1
|
Mohácsik P, Halmos E, Dorogházi B, Ruska Y, Wittmann G, Bianco AC, Fekete C, Gereben B. The Musashi-1-type 2 deiodinase pathway regulates astrocyte proliferation. J Biol Chem 2024; 300:107477. [PMID: 38879014 PMCID: PMC11301063 DOI: 10.1016/j.jbc.2024.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Thyroid hormone (TH) is a critical regulator of cellular function and cell fate. The circulating TH level is relatively stable, while tissue TH action fluctuates according to cell type-specific mechanisms. Here, we focused on identifying mechanisms that regulate TH action through the type 2 deiodinase (D2) in glial cells. Dio2 mRNA has an unusually long 3'UTR where we identified multiple putative MSI1 binding sites for Musashi-1 (MSI1), a highly conserved RNA-binding cell cycle regulator. Binding to these sites was confirmed through electrophoretic mobility shift assay. In H4 glioma cells, shRNA-mediated MSI1 knockdown increased endogenous D2 activity, whereas MSI1 overexpression in HEK293T cells decreased D2 expression. This latter effect could be prevented by the deletion of a 3.6 kb region of the 3'UTR of Dio2 mRNA containing MSI1 binding sites. MSI1 immunoreactivity was observed in 2 mouse Dio2-expressing cell types, that is, cortical astrocytes and hypothalamic tanycytes, establishing the anatomical basis for a potential in vivo interaction of Dio2 mRNA and MSl1. Indeed, increased D2 expression was observed in the cortex of mice lacking MSI1 protein. Furthermore, MSI1 knockdown-induced D2 expression slowed down cell proliferation by 56% in primary cultures of mouse cortical astrocytes, establishing the functionality of the MSI1-D2-T3 pathway. In summary, Dio2 mRNA is a target of MSI1 and the MSI1-D2-T3 pathway is a novel regulatory mechanism of astrocyte proliferation with the potential to regulate the pathogenesis of human glioblastoma.
Collapse
Affiliation(s)
- Petra Mohácsik
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Emese Halmos
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Dorogházi
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Yvette Ruska
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Wittmann
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, USA
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
2
|
Banerjee A, Deka D, Muralikumar M, Sun-Zhang A, Bisgin A, Christopher C, Zhang H, Sun XF, Pathak S. A concise review on miRNAs as regulators of colon cancer stem cells and associated signalling pathways. Clin Transl Oncol 2023; 25:3345-3356. [PMID: 37086351 DOI: 10.1007/s12094-023-03200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Despite recent therapy advances and a better understanding of colon cancer biology, it remains one of the major causes of death. The cancer stem cells, associated with the progression, metastasis, and recurrence of colon cancer, play a major role in promoting the development of tumour and are found to be chemo resistant. The stroma of the tumour, which makes up the bulk of the tumour mass, is composed of the tumour microenvironment. With the advent of theranostic and the development of personalised medicine, miRNAs are becoming increasingly important in the context of colon malignancies. A holistic understanding of the regulatory roles of miRNAs in cancer cells and cancer stem cells will allow us to design effective strategies to regulate miRNAs, which could lead to improved clinical translation and creating a potent colon cancer treatment strategy. In this review paper, we briefly discuss the history of miRNA as well as the mechanisms of miRNA and cancer stem cells that contribute to the tumour growth, apoptosis, and advancement of colon cancer. The usefulness of miRNA in colorectal cancer theranostic is further concisely reviewed. We conclude by holding a stance in addressing the prospects and possibilities for miRNA by the disclosure of recent theranostic approaches aimed at eradicating cancer stem cells and enhancing overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India.
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| | - Makalakshmi Muralikumar
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, Karolinska Institute, 171 77, Solna, Sweden
| | - Atil Bisgin
- InfoGenom R&D Laboratories, Cukurova Technopolis, Adana, Turkey
- Medical Genetics Department of Medical Faculty, Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Cukurova University, Adana, Turkey
| | - Cynthia Christopher
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, 701 82, Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Oncology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| |
Collapse
|
3
|
Asghariazar V, Kadkhodayi M, Sarailoo M, Jolfayi AG, Baradaran B. MicroRNA-143 as a potential tumor suppressor in cancer: An insight into molecular targets and signaling pathways. Pathol Res Pract 2023; 250:154792. [PMID: 37689002 DOI: 10.1016/j.prp.2023.154792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
MicroRNAs (MiRNAs), which are highly conserved and small noncoding RNAs, negatively regulate gene expression and influence signaling pathways involved in essential biological activities, including cell proliferation, differentiation, apoptosis, and cell invasion. MiRNAs have received much attention in the past decade due to their significant roles in cancer development. In particular, microRNA-143 (miR-143) is recognized as a tumor suppressor and is downregulated in most cancers. However, it seems that miR-143 is upregulated in rare cases, such as prostate cancer stem cells, and acts as an oncogene. The present review will outline the current studies illustrating the impact of miR-143 expression levels on cancer progression and discuss its target genes and their relevant signaling pathways to discover a potential therapeutic way for cancer.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, The University of Tabriz, Tabriz, Iran
| | - Mehdi Sarailoo
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ghaffari Jolfayi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Coppo R, Kondo J, Iida K, Okada M, Onuma K, Tanaka Y, Kamada M, Ohue M, Kawada K, Obama K, Inoue M. Distinct but interchangeable subpopulations of colorectal cancer cells with different growth fates and drug sensitivity. iScience 2023; 26:105962. [PMID: 36718360 PMCID: PMC9883198 DOI: 10.1016/j.isci.2023.105962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Dynamic changes in cell properties lead to intratumor heterogeneity; however, the mechanisms of nongenetic cellular plasticity remain elusive. When the fate of each cell from colorectal cancer organoids was tracked through a clonogenic growth assay, the cells showed a wide range of growth ability even within the clonal organoids, consisting of distinct subpopulations; the cells generating large spheroids and the cells generating small spheroids. The cells from the small spheroids generated only small spheroids (S-pattern), while the cells from the large spheroids generated both small and large spheroids (D-pattern), both of which were tumorigenic. Transition from the S-pattern to the D-pattern occurred by various extrinsic triggers, in which Notch signaling and Musashi-1 played a key role. The S-pattern spheroids were resistant to chemotherapy and transited to the D-pattern upon drug treatment through Notch signaling. As the transition is linked to the drug resistance, it can be a therapeutic target.
Collapse
Affiliation(s)
- Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihisa Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan,RIKEN Center for Computational Science, HPC- and AI-driven Drug Development Platform Division, Biomedical Computational Intelligence Unit, Hyogo, Japan
| | - Mayumi Kamada
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan,Corresponding author
| |
Collapse
|
5
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
6
|
Non-Canonical Programmed Cell Death in Colon Cancer. Cancers (Basel) 2022; 14:cancers14143309. [PMID: 35884370 PMCID: PMC9320762 DOI: 10.3390/cancers14143309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Non-canonical PCD is an important player in colon cancer cell suicide. It influences colon cancer in many ways, such as through tumorigenesis, treatment, and prognosis. In this review, we present the mechanism, application, and prospect of different types of non-canonical PCD in colon cancer. Abstract Programmed cell death (PCD) is an evolutionarily conserved process of cell suicide that is regulated by various genes and the interaction of multiple signal pathways. Non-canonical programmed cell death (PCD) represents different signaling excluding apoptosis. Colon cancer is the third most incident and the fourth most mortal worldwide. Multiple factors such as alcohol, obesity, and genetic and epigenetic alternations contribute to the carcinogenesis of colon cancer. In recent years, emerging evidence has suggested that diverse types of non-canonical programmed cell death are involved in the initiation and development of colon cancer, including mitotic catastrophe, ferroptosis, pyroptosis, necroptosis, parthanatos, oxeiptosis, NETosis, PANoptosis, and entosis. In this review, we summarized the association of different types of non-canonical PCD with tumorigenesis, progression, prevention, treatments, and prognosis of colon cancer. In addition, the prospect of drug-resistant colon cancer therapy related to non-canonical PCD, and the interaction between different types of non-canonical PCD, was systemically reviewed.
Collapse
|
7
|
Knockdown of the stem cell marker Musashi-1 inhibits endometrial cancer growth and sensitizes cells to radiation. Stem Cell Res Ther 2022; 13:212. [PMID: 35619161 PMCID: PMC9137084 DOI: 10.1186/s13287-022-02891-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Endometrial carcinoma is the most common gynecological cancer in Europe. Musashi-1 is known to be a key regulator of endometrial cancer stem cells and a negative prognostic marker. In the present study, we aimed to understand growth and gene expression patterns in endometrial carcinoma after Musashi-1 knockdown in vitro and in vivo. Changes in therapeutic resistance were also assessed.
Methods First, we performed analyses to understand Musashi-1 expression patterns using The Cancer Genome Atlas database. We then proceeded to assess effects of small interfering RNA-based Musashi-1 targeting in two endometrial carcinoma cell lines, Ishikawa and KLE. After quantifying baseline changes in cell metabolism, we used MTT tests to assess chemotherapy effects and colony formation assays to understand changes in radioresistance. For mechanistic study, we used quantitative polymerase chain reaction (qPCR) and western blotting of key Musashi-1 target genes and compared results to primary tissue database studies. Finally, xenograft experiments in a mouse model helped understand in vivo effects of Musashi-1 knockdown. Results Musashi-1 is aberrantly expressed in primary tumor tissues. In vitro, silencing of Musashi-1 resulted in a strong decline in cell proliferation and radioresistance, while chemoresistance remained unchanged. Loss of Musashi-1 led to downregulation of telomerase, DNA-dependent protein kinase, the Notch pathway and overexpression of cyclin-dependent kinase inhibitor p21, the latter of which we identified as a key mediator of Msi-1 knockdown-related anti-proliferative signaling. In vivo, the anti-proliferative effect was confirmed, with Msi-1 knockdown tumors being about 40% reduced in size. Conclusions Musashi-1 knockdown resulted in a strong decrease in endometrial cancer proliferation and a loss of radioresistance, suggesting therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02891-3.
