1
|
Kim AY, Yehia L, Eng C. Genomic diversity in functionally relevant genes modifies neurodevelopmental versus neoplastic risks in individuals with germline PTEN variants. NPJ Genom Med 2025; 10:43. [PMID: 40394016 PMCID: PMC12092801 DOI: 10.1038/s41525-025-00495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/24/2025] [Indexed: 05/22/2025] Open
Abstract
Individuals with germline PTEN variants (PHTS) have increased risks of the seemingly disparate phenotypes of cancer and neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD). Etiology of the phenotypic variability remains elusive. Here, we hypothesized that decreased genomic diversity, manifested by increased homozygosity, may be one etiology. Comprehensive analyses of 376 PHTS patients of European ancestry revealed significant enrichment of homozygous common variants in genes involved in inflammatory processes in the PHTS-NDD group and in genes involved in differentiation and chromatin structure regulation in the PHTS-ASD group. Pathway analysis revealed pathways germane to NDD/ASD, including neuroinflammation and synaptogenesis. Collapsing analysis of the homozygous variants identified suggestive modifier NDD/ASD genes. In contrast, we found enrichment of homozygous ultra-rare variants in genes modulating cell death in the PHTS-cancer group. Finally, homozygosity burden as a predictor of ASD versus cancer outcomes in our validated prediction model for NDD/ASD performed favorably.
Collapse
Affiliation(s)
- Adriel Y Kim
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
2
|
Meeker MO, McColl LF, Malhotra PS. Spontaneous tonsillar hemorrhage in a patient with PTEN mutation: A case report and systematic literature review. Int J Pediatr Otorhinolaryngol 2025; 192:112315. [PMID: 40120468 DOI: 10.1016/j.ijporl.2025.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Phosphatase and tensin homolog hamartoma tumor syndrome (PTEN Syndrome), an autosomal dominant group of disorders caused by PTEN dysregulation, predisposes patients to hamartomas, lipomas, vascular tumors/malformations, and potential malignancies. A link between PTEN syndrome and early onset enlargement of tonsillar tissue has been described. Presented is the case of a child with PTEN syndrome who experienced spontaneous tonsillar hemorrhage (STH), followed by a systematic review of the literature. CASE DESCRIPTION A 9-year-old female with PTEN syndrome presented with sore throat, globus sensation, and oral bleeding. After a positive rapid-streptococcus swab, and exam demonstrating an exophytic, highly irregular left tonsil with hemorrhagic changes, a diagnosis of STH was made. Computed-tomography-angiography (CTA) of the neck showed no major vascular malformations, with extravasation from a small vessel of the left tonsil, and she subsequently underwent bilateral total tonsillectomy. A systematic review was performed and yielded 41 total cases of STH, none involving PTEN syndrome. DISCUSSION STH is a rare phenomenon commonly associated with acute or chronic tonsilitis. The presented patient had group A streptococcus pharyngitis but also evidence of arterial bleeding on CTA, suggesting contribution of PTEN syndrome. Within the systematic review, tonsillar pathologies in PTEN syndrome such as early tonsil enlargement were identified, but this is the first case of STH reported. Further, PTEN syndrome may lead to vascular anomalies, but their role in the presented case remains unknown. Further investigation is required to determine whether vascular anomalies and early tonsil enlargement associated with PTEN syndrome increase the risk of STH.
Collapse
Affiliation(s)
- Molly O Meeker
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Logan F McColl
- Department of Otolaryngology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Otolaryngology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Prashant S Malhotra
- Department of Otolaryngology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
3
|
Esposto MP, Mahlaoui N, Abolhassani H, Van Aerde K, Cesaro S, Chandra A, Ehl S, Kracker S, Suarez F, Barlogis V, Parisi A, Maccari ME, Chinello M. Case Report: Activated PI3-kinase-δ syndrome and ovarian malignancies: a case series from the European ESID-APDS registry. Front Immunol 2025; 16:1572194. [PMID: 40370432 PMCID: PMC12075536 DOI: 10.3389/fimmu.2025.1572194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Activated phosphoinositide-3-kinase-delta (PI3Kδ) syndrome (APDS) is an autosomal dominant inborn error of immunity (IEI) characterized by combined immunodeficiency and immune dysregulation with increased risk for lymphoma and other non-lymphoid malignancies. We describe five patients with ovarian malignancies among 110 female APDS patients participating in the European Society for Immunodeficiencies (ESID) registry and identified three additional cases in the literature. These findings document a relevant predisposition to these non-hematological malignancies in APDS patients.
Collapse
Affiliation(s)
- Maria Pia Esposto
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Nizar Mahlaoui
- Pediatric Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Koen Van Aerde
- Department of pediatric infectious disease and immunology, Amalia Children’s Hospital, Radboudumc, Nijmegen, Netherlands
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sven Kracker
- Laboratory of Lymphocyte Activation and Susceptibility to Epstein Barr Virus (EBV) infection, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Felipe Suarez
- Université Paris Cité, Inserm U-1163, Institut Imagine, Laboratoire of Hematological Disorders, Paris, France
- Service d’Hématologie Adulte and Centre de référence des déficits immunitaires héréditaires (CEREDIH), AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Vincent Barlogis
- Department of Pediatric Hematology, Immunology and Oncology, APHM, Hôpital de la Timone Enfants, Marseille, France
- CEReSS Research Unit EA 3279 and Department of Public Health, Aix Marseille University, School of Medicine, Marseille, France
- Aix Marseille University, School of Medicine, Marseille, France
| | - Alice Parisi
- Department of Pathological Anatomy, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children’s Hospital, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matteo Chinello
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
4
|
IJspeert H, Dalm VASH, van Zelm MC, Edwards ESJ. Hyperactivation of the PI3K pathway in inborn errors of immunity: current understanding and therapeutic perspectives. IMMUNOTHERAPY ADVANCES 2024; 4:ltae009. [PMID: 39679264 PMCID: PMC11638974 DOI: 10.1093/immadv/ltae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
The phosphoinositide-3-kinase (PI3K) pathway function is crucial to the normal development, differentiation, and function of immune cells including B, T, and NK cells. Following the description of two cohorts of patients with an inboirn error of immunity (also known as primary immunodeficiency) with gain-of-function variants in the PIK3CD gene a decade ago, the disease entity activated PI3K delta syndrome (APDS) was named. Since then, many more patients with PIK3CD variants have been described, and loss-of-function variants in PIK3R1 and PTEN have also been linked to APDS. Importantly, the availability of small molecules that inhibit the PI3K pathway has enabled targeted treatment of APDS patients. In this review, we define (i) the PI3K pathway and its role in inborn errors of immunity; (ii) the clinical and immunological presentation of APDS1 (PIK3CD GOF), APDS2 (PIK3R1 LOF), and related disorders; (iii) Diagnostic approaches to identify and functionally validate the genetic causes of disease; (iv) therapeutic interventions to target PI3K hyperactivation; and finally (v) current challenges and future perspectives that require attention for the optimal treatment of patients with APDS and APDS-L diseases.
Collapse
Affiliation(s)
- Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Menno C van Zelm
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Bildstein T, Charbit-Henrion F, Azabdaftari A, Cerf-Bensussan N, Uhlig HH. Cellular and molecular basis of proximal small intestine disorders. Nat Rev Gastroenterol Hepatol 2024; 21:687-709. [PMID: 39117867 DOI: 10.1038/s41575-024-00962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
The proximal part of the small intestine, including duodenum and jejunum, is not only dedicated to nutrient digestion and absorption but is also a highly regulated immune site exposed to environmental factors. Host-protective responses against pathogens and tolerance to food antigens are essential functions in the small intestine. The cellular ecology and molecular pathways to maintain those functions are complex. Maladaptation is highlighted by common immune-mediated diseases such as coeliac disease, environmental enteric dysfunction or duodenal Crohn's disease. An expanding spectrum of more than 100 rare monogenic disorders inform on causative molecular mechanisms of nutrient absorption, epithelial homeostasis and barrier function, as well as inflammatory immune responses and immune regulation. Here, after summarizing the architectural and cellular traits that underlie the functions of the proximal intestine, we discuss how the integration of tissue immunopathology and molecular mechanisms can contribute towards our understanding of disease and guide diagnosis. We propose an integrated mechanism-based taxonomy and discuss the latest experimental approaches to gain new mechanistic insight into these disorders with large disease burden worldwide as well as implications for therapeutic interventions.
