1
|
Zhang X, Li Z, Wang S, Chen Y. Distinct Fgf21 Expression Patterns in Various Tissues in Response to Different Dietary Regimens Using a Reporter Mouse Model. Nutrients 2025; 17:1179. [PMID: 40218937 PMCID: PMC11990235 DOI: 10.3390/nu17071179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Fibroblast growth factor 21 (FGF21), a secreted protein, plays a crucial role in regulating metabolism and energy homeostasis. Nevertheless, the expression pattern of Fgf21 across diverse tissues and its responsiveness to various dietary regimens remain incompletely understood. Methods: In this study, we developed a Fgf21-enhanced green fluorescent protein (EGFP) reporter mouse model to explore the expression of endogenous Fgf21 in different tissues under four dietary conditions: normal chow, low-protein diet, fasting, and fasting-refeeding. Results: A low-protein diet was found to induce Fgf21 expression in both the liver and skeletal muscle. Notably, Fgf21 was predominantly expressed in the periportal region of the liver. In the pancreas, Fgf21 exhibited a patchy expression pattern in the exocrine portion, but was absent in the endocrine part, regardless of the dietary regimens. Regarding the spleen, fasting triggered the expression of Fgf21, which was mainly localized in the red pulp area. Moreover, under fasting conditions, Fgf21 showed a scattered expression pattern in the small intestine. Conclusions: The Fgf21-EGFP reporter mouse model serves as a valuable tool for dissecting the expression of endogenous Fgf21 in different tissues under various dietary and stress conditions. Further investigations using this model may contribute to uncovering the hitherto unrecognized functions of locally produced FGF21.
Collapse
Affiliation(s)
- Xinhui Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zixuan Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuying Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Yang Y, Yuan H, Jiao Y, Zhao S, Fu Y, Bai X, Lu Z, Gao Y. Establishment of a Direct Competitive ELISA for Camel FGF21 Detection. Vet Sci 2025; 12:170. [PMID: 40005931 PMCID: PMC11861717 DOI: 10.3390/vetsci12020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Camels, with the ability to survive under drought and chronic hunger, developed exceptional efficient lipid reserves and energy substance metabolic characteristics. Fibroblast growth factor (FGF) 21 is a hormone that regulates important metabolic pathways and energy homeostasis. However, the absence of a specific detection method for camel FGF21 impacts research on camels' metabolic regulation. This study established a direct competition ELISA assay for detecting camel FGF21. Camel FGF21 antigen was expressed and purified through prokaryotic expression system. Polyclonal antibody was produced and purified via immunizing guinea pigs and affinity chromatography assay. Biotin-labeled FGF21 was synthesized artificially as the competitive antigen. After the determination of optimal conditions, including the working concentrations of the antibody and antigen, blocking solution, dilution buffer, and the competition reaction time, the standard curve with a typical "S" shape was generated using GraphPad Prism. The regression equation was Y = 0.1111 + (X-0.7894) × (2.162 - 0.1111)/(X-0.7894 + 15.76-0.7894), with the IC50 15.59 ng/mL, the limit of detection (LOD) 0.024 ng/mL, the limit of quantification (LOQ) 1.861 ng/mL, and the linear range IC20~IC80 2.0~119.22 ng/mL. The verification test showed that the recovery rate ranged from 91.34% to 98.9%, and the coefficients of variation for the intra- and inter-plate both were less than 10%, indicating that the ELISA method had high accuracy, good repeatability, and high stability. In addition, this ELISA method had the potential to detect FGF21 secretion levels in other species such as mouse, human, and pig. This study provided a rapid quantitative tool for conducting research on the FGF21 factor in camels.
Collapse
Affiliation(s)
- Yuxuan Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Hong Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yunjuan Jiao
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanfang Fu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xingwen Bai
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zengjun Lu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Geng L, Yi X, Lin Y, Abulimiti X, Jin L, Yu J, Xu A. Site-specific analysis and functional characterization of N-linked glycosylation for β-Klotho protein. Int J Biol Macromol 2025; 289:138846. [PMID: 39701265 DOI: 10.1016/j.ijbiomac.2024.138846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
β-Klotho (KLB), a type I transmembrane protein, serves as an obligate co-receptor determining the tissue-specific actions of endocrine fibroblast growth factors (FGFs). Despite accumulative evidence suggesting the occurrence of N-glycosylation in the KLB protein, the precise N-glycosites, glycoforms, and the impacts of N-glycosylation on the expression and function of the KLB protein remain unexplored. Employing a mass spectrometry-based approach, a total of 12 N-glycosites displaying heterogeneous site occupancy and glycoforms were identified within the extracellular region of the recombinant human KLB protein. Molecular simulation revealed negligible impact of these N-glycans on the overall structure of the KLB protein. However, both pharmacological inhibition of N-glycosylation and mutagenesis targeting N-glycosites reduced mature KLB protein content without impacting KLB mRNA synthesis in cells, underscoring the critical role of N-glycosylation in maintaining the stability of the KLB protein. Further studies revealed that the underglycosylated KLB mutant underwent rapid degradation via both lysosomal and proteasomal pathways and was unable to be efficiently trafficked to the plasma membrane, leading to impaired FGF21 signaling transduction. Collectively, multisite N-glycosylation is essential for the stability and cell surface localization of the KLB protein, representing a novel modulatory mechanism of endocrine FGF signaling.
Collapse
Affiliation(s)
- Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China.
| | - Xinyao Yi
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Ying Lin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Xiayidan Abulimiti
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Jiasui Yu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China.
| |
Collapse
|
4
|
Lopez-Pascual A, Santamaria E, Ardaiz N, Uriarte I, Palmer T, Graham AR, Gomar C, Barbero RC, Latasa MU, Arechederra M, Urman JM, Berasain C, Fontanellas A, Del Rio CL, Fernandez-Barrena MG, Martini PGV, Schultz JR, Berraondo P, Avila MA. FGF21 and APOA1 mRNA-based therapies for the treatment of experimental acute pancreatitis. J Transl Med 2025; 23:122. [PMID: 39871339 PMCID: PMC11773771 DOI: 10.1186/s12967-025-06129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Acute pancreatitis (AP) presents a significant clinical challenge with limited therapeutic options. The complex etiology and pathophysiology of AP emphasize the need for innovative treatments. This study explores mRNA-based therapies delivering fibroblast growth factor 21 (FGF21) and apolipoprotein A1 (APOA1), alone and in combination, for treating experimental AP. METHODS Liver-targeted lipid nanoparticles (LNP)-mRNA formulations encoding FGF21, APOA1, and a chimeric APOA1-FGF21, were first tested for protein expression and bioavailability in vitro and in mice fed a high-fat diet. Efficacy studies were performed in the caerulein-induced AP (Cer-AP) model, and a new AP model combining ethanol feeding with ethanol binge plus palmitoleic acid administration, the EtOH/POA-AP model. A single dose of the APOA1, FGF21, and APOA1-FGF21 LNP-mRNAs formulations was administered in both models. Serum levels of pancreatic lipase (LIPC), amylase (AMYL), and aspartate aminotransferase (AST), along with pancreatic tissue analyses using two histopathological scores were performed to evaluate treatment effects. RESULTS In vitro studies demonstrated the translation and secretion of APOA1, FGF21, and APOA1-FGF21 proteins encoded by the LNP-mRNAs. In vivo, LNP-mRNA administration increased serum levels of the respective proteins in metabolically impaired (i.e. high fat diet-fed) mice. In the Cer-AP model, serum markers of pancreatic injury were similarly reduced when mice were treated with APOA1, FGF21, and APOA1-FGF21 LNP-mRNA, and this effect was also observed in the histopathological analyses. The EtOH/POA-AP model was more aggressive than the Cer-AP model. FGF21 and APOA1-FGF21 LNP-mRNAs were protective according to LIPC and AMYL serum levels, while APOA1 LNP-mRNA had little effect. On the other hand, histological improvements were more evident in mice receiving APOA1 LNP-mRNA. In the EtOH/POA-AP model, FGF21 and APOA1-FGF21 LNP-mRNAs reduced serum AST levels, indicating hepatoprotective activity. DISCUSSION This proof-of-concept study demonstrates the potential of mRNA-based therapies delivering FGF21 and APOA1 in experimental AP. While individual treatments effectively reduced pancreatic injury, the APOA1-FGF21 fusion molecule did not exhibit superior activity. Liver-targeted LNP-mRNA administration may offer a promising approach for treating AP, leveraging endogenous production pathways for therapeutic proteins. Further research is warranted to elucidate the mechanisms underlying their therapeutic efficacy and optimize treatment regimens for clinical translation.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Eva Santamaria
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Nuria Ardaiz
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | | | - Celia Gomar
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Roberto C Barbero
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Jesus M Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Department of Gastroenterology and Hepatology, Navarra University Hospital, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | - Maite G Fernandez-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | | | - Pedro Berraondo
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
- CIBERonc, Madrid, Spain.
| | - Matias A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
- CIBERehd, Madrid, Spain.
| |
Collapse
|
5
|
Ranuncolo SM, Armanasco E, Nuñez M, Yuan L, Makhkamov S, De Lorenzo MS. Role of the serum levels of the inter-organs messenger fibroblast growth factor 21 (FGF21) in the diagnosis and prognosis of breast cancer patients. Cell Commun Signal 2025; 23:37. [PMID: 39838482 PMCID: PMC11753132 DOI: 10.1186/s12964-024-02003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
FGF21 regulates local and systemic metabolic homeostasis. High serum FGF21 was found in obesity, metabolic syndrome, type 2 diabetes mellitus, and coronary heart disease. The pathways linking obesity and breast cancer remain elusive. We aimed to analyze the serum FGF21 in breast cancer patients at diagnosis. Circulating FGF21 levels in 45 breast cancer women (median age 59, range 32-88 years) and 51 age-matched healthy controls were evaluated using a quantitative ELISA assay. Patients' samples were obtained before surgery ahead of any previous therapy. Breast cancer patients showed significantly elevated serum FGF21 (median 267.13, range 28.41-780.45) respect to healthy controls (76.86, 0.00-425.60) (p < 0.0001). A ROC curve determined a cut-off value of 130.64 pg/ml to define positive or high FGF21 levels. Based on this cut-off point, 30/45 (66.7%) breast cancer patients showed positive serum FGF21 levels as compared to 18/51 (35.3%) healthy controls. Circulating FGF21 levels could be useful as a highly sensitive diagnosis biomarker for early breast cancer detection. We did not find any significant association between the serum FGF21 levels, and many clinical-pathological or metabolic parameters determined at the diagnosis of the primary disease. Interestingly, a statistically significant correlation was determined between serum FGF21 and the body mass index (BMI). Furthermore, patients with positive FGF21 serum levels had a worst overall survival (Log Rank Test [Mantle Cox] p = 0.017). We propose serum FGF21 levels determined at the diagnosis of primary breast cancer as a promising diagnostic and prognosis biomarker in this oncological disease.