Collapse
|
8
|
Yang YP, Lee ACL, Lin LT, Chen YW, Huang PI, Ma HI, Chen YC, Lo WL, Lan YT, Fang WL, Wang CY, Liu YY, Hsu PK, Lin WC, Li CP, Chen MT, Chien CS, Wang ML. Strategic Decoy Peptides Interfere with MSI1/AGO2 Interaction to Elicit Tumor Suppression Effects. Cancers (Basel) 2022; 14:cancers14030505. [PMID: 35158774 PMCID: PMC8833744 DOI: 10.3390/cancers14030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Peptide drugs that can specifically target undesirable protein–protein interactions that lead to oncogenic developments have emerged as the next era of future medicine for cancers. To combat GBM tumor progression, our study offers an alternative therapeutic strategy via targeting the protein–protein interaction between MSI1 and AGO2 with synthetic peptides identified from the C-terminus of MSI1 in peptide arrays. Our present data revealed for the first time that peptidic disruption to the MSI1/AGO2 complex known for promoting cancer stemness and progression could lead to encouraging therapeutic efficacy at both in vitro and in vivo levels. The significantly suppressed tumor growth and prolonged survival rates in PDX tumor models by decoy peptides evidently provided a new rationale for stratifying patients with MSI1/AGO2-targeted therapeutics. Abstract Peptide drugs that target protein–protein interactions have attracted mounting research efforts towards clinical developments over the past decades. Increasing reports have indicated that expression of Musashi 1 (MSI1) is tightly correlated to high grade of cancers as well as enrichment of cancer stem cells. Treatment failure in malignant tumors glioblastoma multiform (GBM) had also been correlated to CSC-regulating properties of MSI1. It is thus imperative to develop new therapeutics that could effectively improve current regimens used in clinics. MSI1 and AGO2 are two emerging oncogenic molecules that both contribute to GBM tumorigenesis through mRNA regulation of targets involved in apoptosis and cell cycle. In this study, we designed peptide arrays covering the C-terminus of MSI1 and identified two peptides (Pep#11 and Pep#26) that could specifically interfere with the binding with AGO2. Our Biacore analyses ascertained binding between the identified peptides and AGO2. Recombinant reporter system Gaussian luciferase and fluorescent bioconjugate techniques were employed to determine biological functions and pharmacokinetic characteristics of these two peptides. Our data suggested that Pep#11 and Pep#26 could function as decoy peptides by mimicking the interaction function of MSI1 with its binding partner AGO2 in vitro and in vivo. Further experiments using GMB animal models corroborated the ability of Pep#11 and Pep#26 in disrupting MSI1/AGO2 interaction and consequently anti-tumorigenicity and prolonged survival rates. These striking therapeutic efficacies orchestrated by the synthetic peptides were attributed to the decoy function to C-terminal MSI1, especially in malignant brain tumors and glioblastoma.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Andy Chi-Lung Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Liang-Ting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Yi-Wei Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Pin-I Huang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan;
| | - Yi-Chen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
| | - Wen-Liang Lo
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yuan-Tzu Lan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Liang Fang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chien-Ying Wang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Physical Education and Health, University of Taipei, Taipei 111, Taiwan
| | - Yung-Yang Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Chest Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Po-Kuei Hsu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Chung-Pin Li
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Teh Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Correspondence: (C.-S.C.); (M.-L.W.); Tel.: +886-2-5568-1156 (M.-L.W.); Fax: +886-2-2875-7435 (M.-L.W.)
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (Y.-P.Y.); (A.C.-L.L.); (Y.-C.C.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-W.C.); (P.-I.H.); (W.-L.L.); (Y.-T.L.); (W.-L.F.); (C.-Y.W.); (Y.-Y.L.); (P.-K.H.); (C.-P.L.); (M.-T.C.)
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (C.-S.C.); (M.-L.W.); Tel.: +886-2-5568-1156 (M.-L.W.); Fax: +886-2-2875-7435 (M.-L.W.)
| |
Collapse
|
9
|
Troschel FM, Palenta H, Borrmann K, Heshe K, Hua SH, Yip GW, Kiesel L, Eich HT, Götte M, Greve B. Knockdown of the prognostic cancer stem cell marker Musashi-1 decreases radio-resistance while enhancing apoptosis in hormone receptor-positive breast cancer cells via p21 WAF1/CIP1. J Cancer Res Clin Oncol 2021; 147:3299-3312. [PMID: 34291358 PMCID: PMC8484224 DOI: 10.1007/s00432-021-03743-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 02/02/2023]
Abstract
Purpose While the stem cell marker Musashi-1 (MSI-1) has been identified as a key player in a wide array of malignancies, few findings exist on its prognostic relevance and relevance for cancer cell death and therapy resistance in breast cancer. Methods First, we determined prognostic relevance of MSI-1 in database analyses regarding multiple survival outcomes. To substantiate findings, MSI-1 was artificially downregulated in MCF-7 breast cancer cells and implications for cancer stem cell markers, cell apoptosis and apoptosis regulator p21, proliferation and radiation response were analyzed via flow cytometry and colony formation. Radiation-induced p21 expression changes were investigated using a dataset containing patient samples obtained before and after irradiation and own in vitro experiments. Results MSI-1 is a negative prognostic marker for disease-free and distant metastasis-free survival in breast cancer and tends to negatively influence overall survival. MSI-1 knockdown downregulated stem cell gene expression and proliferation, but increased p21 levels and apoptosis. Similar to the MSI-1 knockdown effect, p21 expression was strongly increased after irradiation and was expressed at even higher levels in MSI-1 knockdown cells after irradiation. Finally, combined use of MSI-1 silencing and irradiation reduced cancer cell survival. Conclusion MSI-1 is a prognostic marker in breast cancer. MSI-1 silencing downregulates proliferation while increasing apoptosis. The anti-proliferation mediator p21 was upregulated independently after both MSI-1 knockdown and irradiation and even more after both treatments combined, suggesting synergistic potential. Radio-sensitization effects after combining radiation and MSI-1 knockdown underline the potential of MSI-1 as a therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03743-y.
Collapse
Affiliation(s)
- Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany.
| | - Heike Palenta
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - Kristin Heshe
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - San Hue Hua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| |
Collapse
|
10
|
Bley N, Hmedat A, Müller S, Rolnik R, Rausch A, Lederer M, Hüttelmaier S. Musashi-1-A Stemness RBP for Cancer Therapy? BIOLOGY 2021; 10:407. [PMID: 34062997 PMCID: PMC8148009 DOI: 10.3390/biology10050407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein Musashi-1 (MSI1) promotes stemness during development and cancer. By controlling target mRNA turnover and translation, MSI1 is implicated in the regulation of cancer hallmarks such as cell cycle or Notch signaling. Thereby, the protein enhanced cancer growth and therapy resistance to standard regimes. Due to its specific expression pattern and diverse functions, MSI1 represents an interesting target for cancer therapy in the future. In this review we summarize previous findings on MSI1's implications in developmental processes of other organisms. We revisit MSI1's expression in a set of solid cancers, describe mechanistic details and implications in MSI1 associated cancer hallmark pathways and highlight current research in drug development identifying the first MSI1-directed inhibitors with anti-tumor activity.
Collapse
Affiliation(s)
- Nadine Bley
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Ali Hmedat
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Simon Müller
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Robin Rolnik
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Alexander Rausch
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Marcell Lederer
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Stefan Hüttelmaier
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| |
Collapse
|
11
|
Gao C, Zhang Y, Tian Y, Han C, Wang L, Ding B, Tian H, Zhou C, Ju Y, Peng A, Yu Q. Circ_0055625 knockdown inhibits tumorigenesis and improves radiosensitivity by regulating miR-338-3p/MSI1 axis in colon cancer. World J Surg Oncol 2021; 19:131. [PMID: 33882945 PMCID: PMC8061229 DOI: 10.1186/s12957-021-02234-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Radiotherapy is a main therapeutic method for cancers, including colon cancer. In the current study, we aim to explore the effects of circular RNA (circRNA) circ_0055625 in the progression and radiosensitivity of colon cancer and the underlying mechanism. METHODS The expression of circ_0055625 and musashi homolog 1 (MSI1) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). MSI1 protein expression was determined by Western blot. Cell proliferation was assessed by cell counting kit-8 (CCK-8) and colony formation assays. Cell survival fraction, apoptosis, and invasion were investigated by colony formation assay, flow cytometry analysis, and transwell invasion assay, respectively. Cell migration was detected by wound-healing and transwell migration assays. The binding relationship between microRNA-338-3p (miR-338-3p) and circ_0055625 or MSI1 was predicted by online databases and identified by Dual-Luciferase Reporter Assay. The effects of circ_0055625 silencing on the tumor formation and radiosensitivity of colon cancer in vivo were explored by in vivo tumor formation assay. RESULTS Circ_0055625 and MSI1 were upregulated in colon cancer tissues and cells relative to control groups. Radiation treatment apparently increased the expression of circ_0055625 and MSI1 in colon cancer cells. Circ_0055625 knockdown or MSI1 silencing repressed cell proliferation, migration, and invasion and promoted cell apoptosis and radiosensitivity in colon cancer. Also, circ_0055625 silencing-mediated effects were attenuated by MSI1 overexpression. Additionally, circ_0055625 silencing reduced MSI1 expression, which could be attenuated by miR-338-3p inhibitor. Mechanically, circ_0055625 acted as a sponge for miR-338-3p to regulate MSI1. Furthermore, circ_0055625 knockdown hindered tumor growth and improved radiosensitivity in vivo. CONCLUSION Circ_0055625 repression inhibited the progression and radioresistance of colon cancer by downregulating MSI1 through sponging miR-338-3p. This result might provide a theoretical basis for improving the therapy of colon cancer with radiation.
Collapse
Affiliation(s)
- Chao Gao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050011, Hebei Province, China
| | - Chun Han
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lan Wang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Boyue Ding
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hua Tian
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingchao Ju
- Department of Experimental Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ale Peng
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiyao Yu
- Department of Research, The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang, 050011, Hebei Province, China.
| |
Collapse
|
12
|
Baroni M, Yi C, Choudhary S, Lei X, Kosti A, Grieshober D, Velasco M, Qiao M, Burns SS, Araujo PR, DeLambre T, Son MY, Plateroti M, Ferreira MAR, Hasty EP, Penalva LOF. Musashi1 Contribution to Glioblastoma Development via Regulation of a Network of DNA Replication, Cell Cycle and Division Genes. Cancers (Basel) 2021; 13:1494. [PMID: 33804958 PMCID: PMC8036803 DOI: 10.3390/cancers13071494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/21/2022] Open
Abstract
RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in their levels are often observed in tumors with numerous oncogenic RBPs identified in recent years. Musashi1 (Msi1) is an RBP and stem cell gene that controls the balance between self-renewal and differentiation. High Msi1 levels have been observed in multiple tumors including glioblastoma and are often associated with poor patient outcomes and tumor growth. A comprehensive genomic analysis identified a network of cell cycle/division and DNA replication genes and established these processes as Msi1's core regulatory functions in glioblastoma. Msi1 controls this gene network via two mechanisms: direct interaction and indirect regulation mediated by the transcription factors E2F2 and E2F8. Moreover, glioblastoma lines with Msi1 knockout (KO) displayed increased sensitivity to cell cycle and DNA replication inhibitors. Our results suggest that a drug combination strategy (Msi1 + cell cycle/DNA replication inhibitors) could be a viable route to treat glioblastoma.
Collapse
Affiliation(s)
- Mirella Baroni
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Caihong Yi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Saket Choudhary
- Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA;
| | - Xiufen Lei
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Adam Kosti
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Denise Grieshober
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mitzli Velasco
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mei Qiao
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Suzanne S. Burns
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Patricia R. Araujo
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Talia DeLambre
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mi Young Son
- Department of Molecular Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA; (M.Y.S.); (E.P.H.)
| | - Michelina Plateroti
- Team: Development, Cancer and Stem Cells, Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 67200 Strasbourg, France;
| | | | - E. Paul Hasty
- Department of Molecular Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA; (M.Y.S.); (E.P.H.)