Collapse
Affiliation(s)
- Tania Bildstein
- Great Ormond Street Hospital for Children, Department of Paediatric Gastroenterology, London, UK
| | - Fabienne Charbit-Henrion
- Department of Genomic Medicine for Rare Diseases, Necker-Enfants Malades Hospital, APHP, University of Paris-Cité, Paris, France
- INSERM UMR1163, Intestinal Immunity, Institut Imagine, Paris, France
| | - Aline Azabdaftari
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
6
|
Lazea C, Vulturar R, Chiș A, Encica S, Horvat M, Belizna C, Damian LO. Macrocephaly and Finger Changes: A Narrative Review. Int J Mol Sci 2024; 25:5567. [PMID: 38791606 PMCID: PMC11122644 DOI: 10.3390/ijms25105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Macrocephaly, characterized by an abnormally large head circumference, often co-occurs with distinctive finger changes, presenting a diagnostic challenge for clinicians. This review aims to provide a current synthetic overview of the main acquired and genetic etiologies associated with macrocephaly and finger changes. The genetic cause encompasses several categories of diseases, including bone marrow expansion disorders, skeletal dysplasias, ciliopathies, inherited metabolic diseases, RASopathies, and overgrowth syndromes. Furthermore, autoimmune and autoinflammatory diseases are also explored for their potential involvement in macrocephaly and finger changes. The intricate genetic mechanisms involved in the formation of cranial bones and extremities are multifaceted. An excess in growth may stem from disruptions in the intricate interplays among the genetic, epigenetic, and hormonal factors that regulate human growth. Understanding the underlying cellular and molecular mechanisms is important for elucidating the developmental pathways and biological processes that contribute to the observed clinical phenotypes. The review provides a practical approach to delineate causes of macrocephaly and finger changes, facilitate differential diagnosis and guide for the appropriate etiological framework. Early recognition contributes to timely intervention and improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Cecilia Lazea
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400370 Cluj-Napoca, Romania;
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Svetlana Encica
- Department of Pathology, “Niculae Stancioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților St., 400001 Cluj-Napoca, Romania;
| | - Melinda Horvat
- Department of Infectious Diseases and Epidemiology, The Clinical Hospital of Infectious Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400348 Cluj-Napoca, Romania;
| | - Cristina Belizna
- UMR CNRS 6015, INSERM U1083, University of Angers, 49100 Angers, France;
- Internal Medicine Department Clinique de l’Anjou, Vascular and Coagulation Department, University Hospital Angers, 49100 Angers, France
| | - Laura-Otilia Damian
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
- Department of Rheumatology, Center for Rare Musculoskeletal Autoimmune and Autoinflammatory Diseases, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 400002 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Pîrlog LM, Pătrășcanu AA, Militaru MS, Cătană A. Insights into Clinical Disorders in Cowden Syndrome: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:767. [PMID: 38792950 PMCID: PMC11123368 DOI: 10.3390/medicina60050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
PTEN Hamartoma Tumour Syndrome (PHTS) encompasses diverse clinical phenotypes, including Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), Proteus syndrome (PS), and Proteus-like syndrome. This autosomal dominant genetic predisposition with high penetrance arises from heterozygous germline variants in the PTEN tumour suppressor gene, leading to dysregulation of the PI3K/AKT/mTOR signalling pathway, which promotes the overgrowth of multiple and heterogenous tissue types. Clinical presentations of CS range from benign and malignant disorders, affecting nearly every system within the human body. CS is the most diagnosed syndrome among the PHTS group, notwithstanding its weak incidence (1:200,000), for which it is considered rare, and its precise incidence remains unknown among other important factors. The literature is notably inconsistent in reporting the frequencies and occurrences of these disorders, adding an element of bias and uncertainty when looking back at the available research. In this review, we aimed to highlight the significant disparities found in various studies concerning CS and to review the clinical manifestations encountered in CS patients. Furthermore, we intended to emphasize the great significance of early diagnosis as patients will benefit from a longer lifespan while being unceasingly advised and supported by a multidisciplinary team.
Collapse
Affiliation(s)
- Lorin-Manuel Pîrlog
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.S.M.); (A.C.)
| | - Andrada-Adelaida Pătrășcanu
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.S.M.); (A.C.)
| | - Mariela Sanda Militaru
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.S.M.); (A.C.)
- Regional Laboratory Cluj-Napoca, Department of Medical Genetics, Regina Maria Health Network, 400363 Cluj-Napoca, Romania
| | - Andreea Cătană
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.S.M.); (A.C.)
- Regional Laboratory Cluj-Napoca, Department of Medical Genetics, Regina Maria Health Network, 400363 Cluj-Napoca, Romania
- Department of Oncogenetics, “Prof. Dr. I. Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Eng C, Kim A, Yehia L. Genomic diversity in functionally relevant genes modifies neurodevelopmental versus neoplastic risks in individuals with germline PTEN variants. RESEARCH SQUARE 2023:rs.3.rs-3734368. [PMID: 38168271 PMCID: PMC10760312 DOI: 10.21203/rs.3.rs-3734368/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Individuals with germline PTEN variants (PHTS) have increased risks of the seemingly disparate phenotypes of cancer and neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD). Etiology of the phenotypic variability remains elusive. Here, we hypothesized that decreased genomic diversity, manifested by increased homozygosity, may be one etiology. Comprehensive analyses of 376 PHTS patients of European ancestry revealed significant enrichment of homozygous common variants in genes involved in inflammatory processes in the PHTS-NDD group and in genes involved in differentiation and chromatin structure regulation in the PHTS-ASD group. Pathway analysis revealed pathways germane to NDD/ASD, including neuroinflammation and synaptogenesis. Collapsing analysis of the homozygous variants identified suggestive modifier NDD/ASD genes. In contrast, we found enrichment of homozygous ultra-rare variants in genes modulating cell death in the PHTS-cancer group. Finally, homozygosity burden as a predictor of ASD versus cancer outcomes in our validated prediction model for NDD/ASD performed favorably.
Collapse
|
9
|
Abstract
Inflammatory bowel disease (IBD) represents a spectrum of disease, which is characterized by chronic gastrointestinal inflammation. Monogenic mutations driving IBD pathogenesis are more highly represented in early-onset compared to adult-onset disease. The pathogenic genes which dysregulate host immune responses in monogenic IBD affect both the innate (ie, intestinal barrier, phagocytes) and adaptive immune systems (ie, T cells, B cells). Advanced genomic and targeted functional testing can improve clinical decision making and present increased opportunities for precision medicine approaches in this important patient population.