Collapse
Affiliation(s)
- Stella Maris Ranuncolo
- Instituto de Oncología "Ángel H. Roffo" Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo Armanasco
- Breast Cancer Department, Instituto de Oncología "Ángel H. Roffo" Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Myriam Nuñez
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Laura Yuan
- Laboratory of Metabolism and Cancer Prevention, Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Sujhrob Makhkamov
- Laboratory of Metabolism and Cancer Prevention, Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mariana S De Lorenzo
- Laboratory of Metabolism and Cancer Prevention, Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
- Office of Education- Rutgers New Jersey Medical School, Newark, NJ, USA.
- Laboratory of Metabolism and Cancer Prevention, Department of Cell Biology and Molecular Medicine, Office of Education, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
6
|
Mehdi SF, Qureshi MH, Pervaiz S, Kumari K, Saji E, Shah M, Abdullah A, Zahoor K, Qadeer HA, Katari DK, Metz C, Mishra L, LeRoith D, Tracey K, Brownstein MJ, Roth J. Endocrine and metabolic alterations in response to systemic inflammation and sepsis: a review article. Mol Med 2025; 31:16. [PMID: 39838305 PMCID: PMC11752782 DOI: 10.1186/s10020-025-01074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Severe sepsis is cognate with life threatening multi-organ dysfunction. There is a disturbance in endocrine functions with alterations in several hormonal pathways. It has frequently been linked with dysfunction in the hypothalamic pituitary-adrenal axis (HPA). Increased cortisol or cortisolemia is evident throughout the acute phase, along with changes in the hypothalamic pituitary thyroid (HPT) axis, growth hormone-IGF-1 axis, insulin-glucose axis, leptin, catecholamines, renin angiotensin aldosterone axis, ghrelin, glucagon, hypothalamic pituitary gonadal (HGA) axis, and fibroblast growth factor-21. These changes and metabolic alterations constitute the overall response to infection in sepsis. Further research is essential to look into the hormonal changes that occur during sepsis, not only to understand their potential relevance in therapy but also because they may serve as prognostic indicators.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | | | - Salman Pervaiz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Karishma Kumari
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Edwin Saji
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Mahnoor Shah
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Ahmad Abdullah
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Kamran Zahoor
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Hafiza Amna Qadeer
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Disha Kumari Katari
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Christine Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Lopa Mishra
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
7
|
Zhu L, Cheng J, Xiao F, Mao YY. Effects of comprehensive nutrition support on immune function, wound healing, hospital stay, and mental health in gastrointestinal surgery. World J Gastrointest Surg 2024; 16:3737-3744. [PMID: 39734442 PMCID: PMC11650224 DOI: 10.4240/wjgs.v16.i12.3737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Postoperative patients undergoing gastrointestinal surgery often encounter challenges such as low immune function, delayed wound healing owing to surgical trauma, and increased nutritional demands during recovery. AIM To assess the effect of comprehensive nutritional support program on immune function and wound healing in patients undergoing gastrointestinal surgery. METHODS This retrospective comparative study included 60 patients who underwent gastrointestinal surgery, randomly assigned to either the experimental group (n = 30) or the control group (n = 30). The experimental group received comprehensive nutritional support, including a combination of enteral and parenteral nutrition, whereas the control group received only conventional comprehensive nutritional support. Evaluation indicators included immune function markers (e.g., white blood cell count, lymphocyte subsets), wound healing (wound infection rate, healing time), pain score [visual analog scale (VAS) score], and psychological status (anxiety score, depression score) 7 days post-surgery) and duration of stay. RESULTS The immune function of patients in the experimental group was significantly better than that in the control group. The white blood cell count was 8.52 ± 1.19 × 109/L in the experimental group vs 6.74 ± 1.31 × 109/L (P < 0.05). The proportion of CD4+ T cells was higher in the experimental group (40.09% ± 4.91%) than that in the control group (33.01% ± 5.08%) (P < 0.05); the proportion of CD8+ T cells was lower (21.79% ± 3.38% vs 26.29% ± 3.09%; P < 0.05). The CD4+/CD8+ ratio was 1.91 ± 0.32 in the experimental group whereas 1.13 ± 0.23 in the control group (P < 0.05). The wound infection rate of the experimental group was significantly lower than that of the control group (10% vs 30%, P < 0.05), and the wound healing time was shorter (10.35 ± 2.42 days vs 14.42 ± 3.15 days, P < 0.05). The VAS score of the experimental group was 3.05 ± 1.04, and that of the control group was 5.11 ± 1.09 (P < 0.05); the anxiety score (Hamilton Anxiety Rating Scale) was 8.88 ± 1.87, and that of the control group was 12.1 ± 3.27 (P < 0.05); the depression score (Hamilton Depression Rating Scale) was 7.37 ± 1.41, and that of the control group was 11.79 ± 2.77 (P < 0.05). In addition, the hospitalization time of the experimental group was significantly shorter than that of the control group (16.16 ± 3.12 days vs 20.93 ± 4.84 days, P < 0.05). CONCLUSION A comprehensive nutritional support program significantly enhances immune function, promote wound healing, reduces pain, improves psychological status, and shortens hospitalization stays in patients recovering from gastrointestinal surgery.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Gastrointestinal Surgery, Wuhan Fourth Hospital, Wuhan 430000, Hubei Province, China
| | - Jun Cheng
- Department of Gastrointestinal Surgery, Qianjiang Central Hospital, Qianjing 433100, Hubei Province, China
| | - Fei Xiao
- Department of Gastrointestinal Surgery, Wuhan Fourth Hospital, Wuhan 430000, Hubei Province, China
| | - Yan-Yan Mao
- Department of Gastrointestinal Surgery, Wuhan Fourth Hospital, Wuhan 430000, Hubei Province, China
| |
Collapse
|
8
|
Diao B, Fan Z, Zhou B, Zhan H. Crosstalk between pancreatic cancer and adipose tissue: Molecular mechanisms and therapeutic implications. Biochem Biophys Res Commun 2024; 740:151012. [PMID: 39561650 DOI: 10.1016/j.bbrc.2024.151012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The incidence rate of pancreatic cancer, a fatal illness with a meager 5-year survival rate, has been on the rise in recent times. When individuals accumulate excessive amounts of adipose tissue, the adipose organ becomes dysfunctional due to alterations in the adipose tissue microenvironment associated with inflammation and metabolism. This phenomenon may potentially contribute to the aberrant accumulation of fat that initiates pancreatic carcinogenesis, thereby influencing the disease's progression, resistance to treatment, and metastasis. This review presents a summary of the impact of pancreatic steatosis, visceral fat, cancer-associated adipocytes and lipid diets on the advancement of pancreatic cancer, as well as the reciprocal effects of pancreatic cancer on adipose tissue. Understanding the molecular mechanisms underlying the relationship between dysfunctional adipose tissue and pancreatic cancer better may lead to the discovery of new therapeutic targets for the disease's prevention and individualized treatment. This is especially important given the rising global incidence of obesity, which will improve the pancreatic cancer treatment options that are currently insufficient.
Collapse
Affiliation(s)
- Boyu Diao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
9
|
Malnassy G, Ziolkowski L, Macleod KF, Oakes SA. The Integrated Stress Response in Pancreatic Development, Tissue Homeostasis, and Cancer. Gastroenterology 2024; 167:1292-1306. [PMID: 38768690 PMCID: PMC11570703 DOI: 10.1053/j.gastro.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 4 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas. Among the most synthetically dynamic tissues in the body, the exocrine and endocrine pancreas relies heavily on the ISR to rapidly adjust cell function to meet the metabolic demands of the organism. The hardwiring of the ISR into normal pancreatic functions and adaptation to stress may explain why it is a commonly used pro-oncogenic and therapy-resistance mechanism in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Here, we review what is known about the key roles that the ISR plays in the development, homeostasis, and neoplasia of the pancreas.
Collapse
Affiliation(s)
- Greg Malnassy
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Leah Ziolkowski
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| | - Scott A Oakes
- Department of Pathology, University of Chicago, Chicago, Illinois; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Sullivan AI, Jensen-Cody SO, Claflin KE, Vorhies KE, Flippo KH, Potthoff MJ. Characterization of FGF21 Sites of Production and Signaling in Mice. Endocrinology 2024; 165:bqae120. [PMID: 39253796 DOI: 10.1210/endocr/bqae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Fibroblast growth factor (FGF) 21 is an endocrine hormone that signals to multiple tissues to regulate metabolism. FGF21 and another endocrine FGF, FGF15/19, signal to target tissues by binding to the co-receptor β-klotho (KLB), which then facilitates the interaction of these different FGFs with their preferred FGF receptor. KLB is expressed in multiple metabolic tissues, but the specific cell types and spatial distribution of these cells are not known. Furthermore, while circulating FGF21 is primarily produced by the liver, recent publications have indicated that brain-derived FGF21 impacts memory and learning. Here we use reporter mice to comprehensively assess KLB and FGF21 expression throughout the body. These data provide an important resource for guiding future studies to identify important peripheral and central targets of FGFs and to determine the significance of nonhepatic FGF21 production.
Collapse
Affiliation(s)
- Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kai E Vorhies
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Harrison SA, Rolph T, Knott M, Dubourg J. FGF21 agonists: An emerging therapeutic for metabolic dysfunction-associated steatohepatitis and beyond. J Hepatol 2024; 81:562-576. [PMID: 38710230 DOI: 10.1016/j.jhep.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
The worldwide epidemics of obesity, hypertriglyceridemia, dyslipidaemia, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) represent a major economic burden on healthcare systems. Patients with at-risk MASH, defined as MASH with moderate or significant fibrosis, are at higher risk of comorbidity/mortality, with a significant risk of cardiovascular diseases and/or major adverse liver outcomes. Despite a high unmet medical need, there is only one drug approved for MASH. Several drug candidates have reached the phase III development stage and could lead to several potential conditional drug approvals in the coming years. Within the armamentarium of future treatment options, FGF21 analogues hold an interesting position thanks to their pleiotropic effects in addition to their significant effect on both MASH resolution and fibrosis improvement. In this review, we summarise preclinical and clinical data from FGF21 analogues for MASH and explore additional potential therapeutic indications.