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
Frau C, Jamard C, Delpouve G, Guardia GDA, Machon C, Pilati C, Nevé CL, Laurent-Puig P, Guitton J, Galante PAF, Penalva LO, Freund JN, de la Fouchardiere C, Plateroti M. Deciphering the Role of Intestinal Crypt Cell Populations in Resistance to Chemotherapy. Cancer Res 2021; 81:2730-2744. [PMID: 33741693 DOI: 10.1158/0008-5472.can-20-2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/11/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Intestinal crypts are composed of heterogeneous and highly plastic cell populations. Lgr5high-stem cells (SC) are responsible for homeostatic renewal, but other cells can revert to an SC-like phenotype to maintain epithelial integrity. Despite their distinct roles in orchestrating homeostasis, both populations have been designated as the putative "cell-of-origin" of colorectal cancer. However, their respective involvement in the emergence of drug-resistant cancer SCs (CSC), responsible for tumor relapse and associated with poor outcome of colorectal cancer, remains elusive. In this context, the intestinal SC/progenitor-marker Musashi1 (MSI1) is interesting as it plays important functions in intestinal homeostasis and is frequently overexpressed in human colorectal cancer. Therefore, our aims were: (i) to study the impact of chemotherapy on Lgr5-expressing and MSI1-expressing cell populations, (ii) to explore the effect of increased MSI1 levels in response to treatment, and (iii) to evaluate the relevance in human colorectal cancer. Engineered mouse models treated with the therapeutic agent 5-fluorouracil showed that upon increased MSI1 levels, Lgr5high SCs remain sensitive while Lgr5low progenitors reprogram to a drug-resistant phenotype. This resulted in the expansion of an MSI1-expressing cell subpopulation with improved resistance to DNA damage and increased detoxification, typical properties of dormant-CSCs that can reactivate after chemotherapy. Analysis in patients with colorectal cancer revealed a correlation between MSI1 levels and tumor grading, CSC phenotype, and chemoresistance. Altogether, these results shed new light on the biology and plasticity of normal crypt and cancer cell populations and also open new perspectives to target MSI1 to improve chemotherapy outcome. SIGNIFICANCE: This study unveils paradoxical roles for MSI1, underlining its importance in facilitating intestinal regeneration upon injury but also unraveling its new function in drug-resistant colorectal cancer stem cells.
Collapse
Affiliation(s)
- Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Catherine Jamard
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Gaspard Delpouve
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | | | - Christelle Machon
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Service de Biochimie et Pharmaco-toxicologie, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Camilla Pilati
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Clémentine Le Nevé
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Department of Biology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Guitton
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Service de Biochimie et Pharmaco-toxicologie, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Luiz O Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jean-Noel Freund
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, Strasbourg, France
| | | | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France.
| |
Collapse
|
14
|
Li L, Jiang Z, Zou X, Hao T. Exosomal circ_IFT80 Enhances Tumorigenesis and Suppresses Radiosensitivity in Colorectal Cancer by Regulating miR-296-5p/MSI1 Axis. Cancer Manag Res 2021; 13:1929-1941. [PMID: 33658855 PMCID: PMC7917334 DOI: 10.2147/cmar.s297123] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background Exosomal circular RNAs (circRNAs) can act as biomarkers and play crucial roles in colorectal cancer (CRC) and radiosensitivity. The aim of this study was to explore the functions and regulatory mechanism of exosomal circRNA intraflagellar transport 80 (circ_IFT80) in tumorigenesis and radiosensitivity of CRC. Methods Exosomes were detected using transmission electron microscopy (TEM). Protein levels were determined by Western blot assay. The expression of circ_IFT80, microRNA-296-5p (miR-296-5p) and musashi1 (MSI1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell cycle distribution, cell apoptosis, and cell proliferation were detected by flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. Colony formation assay was used to determine the radiosensitivity of cells. The interaction between miR-296-5p and circ_IFT80 or MSI1 was verified by dual-luciferase reporter assay. A xenograft tumor model was established to explore the role of exosomal circ_IFT80 in vivo. Results Circ_IFT80 was upregulated in exosomes derived from CRC patient serum and CRC cells. Exosomal circ_IFT80 or circ_IFT80 overexpression facilitated tumorigenesis by increasing cell proliferation and reducing apoptosis, and inhibited radiosensitivity via promoting colony formation and inhibiting apoptosis. Additionally, circ_IFT80 acted as a sponge of miR-296-5p, and miR-296-5p reversed the effects of circ_IFT80 on tumorigenesis and radiosensitivity. Moreover, MSI1 was a direct target of miR-296-5p. Furthermore, miR-296-5p overexpression inhibited tumorigenesis and promoted radiosensitivity by downregulating MSI1. Exosomal circ_IFT80 also accelerated tumor growth in vivo. Conclusion Exosomal circ_IFT80 promoted tumorigenesis and reduced radiosensitivity by regulating miR-296-5p/MSI1 axis, which might provide a novel avenue for treatment of CRC.
Collapse
Affiliation(s)
- Liang Li
- Department of Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Zhipeng Jiang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiangcai Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Tengfei Hao
- Department of Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| |
Collapse
|
15
|
Chiremba TT, Neufeld KL. Constitutive Musashi1 expression impairs mouse postnatal development and intestinal homeostasis. Mol Biol Cell 2020; 32:28-44. [PMID: 33175598 PMCID: PMC8098822 DOI: 10.1091/mbc.e20-03-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Evolutionarily conserved RNA-binding protein Musashi1 (Msi1) can regulate developmentally relevant genes. Here we report the generation and characterization of a mouse model that allows inducible Msi1 overexpression in a temporal and tissue-specific manner. We show that ubiquitous Msi1 induction in ∼5-wk-old mice delays overall growth, alters organ-to-body proportions, and causes premature death. Msi1-overexpressing mice had shortened intestines, diminished intestinal epithelial cell (IEC) proliferation, and decreased growth of small intestine villi and colon crypts. Although Lgr5-positive intestinal stem cell numbers remained constant in Msi1-overexpressing tissue, an observed reduction in Cdc20 expression provided a potential mechanism underlying the intestinal growth defects. We further demonstrated that Msi1 overexpression affects IEC differentiation in a region-specific manner, with ileum tissue being influenced the most. Ilea of mutant mice displayed increased expression of enterocyte markers, but reduced expression of the goblet cell marker Mucin2 and fewer Paneth cells. A higher hairy and enhancer of split 1:mouse atonal homolog 1 ratio in ilea from Msi1-overexpressing mice implicated Notch signaling in inducing enterocyte differentiation. Together, this work implicates Msi1 in mouse postnatal development of multiple organs, with Notch signaling alterations contributing to intestinal defects. This new mouse model will be a useful tool to further elucidate the role of Msi1 in other tissue settings.
Collapse
Affiliation(s)
- Thelma T Chiremba
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
16
|
Zhu X, Chen Y, Xu X, Xu X, Lu Y, Huang X, Zhou J, Hu L, Wang J, Shen X. SP6616 as a Kv2.1 inhibitor efficiently ameliorates peripheral neuropathy in diabetic mice. EBioMedicine 2020; 61:103061. [PMID: 33096484 PMCID: PMC7581884 DOI: 10.1016/j.ebiom.2020.103061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a common complication of diabetes severely afflicting the patients, while there is yet no effective medication against this disease. As Kv2.1 channel functions potently in regulating neurological disorders, the present work was to investigate the regulation of Kv2.1 channel against DPN-like pathology of DPN model mice by using selective Kv2.1 inhibitor SP6616 (ethyl 5-(3-ethoxy-4-methoxyphenyl)-2-(4-hydroxy-3-methoxybenzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate) as a probe. METHODS STZ-induced type 1 diabetic mice with DPN (STZ mice) were defined at 12 weeks of age (4 weeks after STZ injection) through behavioral tests, and db/db (BKS Cg-m+/+Leprdb/J) type 2 diabetic mice with DPN (db/db mice) were at 18 weeks of age. SP6616 was administered daily via intraperitoneal injection for 4 weeks. The mechanisms underlying the amelioration of SP6616 on DPN-like pathology were investigated by RT-PCR, western blot and immunohistochemistry technical approaches against diabetic mice, and verified against the STZ mice with Kv2.1 knockdown in dorsal root ganglion (DRG) tissue by injection of adeno associated virus AAV9-Kv2.1-RNAi. Amelioration of SP6616 on the pathological behaviors of diabetic mice was assessed against tactile allodynia, thermal sensitivity and motor nerve conduction velocity (MNCV). FINDINGS SP6616 treatment effectively ameliorated the threshold of mechanical stimuli, thermal sensitivity and MNCV of diabetic mice. Mechanism research results indicated that SP6616 suppressed Kv2.1 expression, increased the number of intraepidermal nerve fibers (IENFs), improved peripheral nerve structure and vascular function in DRG tissue. In addition, SP6616 improved mitochondrial dysfunction through Kv2.1/CaMKKβ/AMPK/PGC-1α pathway, repressed inflammatory response by inhibiting Kv2.1/NF-κB signaling and alleviated apoptosis of DRG neuron through Kv2.1-mediated regulation of Bcl-2 family proteins and Caspase-3 in diabetic mice. INTERPRETATION Our work has highly supported the beneficial of Kv2.1 inhibition in ameliorating DPN-like pathology and highlighted the potential of SP6616 in the treatment of DPN. FUNDING Please see funding sources.
Collapse
Affiliation(s)
- Xialin Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xu Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoju Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
17
|
Orzechowska EJ, Katano T, Bialkowska AB, Yang VW. Interplay among p21 Waf1/Cip1, MUSASHI-1 and Krüppel-like factor 4 in activation of Bmi1-Cre ER reserve intestinal stem cells after gamma radiation-induced injury. Sci Rep 2020; 10:18300. [PMID: 33110120 PMCID: PMC7591575 DOI: 10.1038/s41598-020-75171-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Gamma radiation is a commonly used adjuvant treatment for abdominally localized cancer. Since its therapeutic potential is limited due to gastrointestinal (GI) syndrome, elucidation of the regenerative response following radiation-induced gut injury is needed to develop a preventive treatment. Previously, we showed that Krüppel-like factor 4 (KLF4) activates certain quiescent intestinal stem cells (ISCs) marked by Bmi1-CreER to give rise to regenerating crypts following γ irradiation. In the current study, we showed that γ radiation-induced expression of p21Waf1/Cip1 in Bmi1-CreER cells is likely mitigated by MUSASHI-1 (MSI1) acting as a negative regulator of p21Waf1/Cip1 mRNA translation, which promotes exit of the Bmi1-CreER cells from a quiescent state. Additionally, Bmi1-specific Klf4 deletion resulted in decreased numbers of MSI1+ cells in regenerating crypts compared to those of control mice. We showed that KLF4 binds to the Msi1 promoter and activates its expression in vitro. Since MSI1 has been shown to be crucial for crypt regeneration, this finding elucidates a pro-proliferative role of KLF4 during the postirradiation regenerative response. Taken together, our data suggest that the interplay among p21Waf1/Cip1, MSI1 and KLF4 regulates Bmi1-CreER cell survival, exit from quiescence and regenerative potential upon γ radiation-induced injury.