Collapse
Affiliation(s)
- Atiye Olcay Bilgic Dagci
- Division of Pediatric Rheumatology, University of Michigan, C.S Mott Children's Hospital, 1500 East Medical Center Drive Medical Professional Building Floor 2, Ann Arbor, MI 48109-5718, USA.
| | - Kelly Colleen Cushing
- Division of Gastroenterology, U-M Inflammatory Bowel Disease Program, University of Michigan, 3912 Taubman Center, 1500 East Medical Center Drive, SPC 5362, Ann Arbor, MI 48109-5362, USA
| |
Collapse
|
10
|
Liu D, MacFarland SP, Yehia L, Duvall MM, Mamula P, Kurowski JA, Greene CS, Radhakrishnan K, Eng C. A Bi-Institutional Study of Gastrointestinal and Hepatic Manifestations in Children With PTEN Hamartoma Tumor Syndrome. GASTRO HEP ADVANCES 2023; 3:250-259. [PMID: 39129943 PMCID: PMC11307957 DOI: 10.1016/j.gastha.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/16/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims PTEN hamartoma tumor syndrome (PHTS) confers a high risk of specific cancers and is the most common genetic cause of autism spectrum disorder (ASD). Gastrointestinal (GI) phenotypes in PHTS are poorly characterized in children. Thus, we aimed to characterize the GI and hepatic manifestations in children with PHTS and to investigate genotype-phenotype associations. Methods We performed a retrospective chart review of prospectively accrued children with PHTS at 2 tertiary-care centers. Wilcoxon rank-sum, Chi-squared, and Fisher's exact tests and Firth's logistic regression were utilized to explore associations between variables. Results This series included 80 children with disease-causing PTEN variants. Common GI manifestations included constipation in 41 (51%), feeding issues in 31 (39%), and polyps in 22 (28%) children. The polyps were of mixed histologic types. Eosinophilic gastrointestinal disorders were observed in 5 (6%) children. Crohn's disease, celiac disease, and protein-losing enteropathy were observed once each. Eosinophilic gastrointestinal disorders were observed exclusively in patients without ASD (P = .052). Nonsense PTEN variants were enriched in those with polyps (P = .029). Missense PTEN variants (OR 2.9, P = .034) and upper GI polyps (OR 4.4, P = .018) were associated with increased odds of constipation. Conclusion Constipation and feeding issues are common in children with PHTS. Polyps are more prevalent in children with PHTS than previously described and associated with nonsense PTEN variants. Children without ASD represent a distinct patient subset with a predisposition to eosinophilic gastrointestinal disorders and possibly upper GI polyps. Endoscopic evaluation should continue to be performed in symptomatic children with PHTS, with consideration of closer follow-up in those without ASD.
Collapse
Affiliation(s)
- Darren Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Suzanne P. MacFarland
- Division of Oncology, Children’s Hospital of Philadelphia, The University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Melani M. Duvall
- Division of Oncology, Children’s Hospital of Philadelphia, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Petar Mamula
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jacob A. Kurowski
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Colleen S. Greene
- Division of Oncology, Children’s Hospital of Philadelphia, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kadakkal Radhakrishnan
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Takayama T, Muguruma N, Igarashi M, Ohsumi S, Oka S, Kakuta F, Kubo Y, Kumagai H, Sasaki M, Sugai T, Sugano K, Takeda Y, Doyama H, Banno K, Fukahori S, Furukawa Y, Horimatsu T, Ishikawa H, Iwama T, Okazaki Y, Saito Y, Matsuura N, Mutoh M, Tomita N, Akiyama T, Yamamoto T, Ishida H, Nakayama Y. Clinical Guidelines for Diagnosis and Management of Cowden Syndrome/PTEN Hamartoma Tumor Syndrome in Children and Adults-Secondary Publication. J Anus Rectum Colon 2023; 7:284-300. [PMID: 37900693 PMCID: PMC10600266 DOI: 10.23922/jarc.2023-028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 10/31/2023] Open
Abstract
Cowden syndrome (CS)/PTEN hamartoma tumor syndrome (PHTS) is a rare autosomal dominantly inherited condition caused by germline pathogenesis. It is associated with multiple hamartomatous lesions occurring in various organs and tissues, including the gastrointestinal tract, skin, mucous membranes, breast, thyroid, endometrium, and brain. Macrocephaly or multiple characteristic mucocutaneous lesions commonly develop in individuals in their 20s. This syndrome is occasionally diagnosed in childhood due to the occurrence of multiple gastrointestinal polyps, autism spectrum disorders, and intellectual disability. CS/PHTS can be diagnosed taking the opportunity of multigene panel testing in patients with cancer. Appropriate surveillance for early diagnosis of associated cancers is required because patients have a high risk of cancers including breast, thyroid, colorectal, endometrial, and renal cancers. Under these circumstances, there is growing concern regarding the management of CS/PHTS in Japan, but there are no available practice guidelines. To address this situation, the guideline committee, which included specialists from multiple academic societies, was organized by the Research Group on Rare and Intractable Diseases granted by the Ministry of Health, Labour, and Welfare, Japan. The present clinical guidelines explain the principles in the diagnosis and management of CS/PHTS, together with four clinical questions and the corresponding recommendations, incorporating the concept of the Grading of Recommendations Assessment, Development, and Evaluation system. Herein, we present an English version of the guideline, some of which have been updated, to promote seamless implementation of accurate diagnosis and appropriate management of pediatric, adolescent, and adult patients with CS/PHTS.
Collapse
Affiliation(s)
- Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Igarashi
- Department of Lower GI Medicine, Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Shozo Ohsumi
- Department of Breast Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Fumihiko Kakuta
- Division of General Pediatrics and Gastroenterology, Miyagi Children's Hospital, Sendai, Japan
| | - Yoshiaki Kubo
- Department of Dermatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hideki Kumagai
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Mika Sasaki
- Department of Pediatrics, National Hospital Organization Morioka Medical Center, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Morioka, Japan
| | - Kokichi Sugano
- Oncogene Res Unit, Cancer Prevention Unit Tochigi Cancer Center Research Institute, Cancer Prevention, Genetic Counseling Clinic, Genome Center, Tochigi Cancer Center, Utsunomiya, Japan
- Department of Genetic Medicine, Sasaki Foundation, Kyoundo Hospital, Tokyo, Japan
| | - Yuko Takeda
- Faculty of Nursing and Medical Care, Graduate School of Health Management, Keio University, Tokyo, Japan
| | - Hisashi Doyama
- Department of Gastroenterology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Horimatsu
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Ishikawa Gastroenterology Clinic, Osaka, Japan
| | - Takeo Iwama
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | | | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohiro Tomita
- Cancer Treatment Center, Toyonaka Municipal Hospital, Toyonaka, Japan
| | - Takashi Akiyama
- Department of Pediatric Surgery, Chuden Hospital, Hiroshima, Japan
| | - Toshiki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Yoshiko Nakayama
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
12
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
13
|
D'Ermo G, Genuardi M. Gastrointestinal manifestations in PTEN hamartoma tumor syndrome. Best Pract Res Clin Gastroenterol 2022; 58-59:101792. [PMID: 35988965 DOI: 10.1016/j.bpg.2022.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
The PTEN hamartoma tumor syndrome (PHTS) is a heterogeneous set of multisystem disorders caused by germline pathogenic variants in the PTEN tumor suppressor gene. Manifestations include developmental anomalies and proliferative lesions. Evidence of involvement of the GI tract has accrued over time, leading to the incorporation of GI manifestations (multiple hamartomas, glycogenic acanthosis and colorectal cancer) into the diagnostic criteria. Polyps of the upper and lower GI tract are found in most adult patients and in a significant fraction of children. Polyps tend to be of mixed histology, with a predominance of hamartomas and ganglioneuromas. PHTS patients are also at increased risk of colorectal cancer, and surveillance by colonoscopy is advised starting at the age of 35-40 years. A number of additional manifestations, including eosinophilic gastrointestinal disorders, have been observed in few or single cases, and their association with PHTS has yet to be determined.