Collapse
Affiliation(s)
- Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU UK; Pinnacle Clinical Research, San Antonio, Texas, USA
| | - Tim Rolph
- Akero Therapeutics, South San Francisco, California, USA
| | | | | |
Collapse
|
12
|
Negroiu CE, Tudoraşcu RI, Beznă MC, Ungureanu AI, Honţaru SO, Dănoiu S. The role of FGF21 in the interplay between obesity and non-alcoholic fatty liver disease: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:159-172. [PMID: 39020530 PMCID: PMC11384831 DOI: 10.47162/rjme.65.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Obesity poses a significant and escalating challenge in contemporary society, increasing the risk of developing various metabolic disorders such as dyslipidemia, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and certain types of cancer. The current array of therapeutic interventions for obesity remains insufficient, prompting a pressing demand for novel and more effective treatments. In response, scientific attention has turned to the fibroblast growth factor 21 (FGF21) due to its remarkable and diverse impacts on lipid, carbohydrate, and energy metabolism. This comprehensive review aims to delve into the multifaceted aspects of FGF21, encompassing its discovery, synthesis, functional roles, and potential as a biomarker and therapeutic agent, with a specific focus on its implications for NAFLD.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Romania; ; Department of Health Care and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University Center of Piteşti, National University for Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
13
|
Bai Y, Gong G, Aierken R, Liu X, Cheng W, Guan J, Jiang Z. A retrospective study investigating the clinical significance of body mass index in acute pancreatitis. PeerJ 2024; 12:e16854. [PMID: 38304193 PMCID: PMC10832621 DOI: 10.7717/peerj.16854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Background Acute pancreatitis is an unpredictable and potentially fatal condition for which no definitive cure is currently available. Our research focused on exploring the connection between body mass index, a frequently overlooked risk factor, and both the onset and progression of acute pancreatitis. Material/Methods A total of 247 patients with acute pancreatitis admitted to Jiangsu Provincial Hospital of Chinese Medicine from January 2021 to February 2023 were retrospectively reviewed. After screening, 117 patients with complete height and body weight data were selected for detailed assessment. Additionally, 85 individuals who underwent physical examinations at our hospital during this period were compiled to create a control group. The study received ethical approval from the ethics committee of Jiangsu Province Hospital of Chinese Medicine (Ref: No.2022NL-114-02) and was conducted in accordance with the China Good Clinical Practice in Research guidelines. Results A significant difference in body mass index (BMI) was observed between the healthy group and acute pancreatitis (AP) patients (p < 0.05), with a more pronounced disparity noted in cases of hyperlipidemic acute pancreatitis (p < 0.01). A potential risk for AP was identified at a BMI greater than 23.56 kg/m2 (AUC = 0.6086, p < 0.05). Being in the obese stage I (95%CI, [1.11-1.84]) or having a BMI below 25.4 kg/m2 (95%CI, [1.82-6.48]) are identified as risk factors for adverse AP progression. Moreover, BMI effectively predicts the onset of acute edematous pancreatitis and acute necrotizing pancreatitis (AUC = 0.7893, p < 0.001, cut-off value = 25.88 kg/m2). A higher BMI correlates with increased recurrence rates within a short timeframe (r = 0.7532, p < 0.01). Conclusions Elevated BMI is a risk factor for both the occurrence and progression of AP, and underweight status may similarly contribute to poor disease outcomes. BMI is crucial for risk prediction and stratification in AP and warrants ongoing monitoring and consideration.
Collapse
Affiliation(s)
- Yuanzhen Bai
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guanwen Gong
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Reziya Aierken
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingyu Liu
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Cheng
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junjie Guan
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiwei Jiang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Azevedo-Pouly A, Hale MA, Swift GH, Hoang CQ, Deering TG, Xue J, Wilkie TM, Murtaugh LC, MacDonald RJ. Key transcriptional effectors of the pancreatic acinar phenotype and oncogenic transformation. PLoS One 2023; 18:e0291512. [PMID: 37796967 PMCID: PMC10553828 DOI: 10.1371/journal.pone.0291512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.
Collapse
Affiliation(s)
- Ana Azevedo-Pouly
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael A. Hale
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Galvin H. Swift
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chinh Q. Hoang
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tye G. Deering
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jumin Xue
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas M. Wilkie
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - L. Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Raymond J. MacDonald
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
15
|
Zhao D, Song YH, Song JM, Shi K, Li JM, Diao NC, Zong Y, Zeng FL, Du R. The effect of fibroblast growth factor 21 on a mouse model of bovine viral diarrhea. Front Vet Sci 2023; 10:1104779. [PMID: 36968461 PMCID: PMC10035660 DOI: 10.3389/fvets.2023.1104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Previously, we researched that bovine viral diarrhea virus (BVDV) induced a very significant increase in fibroblast growth factor 21 (FGF21) expression in mouse liver and that FGF21 was increased in the peripheral blood of BVD cattle and BVD mice. To determine the role of FGF21 in relieving clinical symptoms and inhibiting the intestinal damage caused by BVDV in BVD development in mice, BALB/c mice were intraperitoneally injected with cytopathic biotype (cp) BVDV-LS01 (isolated and identified by our group) to establish a BVD mouse model. The role of FGF21 in the BVD mouse model was investigated by injecting the mice with FGF21. The animals were divided into control, BVDV challenge, BVDV + FGF21, BVDV + FGF21Ab (anti-FGF21 antibody), and BVDV + IgG (immunoglobulin G) groups. The stool consistency, the degree of bloody diarrhea, histopathological changes, inflammatory cell infiltration, weight loss percentage, and detection of BVDV in the feces of the mice were examined, and the pathological changes and inflammatory cytokine expression were analyzed. The results showed that after BVDV challenge, the average BVD mouse model score of the BVDV mice was 11.6 points. In addition to mild diarrhea and tissue damage, BVDV was detected in the stools of 13 BVDV mice. Only two mice in the control group had scores (both, 1 point each). The comprehensive scoring results demonstrated the successful establishment of the BVD mouse model. FGF21 alleviated the clinical symptoms in the BVD mice and significantly improved weight loss. Furthermore, FGF21 inhibited the BVDV-induced leukocyte, platelet, and lymphocyte reduction while inhibiting the expression of BVDV-induced inflammatory factors. In the BVD mice, FGF21 promoted duodenal epithelial cell proliferation, thereby significantly improving the damage to the cells. In conclusion, FGF21 exerted a good therapeutic effect on the BVD mouse model.
Collapse
Affiliation(s)
- Dan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yu-Hao Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jin-Ming Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Jilin Agricultural University, Changchun, China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Jilin Agricultural University, Changchun, China
| | - Nai-Chao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Jilin Agricultural University, Changchun, China
| | - Fan-Li Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Jilin Agricultural University, Changchun, China
- The Ministry of Education Key Laboratory of Animal Production and the Product Quality and Safety, Jilin Agricultural University, Changchun, China
- *Correspondence: Fan-Li Zeng
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Jilin Agricultural University, Changchun, China
- The Ministry of Education Key Laboratory of Animal Production and the Product Quality and Safety, Jilin Agricultural University, Changchun, China
- Rui Du
| |
Collapse
|
16
|
Gao Y, Zhao S, Zhang W, Tang H, Yan M, Yong F, Bai X, Wu X, Zhang Y, Zhang Q. Localization of FGF21 Protein and Lipid Metabolism-Related Genes in Camels. Life (Basel) 2023; 13:life13020432. [PMID: 36836789 PMCID: PMC9959858 DOI: 10.3390/life13020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
With the ability to survive under drought and chronic hunger, camels display a unique regulation characteristic of lipid metabolism. Fibroblast growth factor (FGF) 21 is a peptide hormone that regulates metabolic pathways, especially lipid metabolism, which was considered as a promising therapeutic target for metabolic diseases. To understand the FGF21 expression pattern and its potential relationship with lipid metabolism in camels, this study investigated the distribution and expression of FGF21, receptor FGFR1, and two lipid metabolism markers, leptin and hormone-sensitive lipase (HSL), using an immunohistochemistry (IHC) assay. The results showed that FGF21 was widely expressed in camel central nerve tissue and peripheral organs but absent in lung and gametogenic tissue, including the testis, epididymis, and ovary. In striated muscle, FGF21 is only present at the fiber junction. FGFR1 is expressed in almost all tissues and cells, indicating that all tissues are responsive to FGF21 and other FGF-mediated signals. Leptin and HSL are mainly located in metabolic and energy-consuming organs. In the CNS, leptin and HSL showed a similar expression pattern with FGFR1. In addition, leptin expression is extremely high in the bronchial epithelium, which may be due to its role in the immune responses of respiratory mucosa, in addition to fat stores and energy balance. This study found that FGF21 showed active expression in the nervous system of camels, which may be related to the adaptability of camels to arid environments and the specific regulation of lipid metabolism. This study showed a special FGF21-mediated fat conversion pattern in camels and provides a reference for developing a potential therapeutic method for fat metabolism disease.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (Y.G.); (Q.Z.)
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Wangdong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Meilin Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fang Yong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xu Bai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaochun Wu
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (Y.G.); (Q.Z.)
| |
Collapse
|
17
|
Brinker EJ, Towns TJ, Watanabe R, Ma X, Bashir A, Cole RC, Wang X, Graff EC. Direct activation of the fibroblast growth factor-21 pathway in overweight and obese cats. Front Vet Sci 2023; 10:1072680. [PMID: 36756310 PMCID: PMC9900002 DOI: 10.3389/fvets.2023.1072680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction Feline obesity is common, afflicting ~25-40% of domestic cats. Obese cats are predisposed to many metabolic dyscrasias, such as insulin resistance, altered blood lipids, and feline hepatic lipidosis. Fibroblast Growth Factor-21 (FGF21) is an endocrine hormone that mediates the fat-liver axis, and in humans and animals, FGF21 can ameliorate insulin resistance, non-alcoholic fatty liver disease, and obesity. Activation of the FGF21 pathway may have therapeutic benefits for obese cats. Methods In this preliminary cross-sectional study, ad libitum fed, purpose-bred, male-neutered, 6-year-old, obese and overweight cats were administered either 10 mg/kg/day of an FGF21 mimetic (FGF21; n = 4) or saline (control; n = 3) for 14 days. Body weight, food, and water intake were quantified daily during and 2 weeks following treatment. Changes in metabolic and liver parameters, intrahepatic triglyceride content, liver elasticity, and gut microbiota were evaluated. Results Treatment with FGF21 resulted in significant weight loss (~5.93%) compared to control and a trend toward decreased intrahepatic triglyceride content. Cats treated with FGF21 had decreased serum alkaline phosphatase. No significant changes were noted in liver elasticity, serum, liver, or metabolic parameters, or gut microbiome composition. Discussion In obese and overweight cats, activation of the FGF21 pathway can safely induce weight loss with trends to improve liver lipid content. This exploratory study is the first to evaluate the FGF21 pathway in cats. Manipulation of the FGF21 pathway has promising potential as a therapeutic for feline obesity. Further studies are needed to see if FGF21-pathway manipulation can be therapeutic for feline hepatic lipidosis.