Collapse
Affiliation(s)
- Emilia J Orzechowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takahito Katano
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA. .,Department of Physiology and Biophysics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA.
| |
Collapse
|
18
|
Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World J Gastroenterol 2020; 26:5223-5247. [PMID: 32994684 PMCID: PMC7504244 DOI: 10.3748/wjg.v26.i35.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Stress granules (SGs) represent important non-membrane cytoplasmic compartments, involved in cellular adaptation to various stressful conditions (e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain several scaffold proteins and RNA-binding proteins, which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions. Although the role of SGs in cancer development is still poorly known and vary between cancer types, increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance. As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide, development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis. Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies. In this review, we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Lawrence, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
19
|
Kang D, Lee Y, Lee JS. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12092699. [PMID: 32967226 PMCID: PMC7563379 DOI: 10.3390/cancers12092699] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RNA-binding proteins (RBPs) play central roles in regulating posttranscriptional expression of genes. Many of them are known to be deregulated in a wide variety of cancers. Dysregulated RBPs influence the expression levels of target RNAs related to cancer phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis. Thus, understanding the molecular functions of RBPs and their roles in cancer-related phenotypes can lead to improved therapeutic strategies. Abstract RNA-binding proteins (RBPs) crucially regulate gene expression through post-transcriptional regulation, such as by modulating microRNA (miRNA) processing and the alternative splicing, alternative polyadenylation, subcellular localization, stability, and translation of RNAs. More than 1500 RBPs have been identified to date, and many of them are known to be deregulated in cancer. Alterations in the expression and localization of RBPs can influence the expression levels of oncogenes, tumor-suppressor genes, and genome stability-related genes. RBP-mediated gene regulation can lead to diverse cancer-related cellular phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and epithelial-mesenchymal transition (EMT)/invasion/metastasis. This regulation can also be associated with cancer prognosis. Thus, RBPs can be potential targets for the development of therapeutics for the cancer treatment. In this review, we describe the molecular functions of RBPs, their roles in cancer-related cellular phenotypes, and various approaches that may be used to target RBPs for cancer treatment.
Collapse
Affiliation(s)
- Donghee Kang
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
| | - Yerim Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jae-Seon Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9832
| |
Collapse
|
20
|
Lan L, Liu J, Xing M, Smith AR, Wang J, Wu X, Appelman C, Li K, Roy A, Gowthaman R, Karanicolas J, Somoza AD, Wang CCC, Miao Y, De Guzman R, Oakley BR, Neufeld KL, Xu L. Identification and Validation of an Aspergillus nidulans Secondary Metabolite Derivative as an Inhibitor of the Musashi-RNA Interaction. Cancers (Basel) 2020; 12:cancers12082221. [PMID: 32784494 PMCID: PMC7463734 DOI: 10.3390/cancers12082221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
RNA-binding protein Musashi-1 (MSI1) is a key regulator of several stem cell populations. MSI1 is involved in tumor proliferation and maintenance, and it regulates target mRNAs at the translational level. The known mRNA targets of MSI1 include Numb, APC, and P21WAF-1, key regulators of Notch/Wnt signaling and cell cycle progression, respectively. In this study, we aim to identify small molecule inhibitors of MSI1-mRNA interactions, which could block the growth of cancer cells with high levels of MSI1. Using a fluorescence polarization (FP) assay, we screened small molecules from several chemical libraries for those that disrupt the binding of MSI1 to its consensus RNA. One cluster of hit compounds is the derivatives of secondary metabolites from Aspergillus nidulans. One of the top hits, Aza-9, from this cluster was further validated by surface plasmon resonance and nuclear magnetic resonance spectroscopy, which demonstrated that Aza-9 binds directly to MSI1, and the binding is at the RNA binding pocket. We also show that Aza-9 binds to Musashi-2 (MSI2) as well. To test whether Aza-9 has anti-cancer potential, we used liposomes to facilitate Aza-9 cellular uptake. Aza-9-liposome inhibits proliferation, induces apoptosis and autophagy, and down-regulates Notch and Wnt signaling in colon cancer cell lines. In conclusion, we identified a series of potential lead compounds for inhibiting MSI1/2 function, while establishing a framework for identifying small molecule inhibitors of RNA binding proteins using FP-based screening methodology.
Collapse
Affiliation(s)
- Lan Lan
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Jiajun Liu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Minli Xing
- Bio-NMR Core Facility, the University of Kansas, Lawrence, KS 66045, USA;
| | - Amber R. Smith
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Jinan Wang
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - Xiaoqing Wu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Carl Appelman
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Ke Li
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Anuradha Roy
- High Throughput Screening Laboratory, the University of Kansas, Lawrence, KS 66045, USA;
| | - Ragul Gowthaman
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Amber D. Somoza
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007, USA; (A.D.S.); (C.C.C.W.)
| | - Clay C. C. Wang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007, USA; (A.D.S.); (C.C.C.W.)
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA
| | - Yinglong Miao
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - Roberto De Guzman
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Berl R. Oakley
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Kristi L. Neufeld
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
- Department of Cancer Biology, the University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Liang Xu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
- Department of Radiation Oncology, the University of Kansas Cancer Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
21
|
Forouzanfar M, Lachinani L, Dormiani K, Nasr-Esfahani MH, Gure AO, Ghaedi K. Intracellular functions of RNA-binding protein, Musashi1, in stem and cancer cells. Stem Cell Res Ther 2020; 11:193. [PMID: 32448364 PMCID: PMC7245930 DOI: 10.1186/s13287-020-01703-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding protein, musashi1 (MSI1), is a main protein in asymmetric cell division of the sensory organ precursor cells, whereas its expression is reported to be upregulated in cancers. This protein is a critical element in proliferation of stem and cancer stem cells, which acts through Wnt and Notch signaling pathways. Moreover, MSI1 modulates malignancy and chemoresistance of lung cancer cells via activating the Akt signaling. Due to the main role of MSI1 in metastasis and cancer development, MSI1 would be an appropriate candidate for cancer therapy. Downregulation of MSI1 inhibits proliferation of cancer stem cells and reduces the growth of solid tumors in several cancers. On the other hand, MSI1 expression is regulated by microRNAs in such a way that several different tumor suppressor miRNAs negatively regulate oncogenic MSI1 and inhibit migration and tumor metastasis. The aim of this review is summarizing the role of MSI1 in stem cell proliferation and cancer promotion.
Collapse
Affiliation(s)
- Mahboobeh Forouzanfar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran
| | - Liana Lachinani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran
| | - Kianoush Dormiani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
22
|
Knockdown of Musashi RNA Binding Proteins Decreases Radioresistance but Enhances Cell Motility and Invasion in Triple-Negative Breast Cancer. Int J Mol Sci 2020; 21:ijms21062169. [PMID: 32245259 PMCID: PMC7139790 DOI: 10.3390/ijms21062169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022] Open
Abstract
The therapeutic potential of Musashi (MSI) RNA-binding proteins, important stemness-associated gene expression regulators, remains insufficiently understood in breast cancer. This study identifies the interplay between MSI protein expression, stem cell characteristics, radioresistance, cell invasiveness and migration. MSI-1, MSI-2 and Notch pathway elements were investigated via quantitative polymerase chain reaction (qPCR) in 19 triple-negative breast cancer samples. Measurements were repeated in MDA-MB-231 cells after MSI-1 and -2 siRNA-mediated double knockdown, with further experiments performed after MSI silencing. Flow cytometry helped quantify expression of CD44 and leukemia inhibitory factor receptor (LIFR), changes in apoptosis and cell cycle progression. Proliferation and irradiation-induced effects were assessed using colony formation assays. Radiation-related proteins were investigated via Western blots. Finally, cell invasion assays and digital holographic microscopy for cell migration were performed. MSI proteins showed strong correlations with Notch pathway elements. MSI knockdown resulted in reduction of stem cell marker expression, cell cycle progression and proliferation, while increasing apoptosis. Cells were radiosensitized as radioresistance-conferring proteins were downregulated. However, MSI-silencing-mediated LIFR downregulation resulted in enhanced cell invasion and migration. We conclude that, while MSI knockdown results in several therapeutically desirable consequences, enhanced invasion and migration need to be counteracted before knockdown advantages can be fully exploited.
Collapse
|
23
|
YÜKSEL H, ZAFER E. Endometrial Stem/Progenitor Cells. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2020. [DOI: 10.1007/s13669-020-00278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Chagas PF, Baroni M, Brassesco MS, Tone LG. Interplay between the RNA binding‐protein Musashi and developmental signaling pathways. J Gene Med 2020; 22:e3136. [DOI: 10.1002/jgm.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Pablo Ferreira Chagas
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Mirella Baroni
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São Paulo Brazil
| | - Luiz Gonzaga Tone
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
- Department of PediatricsRibeirão Preto Medical School São Paulo
| |
Collapse
|
25
|
Chen HY, Wang ML, Laurent B, Hsu CH, Chen MT, Lin LT, Shen J, Chang WC, Hsu J, Hung MC, Chen YW, Huang PI, Yang YP, Li CP, Ma HI, Chen CH, Lin WC, Chiou SH. Musashi-1 promotes stress-induced tumor progression through recruitment of AGO2. Theranostics 2020; 10:201-217. [PMID: 31903115 PMCID: PMC6929620 DOI: 10.7150/thno.35895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Carcinomatous progression and recurrence are the main therapeutic challenges frequently faced by patients with refractory tumors. However, the underlined molecular mechanism remains obscure. Methods: We found Musashi-1 (MSI1) transported into cytosol under stress condition by confocal microscopy and cell fractionation. Argonaute 2 (AGO2) was then identified as a cytosolic binding partner of MSI1 by Mass Spectrametry, immunoprecipitation, and recombinant protein pull-down assay. We used RNA-IP to determine the MSI1/AGO2 associated regions on downstream target mRNAs. Finally, we overexpressed C-terminus of MSI1 to disrupt endogenous MSI1/AGO2 interaction and confirm it effects on tmor progression. Results: Malignant tumors exhibit elevated level of cytosolic Musashi-1 (MSI1), which translocates into cytosol in response to stress and promote tumor progression. Cytosolic MSI1 forms a complex with AGO2 and stabilize or destabilize its target mRNAs by respectively binding to their 3´ untranslated region or coding domain sequence. Both MSI1 translocation and MSI1/AGO2 binding are essential for promoting tumor progression. Blocking MSI1 shuttling by either chemical inhibition or point mutation attenuates the growth of GBM-xenografts in mice. Importantly, overexpression of the C-terminus of MSI1 disrupts endogenous MSI1/AGO2 interaction and effectively reduces stress-induced tumor progression. Conclusion: Our findings highlight novel molecular functions of MSI1 during stress-induced carcinomatous recurrence, and suggest a new therapeutic strategy for refractory malignancies by targeting MSI1 translocation and its interaction with AGOs.
Collapse
|
26
|
Caiazza F, Oficjalska K, Tosetto M, Phelan JJ, Noonan S, Martin P, Killick K, Breen L, O'Neill F, Nolan B, Furney S, Power R, Fennelly D, Craik CS, O'Sullivan J, Sheahan K, Doherty GA, Ryan EJ. KH-Type Splicing Regulatory Protein Controls Colorectal Cancer Cell Growth and Modulates the Tumor Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1916-1932. [PMID: 31404541 PMCID: PMC6892187 DOI: 10.1016/j.ajpath.2019.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 01/18/2023]
Abstract
KH-type splicing regulatory protein (KHSRP) is a multifunctional nucleic acid binding protein implicated in key aspects of cancer cell biology: inflammation and cell-fate determination. However, the role KHSRP plays in colorectal cancer (CRC) tumorigenesis remains largely unknown. Using a combination of in silico analysis of large data sets, ex vivo analysis of protein expression in patients, and mechanistic studies using in vitro models of CRC, we investigated the oncogenic role of KHSRP. We demonstrated KHSRP expression in the epithelial and stromal compartments of both primary and metastatic tumors. Elevated expression was found in tumor versus matched normal tissue, and these findings were validated in larger independent cohorts in silico. KHSRP expression was a prognostic indicator of worse overall survival (hazard ratio, 3.74; 95% CI, 1.43-22.97; P = 0.0138). Mechanistic data in CRC cell line models supported a role of KHSRP in driving epithelial cell proliferation in both a primary and metastatic setting, through control of the G1/S transition. In addition, KHSRP promoted a proangiogenic extracellular environment by regulating the secretion of oncogenic proteins involved in diverse cellular processes, such as migration and response to cellular stress. Our study provides novel mechanistic insight into the tumor-promoting effects of KHSRP in CRC.
