe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kouichi Yoshinari
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
48
|
Garg A, Zhao A, Erickson SL, Mukherjee S, Lau AJ, Alston L, Chang TKH, Mani S, Hirota SA. Pregnane X Receptor Activation Attenuates Inflammation-Associated Intestinal Epithelial Barrier Dysfunction by Inhibiting Cytokine-Induced Myosin Light-Chain Kinase Expression and c-Jun N-Terminal Kinase 1/2 Activation. J Pharmacol Exp Ther 2016; 359:91-101. [PMID: 27440420 PMCID: PMC5034705 DOI: 10.1124/jpet.116.234096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
The inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex etiology. IBD is thought to arise in genetically susceptible individuals in the context of aberrant interactions with the intestinal microbiota and other environmental risk factors. Recently, the pregnane X receptor (PXR) was identified as a sensor for microbial metabolites, whose activation can regulate the intestinal epithelial barrier. Mutations in NR1I2, the gene that encodes the PXR, have been linked to IBD, and in animal models, PXR deletion leads to barrier dysfunction. In the current study, we sought to assess the mechanism(s) through which the PXR regulates barrier function during inflammation. In Caco-2 intestinal epithelial cell monolayers, tumor necrosis factor-α/interferon-γ exposure disrupted the barrier and triggered zonula occludens-1 relocalization, increased expression of myosin light-chain kinase (MLCK), and activation of c-Jun N-terminal kinase 1/2 (JNK1/2). Activation of the PXR [rifaximin and [[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-phosphonic acid tetraethyl ester (SR12813); 10 μM] protected the barrier, an effect that was associated with attenuated MLCK expression and JNK1/2 activation. In vivo, activation of the PXR [pregnenolone 16α-carbonitrile (PCN)] attenuated barrier disruption induced by toll-like receptor 4 activation in wild-type, but not Pxr-/-, mice. Furthermore, PCN treatment protected the barrier in the dextran-sulfate sodium model of experimental colitis, an effect that was associated with reduced expression of mucosal MLCK and phosphorylated JNK1/2. Together, our data suggest that the PXR regulates the intestinal epithelial barrier during inflammation by modulating cytokine-induced MLCK expression and JNK1/2 activation. Thus, targeting the PXR may prove beneficial for the treatment of inflammation-associated barrier disruption in the context of IBD.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Physiology and Pharmacology (A.G., A.Z., S.L.E., L.A., S.A.H.), and Department of Microbiology, Immunology and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Su.M., Sr.M.); and Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (A.J.L., T.K.H.C.)
| | - Angela Zhao
- Department of Physiology and Pharmacology (A.G., A.Z., S.L.E., L.A., S.A.H.), and Department of Microbiology, Immunology and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Su.M., Sr.M.); and Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (A.J.L., T.K.H.C.)
| | - Sarah L Erickson
- Department of Physiology and Pharmacology (A.G., A.Z., S.L.E., L.A., S.A.H.), and Department of Microbiology, Immunology and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Su.M., Sr.M.); and Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (A.J.L., T.K.H.C.)
| | - Subhajit Mukherjee
- Department of Physiology and Pharmacology (A.G., A.Z., S.L.E., L.A., S.A.H.), and Department of Microbiology, Immunology and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Su.M., Sr.M.); and Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (A.J.L., T.K.H.C.)
| | - Aik Jiang Lau
- Department of Physiology and Pharmacology (A.G., A.Z., S.L.E., L.A., S.A.H.), and Department of Microbiology, Immunology and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Su.M., Sr.M.); and Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (A.J.L., T.K.H.C.)
| | - Laurie Alston
- Department of Physiology and Pharmacology (A.G., A.Z., S.L.E., L.A., S.A.H.), and Department of Microbiology, Immunology and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Su.M., Sr.M.); and Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (A.J.L., T.K.H.C.)
| | - Thomas K H Chang
- Department of Physiology and Pharmacology (A.G., A.Z., S.L.E., L.A., S.A.H.), and Department of Microbiology, Immunology and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Su.M., Sr.M.); and Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (A.J.L., T.K.H.C.)
| | - Sridhar Mani
- Department of Physiology and Pharmacology (A.G., A.Z., S.L.E., L.A., S.A.H.), and Department of Microbiology, Immunology and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Su.M., Sr.M.); and Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (A.J.L., T.K.H.C.)
| | - Simon A Hirota
- Department of Physiology and Pharmacology (A.G., A.Z., S.L.E., L.A., S.A.H.), and Department of Microbiology, Immunology and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (Su.M., Sr.M.); and Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (A.J.L., T.K.H.C.)
| |
Collapse
|
49
|
Chai SC, Cherian MT, Wang YM, Chen T. Small-molecule modulators of PXR and CAR. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1141-1154. [PMID: 26921498 PMCID: PMC4975625 DOI: 10.1016/j.bbagrm.2016.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 12/27/2022]
Abstract
Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Milu T Cherian
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
50
|
PXR- and CAR-mediated herbal effect on human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1121-1129. [DOI: 10.1016/j.bbagrm.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
|