Collapse
Affiliation(s)
- Emily J. Brinker
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - T. Jordan Towns
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Rie Watanabe
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xiaolei Ma
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, United States
| | - Robert C. Cole
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Center for Advanced Science, Innovation and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Emily C. Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,*Correspondence: Emily C. Graff ✉
| |
Collapse
|
18
|
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone involved in energy homeostasis that protects against the development of obesity and diabetes in animal models. Its level is elevated in atherosclerotic cardiovascular diseases (CVD) in humans. However, little is known about the role of FGF21 in heart failure (HF). HF is a major global health problem with a prevalence that is predicted to rise, especially in ageing populations. Despite improved therapies, mortality due to HF remains high, and given its insidious onset, prediction of its development is challenging for physicians. The emergence of cardiac biomarkers to improve prediction, diagnosis, and prognosis of HF has received much attention over the past decade. Recent studies have suggested FGF21 is a promising biomarker candidate for HF. Preclinical research has shown that FGF21 is involved in the pathophysiology of HF through the prevention of oxidative stress, cardiac hypertrophy, and inflammation in cardiomyocytes. However, in the available clinical literature, FGF21 levels appear to be paradoxically raised in HF, potentially implying a FGF21 resistant state as occurs in obesity. Several potential confounding variables complicate the verdict on whether FGF21 is of clinical value as a biomarker. Further research is thus needed to evaluate whether FGF21 has a causal role in HF, and whether circulating FGF21 can be used as a biomarker to improve the prediction, diagnosis, and prognosis of HF. This review draws from preclinical and clinical studies to explore the role of FGF21 in HF.
Collapse
Affiliation(s)
- William Tucker
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bradley Tucker
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kwok Leung Ong
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Han F, Yin L, Yu X, Xu R, Tian M, Liu X, Zhou L, Hu L, Gong W, Xiao W, Lu G, Yao G, Ding Y. High circulating fibroblast growth factor-21 levels as a screening marker in fatty pancreas patients. PeerJ 2023; 11:e15176. [PMID: 37070097 PMCID: PMC10105565 DOI: 10.7717/peerj.15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/19/2023] Open
Abstract
Background The study aimed to detect the serum levels of fibroblast growth factor-21 (FGF-21) in fatty pancreas (FP) patients and to investigate their potential clinical value. Methods We screened patients with FP using transabdominal ultrasound. The anthropometric, biochemical and serum levels of FGF-21 were compared between the FP group and the normal control (NC) group. A receiver operating characteristic (ROC) curve was used to evaluate the predictive value of serum FGF-21 for FP patients. Results Compared with the NC group, body mass index, fasting blood glucose levels, uric acid levels and cholesterol levels of the FP group were significantly higher, while the high-density lipoprotein level was lower. In addition, levels of serum FGF-21, resistin, leptin and tumor necrosis factor-α were significantly higher than those in the NC group, while the serum adiponectin level was lower. Pearson analysis showed serum FGF-21 levels in FP patients were negatively correlated with leptin. The ROC curve showed the best critical value of the serum FGF-21 level in FP patients was 171 pg/mL (AUC 0.744, P = 0.002, 95% confidence intervals 0.636-0.852). Conclusion Serum FGF-21 was closely related to fatty pancreas. Detecting serum FGF-21 levels may help identify the population susceptible to FP.
Collapse
Affiliation(s)
- Fei Han
- Dalian Medical University, Dalian, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Ling Yin
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xiaoping Yu
- Department of Health Promotion Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Ultrasound, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Renyan Xu
- Department of Health Promotion Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Ultrasound, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Mingxiang Tian
- Department of Health Promotion Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xinnong Liu
- Institute of Digestive Diseases, Yangzhou University, Yangzhou, China
| | - Lu Zhou
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guanghuai Yao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Dalian Medical University, Dalian, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P. The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol 2022; 13:1089214. [PMID: 36618930 PMCID: PMC9810635 DOI: 10.3389/fphar.2022.1089214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
As an endocrine hormone, fibroblast growth factor 21 (FGF21) plays a crucial role in regulating lipid, glucose, and energy metabolism. Endogenous FGF21 is generated by multiple cell types but acts on restricted effector tissues, including the brain, adipose tissue, liver, heart, and skeletal muscle. Intervention with FGF21 in rodents or non-human primates has shown significant pharmacological effects on a range of metabolic dysfunctions, including weight loss and improvement of hyperglycemia, hyperlipidemia, insulin resistance, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). Due to the poor pharmacokinetic and biophysical characteristics of native FGF21, long-acting FGF21 analogs and FGF21 receptor agonists have been developed for the treatment of metabolic dysfunction. Clinical trials of several FGF21-based drugs have been performed and shown good safety, tolerance, and efficacy. Here we review the actions of FGF21 and summarize the associated clinical trials in obesity, type 2 diabetes mellitus (T2DM), and NAFLD, to help understand and promote the development of efficient treatment for metabolic diseases via targeting FGF21.
Collapse
Affiliation(s)
- Zhiwei Chen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| |
Collapse
|
21
|
Prida E, Álvarez-Delgado S, Pérez-Lois R, Soto-Tielas M, Estany-Gestal A, Fernø J, Seoane LM, Quiñones M, Al-Massadi O. Liver Brain Interactions: Focus on FGF21 a Systematic Review. Int J Mol Sci 2022; 23:ijms232113318. [PMID: 36362103 PMCID: PMC9658462 DOI: 10.3390/ijms232113318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 21 is a pleiotropic hormone secreted mainly by the liver in response to metabolic and nutritional challenges. Physiologically, fibroblast growth factor 21 plays a key role in mediating the metabolic responses to fasting or starvation and acts as an important regulator of energy homeostasis, glucose and lipid metabolism, and insulin sensitivity, in part by its direct action on the central nervous system. Accordingly, pharmacological recombinant fibroblast growth factor 21 therapies have been shown to counteract obesity and its related metabolic disorders in both rodents and nonhuman primates. In this systematic review, we discuss how fibroblast growth factor 21 regulates metabolism and its interactions with the central nervous system. In addition, we also state our vision for possible therapeutic uses of this hepatic-brain axis.
Collapse
Affiliation(s)
- Eva Prida
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Sara Álvarez-Delgado
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Raquel Pérez-Lois
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Mateo Soto-Tielas
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Ana Estany-Gestal
- Unidad de Metodología de la Investigación, Fundación Instituto de Investigación de Santiago (FIDIS), 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201 Bergen, Norway
| | - Luisa María Seoane
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Mar Quiñones
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
- Correspondence: (M.Q.); (O.A.-M.); Tel.: +34-981955708 (M.Q.); +34-981955522 (O.A.-M.)
| | - Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
- Correspondence: (M.Q.); (O.A.-M.); Tel.: +34-981955708 (M.Q.); +34-981955522 (O.A.-M.)
| |
Collapse
|
22
|
Martinez-Ramirez AS, Borders TL, Paul L, Schipma M, Wang X, Korobova F, Wright CV, Sosa-Pineda B. Specific Temporal Requirement of Prox1 Activity During Pancreatic Acinar Cell Development. GASTRO HEP ADVANCES 2022; 1:807-823. [PMID: 37829188 PMCID: PMC10569262 DOI: 10.1016/j.gastha.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND AIMS An interactive regulatory network assembled through the induction and downregulation of distinct transcription factors governs acinar cell maturation. Understanding how this network is built is relevant for protocols of directed pancreatic acinar differentiation. The murine transcription factor Prox1 is highly expressed in multipotent pancreatic progenitors and in various mature pancreatic cell types except for acinar cells. In this study, we investigated when is Prox1 expression terminated in developing acinar cells and the potential involvement of its activity in acinar cell specification/differentiation. We also investigated the effects of sustained Prox1 expression in acinar maturation and maintenance. METHODS Prox1 acinar expression was analyzed by immunofluorescence and confocal microscopy. Prox1-null embryos (Prox1GFPCre/Δ), Prox1AcOE transgenic mice, histologic and immunostaining methods, transmission electron microscopy, functional assays, and quantitative RNA and RNA-sequencing methods were used to investigate the effects of Prox1 functional deficiency and sustained Prox1 expression in acinar maturation and homeostasis. RESULTS Immunostaining results reveal transient Prox1 expression in newly committed embryonic acinar cells. RNA-sequencing demonstrate precocious expression of multiple "late" acinar genes in the pancreas of Prox1GFPCre/Δ embryos. Prox1AcOE transgenic mice carrying sustained Prox1 acinar expression have relatively normal pancreas development. In contrast, Prox1AcOE adult mice have severe pancreatic alterations involving reduced acinar gene expression, abnormal acinar secretory granules, acinar atrophy, increased endoplasmic reticulum stress, and mild chronic inflammation. CONCLUSION Prox1 transient expression in early acinar cells is necessary for correct sequential gene expression. Prox1 expression is terminated in developing acinar cells to complete maturation and to preserve homeostasis.
Collapse
Affiliation(s)
- Angelica S. Martinez-Ramirez
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Thomas L. Borders
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Leena Paul
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Matthew Schipma
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xinkun Wang
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Farida Korobova
- Center for Advanced Microscopy, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christopher V. Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Beatriz Sosa-Pineda
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
23
|
Geng L, Liao B, Jin L, Yu J, Zhao X, Zhao Y, Zhong L, Wang B, Li J, Liu J, Yang JK, Jia W, Lian Q, Xu A. β-Klotho promotes glycolysis and glucose-stimulated insulin secretion via GP130. Nat Metab 2022; 4:608-626. [PMID: 35551509 DOI: 10.1038/s42255-022-00572-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of type-2 diabetes. However, cellular signaling machineries that control GSIS remain incompletely understood. Here, we report that β-klotho (KLB), a single-pass transmembrane protein known as a co-receptor for fibroblast growth factor 21 (FGF21), fine tunes GSIS via modulation of glycolysis in pancreatic β-cells independent of the actions of FGF21. β-cell-specific deletion of Klb but not Fgf21 deletion causes defective GSIS and glucose intolerance in mice and defective GSIS in islets of type-2 diabetic mice is mitigated by adenovirus-mediated restoration of KLB. Mechanistically, KLB interacts with and stabilizes the cytokine receptor subunit GP130 by blockage of ubiquitin-dependent lysosomal degradation, thereby facilitating interleukin-6-evoked STAT3-HIF1α signaling, which in turn transactivates a cluster of glycolytic genes for adenosine triphosphate production and GSIS. The defective glycolysis and GSIS in Klb-deficient islets are rescued by adenovirus-mediated replenishment of STAT3 or HIF1α. Thus, KLB functions as a key cell-surface regulator of GSIS by coupling the GP130 receptor signaling to glucose catabolism in β-cells and represents a promising therapeutic target for diabetes.
Collapse
Affiliation(s)
- Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiasui Yu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoyu Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuntao Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ling Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiufeng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jie Liu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| | - Qizhou Lian
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
- HKUMed Laboratory of Cellular Therapeutics, The University of Hong Kong, Hong Kong, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Susak YM, Opalchuk K, Tkachenko O, Rudyk M, Skivka L. Routine laboratory parameters in patients with necrotizing pancreatitis by the time of operative pancreatic debridement: Food for thought. World J Gastrointest Surg 2022; 14:64-77. [PMID: 35126864 PMCID: PMC8790329 DOI: 10.4240/wjgs.v14.i1.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Timing of invasive intervention such as operative pancreatic debridement (OPD) in patients with acute necrotizing pancreatitis (ANP) is linked to the degree of encapsulation in necrotic collections and controlled inflammation. Additional markers of these processes might assist decision-making on the timing of surgical intervention. In our opinion, it is logical to search for such markers among routine laboratory parameters traditionally used in ANP patients, considering simplicity and cost-efficacy of routine laboratory methodologies.