Collapse
Affiliation(s)
- Francesco Caiazza
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| | - Katarzyna Oficjalska
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - James J Phelan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinéad Noonan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - Petra Martin
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - Kate Killick
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Laura Breen
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Blathnaid Nolan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Furney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Power
- School of Medicine, University College Dublin, Dublin, Ireland
| | - David Fennelly
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Yang LY, Song GL, Zhai XQ, Wang L, Liu QL, Zhou MS. MicroRNA-331 inhibits development of gastric cancer through targeting musashi1. World J Gastrointest Oncol 2019; 11:705-716. [PMID: 31558975 PMCID: PMC6755110 DOI: 10.4251/wjgo.v11.i9.705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/23/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The molecular mechanisms involved in microRNAs (miRNAs) have been extensively investigated in gastric cancer (GC). However, how miR-331 regulates GC pathogenesis remains unknown.
AIM To illuminate the effect of miR-331 on cell metastasis and tumor growth in GC.
METHODS The qRT-PCR, CCK8, Transwell, cell adhesion, Western blot, luciferase reporter and xenograft tumor formation assays were applied to explore the regulatory mechanism of miR-331 in GC.
RESULTS Downregulation of miR-331 associated with poor prognosis was detected in GC. Functionally, miR-331 suppressed cell proliferation, metastasis and tumor growth in GC. Further, miR-331 was verified to directly target musashi1 (MSI1). In addition, miR-331 inversely regulated MSI1 expression in GC tissues. Furthermore, upregulation of MSI1 weakened the inhibitory effect of miR-331 in GC.
CONCLUSION miR-331 inhibited development of GC through targeting MSI1, which may be used as an indicator for the prediction and prognosis of GC.
Collapse
Affiliation(s)
- Lei-Ying Yang
- Department of Pathology, Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Guang-Le Song
- Morphological Laboratory, Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Xiao-Qian Zhai
- Department of Pathology, Second Affiliated Hospital of Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Li Wang
- Department of Pathology, Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Qin-Lai Liu
- Department of Pathology, Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Ming-Shun Zhou
- Department of Emergency, Second Affiliated Hospital of Shandong First Medical University, Taian 271016, Shandong Province, China
| |
Collapse
|
28
|
Cragle CE, MacNicol MC, Byrum SD, Hardy LL, Mackintosh SG, Richardson WA, Gray NK, Childs GV, Tackett AJ, MacNicol AM. Musashi interaction with poly(A)-binding protein is required for activation of target mRNA translation. J Biol Chem 2019; 294:10969-10986. [PMID: 31152063 PMCID: PMC6635449 DOI: 10.1074/jbc.ra119.007220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
The Musashi family of mRNA translational regulators controls both physiological and pathological stem cell self-renewal primarily by repressing target mRNAs that promote differentiation. In response to differentiation cues, Musashi can switch from a repressor to an activator of target mRNA translation. However, the molecular events that distinguish Musashi-mediated translational activation from repression are not understood. We have previously reported that Musashi function is required for the maturation of Xenopus oocytes and specifically for translational activation of specific dormant maternal mRNAs. Here, we employed MS to identify cellular factors necessary for Musashi-dependent mRNA translational activation. We report that Musashi1 needs to associate with the embryonic poly(A)-binding protein (ePABP) or the canonical somatic cell poly(A)-binding protein PABPC1 for activation of Musashi target mRNA translation. Co-immunoprecipitation studies demonstrated an increased Musashi1 interaction with ePABP during oocyte maturation. Attenuation of endogenous ePABP activity severely compromised Musashi function, preventing downstream signaling and blocking oocyte maturation. Ectopic expression of either ePABP or PABPC1 restored Musashi-dependent mRNA translational activation and maturation of ePABP-attenuated oocytes. Consistent with these Xenopus findings, PABPC1 remained associated with Musashi under conditions of Musashi target mRNA de-repression and translation during mammalian stem cell differentiation. Because association of Musashi1 with poly(A)-binding proteins has previously been implicated only in repression of Musashi target mRNAs, our findings reveal novel context-dependent roles for the interaction of Musashi with poly(A)-binding protein family members in response to extracellular cues that control cell fate.
Collapse
Affiliation(s)
- Chad E Cragle
- Department of Neurobiology and Developmental Sciences
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences,; Center for Translational Neuroscience
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology,; Arkansas Children's Research Institute
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences
| | | | - William A Richardson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Nicola K Gray
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences,; Center for Translational Neuroscience
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology,; Arkansas Children's Research Institute
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences,; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and.
| |
Collapse
|
29
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
30
|
Moradi F, Babashah S, Sadeghizadeh M, Jalili A, Hajifathali A, Roshandel H. Signaling pathways involved in chronic myeloid leukemia pathogenesis: The importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:581-589. [PMID: 31231484 PMCID: PMC6570743 DOI: 10.22038/ijbms.2019.31879.7666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/15/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential for self-renewal pathways in CML stem cells will be reviewed meticulously. MATERIALS AND METHODS In this review, a PubMed search using the keywords of Leukemia, signaling pathways, Musashi2-Numb was performed, and then we summarized different research works . RESULTS Although tyrosine kinase inhibitors such as Imatinib significantly kill and remove the cell with BCR-ABL1 translocation, they are unable to target BCR-ABL1 leukemia stem cells. The main problem is stem cells resistance to Imatinib therapy. Therefore, the identification and control of downstream molecules/ signaling route of the BCR-ABL1 that are involved in the survival and self-renewal of leukemia stem cells can be an effective treatment strategy to eliminate leukemia stem cells, which supposed to be cured by Musashi2-Numb signaling pathway. CONCLUSION The control of molecules /pathways downstream of the BCR-ABL1 and targeting Musashi2-Numb can be an effective therapeutic strategy for treatment of chronic leukemia stem cells. While Musashi2 is a poor prognostic marker in leukemia, in treatment and strategy, it has significant diagnostic value.
Collapse
Affiliation(s)
- Foruzan Moradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arsalan Jalili
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajifathali Roshandel
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Lin JC, Tsai JT, Chao TY, Ma HI, Liu WH. Musashi-1 Enhances Glioblastoma Migration by Promoting ICAM1 Translation. Neoplasia 2019; 21:459-468. [PMID: 30959276 PMCID: PMC6453839 DOI: 10.1016/j.neo.2019.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor with a mean survival time of 1 year. One major reason for therapeutic failure is that GBM cells have an extraordinary capacity to invade normal brain tissue beyond the surgical margin, accounting for the lack of treatment efficacy. GBM cells that can infiltrate into the healthy brain possess tumor properties of stemness and invasion, and previous studies demonstrate that Musashi-1 (MSI1), a neural stem cell marker, plays an important role in the maintenance of stem cell status, cellular differentiation, and tumorigenesis in cancers. By analyzing neuronal progenitor cell markers and stemness genes, we predicted that MSI1 might be an important factor in GBM pathogenesis. Because inflammation aids in the proliferation and survival of malignant cells, the inflammatory microenvironment also promotes GBM invasion, and intercellular adhesion molecule-1 (ICAM1), a member of the immunoglobulin superfamily, is involved in inflammation. Our results indicate that the above phenomena are likely due to MSI1 upregulation, which occurred simultaneously with higher expression of ICAM1 in GBM cells. Indeed, MSI1 knockdown effectively suppressed ICAM1 expression and blocked GBM cell motility and invasion, whereas overexpressing ICAM1 reversed these effects. According to RNA immunoprecipitation assays, MSI1-mediated mRNA interactions promote ICAM1 translation. Finally, immunohistochemical analysis showed MSI1 and ICAM-1 to be coexpressed at high levels in GBM tissues. Thus, the MSI1/ICAM1 pathway plays an important role in oncogenic resistance, including increased tumor invasion, and MSI1/ICAM1 may be a target for GBM treatment.
Collapse
Affiliation(s)
- Jang-Chun Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC; Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Tsu-Yi Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC; Division of Hematology/Oncology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, No.325, Sec. 2, Cheng-Kung Road, Taipei 11490, Taiwan; Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, No.325, Sec. 2, Cheng-Kung Road, Taipei 11490, Taiwan; Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
32
|
Yi C, Li G, Ivanov DN, Wang Z, Velasco MX, Hernández G, Kaundal S, Villarreal J, Gupta YK, Qiao M, Hubert CG, Hart MJ, Penalva LOF. Luteolin inhibits Musashi1 binding to RNA and disrupts cancer phenotypes in glioblastoma cells. RNA Biol 2018; 15:1420-1432. [PMID: 30362859 DOI: 10.1080/15476286.2018.1539607] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA binding proteins have emerged as critical oncogenic factors and potential targets in cancer therapy. In this study, we evaluated Musashi1 (Msi1) targeting as a strategy to treat glioblastoma (GBM); the most aggressive brain tumor type. Msi1 expression levels are often high in GBMs and other tumor types and correlate with poor clinical outcome. Moreover, Msi1 has been implicated in chemo- and radio-resistance. Msi1 modulates a range of cancer relevant processes and pathways and regulates the expression of stem cell markers and oncogenic factors via mRNA translation/stability. To identify Msi1 inhibitors capable of blocking its RNA binding function, we performed a ~ 25,000 compound fluorescence polarization screen. NMR and LSPR were used to confirm direct interaction between Msi1 and luteolin, the leading compound. Luteolin displayed strong interaction with Msi1 RNA binding domain 1 (RBD1). As a likely consequence of this interaction, we observed via western and luciferase assays that luteolin treatment diminished Msi1 positive impact on the expression of pro-oncogenic target genes. We tested the effect of luteolin treatment on GBM cells and showed that it reduced proliferation, cell viability, colony formation, migration and invasion of U251 and U343 GBM cells. Luteolin also decreased the proliferation of patient-derived glioma initiating cells (GICs) and tumor-organoids but did not affect normal astrocytes. Finally, we demonstrated the value of combined treatments with luteolin and olaparib (PARP inhibitor) or ionizing radiation (IR). Our results show that luteolin functions as an inhibitor of Msi1 and demonstrates its potential use in GBM therapy.