Collapse
Affiliation(s)
- Giuseppe D'Ermo
- Dipartimento di Chirurgia "Pietro Valdoni", Università La Sapienza, Rome, Italy
| | - Maurizio Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, Rome, Italy; Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
14
|
Plamper M, Gohlke B, Woelfle J. PTEN hamartoma tumor syndrome in childhood and adolescence-a comprehensive review and presentation of the German pediatric guideline. Mol Cell Pediatr 2022; 9:3. [PMID: 35187600 PMCID: PMC8859017 DOI: 10.1186/s40348-022-00135-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background The PTEN hamartoma tumor syndrome (PHTS) encompasses several different syndromes, which are linked to an autosomal-dominant mutation of the tumor suppressor PTEN gene on chromosome 10. Loss of PTEN activity leads to an increased phosphorylation of different cell proteins, which may have an influence on growth, migration, and apoptosis. Excessive activity of the PI3K/AKT/mTOR pathway due to PTEN deficiency may lead to the development of benign and malignant tumors and overgrowth. Diagnosis of PHTS in childhood can be even more challenging than in adulthood because of a lack of well-defined diagnostic criteria. So far, there are no official recommendations for cancer surveillance in affected children and adolescents. Main body All individuals with PHTS are at high risk for tumor development and thus might benefit from cancer surveillance strategies. In childhood, macrocephaly may be the only evident symptom, but developmental delay, behavioral problems, dermatological features (e.g., penile freckling), vascular anomalies, lipoma, or enlarged perivascular spaces in cerebral magnetic resonance imaging (cMRI) may help to establish the diagnosis. Regular psychomotor assessment and assistance in subjects with neurological impairment play an important role in the management of affected children. Already in early childhood, affected patients bear a high risk to develop thyroid pathologies. For that reason, monitoring of thyroid morphology and function should be established right after diagnosis. We present a detailed description of affected organ systems, tools for initiation of molecular diagnostic and screening recommendations for patients < 18 years of age. Conclusion Affected families frequently experience a long way until the correct diagnosis for their child’s peculiarity is made. Even after diagnosis, it is not easy to find a physician who is familiar with this rare group of diseases. Because of a still-limited database, it is not easy to establish evidence-based (cancer) surveillance recommendations. The presented screening recommendation should thus be revised regularly according to the current state of knowledge.
Collapse
Affiliation(s)
- Michaela Plamper
- Pediatric Endocrinology and Diabetology Division, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Bettina Gohlke
- Pediatric Endocrinology and Diabetology Division, Children's Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Joachim Woelfle
- Children's and Adolescents Hospital, University of Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Bier J, Deenick EK. The role of dysregulated PI3Kdelta signaling in human autoimmunity*. Immunol Rev 2022; 307:134-144. [DOI: 10.1111/imr.13067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Julia Bier
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- St Vincent’s Clinical School Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
16
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
17
|
Grencewicz DJ, Romigh T, Thacker S, Abbas A, Jaini R, Luse D, Eng C. Redefining the PTEN promoter: Identification of novel upstream transcription start regions. Hum Mol Genet 2021; 30:2135-2148. [PMID: 34218272 DOI: 10.1093/hmg/ddab175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
Germline mutation of PTEN is causally observed in Cowden syndrome (CS) and is one of the most common, penetrant risk genes for autism spectrum disorder (ASD). However, the majority of individuals who present with CS-like clinical features are PTEN-mutation negative. Reassessment of PTEN promoter regulation may help explain abnormal PTEN dosage, as only the minimal promoter and coding regions are currently included in diagnostic PTEN mutation analysis. Therefore, we reanalyzed the architecture of the PTEN promoter using next-generation sequencing datasets. Specifically, run-on sequencing assays identified two additional transcription start regions (TSRs) at -2053 and - 1906 basepairs from the canonical start of PTEN, thus extending the PTEN 5'UTR and redefining the PTEN promoter. We show that these novel upstream TSRs are active in cancer cell lines, human cancer, and normal tissue. Further, these TSRs can produce novel PTEN transcripts due to the introduction of new splice donors at -2041, -1826, and - 1355, which may allow for splicing out of the PTEN 5'UTR or the first and second exon in upstream-initiated transcripts. Combining ENCODE ChIP-seq and pertinent literature, we also compile and analyze all transcription factors (TFs) binding at the redefined PTEN locus. Enrichment analyses suggest that TFs bind specifically to the upstream TSRs may be implicated in inflammatory processes. Together, these data redefine the architecture of the PTEN promoter, an important step toward a comprehensive model of PTEN transcription regulation, a basis for future investigations into the new promoters' role in disease pathogenesis.
Collapse
Affiliation(s)
- Dennis J Grencewicz
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Todd Romigh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Donal Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Lee JK, Koo SY, Nam HM, Lee JB, Ko J, Kim KM, Park EJ, Kim TJ, Lee H, Go H, Lee CW. Ssu72 is a T-cell receptor-responsive modifier that is indispensable for regulatory T cells. Cell Mol Immunol 2021; 18:1395-1411. [PMID: 33850312 PMCID: PMC8166877 DOI: 10.1038/s41423-021-00671-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The homeostatic balance between effector T cells and regulatory T cells (Tregs) is crucial for adaptive immunity; however, epigenetic programs that inhibit phosphorylation to regulate Treg development, peripheral expression, and suppressive activity are elusive. Here, we found that the Ssu72 phosphatase is activated by various T-cell receptor signaling pathways, including the T-cell receptor and IL-2R pathways, and localizes at the cell membrane. Deletion of Ssu72 in T cells disrupts CD4+ T-cell differentiation into Tregs in the periphery via the production of high levels of the effector cytokines IL-2 and IFNγ, which induce CD4+ T-cell activation and differentiation into effector cell lineages. We also found a close correlation between downregulation of Ssu72 and severe defects in mucosal tolerance in patients. Interestingly, Ssu72 forms a complex with PLCγ1, which is an essential effector molecule for T-cell receptor signaling as well as Treg development and function. Ssu72 deficiency impairs PLCγ1 downstream signaling and results in failure of Foxp3 induction. Thus, our studies show that the Ssu72-mediated cytokine response coordinates the differentiation and function of Treg cells in the periphery.
Collapse
Affiliation(s)
- Jin-Kwan Lee
- Research Institute, Curogen Technology, Suwon, South Korea
| | - Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hye-Mi Nam
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
- MOGAM Institute for Biomedical Research, Gyeonggi, South Korea
| | - Jee-Boong Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung-Mo Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Gyeonggi, South Korea.
| | - Heounjeong Go
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Chang-Woo Lee
- Research Institute, Curogen Technology, Suwon, South Korea.