AIM To evaluate laboratory variables in ANP patients in the preoperative period for the purpose of their use in the timing of surgery.
METHODS A retrospective analysis of routine laboratory parameters in 53 ANP patients undergoing OPD between 2017 and 2020 was performed. Dynamic changes of routine hematological and biochemical indices were examined in the preoperative period. Patients were divided into survivors and non-survivors. Survivors were divided into subgroups with short and long post-surgery length of stay (LOS) in hospital. Correlation analysis was used to evaluate association of laboratory variables with LOS. Logistic regression was used to assess risk factors for patient mortality.
RESULTS Seven patients (15%) with severe acute pancreatitis (SAP) and 46 patients (85%) with moderately SAP (MSAP) were included in the study. Median age of participants was 43.2 years; 33 (62.3%) were male. Pancreatitis etiology included biliary (15%), alcohol (80%), and idiopathic/other (5%). Median time from diagnosis to OPD was ≥ 4 wk. Median postoperative LOS was at the average of 53 d. Mortality was 19%. Progressive increase of platelet count in preoperative period was associated with shortened LOS. Increased aspartate aminotransferase and direct bilirubin (DB) levels the day before the OPD along with weak progressive decrease of DB in preoperative period were reliable predictors for ANP patient mortality.
CONCLUSION Multifactorial analysis of dynamic changes of routine laboratory variables can be useful for a person-tailored timing of surgical intervention in ANP patients.
Collapse
Affiliation(s)
- Yaroslav M Susak
- Department of Surgery with the Course of Emergency and Vascular Surgery, O.O. Bogomolet’s National Medical University, Kyiv 01601, Ukraine
| | - Kristina Opalchuk
- Department of Surgery, Anesthesiology and Intensive Care Postgraduate Education, O.O. Bogomolet’s National Medical University, Kyiv 01601, Ukraine
| | - Olexandr Tkachenko
- Department of Surgery N2, Kyiv City Clinical Emergency Hospital, Kyiv City Clinical Emergency Hospital, Kyiv 02000, Ukraine
| | - Mariia Rudyk
- Department of Microbiology and Immunology, Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
| | - Larysa Skivka
- Department of Microbiology and Immunology, Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
| |
Collapse
|
25
|
Wu CT, Chaffin AT, Ryan KK. Fibroblast Growth Factor 21 Facilitates the Homeostatic Control of Feeding Behavior. J Clin Med 2022; 11:580. [PMID: 35160033 PMCID: PMC8836936 DOI: 10.3390/jcm11030580] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a stress hormone that is released from the liver in response to nutritional and metabolic challenges. In addition to its well-described effects on systemic metabolism, a growing body of literature now supports the notion that FGF21 also acts via the central nervous system to control feeding behavior. Here we review the current understanding of FGF21 as a hormone regulating feeding behavior in rodents, non-human primates, and humans. First, we examine the nutritional contexts that induce FGF21 secretion. Initial reports describing FGF21 as a 'starvation hormone' have now been further refined. FGF21 is now better understood as an endocrine mediator of the intracellular stress response to various nutritional manipulations, including excess sugars and alcohol, caloric deficits, a ketogenic diet, and amino acid restriction. We discuss FGF21's effects on energy intake and macronutrient choice, together with our current understanding of the underlying neural mechanisms. We argue that the behavioral effects of FGF21 function primarily to maintain systemic macronutrient homeostasis, and in particular to maintain an adequate supply of protein and amino acids for use by the cells.
Collapse
Affiliation(s)
| | | | - Karen K. Ryan
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA; (C.-T.W.); (A.T.C.)
| |
Collapse
|
26
|
Ren Y, Liu W, Zhang J, Bi J, Fan M, Lv Y, Wu Z, Zhang Y, Wu R. MFG-E8 Maintains Cellular Homeostasis by Suppressing Endoplasmic Reticulum Stress in Pancreatic Exocrine Acinar Cells. Front Cell Dev Biol 2022; 9:803876. [PMID: 35096831 PMCID: PMC8795834 DOI: 10.3389/fcell.2021.803876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 01/25/2023] Open
Abstract
Excessive endoplasmic reticulum (ER) stress contributes significantly to the pathogenesis of exocrine acinar damage in acute pancreatitis. Our previous study found that milk fat globule EGF factor 8 (MFG-E8), a lipophilic glycoprotein, alleviates acinar cell damage during AP via binding to αvβ3/5 integrins. Ligand-dependent integrin-FAK activation of STAT3 was reported to be of great importance for maintaining cellular homeostasis. However, MFG-E8's role in ER stress in pancreatic exocrine acinar cells has not been evaluated. To study this, thapsigargin, brefeldin A, tunicamycin and cerulein + LPS were used to induce ER stress in rat pancreatic acinar cells in vitro. L-arginine- and cerulein + LPS-induced acute pancreatitis in mice were used to study ER stress in vivo. The results showed that MFG-E8 dose-dependently inhibited ER stress under both in vitro and in vivo conditions. MFG-E8 knockout mice suffered more severe ER stress and greater inflammatory response after L-arginine administration. Mechanistically, MFG-E8 increased phosphorylation of FAK and STAT3 in cerulein + LPS-treated pancreatic acinar cells. The presence of specific inhibitors of αvβ3/5 integrin, FAK or STAT3 abolished MFG-E8's effect on cerulein + LPS-induced ER stress in pancreatic acinar cells. In conclusion, MFG-E8 maintains cellular homeostasis by alleviating ER stress in pancreatic exocrine acinar cells.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuanyuan Zhang
- Department of Pediatrics, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
27
|
Spann RA, Morrison CD, den Hartigh LJ. The Nuanced Metabolic Functions of Endogenous FGF21 Depend on the Nature of the Stimulus, Tissue Source, and Experimental Model. Front Endocrinol (Lausanne) 2022; 12:802541. [PMID: 35046901 PMCID: PMC8761941 DOI: 10.3389/fendo.2021.802541] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that is involved in the regulation of lipid, glucose, and energy metabolism. Pharmacological FGF21 administration promotes weight loss and improves insulin sensitivity in rodents, non-human primates, and humans. However, pharmacologic effects of FGF21 likely differ from its physiological effects. Endogenous FGF21 is produced by many cell types, including hepatocytes, white and brown adipocytes, skeletal and cardiac myocytes, and pancreatic beta cells, and acts on a diverse array of effector tissues such as the brain, white and brown adipose tissue, heart, and skeletal muscle. Different receptor expression patterns dictate FGF21 function in these target tissues, with the primary effect to coordinate responses to nutritional stress. Moreover, different nutritional stimuli tend to promote FGF21 expression from different tissues; i.e., fasting induces hepatic-derived FGF21, while feeding promotes white adipocyte-derived FGF21. Target tissue effects of FGF21 also depend on its capacity to enter the systemic circulation, which varies widely from known FGF21 tissue sources in response to various stimuli. Due to its association with obesity and non-alcoholic fatty liver disease, the metabolic effects of endogenously produced FGF21 during the pathogenesis of these conditions are not well known. In this review, we will highlight what is known about endogenous tissue-specific FGF21 expression and organ cross-talk that dictate its diverse physiological functions, with particular attention given to FGF21 responses to nutritional stress. The importance of the particular experimental design, cellular and animal models, and nutritional status in deciphering the diverse metabolic functions of endogenous FGF21 cannot be overstated.
Collapse
Affiliation(s)
- Redin A. Spann
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
28
|
Hua S, Liu Q, Li J, Fan M, Yan K, Ye D. Beta-klotho in type 2 diabetes mellitus: From pathophysiology to therapeutic strategies. Rev Endocr Metab Disord 2021; 22:1091-1109. [PMID: 34120289 DOI: 10.1007/s11154-021-09661-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has become a global health problem with no cure. Despite lifestyle modifications and various pharmaceutical options, the achievement of stable and durable glucose control along with effective prevention of T2DM-related cardiovascular complications remains a challenging task in clinical management. With its selective high abundance in metabolic tissues (adipose tissue, liver, and pancreas), β-Klotho is the essential component of fibroblast growth factor (FGF) receptor complexes. It is essential for high-affinity binding of endocrine FGF19 and FGF21 to evoke the signaling cascade actively involved in homeostatic maintenance of glucose metabolism and energy expenditure. In this Review, we discuss the biological function of β-Klotho in the regulation of glucose metabolism and offer mechanistic insights into its involvement in the pathophysiology of T2DM. We review our current understanding of the endocrine axis comprised of β-Klotho and FGFs (FGF19 and FGF21) and its regulatory effects on glucose metabolism under physiological and T2DM conditions. We also highlight advances in the development and preclinical validation of pharmacological compounds that target β-Klotho and/or the β-Klotho-FGFRs complex for the treatment of T2DM. Given the remarkable advances in this field, we also discuss outstanding research questions and the many challenges in the clinical development of β-Klotho-based therapies.
Collapse
Affiliation(s)
- Shuang Hua
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianying Liu
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jufei Li
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengqi Fan
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
29
|
Yan J, Nie Y, Cao J, Luo M, Yan M, Chen Z, He B. The Roles and Pharmacological Effects of FGF21 in Preventing Aging-Associated Metabolic Diseases. Front Cardiovasc Med 2021; 8:655575. [PMID: 33869312 PMCID: PMC8044345 DOI: 10.3389/fcvm.2021.655575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
With the continuous improvement of living standards but the lack of exercise, aging-associated metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD) are becoming a lingering dark cloud over society. Studies have found that metabolic disorders are near related to glucose, lipid metabolism, and cellular aging. Fibroblast growth factor 21 (FGF21), a member of the FGFs family, efficiently regulates the homeostasis of metabolism and cellular aging. By activating autophagy genes and improving inflammation, FGF21 indirectly delays cellular aging and directly exerts anti-aging effects by regulating aging genes. FGF21 can also regulate glucose and lipid metabolism by controlling metabolism-related genes, such as adipose triglyceride lipase (ATGL) and acetyl-CoA carboxylase (ACC1). Because FGF21 can regulate metabolism and cellular aging simultaneously, FGF21 analogs and FGF21 receptor agonists are gradually being valued and could become a treatment approach for aging-associated metabolic diseases. However, the mechanism by which FGF21 achieves curative effects is still not known. This review aims to interpret the interactive influence between FGF21, aging, and metabolic diseases and delineate the pharmacology of FGF21, providing theoretical support for further research on FGF21.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jielu Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Minmin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Maoxiang Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
30
|
Luo Y, Li X, Ma J, Abbruzzese JL, Lu W. Pancreatic Tumorigenesis: Oncogenic KRAS and the Vulnerability of the Pancreas to Obesity. Cancers (Basel) 2021; 13:cancers13040778. [PMID: 33668583 PMCID: PMC7918840 DOI: 10.3390/cancers13040778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is a devastating disease with a poor survival rate, and oncogenic mutant KRAS is a major driver of its initiation and progression; however, effective strategies/drugs targeting major forms of mutant KRAS have not been forthcoming. Of note, obesity is known to worsen mutant KRAS-mediated pathologies, leading to PDAC with high penetrance; however, the mechanistic link between obesity and pancreatic cancer remains elusive. The recent discovery of FGF21 as an anti-obesity and anti-inflammation factor and as a downstream target of KRAS has shed new light on the problem. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) mutations have been considered a critical driver of PDAC initiation and progression. However, the effects of mutant KRAS alone do not recapitulate the full spectrum of pancreatic pathologies associated with PDAC development in adults. Historically, mutant KRAS was regarded as constitutively active; however, recent studies have shown that endogenous levels of mutant KRAS are not constitutively fully active and its activity is still subject to up-regulation by upstream stimuli. Obesity is a metabolic disease that induces a chronic, low-grade inflammation called meta-inflammation and has long been recognized clinically as a major modifiable risk factor for pancreatic cancer. It has been shown in different animal models that obesogenic high-fat diet (HFD) and pancreatic inflammation promote the rapid development of mutant KRAS-mediated PDAC with high penetrance. However, it is not clear why the pancreas with endogenous levels of mutant KRAS is vulnerable to chronic HFD and inflammatory challenges. Recently, the discovery of fibroblast growth factor 21 (FGF21) as a novel anti-obesity and anti-inflammatory factor and as a downstream target of mutant KRAS has shed new light on this problem. This review is intended to provide an update on our knowledge of the vulnerability of the pancreas to KRAS-mediated invasive PDAC in the context of challenges engendered by obesity and associated inflammation.