Collapse
Affiliation(s)
- Caihong Yi
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,b Xiangya School of Medicine , Central South University , Hunan , China
| | - Guiming Li
- c Center for Innovative Drug Discovery , University of Texas Health Science Center , San Antonio , TX , USA.,d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Dmitri N Ivanov
- d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Zhonghua Wang
- d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Mitzli X Velasco
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,e Division of Basic Research , National Institute of Cancer (INCan) , Mexico City , Mexico
| | - Greco Hernández
- e Division of Basic Research , National Institute of Cancer (INCan) , Mexico City , Mexico
| | - Soni Kaundal
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA
| | - Johanna Villarreal
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA
| | - Yogesh K Gupta
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Mei Qiao
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA
| | - Christopher G Hubert
- f Department of Stem Cell Biology and Regenerative Medicine , Cleveland Clinic , Cleveland , OH , USA
| | - Matthew J Hart
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,c Center for Innovative Drug Discovery , University of Texas Health Science Center , San Antonio , TX , USA.,d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Luiz O F Penalva
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,g Department of Cell Systems and Anatomy , University of Texas Health Science Center , San Antonio , TX , USA
| |
Collapse
|
33
|
MSI1 associates glioblastoma radioresistance via homologous recombination repair, tumor invasion and cancer stem-like cell properties. Radiother Oncol 2018; 129:352-363. [PMID: 30322656 DOI: 10.1016/j.radonc.2018.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common brain malignancy in adults, and currently available GBM treatments present several unique challenges. It is known that GBM involves cancer stem-like cells (CSCs) and tumor cells that aggressively invade normal brain tissues, and both cell types may cause resistance to radiotherapy (RT) and are thus responsible for therapeutic failure. The radioresistance of GBM cells relies on the efficient activation of the DNA damage response (DDR), but the mechanisms linking this response with stem-cell status and tumor invasion remain unclear. MATERIALS AND METHODS We used irradiation to treat patient-derived GBM (Par) cells and then purified radioresistant GBM (R2M2) cells through two rounds of irradiation and an invasion assay. Musashi-1 (MSI1) is a neural stem-cell marker and key oncogenic factor of GBM. We identified MSI1 expression to predict radioresistance through silencing an MSI1-high-expressing R2M2 cell line or inducing overexpression in a Par cell line with low/no MSI1 expression and assessing the subsequent DDR. RESULT MSI1 enhances tumor invasion via VCAM1 and modulates GBM radioresistance via the hyperactivation of the DDR through increasing homologous recombination repair and evading apoptosis. MSI1 knockdown induces DNA damage accumulation in irradiated GBM cells and promotes their depletion in vitro; MSI1 knockdown also inhibits the formation of GBMs generated by irradiated xeno-transplanted cells. MSI1 inhibition may radiosensitize tumors, prevent CSC-positive selection induced by RT, and reduce tumor invasion. CONCLUSION MSI1 may involve in regulating GBM radioresistance, invasion, and recurrence and could be a novel target for GBM treatment.
Collapse
|
34
|
Lan L, Liu H, Smith AR, Appelman C, Yu J, Larsen S, Marquez RT, Wu X, Liu FY, Gao P, Gowthaman R, Karanicolas J, De Guzman RN, Rogers S, Aubé J, Neufeld KL, Xu L. Natural product derivative Gossypolone inhibits Musashi family of RNA-binding proteins. BMC Cancer 2018; 18:809. [PMID: 30097032 PMCID: PMC6086024 DOI: 10.1186/s12885-018-4704-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Musashi (MSI) family of RNA-binding proteins is best known for the role in post-transcriptional regulation of target mRNAs. Elevated MSI1 levels in a variety of human cancer are associated with up-regulation of Notch/Wnt signaling. MSI1 binds to and negatively regulates translation of Numb and APC (adenomatous polyposis coli), negative regulators of Notch and Wnt signaling respectively. METHODS Previously, we have shown that the natural product (-)-gossypol as the first known small molecule inhibitor of MSI1 that down-regulates Notch/Wnt signaling and inhibits tumor xenograft growth in vivo. Using a fluorescence polarization (FP) competition assay, we identified gossypolone (Gn) with a > 20-fold increase in Ki value compared to (-)-gossypol. We validated Gn binding to MSI1 using surface plasmon resonance, nuclear magnetic resonance, and cellular thermal shift assay, and tested the effects of Gn on colon cancer cells and colon cancer DLD-1 xenografts in nude mice. RESULTS In colon cancer cells, Gn reduced Notch/Wnt signaling and induced apoptosis. Compared to (-)-gossypol, the same concentration of Gn is less active in all the cell assays tested. To increase Gn bioavailability, we used PEGylated liposomes in our in vivo studies. Gn-lip via tail vein injection inhibited the growth of human colon cancer DLD-1 xenografts in nude mice, as compared to the untreated control (P < 0.01, n = 10). CONCLUSION Our data suggest that PEGylation improved the bioavailability of Gn as well as achieved tumor-targeted delivery and controlled release of Gn, which enhanced its overall biocompatibility and drug efficacy in vivo. This provides proof of concept for the development of Gn-lip as a molecular therapy for colon cancer with MSI1/MSI2 overexpression.
Collapse
Affiliation(s)
- Lan Lan
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Hao Liu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
- Current address: School of Pharmacy, Southwest Medical University, Luzhou City, China
| | - Amber R Smith
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Carl Appelman
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Jia Yu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Sarah Larsen
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Rebecca T Marquez
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Xiaoqing Wu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Frank Y Liu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Philip Gao
- Protein Production Group, NIH COBRE in Protein Structure and Function, Lawrence, USA
| | - Ragul Gowthaman
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Roberto N De Guzman
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Steven Rogers
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey Aubé
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Kristi L Neufeld
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Liang Xu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA.
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, Kansas, USA.
| |
Collapse
|
35
|
Liu L, Qiu F, Chen J, Wu D, Nong Q, Zhou Y, Lu J. Functional Polymorphism in the MSI1 Gene Promoter Confers a Decreased Risk of Lung Cancer in Chinese by Reducing MSI1 Expression. Curr Genomics 2018; 19:375-383. [PMID: 30065613 PMCID: PMC6030856 DOI: 10.2174/1389202919666171128151544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/12/2016] [Accepted: 01/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Musashi1 (MSI1) is a characteristic stem cell marker that regulates the balance between cell self-renewal and differentiation. Evidence has identified MSI1 as a pivotal oncogenic regulator in diverse malignancies. However, little evidence uncovers the role of genetic variations of MSI1 gene in cancer etiology. Objective: The aim of this study was to investigate the association between genetic variants in the MSI1 gene and lung cancer risk. Methods: Based on a two-stage retrospective study with a total of 1559 patients with lung cancer and 1667 healthy controls, we evaluated the relevance between three putative functional SNPs in the MSI1 promoter (i.e., -2696T>C[rs7959801], -2297T>C[rs3742038] and -1081C>T[rs34570155]) and lung cancer risk. Results: We found that the SNP rs7959801T>C was significantly associated with lung cancer susceptibility. Compared to those with rs7959801TT wild-genotype, individuals with CT/CC variant genotypes exerted consistently beneficial roles in lung cancer risk in the discovery set (adjusted odd ratios [OR] = 0.67; 95% confidence interval [CI] = 0.57-0.80), and in the validation set (OR=0.69; 95%CI=0.54-0.88). Functional assays indicated that the allele transformation from T to C in rs7959801 of MSI1 gene arrestingly decreased its transcription activity in vitro. Furthermore, the expression levels of MSI1 were significantly lower in the patients with CT/CC variants than in those who were with TT genotype. Conclusion: Our findings suggested that the rs7959801T>C polymorphism in the MSI1 promoter conferred a decreased risk to lung cancer by reducing the expression of MSI1 and it may be a promising indicator for lung cancer predisposition.
Collapse
Affiliation(s)
- Lin Liu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Fuman Qiu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Jiansong Chen
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Di Wu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Qingqing Nong
- Department of Environmental Health, Guangxi Medical University, 22 Shuangyong road, Nanning530021, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 199 Renai road, Suzhou215123, China
| | - Jiachun Lu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| |
Collapse
|
36
|
Chen HY, Lin LT, Wang ML, Tsai KL, Huang PI, Yang YP, Lee YY, Chen YW, Lo WL, Lan YT, Chiou SH, Lin CM, Ma HI, Chen MT. Musashi-1 promotes chemoresistant granule formation by PKR/eIF2α signalling cascade in refractory glioblastoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1850-1861. [PMID: 29486283 DOI: 10.1016/j.bbadis.2018.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/25/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
Musashi-1 (MSI1), one of the RNA-binding proteins, is abundantly found not only in neural stem cells but also in several cancer tissues and has been reported to act as a positive regulator of cancer progression. Growing evidence indicates that PKR and eIF2α play pivotal roles in the stimulation of stress granule formation as well as in the subsequent translation modulation in response to stressful conditions; however, little is known about whether MSI1 is involved in this PKR/eIF2α cancer stem cell-enhancing machinery. In this study, we demonstrated that MSI1 promotes human glioblastoma multiforme (GBM) stem cells and enhances chemoresistance when exposed to sublethal stress. The overexpression of MSI1 leads to a protective effect in mitigating drug-induced cell death, thus facilitating the formation of chemoresistant stress granules (SGs) in response to arsenic trioxide (ATO) treatment. SG components, such as PKR and eIF2α, were dominantly activated and assembled, while ATO was engaged. The activated PKR and eIF2α contribute to the downstream enhancement of stem cell genes, thereby promoting the progression of GBM. The silencing of MSI1 or PKR both obviously withdrew the phenomena. Taken together, our findings indicate that MSI1 plays a leading role in stress granule formation that grants cancer stem cell properties and chemoresistant stress granules in GBM, in response to stressful conditions via the PKR/eIF2α signalling cascade.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Ting Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pin-I Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Yen Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Lo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Min Lin
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ming-Teh Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
37
|
Odle AK, Beneš H, Melgar Castillo A, Akhter N, Syed M, Haney A, Allensworth-James M, Hardy L, Winter B, Manoharan R, Syed R, MacNicol MC, MacNicol AM, Childs GV. Association of Gnrhr mRNA With the Stem Cell Determinant Musashi: A Mechanism for Leptin-Mediated Modulation of GnRHR Expression. Endocrinology 2018; 159:883-894. [PMID: 29228137 PMCID: PMC5776477 DOI: 10.1210/en.2017-00586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
The cyclic expression of pituitary gonadotropin-releasing hormone receptors (GnRHRs) may be an important checkpoint for leptin regulatory signals. Gonadotrope Lepr-null mice have reduced GnRHR levels, suggesting these receptors may be leptin targets. To determine if leptin stimulated GnRHR directly, primary pituitary cultures or pieces were exposed to 1 to 100 nM leptin. Leptin increased GnRHR protein levels and the percentages of gonadotropes that bound biotinylated analogs of gonadotropin-releasing hormone (bio-GnRH) but had no effect on Gnrhr messenger RNA (mRNA). An in silico analysis revealed three consensus Musashi (MSI) binding elements (MBEs) for this translational control protein in the 3' untranslated region (UTR) of Gnrhr mRNA. Several experiments determined that these Gnrhr mRNA MBE were active: (1) RNA electrophoretic mobility shift assay analyses showed that MSI1 specifically bound Gnrhr mRNA 3'-UTR; (2) RNA immunoprecipitation of pituitary fractions with MSI1 antibody pulled down a complex enriched in endogenous MSI protein and endogenous Gnrhr mRNA; and (3) fluorescence reporter assays showed that MSI1 repressed translation of the reporter coupled to the Gnrhr 3'-UTR. In vitro, leptin stimulation of pituitary pieces reduced Msi1 mRNA in female pituitaries, and leptin stimulation of pituitary cultures reduced MSI1 proteins selectively in gonadotropes identified by binding to bio-GnRH. These findings show that leptin's direct stimulatory actions on gonadotrope GnRHR correlate with a direct inhibition of expression of the posttranscriptional regulator MSI1. We also show MSI1 interaction with the 3'-UTR of Gnrhr mRNA. These findings now open the door to future studies of leptin-modulated posttranscriptional pathways.