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| |
Collapse
|
19
|
Taylor H, Yerlioglu D, Phen C, Ballauff A, Nedelkopoulou N, Spier I, Loverdos I, Busoni VB, Heise J, Dale P, de Meij T, Sweet K, Cohen MC, Fox VL, Mas E, Aretz S, Eng C, Buderus S, Thomson M, Rojas I, Uhlig HH. mTOR inhibitors reduce enteropathy, intestinal bleeding and colectomy rate in patients with juvenile polyposis of infancy with PTEN-BMPR1A deletion. Hum Mol Genet 2021; 30:1273-1282. [PMID: 33822054 PMCID: PMC8804886 DOI: 10.1093/hmg/ddab094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Ultra-rare genetic disorders can provide proof of concept for efficacy of targeted therapeutics and reveal pathogenic mechanisms relevant to more common conditions. Juvenile polyposis of infancy (JPI) is caused by microdeletions in chromosome 10 that result in haploinsufficiency of two tumor suppressor genes: phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and bone morphogenetic protein receptor type IA (BMPR1A). Loss of PTEN and BMPR1A results in a much more severe phenotype than deletion of either gene alone, with infantile onset pan-enteric polyposis and a high mortality rate. No effective pharmacological therapy exists. A multi-center cohort analysis was performed to characterize phenotype and investigate the therapeutic effect of mammalian target of rapamycin (mTOR) inhibition (adverse events, disease progression, time to colectomy and mortality) in patients with JPI. Among 25 JPI patients identified (mean age of onset 13 months), seven received mTOR inhibitors (everolimus, n = 2; or sirolimus, n = 5). Treatment with an mTOR inhibitor reduced the risk of colectomy (hazard ratio = 0.27, 95% confidence interval = 0.07-0.954, P = 0.042) and resulted in significant improvements in the serum albumin level (mean increase = 16.3 g/l, P = 0.0003) and hemoglobin (mean increase = 2.68 g/dl, P = 0.0077). Long-term mTOR inhibitor treatment was well tolerated over an accumulated follow-up time of 29.8 patient years. No serious adverse events were reported. Early therapy with mTOR inhibitors offers effective, pathway-specific and personalized treatment for patients with JPI. Inhibition of the phosphoinositol-3-kinase-AKT-mTOR pathway mitigates the detrimental synergistic effects of combined PTEN-BMPR1A deletion. This is the first effective pharmacological treatment identified for a hamartomatous polyposis syndrome.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2BX, UK
| | - Dilay Yerlioglu
- Faculty of Medicine, Istanbul University, Istanbul, Fatih 34093, Turkey
| | - Claudia Phen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Antje Ballauff
- Zentrum für Kinder- und Jugendmedizin Gastroenterology, HELIOS Klinikum Krefeld, Krefeld, Nordrhein-Westfalen 47805, Germany
| | - Natalia Nedelkopoulou
- Pediatric Gastroenterology, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, Yorkshire S10 2TH, UK
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Nordrhein-Westfalen 53012, Germany.,National Centre for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Nordrhein-Westfalen 53126, Germany
| | - Inés Loverdos
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Catalonia comunidad 08208, Spain
| | - Veronica B Busoni
- Pediatric Gastroenterology, Hepatology and Liver-Intestine Transplantation Division, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jürgen Heise
- Zentrum für Kinder- und Jugendmedizin Gastroenterology, HELIOS Klinikum Krefeld, Krefeld, Nordrhein-Westfalen 47805, Germany
| | - Peter Dale
- Royal Gwent Hospital, Newport NP20 2UB, UK
| | - Tim de Meij
- VU University Medical Center, Amsterdam 1081, The Netherlands
| | - Kevin Sweet
- Division of Human Genetics, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Marta C Cohen
- Histopathology Department, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, Yorkshire S10 2TH, UK
| | - Victor L Fox
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emmanuel Mas
- Unité de Gastroentérologie, Hépatologie, Nutrition, Diabétologie et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, and IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, Occitanie 31300, France
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Nordrhein-Westfalen 53012, Germany.,National Centre for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Nordrhein-Westfalen 53126, Germany
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences, and CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephan Buderus
- GFO-Kliniken Bonn, St. Marien-Hospital, Bonn, Nordrhein-Westfalen 53115, Germany
| | - Mike Thomson
- Pediatric Gastroenterology, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, Yorkshire S10 2TH, UK
| | - Isabel Rojas
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK.,Department of Pediatrics, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK.,Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire OX4 2PG, UK
| |
Collapse
|
20
|
Jia M, Sangwan N, Tzeng A, Eng C. Interplay Between Class II HLA Genotypes and the Microbiome and Immune Phenotypes in Individuals With PTEN Hamartoma Tumor Syndrome. JCO Precis Oncol 2021; 5:PO.20.00374. [PMID: 34250407 DOI: 10.1200/po.20.00374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
We evaluate potential contributors to the development of autoimmunity and other phenotypes consistent with immune dysregulation in individuals with germline mutations in the tumor suppressor gene PTEN in this observational report. MATERIALS AND METHODS Illumina sequencing of bacterial and fungal microbes was carried out on patient-donated fecal samples in a cohort of 67 patients with pathogenic germline PTEN mutations, including 41 individuals with autoimmunity and/or phenotypes consistent with immune dysregulation (cases) and 26 individuals without (controls). From these data, we measured differences in alpha and beta diversity between cases and controls and identified differentially abundant bacterial and fungal taxa using phyloseq and MicrobiomeSeq packages in R. We analyzed correlations between these taxa and specific HLA genotypes, along with correlations between HLA diversity and microbial diversity, by conducting high-resolution HLA genotyping at four class II loci (DRB1, DRB345, DQA1, and DQB1). RESULTS We found that alpha diversity distributions for both bacterial and fungal genera were statistically different between cases and controls. We identified differentially abundant bacterial and fungal taxa between cases and controls. Network analysis of differentially abundant bacterial taxa revealed some co-varying bacterial genera. We additionally found significant correlations between certain HLA genotypes and certain taxa and significant correlations between HLA diversity and alpha diversity. CONCLUSION PTEN-associated immune phenotypes might be influenced by the gut microbiome, and class II HLA molecules, in part, crosstalk with the gut microbiome. These preliminary observations should lay the groundwork for future studies to ultimately derive clinical measures, which could use gut microbiome and HLA molecule biomarkers to predict, and perhaps prevent, immunity and inflammation in patients predisposed to cancer because of germline PTEN mutations.
Collapse
Affiliation(s)
- Margaret Jia
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Naseer Sangwan
- Center for Microbiome in Health and Disease, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Alice Tzeng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
21
|
Emerson JS, Lee EY, Berglund LJ. Treatment of Immune Dysregulation Due to a PTEN Variant with Sirolimus. J Clin Immunol 2021; 41:1085-1088. [PMID: 33532886 DOI: 10.1007/s10875-021-00982-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Jonathan S Emerson
- Department of Immunopathology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Eric Y Lee
- Department of Gastroenterology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Lucinda J Berglund
- Department of Immunopathology, Westmead Hospital, Sydney, New South Wales, Australia. .,Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Redenbaugh V, Coulter T. Disorders Related to PI3Kδ Hyperactivation: Characterizing the Clinical and Immunological Features of Activated PI3-Kinase Delta Syndromes. Front Pediatr 2021; 9:702872. [PMID: 34422726 PMCID: PMC8374435 DOI: 10.3389/fped.2021.702872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
Phosphoinositide-3-kinase δ (PI3Kδ) is found in immune cells and is part of the PI3K/AKT/mTOR/S6K signalling pathway essential to cell survival, growth and differentiation. Hyperactivation of PI3Kδ enzyme results in Activated PI3-kinase delta syndrome (APDS). This childhood onset, autosomal dominant, combined immunodeficiency, is caused by heterozygous gain of function (GOF) mutations in PIK3CD (encodes PI3Kδ catalytic subunit p110δ), mutations in PIK3R1 (encodes PI3Kδ regulatory subunit p85α) or LOF mutations in PTEN (terminates PI3Kδ signalling) leading to APDS1, APDS2 and APDS-Like (APDS-L), respectively. APDS was initially described in 2013 and over 285 cases have now been reported. Prompt diagnosis of APDS is beneficial as targeted pharmacological therapies such as sirolimus and potentially PI3Kδ inhibitors can be administered. In this review, we provide an update on the clinical and laboratory features of this primary immunodeficiency. We discuss the common manifestations such as sinopulmonary infections, bronchiectasis, lymphoproliferation, susceptibility to herpesvirus, malignancy, as well as more rare non-immune features such as short stature and neurodevelopmental abnormalities. Laboratory characteristics, such as antibody deficiency and B cell and T cell, phenotypes are also summarised.