Collapse
Affiliation(s)
- Yongde Luo
- The First Affiliated Hospital & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China;
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| | - Xiaokun Li
- The First Affiliated Hospital & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China;
| | - Jianjia Ma
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - James L. Abbruzzese
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA;
| | - Weiqin Lu
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| |
Collapse
|
31
|
McCarty MF, Assanga SI, Lujan LL. Age-adjusted mortality from pancreatic cancer increased NINE-FOLD in japan from 1950 to 1995 - Was a low-protein quasi-vegan diet a key factor in their former low risk? Med Hypotheses 2021; 149:110518. [PMID: 33582316 DOI: 10.1016/j.mehy.2021.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
During the last half of the twentieth century, age-adjusted mortality from pancreatic cancer in Japan rose about nine-fold in both sexes. Well-characterized risk factors such as smoking, obesity/metabolic syndrome, and heavy alcohol use appear to explain only a modest part of this rise. It is proposed that a diet relatively low in protein, and particularly low in animal protein, was a key determinant of the low risk for pancreatic cancer in mid-century Japan. It is further proposed that pancreatic acinar cells, owing to their extraordinarily high rate of protein synthesis, are at high risk for ER stress; that such stress plays a fundamental role in the induction of most pancreatic cancers; and that low-protein diets help to offset such stress by modulating activities of the kinases GCN2 and mTORC1 while increasing autocrine and systemic production of fibroblast growth factor 21. This model appears to clarify the role of various risk factors and protective factors in pancreatic cancer induction. A vegan or quasi-vegan low-protein diet may have broader potential for decreasing risk for a range of common "Western" cancers.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA, United States.
| | | | | |
Collapse
|
32
|
Pitfalls in AR42J-model of cerulein-induced acute pancreatitis. PLoS One 2021; 16:e0242706. [PMID: 33493150 PMCID: PMC7833168 DOI: 10.1371/journal.pone.0242706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background AR42J are immortalized pancreatic adenocarcinoma cells that share similarities with pancreatic acinar cells. AR42J are often used as a cell-culture model of cerulein (CN)-induced acute pancreatitis (AP). Nevertheless, it is controversial how to treat AR42J for reliable induction of AP-like processes. Gene knockout and/or overexpression often remain challenging, as well. In this study, we demonstrate conditions for a reliable induction of proinflammatory markers upon CN treatment in AR42J and high transfection efficacy using Glyoxalase-I (Glo-I) as a target of interest. Methods Effects of dexamethasone (dexa) and CN on cell morphology and amylase secretion were analyzed via ELISA of supernatant. IL-6, TNF-α and NF-κB-p65 were measured via qRT-PCR, ELISA and Western Blot (WB). Transfection efficacy was determined by WB, qRT-PCR and immune fluorescence of pEGFP-N1-Glo-I-Vector and Glo-I-siRNA. Results Treatment of AR42J with 100 nm dexa is mandatory for differentiation to an acinar-cell-like phenotype and amylase production. CN resulted in secretion of amylase but did not influence amylase production. High levels of CN-induced amylase secretion were detected between 3 and 24 hours of incubation. Treatment with LPS alone or in combination with CN did not influence amylase release compared to control or CN. CN treatment resulted in increased TNF-α production but not secretion and did not influence IL-6 mRNA. CN-induced stimulation of NF-κB was found to be highest on protein levels after 6h of incubation. Transient transfection was able to induce overexpression on protein and mRNA levels, with highest effect after 12 to 24 hours. Gene-knockdown was achieved by using 30 pmol of siRNA leading to effective reduction of protein levels after 72 hours. CN did not induce amylase secretion in AR42J cell passages beyond 35. Conclusion AR42J cells demonstrate a reliable in-vitro model of CN-induced AP but specific conditions are mandatory to obtain reproducible data.
Collapse
|
33
|
Lu W, Li X, Luo Y. FGF21 in obesity and cancer: New insights. Cancer Lett 2020; 499:5-13. [PMID: 33264641 DOI: 10.1016/j.canlet.2020.11.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The endocrine FGF21 was discovered as a novel metabolic regulator in 2005 with new functions bifurcating from the canonic heparin-binding FGFs that directly promote cell proliferation and growth independent of a co-receptor. Early studies have demonstrated that FGF21 is a stress sensor in the liver and possibly, several other endocrine and metabolic tissues. Hepatic FGF21 signals via endocrine routes to quench episodes of metabolic derangements, promoting metabolic homeostasis. The convergence of mouse and human studies shows that FGF21 promotes lipid catabolism, including lipolysis, fatty acid oxidation, mitochondrial oxidative activity, and thermogenic energy dissipation, rather than directly regulating insulin and appetite. The white and brown adipose tissues and, to some extent, the hypothalamus, all of which host a transmembrane receptor binary complex of FGFR1 and co-receptor KLB, are considered the essential tissue and molecular targets of hepatic or pharmacological FGF21. On the other hand, a growing body of work has revealed that pancreatic acinar cells form a constitutive high-production site for FGF21, which then acts in an autocrine or paracrine mode. Beyond regulation of macronutrient metabolism and physiological energy expenditure, FGF21 appears to function in forestalling the development of fatty pancreas, steato-pancreatitis, fatty liver, and steato-hepatitis, thereby preventing the development of advanced pathologies such as pancreatic ductal adenocarcinoma or hepatocellular carcinoma. This review is intended to provide updates on these new discoveries that illuminate the protective roles of FGF21-FGFR1-KLB signal pathway in metabolic anomalies-associated severe tissue damage and malignancy, and to inform potential new preventive or therapeutic strategies for obesity-inflicted cancer patients via reducing metabolic risks and inflammation.
Collapse
Affiliation(s)
- Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yongde Luo
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA; School of Pharmaceutical Science, Wenzhou Medical University, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Centeer BioTherapeutics Ltd Co, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Chen Q, Li J, Ma J, Yang X, Ni M, Zhang Y, Li X, Lin Z, Gong F. Fibroblast growth factor 21 alleviates acute pancreatitis via activation of the Sirt1-autophagy signalling pathway. J Cell Mol Med 2020; 24:5341-5351. [PMID: 32233059 PMCID: PMC7205819 DOI: 10.1111/jcmm.15190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/23/2020] [Indexed: 01/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity, alleviates the process of acute pancreatitis (AP). However, its mechanism remains elusive. The pathological and physiological characteristics of FGF21 are observed in both patients with AP and cerulein‐induced AP models, and the mechanisms of FGF21 in response to AP are investigated by evaluating the impact of autophagy in FGF21‐treated mice and cultured pancreatic cells. Circulating levels of FGF21 significantly increase in both AP patients and cerulein‐induced AP mice, which is accompanied by the change of pathology in pancreatic injury. Replenishment of FGF21 distinctly reverses cerulein‐induced pancreatic injury and improves cerulein‐induced autophagy damage in vivo and in vitro. Mechanically, FGF21 acts on pancreatic acinar cells to up‐regulate Sirtuin‐1 (Sirt1) expression, which in turn repairs impaired autophagy and removes damaged organs. In addition, blockage of Sirt1 accelerates cerulein‐induced pancreatic injury and weakens the regulative effect in FGF21‐activated autophagy in mice. These results showed that FGF21 protects against cerulein‐induced AP by activation of Sirtuin‐1‐autophagy axis.
Collapse
Affiliation(s)
- Qiongzhen Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jinmeng Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Junfeng Ma
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiaoning Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ming Ni
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yali Zhang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Zhuofeng Lin
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Roles of FGF21 and irisin in obesity-related diabetes and pancreatic diseases. JOURNAL OF PANCREATOLOGY 2020. [DOI: 10.1097/jp9.0000000000000039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
36
|
Yaghoobi G, Shokoohi-Rad S, Jafarzadeh H, Abdollahi E. Serum Fibroblast Growth Factor 21 in Patients with and without Pterygia. J Ophthalmic Vis Res 2020; 15:38-44. [PMID: 32095207 PMCID: PMC7001032 DOI: 10.18502/jovr.v15i1.5940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Pterygium is a common fibro-vascular-related eye disease. The fibroblast growth factor 21 (FGF21) helps reduce neovascularization. Previous studies have shown that the serum level of FGF21 correlates with vascular eye diseases such as diabetic retinopathy and retinopathy of prematurity. In this study, the serum FGF21 is compared in patients with and without pterygium. Methods This descriptive-analytical cross-sectional study examines individuals with pterygium who visited the Ophthalmology Clinic of Khatam-al-Anbia Hospital in Mashhad, Iran, during 2017–2018. Control subjects were selected from healthy people without pterygium disease. Patients with a history of acute illness, chronic liver and kidney disease, diabetes, cancer, malnutrition and drug use, women who were pregnant or breastfeeding, and subjects who were taking anticonvulsants or glucocorticoids were excluded as these may affect insulin and glycosuria levels. Sixty people (30 in each group) were chosen using the convenient sampling method. Intravenous blood samples were taken from all patients. After preparing the patients, the freeze was checked using the enzyme-linked immunosorbent assay (ELISA) method after samples had been taken. Data were analyzed by SPSS using an independent t-test, Mann–Whitney, Chi-square, Kruskal–Wallis, and Kolmogorov–Smirnov tests (α = 0.05). Results The serum FGF21 levels were 319.09 ± 246.93 pg/ml and 608.88 ± 449.81 pg/ml (P = 0.005) in the pterygium group and control subjects, respectively. The average serum FGF21 was 281.55 ± 40.74 pg/ml in males and 361.375 ± 10.298 pg/ml in females in the pterygium group. The difference was not statistically significant (P = 0.19) Conclusion Our study showed that FGF21 levels were lower in patients with pterygium than the control subjects to a statistically significant level.