Collapse
Affiliation(s)
- Angela K. Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Helen Beneš
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Andrea Melgar Castillo
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Mohsin Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melody Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Linda Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Benjamin Winter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ragul Manoharan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Raiyan Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melanie C. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Angus M. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gwen V. Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
38
|
Chen HY, Lin LT, Wang ML, Lee SH, Tsai ML, Tsai CC, Liu WH, Chen TC, Yang YP, Lee YY, Chang YL, Huang PI, Chen YW, Lo WL, Chiou SH, Chen MT. Musashi-1 regulates AKT-derived IL-6 autocrinal/paracrinal malignancy and chemoresistance in glioblastoma. Oncotarget 2018; 7:42485-42501. [PMID: 27285760 PMCID: PMC5173150 DOI: 10.18632/oncotarget.9890] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/11/2016] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiform (GBM) is one of the most lethal human malignant brain tumors with high risks of recurrence and poor treatment outcomes. The RNA-binding protein Musashi-1 (MSI1) is a marker of neural stem/progenitor cells. Recent study showed that high expression level of MSI1 positively correlates with advanced grade of GBM, where MSI1 increases the growth of GBM. Herein, we explore the roles of MSI1 as well as the underlying mechanisms in the regulation of drug resistance and tumorigenesis of GBM cells. Our results demonstrated that overexpression of MSI1 effectively protected GBM cells from drug-induced apoptosis through down-regulating pro-apoptotic genes; whereas inhibition of AKT withdrew the MSI1-induced anti-apoptosis and cell survival. We further showed that MSI1 robustly promoted the secretion of the pro-inflammatory cytokine IL-6, which was governed by AKT activity. Autonomously, the secreted IL-6 enhanced AKT activity in an autocrine/paracrine manner, forming a positive feedback regulatory loop with the MSI1-AKT pathway. Our results conclusively demonstrated a novel drug resistance mechanism in GBM cells that MSI1 inhibits drug-induced apoptosis through AKT/IL6 regulatory circuit. MSI1 regulates both cellular signaling and tumor-microenvironmental cytokine secretion to create an intra- and intercellular niche for GBM to survive from chemo-drug attack.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Ting Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Hsien Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Long Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Chang Tsai
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Department of Neurological Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chien Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Department of Neurological Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pin-I Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Lo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Teh Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Yang S, Sheng L, Xu K, Wang Y, Zhu H, Zhang P, Mu Q, Ouyang G. Anticancer effect of quinacrine on diffuse large B‑cell lymphoma via inhibition of MSI2‑NUMB signaling pathway. Mol Med Rep 2018; 17:522-530. [PMID: 29115587 DOI: 10.3892/mmr.2017.7892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/08/2017] [Indexed: 11/05/2022] Open
Abstract
Diffuse large B‑cell lymphoma (DLBCL) is the most common subtype of non‑Hodgkin's lymphoma. Despite improvements in the clinical outcomes of DLBCL, ~30% of patients will develop relapse/refractory disease. Therefore, novel therapeutic drugs have been investigated to improve disease outcomes. Previous studies have revealed the anticancer effects of quinacrine (QC) on tumor cells in vitro, although its role in human DLBCL is yet to be identified. The present study sought to examine the cytotoxic effect of QC on DLBCL cells. QC induced G0/G1 cell cycle arrest and apoptosis in the DLBCL cell lines SU‑DHL‑8 and OCI‑LY01, in a dose‑dependent manner, in addition to the downregulation of cyclin‑dependent kinase 4/6 and the upregulation of cleaved poly‑ADP ribose polymerase 1. Upon exposure to QC, RNA‑binding protein Musashi homolog 2 inactivation and activation of protein numb homolog were observed. In addition, QC was able to inhibit the expression of Myc proto‑oncogene protein. The results of the present study indicated that QC may be a potential anti‑DLBCL drug.
Collapse
Affiliation(s)
- Shujun Yang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lixia Sheng
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Kaihong Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yi Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Huiling Zhu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Ping Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
40
|
Opdenaker LM, Kowash R, Masters G, Boman BM, Zhang T, Modarai SR. Increased Musashi-2 and Decreased NUMB Protein Levels Observed in Human Colorectal Cancer are reverted to Normal Levels by ATRA-Induced Cell Differentiation. ACTA ACUST UNITED AC 2018; 3. [PMID: 32984754 PMCID: PMC7517600 DOI: 10.33140/ijcrt/03/02/00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Musashi stem cell (SC) proteins (MSI-1 & MSI-2) are known to become over expressed during colorectal tumorigenesis in humans and mice. MSI-1 overexpression induces tumorigenesis through Notch activation via inactivation of NUMB. Previous studies also show that MSI-2 overexpression in mice induces intestinal tumorigenesis but the mechanism is independent of NUMB. However, whether the MSI-2/NUMB pathway contributes to colorectal cancer (CRC) development in humans is still undetermined. Methods: We evaluated expression of MSI-2 and NUMB proteins in matched normal and CRC patient samples, as well as in human CRC cell lines. We also determined whether induction of cellular differentiation by all-trans retinoic acid (ATRA) influences MSI-2 and NUMB expression. Results: Analysis of matched patient tissue samples and CRC cell lines showed that MSI-2 protein expression is significantly increased and NUMB expression is decreased in CRCs compared to the normal colonic tissue. Immunostaining of normal and adenomatous colonic epithelium revealed that MSI-1+ andMSI-2+ SCs reside in the SC niche and they become overpopulated during colon tumorigenesis. Moreover, promoting cellular differentiation by ATRA reduces MSI-2 protein levels, while increasing NUMB protein levels in human CRC cell lines. Conclusions: MSI-2/NUMB protein expression is altered during colon tumorigenesis, and indicates that MSI-2/NUMB signaling in human colonic stem cells is closely linked to normal colonic epithelial homeostasis. Implications: The ability to normalize MSI-2/NUMB signaling by inducing differentiation of cancer SCs suggests a novel therapeutic approach for CRC treatment.
Collapse
Affiliation(s)
- Lynn M Opdenaker
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,University of Delaware, Newark, DE
| | - Ryan Kowash
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,Dickinson College, Carlisle, PA
| | - Gabriel Masters
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,Hamilton College, Clinton, NY
| | - Bruce M Boman
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,University of Delaware, Newark, DE
| | - Tao Zhang
- Childrens Hospital of Pennsylvania, Philadelphia PA
| | - Shirin R Modarai
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE.,University of Delaware, Newark, DE
| |
Collapse
|
41
|
Galindo-Moreno P, de Buitrago JG, Padial-Molina M, Fernández-Barbero JE, Ata-Ali J, O Valle F. Histopathological comparison of healing after maxillary sinus augmentation using xenograft mixed with autogenous bone versus allograft mixed with autogenous bone. Clin Oral Implants Res 2017; 29:192-201. [PMID: 29071736 DOI: 10.1111/clr.13098] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To compare the clinical and histologic outcomes of two different grafting materials (allograft and xenograft) when combined with autogenous bone and covered with a collagen membrane for sinus augmentation. MATERIAL AND METHODS A parallel case series of fourteen patients in need of a unilateral sinus augmentation was evaluated in this study. Seven patients received a graft composed by autologous cortical bone (ACB) and anorganic bovine bone in a ratio of 1:1; the other seven patients received ACB mixed with an allograft in the same ratio. Bone biopsies were obtained 6 months after sinus augmentation at the time of implant placement. Comparative histomorphometrical, histopathological, and immunohistochemical analyses were conducted and statistically analyzed. RESULTS After 12 months of functional loading, all implants in both groups were clinical and radiographically successful. Histomorphometrically, although the initial bone formation was not significantly different between groups (new mineralized tissue: 41.03(12.87)% vs. 34.50(13.18)%, p = .620; allograft vs. xenograft groups), the graft resorbed faster in the allograft group (remnant graft particles: 9.83[7.77]% vs. 21.71[17.88]%; p = .026; allograft vs. xenograft groups). Non-mineralized tissue did not statistically differ either (49.00[14.32]% vs. 43.79[19.90]%; p = .710; allograft vs. xenograft groups). The histologic analyses revealed higher cellular content, four times more osteoid lines, and higher vascularization in the xenograft group. Musashi-1 (mesenchymal stromal cell marker) was also more intensively expressed in the xenograft group (p = .019). CONCLUSIONS Both composite grafts generate adequate substratum to receive dental implants after healing. Compared with the xenograft composite, allograft composite shows faster turnover and a quicker decrease in biological action after 6 months.
Collapse
Affiliation(s)
- Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Juan G de Buitrago
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | | | - Javier Ata-Ali
- Public Dental Health Service, Arnau de Vilanova Hospital & Department of Dentistry, European University of Valencia, Valencia, Spain
| | - Francisco O Valle
- Department of Pathology & Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), University of Granada, Granada, Spain
| |
Collapse
|
42
|
MacNicol MC, Cragle CE, McDaniel FK, Hardy LL, Wang Y, Arumugam K, Rahmatallah Y, Glazko GV, Wilczynska A, Childs GV, Zhou D, MacNicol AM. Evasion of regulatory phosphorylation by an alternatively spliced isoform of Musashi2. Sci Rep 2017; 7:11503. [PMID: 28912529 PMCID: PMC5599597 DOI: 10.1038/s41598-017-11917-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
The Musashi family of RNA binding proteins act to promote stem cell self-renewal and oppose cell differentiation predominantly through translational repression of mRNAs encoding pro-differentiation factors and inhibitors of cell cycle progression. During tissue development and repair however, Musashi repressor function must be dynamically regulated to allow cell cycle exit and differentiation. The mechanism by which Musashi repressor function is attenuated has not been fully established. Our prior work indicated that the Musashi1 isoform undergoes site-specific regulatory phosphorylation. Here, we demonstrate that the canonical Musashi2 isoform is subject to similar regulated site-specific phosphorylation, converting Musashi2 from a repressor to an activator of target mRNA translation. We have also characterized a novel alternatively spliced, truncated isoform of human Musashi2 (variant 2) that lacks the sites of regulatory phosphorylation and fails to promote translation of target mRNAs. Consistent with a role in opposing cell cycle exit and differentiation, upregulation of Musashi2 variant 2 was observed in a number of cancers and overexpression of the Musashi2 variant 2 isoform promoted cell transformation. These findings indicate that alternately spliced isoforms of the Musashi protein family possess distinct functional and regulatory properties and suggest that differential expression of Musashi isoforms may influence cell fate decisions.