Collapse
Affiliation(s)
- Vyanka Redenbaugh
- Regional Immunology Services of Northern Ireland, Belfast Health and Social Care Trust, Belfast, United Kingdom.,Mayo Clinic, Rochester, MN, United States
| | - Tanya Coulter
- Regional Immunology Services of Northern Ireland, Belfast Health and Social Care Trust, Belfast, United Kingdom
| |
Collapse
|
23
|
Kässner F, Kirstein A, Händel N, Schmid GL, Landgraf K, Berthold A, Tannert A, Schaefer M, Wabitsch M, Kiess W, Körner A, Garten A. A new human adipocyte model with PTEN haploinsufficiency. Adipocyte 2020; 9:290-301. [PMID: 32579864 PMCID: PMC7469440 DOI: 10.1080/21623945.2020.1785083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Few human cell strains are suitable and readily available as in vitro adipocyte models. We used resected lipoma tissue from a patient with germline phosphatase and tensin homolog (PTEN) haploinsufficiency to establish a preadipocyte cell strain termed LipPD1 and aimed to characterize cellular functions and signalling pathway alterations in comparison to the established adipocyte model Simpson-Golabi-Behmel-Syndrome (SGBS) and to primary stromal-vascular fraction cells. We found that both cellular life span and the capacity for adipocyte differentiation as well as adipocyte-specific functions were preserved in LipPD1 and comparable to SGBS adipocytes. Basal and growth factor-stimulated activation of the PI3 K/AKT signalling pathway was increased in LipPD1 preadipocytes, corresponding to reduced PTEN levels in comparison to SGBS cells. Altogether, LipPD1 cells are a novel primary cell model with a defined genetic lesion suitable for the study of adipocyte biology.
Collapse
Affiliation(s)
- Franziska Kässner
- Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Anna Kirstein
- Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | | | - Gordian L. Schmid
- Department for General Practise, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Kathrin Landgraf
- Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Antje Berthold
- Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | | | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital for Children and Adolescents, Ulm University, Germany
| | - Wieland Kiess
- Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Antje Körner
- Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Antje Garten
- Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
- Institute for Metabolism and Systems Research, College for Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Jaini R, Loya MG, King AT, Thacker S, Sarn NB, Yu Q, Stark GR, Eng C. Germline PTEN mutations are associated with a skewed peripheral immune repertoire in humans and mice. Hum Mol Genet 2020; 29:2353-2364. [PMID: 32588888 PMCID: PMC7424751 DOI: 10.1093/hmg/ddaa118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with germline mutations in the gene encoding phosphatase and tensin homolog on chromosome ten (PTEN) are diagnosed with PTEN hamartoma tumor syndrome (PHTS) and are at high risk for developing breast, thyroid and other cancers and/or autoimmunity or neurodevelopmental issues including autism spectrum disorders. Although well recognized as a tumor suppressor, involvement of PTEN mutations in mediating such a diverse range of phenotypes indicates a more central involvement for PTEN in immunity than previously recognized. To address this, sequencing of the T-cell receptor variable-region β-chain was performed on peripheral blood from PHTS patients. Based on patient findings, we performed mechanistic studies in two Pten knock-in murine models, distinct from each other in cell compartment-specific predominance of Pten. We found that PTEN mutations in humans and mice are associated with a skewed T- and B-cell gene repertoire, characterized by increased prevalence of high-frequency clones. Immunological characterization showed that Pten mutants have increased B-cell proliferation and a proclivity towards increased T-cell reactivity upon Toll-like-receptor stimulation. Furthermore, decreases in nuclear but not cytoplasmic Pten levels associated with a reduction in expression of the autoimmune regulator (Aire), a critical mediator of central immune tolerance. Mechanistically, we show that nuclear PTEN most likely regulates Aire expression via its emerging role in splicing regulation. We conclude that germline disruption of PTEN, both in human and mouse, results in compromised central immune tolerance processes that may significantly impact individual stress responses and therefore predisposition to autoimmunity and cancer.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Proliferation/genetics
- Disease Models, Animal
- Female
- Gene Knock-In Techniques
- Germ-Line Mutation/genetics
- Hamartoma Syndrome, Multiple/blood
- Hamartoma Syndrome, Multiple/genetics
- Hamartoma Syndrome, Multiple/immunology
- Hamartoma Syndrome, Multiple/pathology
- Humans
- Immune Tolerance/genetics
- Male
- Mice
- PTEN Phosphohydrolase/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
- Transcription Factors/genetics
- AIRE Protein
Collapse
Affiliation(s)
- Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthew G Loya
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alexander T King
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas B Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Qi Yu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
25
|
Nunes-Santos CJ, Uzel G, Rosenzweig SD. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol 2020; 143:1676-1687. [PMID: 31060715 DOI: 10.1016/j.jaci.2019.03.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a broad range of cellular processes, including growth, metabolism, differentiation, proliferation, motility, and survival. The PI3Kδ enzyme complex is primarily present in the immune system and comprises a catalytic (p110δ) and regulatory (p85α) subunit. Dynamic regulation of PI3Kδ activity is required to ensure normal function and differentiation of immune cells. In the last decade, discovery of germline mutations in genes involved in the PI3Kδ pathway (PIK3CD, PIK3R1, or phosphatase and tensin homolog [PTEN]) proved that both overactivation and underactivation (gain of function and loss of function, respectively) of PI3Kδ lead to impaired and dysregulated immunity. Although a small group of patients reported to underactivate PI3Kδ show predominantly humoral defects and autoimmune features, more than 200 patients have been described with overactivation of PI3Kδ, presenting with a much more complex phenotype of combined immunodeficiency and immune dysregulation. The clinical and immunologic characterization, as well as current pathophysiologic understanding and specific therapies for PI3K pathway defects leading to immunodeficiency and immune dysregulation, are reviewed here.
Collapse
Affiliation(s)
- Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md; Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md.
| |
Collapse
|
26
|
Morisaki T, Kashiwagi S, Kouhashi R, Yabumoto A, Asano Y, Takashima T, Hirakawa K, Ohira M. Cowden Syndrome Diagnosed by Bilateral Breast Cancer with Lhermitte-Duclos Disease: A Case Report. Case Rep Oncol 2020; 13:419-423. [PMID: 32399010 PMCID: PMC7204884 DOI: 10.1159/000506979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/19/2022] Open
Abstract
Cowden syndrome is extremely rare and is characterized by multiple hamartomas in various tissues, including the skin, mucous membranes, gastrointestinal tract, breast, thyroid, and brain, and has an increased risk of breast, thyroid, and uterine cancers. Here, we report a case of Cowden syndrome diagnosed following presentation with bilateral breast cancer and provide a discussion of the relevant literature. A 47-year-old woman with a tumor in her right breast was referred to our hospital. She was diagnosed with bilateral breast cancer upon imaging and underwent a bilateral mastectomy and sentinel lymph node biopsy. Previously, she had undergone total thyroidectomy to treat a thyroid tumor. Approximately 3 years later, she was diagnosed with Lhermitte-Duclos disease affecting her left cerebellar hemisphere. As her sister and mother had also been diagnosed with breast cancer, we suspected that she might have an inherited disease. Since 80% of individuals with Cowden syndrome have a mutation in the phosphatase and tension homolog (PTEN) gene, we did not perform any genetic testing. Instead, we used the syndrome’s pathognomonic criteria and major criteria (breast cancer, thyroid tumor, and Lhermitte-Duclos disease) to diagnose our patient with Cowden syndrome. While treatment of Cowden syndrome is currently limited to strategies that can manage the symptoms, patients are at an increased risk of certain cancers and require regular screening to allow for early detection of disease.
Collapse
Affiliation(s)
- Tamami Morisaki
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Kashiwagi
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- *Shinichiro Kashiwagi, MD, PhD, Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan),
| | - Rika Kouhashi
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akimichi Yabumoto
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuka Asano
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsutomu Takashima
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastrointestinal Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastrointestinal Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Abstract
Germline pathogenic phosphatase and tensin homolog (PTEN) mutations cause PTEN hamartoma tumor syndrome (PHTS), characterized by various benign and malignant tumors of the thyroid, breast, endometrium, and other organs. Patients with PHTS may present with other clinical features such as macrocephaly, intestinal polyposis, cognitive changes, and pathognomonic skin changes. Clinically, deregulation of PTEN function is implicated in other human diseases in addition to many types of human cancer. PTEN is an important phosphatase that counteracts one of the most critical cancer pathways: the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathways. Although PTEN can dephosphorylate lipids and proteins, it also has functions independent of phosphatase activity in normal and pathological states. It is positively and negatively regulated at the transcriptional level as well as posttranslationally by phosphorylation, ubiquitylation, oxidation, and acetylation. Although most of its tumor-suppressor activity is likely to be caused by lipid dephosphorylation at the plasma membrane, PTEN also resides in the cytoplasm and nucleus, and its subcellular distribution is under strict control. In this review, we highlight our current knowledge of PTEN function and recent discoveries in understanding PTEN function regulation and how this can be exploited therapeutically for cancer treatment.