Collapse
Affiliation(s)
- Gholamhosein Yaghoobi
- Ophthalmology Department, Birjand University of Medical Sciences, Valiasr Hospital, Birjand, Iran
| | - Saeed Shokoohi-Rad
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Jafarzadeh
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
37
|
Jin G, Hong W, Guo Y, Bai Y, Chen B. Molecular Mechanism of Pancreatic Stellate Cells Activation in Chronic Pancreatitis and Pancreatic Cancer. J Cancer 2020; 11:1505-1515. [PMID: 32047557 PMCID: PMC6995390 DOI: 10.7150/jca.38616] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
Activated pancreatic stellate cells (PSCs) are the main effector cells in the process of fibrosis, a major pathological feature in pancreatic diseases that including chronic pancreatitis and pancreatic cancer. During tumorigenesis, quiescent PSCs change into an active myofibroblast-like phenotype which could create a favorable tumor microenvironment and facilitate cancer progression by increasing proliferation, invasiveness and inducing treatment resistance of pancreatic cancer cells. Many cellular signals are revealed contributing to the activation of PSCs, such as transforming growth factor-β, platelet derived growth factor, mitogen-activated protein kinase (MAPK), Smads, nuclear factor-κB (NF-κB) pathways and so on. Therefore, investigating the role of these factors and signaling pathways in PSCs activation will promote the development of PSCs-specific therapeutic strategies that may provide novel options for pancreatic cancer therapy. In this review, we systematically summarize the current knowledge about PSCs activation-associated stimulating factors and signaling pathways and hope to provide new strategies for the treatment of pancreatic diseases.
Collapse
Affiliation(s)
- Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weilong Hong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
38
|
Hernandez G, Luo T, Javed TA, Wen L, Kalwat MA, Vale K, Ammouri F, Husain SZ, Kliewer SA, Mangelsdorf DJ. Pancreatitis is an FGF21-deficient state that is corrected by replacement therapy. Sci Transl Med 2020; 12:eaay5186. [PMID: 31915301 PMCID: PMC7034981 DOI: 10.1126/scitranslmed.aay5186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
The exocrine pancreas expresses the highest concentrations of fibroblast growth factor 21 (FGF21) in the body, where it maintains acinar cell proteostasis. Here, we showed in both mice and humans that acute and chronic pancreatitis is associated with a loss of FGF21 expression due to activation of the integrated stress response (ISR) pathway. Mechanistically, we found that activation of the ISR in cultured acinar cells and mouse pancreata induced the expression of ATF3, a transcriptional repressor that directly bound to specific sites on the Fgf21 promoter and resulted in loss of FGF21 expression. These ATF3 binding sites are conserved in the human FGF21 promoter. Consistent with the mouse studies, we also observed the reciprocal expression of ATF3 and FGF21 in the pancreata of human patients with pancreatitis. Using three different mouse models of pancreatitis, we showed that pharmacologic replacement of FGF21 mitigated the ISR and resolved pancreatitis. Likewise, inhibition of the ISR with an inhibitor of the PKR-like endoplasmic reticulum kinase (PERK) also restored FGF21 expression and alleviated pancreatitis. These findings highlight the importance of FGF21 in preserving exocrine pancreas function and suggest its therapeutic use for prevention and treatment of pancreatitis.
Collapse
Affiliation(s)
- Genaro Hernandez
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Luo
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tanveer A Javed
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Li Wen
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Michael A Kalwat
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Vale
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Farah Ammouri
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sohail Z Husain
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
| | - Steven A Kliewer
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David J Mangelsdorf
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Tillman EJ, Rolph T. FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2020; 11:601290. [PMID: 33381084 PMCID: PMC7767990 DOI: 10.3389/fendo.2020.601290] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
The rising global prevalence of obesity, metabolic syndrome, and type 2 diabetes has driven a sharp increase in non-alcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in the liver. Approximately one-sixth of the NAFLD population progresses to non-alcoholic steatohepatitis (NASH) with liver inflammation, hepatocyte injury and cell death, liver fibrosis and cirrhosis. NASH is one of the leading causes of liver transplant, and an increasingly common cause of hepatocellular carcinoma (HCC), underscoring the need for intervention. The complex pathophysiology of NASH, and a predicted prevalence of 3-5% of the adult population worldwide, has prompted drug development programs aimed at multiple targets across all stages of the disease. Currently, there are no approved therapeutics. Liver-related morbidity and mortality are highest in more advanced fibrotic NASH, which has led to an early focus on anti-fibrotic approaches to prevent progression to cirrhosis and HCC. Due to limited clinical efficacy, anti-fibrotic approaches have been superseded by mechanisms that target the underlying driver of NASH pathogenesis, namely steatosis, which drives hepatocyte injury and downstream inflammation and fibrosis. Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies. In this review, we summarize preclinical and clinical data from studies with FGF21 and FGF21 analogs, in the context of the pathophysiology of NASH and underlying metabolic diseases.
Collapse
|
40
|
Luo Y, Yang Y, Liu M, Wang D, Wang F, Bi Y, Ji J, Li S, Liu Y, Chen R, Huang H, Wang X, Swidnicka-Siergiejko AK, Janowitz T, Beyaz S, Wang G, Xu S, Bialkowska AB, Luo CK, Pin CL, Liang G, Lu X, Wu M, Shroyer KR, Wolff RA, Plunkett W, Ji B, Li Z, Li E, Li X, Yang VW, Logsdon CD, Abbruzzese JL, Lu W. Oncogenic KRAS Reduces Expression of FGF21 in Acinar Cells to Promote Pancreatic Tumorigenesis in Mice on a High-Fat Diet. Gastroenterology 2019; 157:1413-1428.e11. [PMID: 31352001 PMCID: PMC6815712 DOI: 10.1053/j.gastro.2019.07.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Obesity is a risk factor for pancreatic cancer. In mice, a high-fat diet (HFD) and expression of oncogenic KRAS lead to development of invasive pancreatic ductal adenocarcinoma (PDAC) by unknown mechanisms. We investigated how oncogenic KRAS regulates the expression of fibroblast growth factor 21, FGF21, a metabolic regulator that prevents obesity, and the effects of recombinant human FGF21 (rhFGF21) on pancreatic tumorigenesis. METHODS We performed immunohistochemical analyses of FGF21 levels in human pancreatic tissue arrays, comprising 59 PDAC specimens and 45 nontumor tissues. We also studied mice with tamoxifen-inducible expression of oncogenic KRAS in acinar cells (KrasG12D/+ mice) and fElasCreERT mice (controls). KrasG12D/+ mice were placed on an HFD or regular chow diet (control) and given injections of rhFGF21 or vehicle; pancreata were collected and analyzed by histology, immunoblots, quantitative polymerase chain reaction, and immunohistochemistry. We measured markers of inflammation in the pancreas, liver, and adipose tissue. Activity of RAS was measured based on the amount of bound guanosine triphosphate. RESULTS Pancreatic tissues of mice expressed high levels of FGF21 compared with liver tissues. FGF21 and its receptor proteins were expressed by acinar cells. Acinar cells that expressed KrasG12D/+ had significantly lower expression of Fgf21 messenger RNA compared with acinar cells from control mice, partly due to down-regulation of PPARG expression-a transcription factor that activates Fgf21 transcription. Pancreata from KrasG12D/+ mice on a control diet and given injections of rhFGF21 had reduced pancreatic inflammation, infiltration by immune cells, and acinar-to-ductal metaplasia compared with mice given injections of vehicle. HFD-fed KrasG12D/+ mice given injections of vehicle accumulated abdominal fat, developed extensive inflammation, pancreatic cysts, and high-grade pancreatic intraepithelial neoplasias (PanINs); half the mice developed PDAC with liver metastases. HFD-fed KrasG12D/+ mice given injections of rhFGF21 had reduced accumulation of abdominal fat and pancreatic triglycerides, fewer pancreatic cysts, reduced systemic and pancreatic markers of inflammation, fewer PanINs, and longer survival-only approximately 12% of the mice developed PDACs, and none of the mice had metastases. Pancreata from HFD-fed KrasG12D/+ mice given injections of rhFGF21 had lower levels of active RAS than from mice given vehicle. CONCLUSIONS Normal acinar cells from mice and humans express high levels of FGF21. In mice, acinar expression of oncogenic KRAS significantly reduces FGF21 expression. When these mice are placed on an HFD, they develop extensive inflammation, pancreatic cysts, PanINs, and PDACs, which are reduced by injection of FGF21. FGF21 also reduces the guanosine triphosphate binding capacity of RAS. FGF21 might be used in the prevention or treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yongde Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Medicine, Stony Brook University, Stony Brook, New York.
| | - Yaying Yang
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Muyun Liu
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dan Wang
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Feng Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yawei Bi
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Juntao Ji
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Suyun Li
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yan Liu
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rong Chen
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Haojie Huang
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaojie Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Guoqiang Wang
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sulan Xu
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Catherine K. Luo
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christoph L. Pin
- Departments of Pediatrics, Oncology, and Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario Children’s Health Research Institute, London, ON, Canana N5C 2V5
| | - Guang Liang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine. Indianapolis, IN, USA
| | - Maoxin Wu
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kenneth R. Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - William Plunkett
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Baoan Ji
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Ellen Li
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Craig D. Logsdon
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA,Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James L. Abbruzzese
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA,Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Weiqin Lu
- Department of Medicine, Stony Brook University, Stony Brook, New York; Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
41
|
The pancreas-specific form of secretory pathway calcium ATPase 2 regulates multiple pathways involved in calcium homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118567. [PMID: 31676354 DOI: 10.1016/j.bbamcr.2019.118567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022]
Abstract
Acinar cell exocytosis requires spatiotemporal Ca2+ signals regulated through endoplasmic reticulum (ER) stores, Ca2+ATPases, and store-operated Ca2+ entry (SOCE). The secretory pathway Ca2+ATPase 2 (SPCA2) interacts with Orai1, which is involved in SOCE and store independent Ca2+ entry (SICE). However, in the pancreas, only a C-terminally truncated form of SPCA2 (termed SPAC2C) exists. The goal of this study was to determine if SPCA2C effects Ca2+ homeostasis in a similar fashion to the full-length SPCA2. Using epitope-tagged SPCA2C (SPCA2CFLAG) expressed in HEK293A cells and Fura2 imaging, cytosolic [Ca2+] was examined during SICE, SOCE and secretagogue-stimulated signaling. Exogenous SPCA2C expression increased resting cytosolic [Ca2+], Ca2+ release in response to carbachol, ER Ca2+ stores, and store-mediated and independent Ca2+ influx. Co-IP detected Orai1-SPCA2C interaction, which was altered by co-expression of STIM1. Importantly, SPCA2C's effects on store-mediated Ca2+ entry were independent of Orai1. These findings indicate SPCA2C influences Ca2+ homeostasis through multiple mechanisms, some of which are independent of Orai1, suggesting novel and possibly cell-specific Ca2+ regulation.