Collapse
Affiliation(s)
- Melanie C MacNicol
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,University of Arkansas for Medical Science, Center for Translational Neuroscience, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Chad E Cragle
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - F Kennedy McDaniel
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Linda L Hardy
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Yan Wang
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510182, PR China
| | - Karthik Arumugam
- University of Arkansas for Medical Sciences, Department of Physiology and Biophysics, 4301 W. Markham, Little Rock, 72205, AR, USA.,Center for Genomic Regulation, Department of Gene Regulation, Stem Cells and Cancer, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yasir Rahmatallah
- University of Arkansas for Medical Sciences, Department of Biomedical Informatics, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Galina V Glazko
- University of Arkansas for Medical Sciences, Department of Biomedical Informatics, 4301 W. Markham, Little Rock, 72205, AR, USA
| | | | - Gwen V Childs
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,University of Arkansas for Medical Science, Center for Translational Neuroscience, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Daohong Zhou
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Angus M MacNicol
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA. .,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, United States.
| |
Collapse
|
43
|
Musashi-1 Enhances Glioblastoma Cell Migration and Cytoskeletal Dynamics through Translational Inhibition of Tensin3. Sci Rep 2017; 7:8710. [PMID: 28821879 PMCID: PMC5562834 DOI: 10.1038/s41598-017-09504-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 01/11/2023] Open
Abstract
The RNA-binding protein Musashi-1 (MSI1) exerts essential roles in multiple cellular functions, such as maintenance of self-renewal and pluripotency of stem cells. MSI1 overexpression has been observed in several tumor tissues, including glioblastoma (GBM), and is considered as a well-established marker for tumor metastasis and recurrence. However, the molecular mechanisms by which MSI1 regulates cell migration are still undetermined. Here we reported that MSI1 alters cell morphology, promotes cell migration, and increases viscoelasticity of GBM cells. We also found that MSI1 directly binds to the 3′UTR of Tensin 3 (TNS3) mRNA, a negative regulator of cell migration, to inhibit its translation. Additionally, we identified that RhoA-GTP could be a potential regulator in MSI1/TNS3-mediated cell migration and morphological changes. In a xenograft animal model, high expression ratio of MSI1 to TNS3 enhanced GBM tumor migration. We also confirmed that MSI1 and TNS3 expressions are mutually exclusive in migratory tumor lesions, and GBM patients with MSI1high/TNS3low pattern tend to have poor clinical outcome. Taken together, our findings suggested a critical role of MSI1-TNS3 axis in regulating GBM migration and highlighted that the ratio of MSI1/TNS3 could predict metastatic and survival outcome of GBM patients.
Collapse
|
44
|
Jafari N, Abediankenari S. MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell. Tumour Biol 2017; 39:1010428317701652. [PMID: 28468587 DOI: 10.1177/1010428317701652] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a major cause of cancer mortality worldwide, with a low survival rate for patients with advanced forms of the disease. Over the recent decades, the investigation of the pathophysiological mechanisms of tumourigenesis has opened promising avenues to understand some of the complexities of cancer treatment. However, tumour regeneration and metastasis impose great difficulty for gastric cancer cure. In recent years, cancer stem cells - a small subset of tumour cells in many cancers - have become a major focus of cancer research. Cancer stem cells are capable of self-renewal and are known to be responsible for tumour initiation, metastasis, therapy resistance and cancer recurrence. Recent studies have revealed the key role of microRNAs - small noncoding RNAs regulating gene expression - in these processes. MicroRNAs play crucial roles in the regulation of a wide range of biological processes in a post-transcriptional manner, though their expression is dysregulated in most malignancies, including gastric cancer. In this article, we review the consequences of aberrant expression of microRNA-34 in cancer and cancer stem cells, with a specific focus on the miR-34 dysregulation in gastric cancer and gastric cancer stem cells. We address the critical effects of the aberrant expression of miR-34 and its target genes in maintaining cancer stem cell properties. Information collection and discussion about the advancements in gastric cancer stem cells and microRNAs can be useful for providing novel insights into patient treatment.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
45
|
Chiou GY, Yang TW, Huang CC, Tang CY, Yen JY, Tsai MC, Chen HY, Fadhilah N, Lin CC, Jong YJ. Musashi-1 promotes a cancer stem cell lineage and chemoresistance in colorectal cancer cells. Sci Rep 2017; 7:2172. [PMID: 28526879 PMCID: PMC5438397 DOI: 10.1038/s41598-017-02057-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancers (CRCs) are a critical health issue worldwide. Cancer stem cell (CSC) lineages are associated with tumour transformation, progression, and malignant transformation. However, how lineages are transformed and how chemoresistance is acquired by CRCs remain largely unknown. In this report, we demonstrated that the RNA-binding protein Musashi-1 enhanced the development of CD44+ colorectal CSCs and triggered the formation of anti-apoptotic stress granules (SGs). Our results indicated that CD44+ CSC lineage-specific induction of tumour malignancies was controlled by Musashi-1. In addition, Musashi-1 formed SGs when CRC cell lines were treated with 5-fluorouracil. The C-terminal domain of Musashi-1 was critical for recruitment of Musashi-1 into SGs. Intracellular Musashi-1 SGs enhanced the chemoresistance of CRCs. Analysis of clinical CRC samples indicated that Musashi-1 expression was prominent in CRC stage IIA and IIB. In summary, we demonstrated that Musashi-1, a stemness gene, is a critical modulator that promotes the development of CD44+ colorectal CSCs and also enhances CRC chemoresistance via formation of SGs. Our findings elucidated a novel mechanism of CRC chemoresistance through increased anti-apoptotic effects via Musashi-1-associated SGs.
Collapse
Affiliation(s)
- Guang-Yuh Chiou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tzu-Wei Yang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Chou Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Colon and Rectum, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ying Tang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jung-Yi Yen
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Chang Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsuan-Yi Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Nurul Fadhilah
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Che Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan. .,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. .,Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Departments of Paediatrics and Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
46
|
Shou Z, Jin X, He X, Zhao Z, Chen Y, Ye M, Yao J. Overexpression of Musashi-1 protein is associated with progression and poor prognosis of gastric cancer. Oncol Lett 2017; 13:3556-3566. [PMID: 28521458 PMCID: PMC5431268 DOI: 10.3892/ol.2017.5879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Musashi-1, an evolutionally conserved RNA-binding protein, has been implicated in the promotion of pathological stem cell proliferation, including tumorigenesis. The objective of the present study was to evaluate the expression of Musashi-1 protein and its implications in the progression and prognosis of gastric cancer. The expression level of Musashi-1 protein in gastric cancer was determined by western blotting and immunohistochemistry, and compared with the clinicopathological parameters. The present study revealed that the expression level of Musashi-1 protein in gastric cancer was significantly upregulated and correlated with the tumor size, tumor-node-metastasis (TNM) stage, Lauren classification, depth of invasion, vessel invasion, lymph node metastasis and distant metastasis. The mean survival time for patients with low expression levels of Musashi-1 was significantly longer compared with patients with high expression levels of Musashi-1. For each TNM stage, the mean survival time for patients with a low Musashi-1 expression levels was also significantly longer compared with patients with a high Musashi-1 expression level. Notably, TNM stage II patients with a low Musashi-1 expression level demonstrated a longer mean survival time compared with TNM stage I patients with high Musashi-1 expression level (56.8 vs. 42.3 months; P=0.001), and TNM stage III patients with low Musashi-1 expression level exhibited a longer mean survival time compared with TNM stage II patients with a high Musashi-1 expression level (44.0 vs. 33.8 months; P=0.034). Multivariate Cox's regression test demonstrated that Musashi-1 protein expression level was an independent prognostic indicator for the survival rate of the patients with gastric cancer. The results of the present study highlighted an important role for Musashi-1 protein in the progression of gastric cancer. The detection of the Musashi-1 protein expression level alone or in combination with TNM staging may aid the prediction of the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Zhangxuan Shou
- Department of Pharmaceutical Sciences, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xue Jin
- Department of Pharmaceutical Sciences, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhongsheng Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Meihua Ye
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jiong Yao
- Department of Medical Records and Statistics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
47
|
Wolfe AR, Ernlund A, McGuinness W, Lehmann C, Carl K, Balmaceda N, Neufeld KL. Suppression of intestinal tumorigenesis in Apc mutant mice upon Musashi-1 deletion. J Cell Sci 2017; 130:805-813. [PMID: 28082422 DOI: 10.1242/jcs.197574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Therapeutic strategies based on a specific oncogenic target are better justified when elimination of that particular oncogene reduces tumorigenesis in a model organism. One such oncogene, Musashi-1 (Msi-1), regulates translation of target mRNAs and is implicated in promoting tumorigenesis in the colon and other tissues. Msi-1 targets include the tumor suppressor adenomatous polyposis coli (Apc), a Wnt pathway antagonist lost in ∼80% of all colorectal cancers. Cell culture experiments have established that Msi-1 is a Wnt target, thus positioning Msi-1 and Apc as mutual antagonists in a mutually repressive feedback loop. Here, we report that intestines from mice lacking Msi-1 display aberrant Apc and Msi-1 mutually repressive feedback, reduced Wnt and Notch signaling, decreased proliferation, and changes in stem cell populations, features predicted to suppress tumorigenesis. Indeed, mice with germline Apc mutations (ApcMin ) or with the Apc1322T truncation mutation have a dramatic reduction in intestinal polyp number when Msi-1 is deleted. Taken together, these results provide genetic evidence that Msi-1 contributes to intestinal tumorigenesis driven by Apc loss, and validate the pursuit of Msi-1 inhibitors as chemo-prevention agents to reduce tumor burden.
Collapse
Affiliation(s)
- Andy R Wolfe
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Amanda Ernlund
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - William McGuinness
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Carl Lehmann
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Kaitlyn Carl
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Nicole Balmaceda
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
48
|
de Araujo PR, Gorthi A, da Silva AE, Tonapi SS, Vo DT, Burns SC, Qiao M, Uren PJ, Yuan ZM, Bishop AJR, Penalva LOF. Musashi1 Impacts Radio-Resistance in Glioblastoma by Controlling DNA-Protein Kinase Catalytic Subunit. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2271-8. [PMID: 27470713 PMCID: PMC5012509 DOI: 10.1016/j.ajpath.2016.05.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022]
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation and as a key oncogenic factor in numerous solid tumors, including glioblastoma. To explore the potential use of MSI1 targeting in therapy, we studied MSI1 in the context of radiation sensitivity. Knockdown of MSI1 led to a decrease in cell survival and an increase in DNA damage compared to control in cells treated with ionizing radiation. We subsequently examined mechanisms of double-strand break repair and found that loss of MSI1 reduces the frequency of nonhomologous end-joining. This phenomenon could be attributed to the decreased expression of DNA-protein kinase catalytic subunit, which we have previously identified as a target of MSI1. Collectively, our results suggest a role for MSI1 in double-strand break repair and that its inhibition may enhance the effect of radiotherapy.
Collapse
Affiliation(s)
- Patricia Rosa de Araujo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Acarizia E da Silva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Sonal S Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Dat T Vo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Suzanne C Burns
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Mei Qiao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Philip J Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California
| | - Zhi-Min Yuan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| |
Collapse
|
49
|
Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc Natl Acad Sci U S A 2016; 113:6955-60. [PMID: 27274057 DOI: 10.1073/pnas.1513616113] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.
Collapse
|
50
|
Zorzan M, Giordan E, Redaelli M, Caretta A, Mucignat-Caretta C. Molecular targets in glioblastoma. Future Oncol 2016; 11:1407-20. [PMID: 25952786 DOI: 10.2217/fon.15.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is the most lethal brain tumor. The poor prognosis results from lack of defined tumor margins, critical location of the tumor mass and presence of chemo- and radio-resistant tumor stem cells. The current treatment for glioblastoma consists of neurosurgery, followed by radiotherapy and temozolomide chemotherapy. A better understanding of the role of molecular and genetic heterogeneity in glioblastoma pathogenesis allowed the design of novel targeted therapies. New targets include different key-role signaling molecules and specifically altered pathways. The new approaches include interference through small molecules or monoclonal antibodies and RNA-based strategies mediated by siRNA, antisense oligonucleotides and ribozymes. Most of these treatments are still being tested yet they stay as solid promises for a clinically relevant success.
Collapse
Affiliation(s)
- Maira Zorzan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|