Collapse
Affiliation(s)
- Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore 169610.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Germline High Risk Cancer Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
28
|
Kelsen JR, Sullivan KE, Rabizadeh S, Singh N, Snapper S, Elkadri A, Grossman AB. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the Evaluation and Management for Patients With Very Early-onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2020; 70:389-403. [PMID: 32079889 PMCID: PMC12024488 DOI: 10.1097/mpg.0000000000002567] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rate of pediatric inflammatory bowel disease (IBD) has been increasing over the last decade and this increase has occurred most rapidly in the youngest children diagnosed <6 years, known as very early-onset inflammatory bowel disease (VEO-IBD). These children can present with more extensive and severe disease than older children and adults. The contribution of host genetics in this population is underscored by the young age of onset and the distinct, aggressive phenotype. In fact, monogenic defects, often involving primary immunodeficiency genes, have been identified in children with VEO-IBD and have led to targeted and life-saving therapy. This position paper will discuss the phenotype of VEO-IBD and outline the approach and evaluation for these children and what factors should trigger concern for an underlying immunodeficiency. We will then review the immunological assays and genetic studies that can facilitate the identification of the underlying diagnosis in patients with VEO-IBD and how this evaluation may lead to directed therapies. The position paper will also aid the pediatric gastroenterologist in recognizing when a patient should be referred to a center specializing in the care of these patients. These guidelines are intended for pediatricians, allied health professionals caring for children, pediatric gastroenterologists, pediatric pathologists, and immunologists.
Collapse
Affiliation(s)
| | - Kathleen E. Sullivan
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shervin Rabizadeh
- Division of Gastroenterology, Hepatology, and Nutrition, Cedar-Sinai Medical Center, Los Angeles, CA
| | - Namita Singh
- Division of Gastroenterology, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School
- Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - Abdul Elkadri
- Division of Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
29
|
Taylor H, Laurence ADJ, Uhlig HH. The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036996. [PMID: 31501268 DOI: 10.1101/cshperspect.a036996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid and protein phosphatase and tensin homolog (PTEN) controls the differentiation and activation of multiple immune cells. PTEN acts downstream from T- and B-cell receptors, costimulatory molecules, cytokine receptors, integrins, and also growth factor receptors. Loss of PTEN activity in human and mice is associated with cellular and humoral immune dysfunction, lymphoid hyperplasia, and autoimmunity. Although most patients with PTEN hamartoma tumor syndrome (PHTS) have no immunological symptoms, a subclinical immune dysfunction is present in many, and clinical immunodeficiency in few. Comparison of the immune phenotype caused by PTEN haploinsufficiency in PHTS, phosphoinositide 3-kinase (PI3K) gain-of-function in activated PI3K syndrome, and mice with conditional biallelic Pten deletion suggests a threshold model in which coordinated activity of several phosphatases control the PI3K signaling in a cell-type-specific manner. Emerging evidence highlights the role of PTEN in polygenic autoimmune disorders, infection, and the immunological response to cancer. Targeting the PI3K axis is an emerging therapeutic avenue.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arian D J Laurence
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Haematology, University College London Hospitals NHS Trust, London WC1E 6AG, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
30
|
Macken WL, Tischkowitz M, Lachlan KL. PTEN Hamartoma tumor syndrome in childhood: A review of the clinical literature. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:591-610. [PMID: 31609537 DOI: 10.1002/ajmg.c.31743] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Abstract
PTEN hamartoma tumor syndrome (PHTS) is a highly variable autosomal dominant condition associated with intellectual disability, overgrowth, and tumor predisposition phenotypes, which often overlap. PHTS incorporates a number of historical clinical presentations including Bannayan-Riley-Ruvalcaba syndrome, Cowden syndrome, and a macrocephaly-autism/developmental delay syndrome. Many reviews in the literature focus on PHTS as an adult hamartoma and malignancy predisposition condition. Here, we review the current literature with a focus on pediatric presentations. The review starts with a summary of the main conditions encompassed within PHTS. We then discuss PHTS diagnostic criteria, and clinical features. We briefly address rarer PTEN associations, and the possible role of mTOR inhibitors in treatment. We acknowledge the limited understanding of the natural history of childhood-onset PHTS as a cancer predisposition syndrome and present a summary of important management considerations.
Collapse
Affiliation(s)
- William L Macken
- Wessex Clinical Genetics Service, University Hospitals Southampton NHS Trust, Southampton, United Kingdom
| | - Marc Tischkowitz
- Department of Clinical Genetics, East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Department of Medical Genetics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Katherine L Lachlan
- Wessex Clinical Genetics Service, University Hospitals Southampton NHS Trust, Southampton, United Kingdom.,Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
31
|
Abstract
PTEN is a tumor suppressor gene that classically dampens the PI3K/AKT/mTOR growth-promoting signaling cascade. PTEN dysfunction causes dysregulation of this and other pathways, resulting in overgrowth. Cowden syndrome, a hereditary cancer predisposition and overgrowth disorder, was the first Mendelian condition associated with germline PTEN mutations. Since then, significant advances by the research and medical communities have elucidated how clinical phenotypic manifestations result from the underlying germline PTEN mutations. With time, it became evident that PTEN mutations can result in a broad phenotypic spectrum, causing seemingly disparate disorders from cancer to autism. Hence, the umbrella term of PTEN hamartoma tumor syndrome (PHTS) was coined. Timely diagnosis and understanding the natural history of PHTS are vital because early recognition enables gene-informed management, particularly as related to high-risk cancer surveillance and addressing the neurodevelopmental symptoms.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; , ,
| | - Emma Keel
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; , ,
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; , , .,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
32
|
Castro-Sánchez P, Aguilar-Sopeña O, Alegre-Gómez S, Ramirez-Munoz R, Roda-Navarro P. Regulation of CD4 + T Cell Signaling and Immunological Synapse by Protein Tyrosine Phosphatases: Molecular Mechanisms in Autoimmunity. Front Immunol 2019; 10:1447. [PMID: 31297117 PMCID: PMC6607956 DOI: 10.3389/fimmu.2019.01447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
T cell activation and effector function is mediated by the formation of a long-lasting interaction established between T cells and antigen-presenting cells (APCs) called immunological synapse (IS). During T cell activation, different signaling molecules as well as the cytoskeleton and the endosomal compartment are polarized to the IS. This molecular dynamics is tightly regulated by phosphorylation networks, which are controlled by protein tyrosine phosphatases (PTPs). While some PTPs are known to be important regulators of adhesion, ligand discrimination or the stimulation threshold, there is still little information about the regulatory role of PTPs in cytoskeleton rearrangements and endosomal compartment dynamics. Besides, spatial and temporal regulation of PTPs and substrates at the IS is only barely known. Consistent with an important role of PTPs in T cell activation, multiple mutations as well as altered expression levels or dynamic behaviors have been associated with autoimmune diseases. However, the precise mechanism for the regulation of T cell activation and effector function by PTPs in health and autoimmunity is not fully understood. Herein, we review the current knowledge about the regulatory role of PTPs in CD4+ T cell activation, IS assembly and effector function. The potential molecular mechanisms mediating the action of these enzymes in autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Patricia Castro-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Rocio Ramirez-Munoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.,Health Research Institute '12 de Octubre (imas12)', Madrid, Spain
| |
Collapse
|
33
|
Prat D, Ben Bassat Mizrachi I, Vishnevskia-Dai V. Intermediate uveitis in a child with phosphatase and tensin homolog gene mutation and Bannayan-Riley-Ruvalcaba syndrome. BMJ Case Rep 2019; 12:12/2/bcr-2017-224079. [PMID: 31603075 DOI: 10.1136/bcr-2017-224079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Bannayan-Riley-Ruvalcaba syndrome (BRRS) is a congenital disorder characterised by macrocephaly, multiple hamartomas, lipomas, and pigmented macules of the glans penis. Intermediate uveitis is characterised by chronic inflammatory cells aggregates on the pars plana (snowbanks) and within the vitreous cavity (snowballs). We describe what we believe to be the first case of intermediate uveitis associated with BRRS. Early examination under anaesthesia should be considered in the management of young children diagnosed with this syndrome in order to provide appropriate ocular evaluation, treatment and follow-up. Further research is needed to establish a better understanding of the ophthalmic manifestations of this syndrome.