Collapse
|
42
|
Abstract
Members of the fibroblast growth factor (FGF) family play pleiotropic roles in cellular and metabolic homeostasis. During evolution, the ancestor FGF expands into multiple members by acquiring divergent structural elements that enable functional divergence and specification. Heparan sulfate-binding FGFs, which play critical roles in embryonic development and adult tissue remodeling homeostasis, adapt to an autocrine/paracrine mode of action to promote cell proliferation and population growth. By contrast, FGF19, 21, and 23 coevolve through losing binding affinity for extracellular matrix heparan sulfate while acquiring affinity for transmembrane α-Klotho (KL) or β-KL as a coreceptor, thereby adapting to an endocrine mode of action to drive interorgan crosstalk that regulates a broad spectrum of metabolic homeostasis. FGF19 metabolic axis from the ileum to liver negatively controls diurnal bile acid biosynthesis. FGF21 metabolic axes play multifaceted roles in controlling the homeostasis of lipid, glucose, and energy metabolism. FGF23 axes from the bone to kidney and parathyroid regulate metabolic homeostasis of phosphate, calcium, vitamin D, and parathyroid hormone that are important for bone health and systemic mineral balance. The significant divergence in structural elements and multiple functional specifications of FGF19, 21, and 23 in cellular and organismal metabolism instead of cell proliferation and growth sufficiently necessitate a new unified and specific term for these three endocrine FGFs. Thus, the term "FGF Metabolic Axis," which distinguishes the unique pathways and functions of endocrine FGFs from other autocrine/paracrine mitogenic FGFs, is coined.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
43
|
Wang N, Zhao TT, Li SM, Li YH, Wang YJ, Li DS, Wang WF. Fibroblast growth factor 21 ameliorates pancreatic fibrogenesis via regulating polarization of macrophages. Exp Cell Res 2019; 382:111457. [DOI: 10.1016/j.yexcr.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
|
44
|
Rosell Rask S, Krarup Hansen T, Bjerre M. FGF21 and glycemic control in patients with T1D. Endocrine 2019; 65:550-557. [PMID: 31372821 DOI: 10.1007/s12020-019-02027-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE Fibroblast growth factor (FGF) 21 is a circulating hormone with an important role in metabolic regulation. FGF21 production in humans responds positively to glucose consumption and we hypothesize that serum FGF21 concentration is associated to glycemic control. METHODS We enrolled 31 patients with type 1 diabetes (T1D) based on their HbA1c (well-regulated (HbA1c <53 mmol/mol), (n = 18) or poorly-regulated (HbA1c >69 mmol/mol), (n = 13). Twelve patients (39%) were diagnosed with retinopathy. Twenty healthy individuals comparable for age and gender distribution were included as a reference group. Serum FGF21, intact FGF21, fibroblast activation protein (FAP), adiponectin, and C-Reactive Protein (CRP) were measured by immunoassays. RESULTS No correlation between FGF21 concentration and HbA1c was found. Patients with T1D had lower levels of circulating FGF21 as compared with the reference group, but the difference was nonsignificant (p = 0.12). Dividing the patients according to retinopathy, we found that T1D patients with retinopathy had significantly lower FGF21 concentrations (10.0 ng/L) as compared with the healthy reference group (37.1 ng/L), (p = 0.02). We found significantly higher levels of the FGF21 cleaving enzyme, FAP, in patients with T1D (97.2 μg/L) as compared with the healthy control group (78.5 μg/L), (p = 0.006). Interestingly, serum FAP levels correlated significantly with circulating FGF21 levels in T1D patients, but this correlation was not found in the healthy controls. CONCLUSIONS We found no association between circulating FGF21 levels and HbA1c. T1D patients with retinopathy had significantly lower FGF21 levels as compared with healthy individuals, but it remains unclear if the lower levels of FGF21 are pathogenically related to the development of microvascular complications. Of note, serum FAP levels were significantly higher in all T1D patients as compared with the healthy individuals.
Collapse
Affiliation(s)
- Simone Rosell Rask
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
45
|
Hsu JW, Yeh SC, Tsai FY, Chen HW, Tsou TC. Fibroblast growth factor 21 secretion enhances glucose uptake in mono(2-ethylhexyl)phthalate-treated adipocytes. Toxicol In Vitro 2019; 59:246-254. [DOI: 10.1016/j.tiv.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023]
|
46
|
Tezze C, Romanello V, Sandri M. FGF21 as Modulator of Metabolism in Health and Disease. Front Physiol 2019; 10:419. [PMID: 31057418 PMCID: PMC6478891 DOI: 10.3389/fphys.2019.00419] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that regulates important metabolic pathways. FGF21 is expressed in several metabolically active organs and interacts with different tissues. The FGF21 function is complicated and well debated due to its different sites of production and actions. Striated muscles are plastic tissues that undergo adaptive changes within their structural and functional properties in order to meet their different stresses, recently, they have been found to be an important source of FGF21. The FGF21 expression and secretion from skeletal muscles happen in both mouse and in humans during their different physiological and pathological conditions, including exercise and mitochondrial dysfunction. In this review, we will discuss the recent findings that identify FG21 as beneficial and/or detrimental cytokine interacting as an autocrine or endocrine in order to modulate cellular function, metabolism, and senescence.
Collapse
Affiliation(s)
- Caterina Tezze
- Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Biomedical Science, University of Padua, Padua, Italy
| | - Vanina Romanello
- Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Biomedical Science, University of Padua, Padua, Italy
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Biomedical Science, University of Padua, Padua, Italy.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Biomedical Science, Myology Center, University of Padua, Padua, Italy
| |
Collapse
|
47
|
Nutritional Regulation of Gene Expression: Carbohydrate-, Fat- and Amino Acid-Dependent Modulation of Transcriptional Activity. Int J Mol Sci 2019; 20:ijms20061386. [PMID: 30893897 PMCID: PMC6470599 DOI: 10.3390/ijms20061386] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to detect changes in nutrient levels and generate an adequate response to these changes is essential for the proper functioning of living organisms. Adaptation to the high degree of variability in nutrient intake requires precise control of metabolic pathways. Mammals have developed different mechanisms to detect the abundance of nutrients such as sugars, lipids and amino acids and provide an integrated response. These mechanisms include the control of gene expression (from transcription to translation). This review reports the main molecular mechanisms that connect nutrients’ levels, gene expression and metabolism in health. The manuscript is focused on sugars’ signaling through the carbohydrate-responsive element binding protein (ChREBP), the role of peroxisome proliferator-activated receptors (PPARs) in the response to fat and GCN2/activating transcription factor 4 (ATF4) and mTORC1 pathways that sense amino acid concentrations. Frequently, alterations in these pathways underlie the onset of several metabolic pathologies such as obesity, insulin resistance, type 2 diabetes, cardiovascular diseases or cancer. In this context, the complete understanding of these mechanisms may improve our knowledge of metabolic diseases and may offer new therapeutic approaches based on nutritional interventions and individual genetic makeup.
Collapse
|
48
|
Li X, Zhu Z, Zhou T, Cao X, Lu T, He J, Liang Y, Liu C, Dou Z, Shen B. Predictive value of combined serum FGF21 and free T3 for survival in septic patients. Clin Chim Acta 2019; 494:31-37. [PMID: 30853459 DOI: 10.1016/j.cca.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND We examined the correlation between thyroid hormone (TH) concentrations and the serum fibroblast growth factor 21 (FGF21) concentration in septic patients and to assess the collaborative value of these factors in predicting 28-day mortality in septic patients. METHODS A total of 120 consecutive patients with sepsis were divided into two groups according to their survival or death within 28 days after initial diagnosis of sepsis. RESULTS Patients in the non-survivor group had significantly higher serum FGF21 concentrations but lower total and free triiodothyronine (T3) and tetraiodothyronine (T4) concentrations than those in the survivor group. Thyroid hormone concentrations, including T3, free T3, T4 and free T4, were significantly negatively correlated with the ∆SOFA and APACHE II scores as well as the serum FGF21, IL-6, tumor necrosis factor-α, IL-10, procalcitonin, and C-reactive protein concentrations. Logistic regression analysis showed that the ∆SOFA score, serum FGF21 concentration, and free T3 concentration were significant predictors of 28-day mortality. The model with variables of ∆SOFA score and serum FGF21 and free T3 concentrations had the greatest area under the curve of 0.969. CONCLUSION The addition of free T3 and serum FGF21 to ∆SOFA score provided a significantly improved ability to predict 28-day mortality in septic patients.
Collapse
Affiliation(s)
- Xing Li
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Zexiang Zhu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China.
| | - Tinghong Zhou
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Xiaoyu Cao
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Ting Lu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Jiafen He
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Yan Liang
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Chuankai Liu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Zhoulin Dou
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Bin Shen
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| |
Collapse
|
49
|
Abstract
It has been more than a dozen years since FGF21 burst on the metabolism field in a paper showing that its pharmacologic administration caused weight loss and improved insulin sensitivity and lipoprotein profiles in obese rodents. Since then, FGF21 analogs have advanced all the way to clinical trials, and much progress has been made in understanding FGF21's pharmacology and physiology. In this Perspective, we highlight some of the interesting themes that have emerged from this first dozen years of FGF21 research, including its roles in autocrine/paracrine and endocrine responses to metabolic stress.
Collapse
Affiliation(s)
- Steven A Kliewer
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - David J Mangelsdorf
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
Luo Y, Ye S, Li X, Lu W. Emerging Structure-Function Paradigm of Endocrine FGFs in Metabolic Diseases. Trends Pharmacol Sci 2019; 40:142-153. [PMID: 30616873 DOI: 10.1016/j.tips.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Endocrine fibroblast growth factors (eFGFs) control pathways that are crucial for maintaining metabolic homeostasis of lipids, glucose, energy, bile acids, and minerals. Unlike the heparin-binding paracrine FGFs, eFGFs require a unique Klotho family protein to form a productive triad complex, but the structural and mechanistical details of this complex have remained obscure since the beginning of the eFGF field. However, recent breakthroughs in resolving the 3D structures of eFGF signaling complexes have now unveiled the atomic details of multivalent interactions among eFGF, FGFR, and Klotho. We provide here a timely review on the architecture and the structure-function relationships of these complexes, and highlight how the structural knowledge opens a new door to structure-based drug design against a repertoire of eFGF-associated metabolic diseases.
Collapse
Affiliation(s)
- Yongde Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Center for Cancer and Metabolism Research, Institute for Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, China; Proteomics and Nanotechnology Laboratory, Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; Current address: Centeer BioTherapeutics Ltd Co., Houston, TX 77021, USA.
| | - Sheng Ye
- School of Life Science, Tianjin University, Tianjin 300072, China; Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Huangzhou, Zhejiang 310058, China.
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Center for Cancer and Metabolism Research, Institute for Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, China.
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| |
Collapse
|