Collapse
Affiliation(s)
- Daphna Prat
- The Goldschleger eye institute , Department of Ophthalmology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler school of medicine, Tel Aviv university, Tel Aviv, Israel
| | - Iris Ben Bassat Mizrachi
- The Goldschleger eye institute , Department of Ophthalmology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler school of medicine, Tel Aviv university, Tel Aviv, Israel
| | - Vicktoria Vishnevskia-Dai
- The Goldschleger eye institute , Department of Ophthalmology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler school of medicine, Tel Aviv university, Tel Aviv, Israel
| |
Collapse
|
34
|
Effect of PTEN inactivating germline mutations on innate immune cell function and thyroid cancer-induced macrophages in patients with PTEN hamartoma tumor syndrome. Oncogene 2019; 38:3743-3755. [PMID: 30670777 DOI: 10.1038/s41388-019-0685-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022]
Abstract
PTEN hamartoma tumor syndrome (PHTS) is caused by inactivating germline PTEN mutations with subsequent activation of Akt-mTOR signaling, leading to an increased risk of developing thyroid carcinoma (TC). Activation of Akt-mTOR signaling is essential for innate immune cell activation and reprogramming of TC-induced macrophages. Here, we aim to assess the effect of PTEN mutations on innate immune cell function in PHTS patients, especially in the context of TC, using a unique ex vivo model. Monocyte-derived cytokine responses were assessed in 29 PHTS patients and 29 controls. To assess the functional profile of TC-induced-macrophages, a co-culture model with two TC cell lines was performed. Rapamycin, a lactate transport blocker and metformin were used as modulators of the Akt-mTOR pathway and cell metabolism. Monocytes from PHTS patients showed increased production of IL-6, TNF-α, IL-8 and MCP-1, and higher lactate production. After co-culture with TC cell lines, TC-induced macrophages showed significantly increased production of cytokines in both patients and controls, especially after co-culture with a PTEN-deficient TC cell line; these effects were abolished after use of rapamycin or a lactate transport blocker. Metformin blocked the production of anti-inflammatory cytokines. In conclusion, innate immune cells from PHTS patients have increased lactate production and a more proinflammatory phenotype, especially after co-culture with PTEN-deficient TC. Metformin promotes a proinflammatory phenotype by blocking anti-inflammatory cytokine response, whereas rapamycin reduces production of proinflammatory cytokines. This indicates that PHTS patients may benefit from treatment with mTOR blocking agents to limit the inflammatory response in the tumor microenvironment.
Collapse
|
35
|
Yehia L, Ngeow J, Eng C. PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Invest 2019; 129:452-464. [PMID: 30614812 DOI: 10.1172/jci121277] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) classically counteracts the PI3K/AKT/mTOR signaling cascade. Germline pathogenic PTEN mutations cause PTEN hamartoma tumor syndrome (PHTS), featuring various benign and malignant tumors, as well as neurodevelopmental disorders such as autism spectrum disorder. Germline and somatic mosaic mutations in genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN predispose to syndromes with partially overlapping clinical features, termed the "PTEN-opathies." Experimental models of PTEN pathway disruption uncover the molecular and cellular processes influencing clinical phenotypic manifestations. Such insights not only teach us about biological mechanisms in states of health and disease, but also enable more accurate gene-informed cancer risk assessment, medical management, and targeted therapeutics. Hence, the PTEN-opathies serve as a prototype for bedside to bench, and back to the bedside, practice of evidence-based precision medicine.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joanne Ngeow
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore.,Oncology Academic Program, Duke-NUS Graduate Medical School, Singapore
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 2019; 287:162-185. [PMID: 30565237 PMCID: PMC7379380 DOI: 10.1111/imr.12726] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.
Collapse
Affiliation(s)
- Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of PediatricsSt. Anna Kinderspital and Children's Cancer Research InstituteMedical University of ViennaViennaAustria
| |
Collapse
|
37
|
Crowley E, Muise A. Inflammatory Bowel Disease: What Very Early Onset Disease Teaches Us. Gastroenterol Clin North Am 2018; 47:755-772. [PMID: 30337031 DOI: 10.1016/j.gtc.2018.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, of which ulcerative colitis and Crohn's disease are the 2 most prevailing entities. Very early onset IBD (VEO-IBD) children diagnosed with IBD under age 6 years. Although the etiology of IBD is mostly unknown, it involves a complex interaction among host genetics, microbiota, environmental factors, and aberrant immune responses. Advances in the understanding of the genetic contribution, which appears to be much more significant in younger children, gives us a useful insight into the pathogenesis and potential future therapeutic targets in IBD.
Collapse
Affiliation(s)
- Eileen Crowley
- Cell Biology Program, Division of Gastroenterology, Hepatology and Nutrition, Inflammatory Bowel Disease Center, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; Department of Pediatric Gastroenterology, Hepatology and Nutrition, SickKids, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Aleixo Muise
- Department of Biochemistry, Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Pediatrics, Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Gastroenterology, Hepatology and Nutrition, Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, SickKids, Inflammatory Bowel Disease Centre, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
38
|
Eissing M, Ripken L, Schreibelt G, Westdorp H, Ligtenberg M, Netea-Maier R, Netea MG, de Vries IJM, Hoogerbrugge N. PTEN Hamartoma Tumor Syndrome and Immune Dysregulation. Transl Oncol 2018; 12:361-367. [PMID: 30504085 PMCID: PMC6277246 DOI: 10.1016/j.tranon.2018.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Carriers of a pathogenic germline mutations in the PTEN gene, a well-known tumor suppressor gene, are at increased risk of multiple benign and malignant tumors, e.g. breast, thyroid, endometrial and colon cancer. This is called PTEN Hamartomous Tumor Syndrome (PHTS). PHTS patients may also have an increased risk of immunological dysregulation, such as autoimmunity and immune deficiencies. The effects of PTEN on the immune system have been studied in murine knockout models demonstrating that loss of PTEN function leads to dysregulation of the immune response. This results in susceptibility to autoimmunity, impaired B cell class switching with subsequent hypogammaglobulinemia. Additionally, a decreased ability of dendritic cells to prime CD8+ T cells was observed, leading to impaired tumor eradication. Immune dysfunction in PHTS patients has not yet been extensively studied but might be a manageable contributing factor to the increased cancer risk in PHTS.
Collapse
Affiliation(s)
- Marc Eissing
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands
| | - Lise Ripken
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Gerty Schreibelt
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands
| | - Harm Westdorp
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands
| | - Marjolijn Ligtenberg
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid1 0, 6525, GA, Nijmegen, The Netherlands
| | - Romana Netea-Maier
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands; Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands; Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Mei Y, Liu H. IL-37: An anti-inflammatory cytokine with antitumor functions. Cancer Rep (Hoboken) 2018; 2:e1151. [PMID: 32935478 DOI: 10.1002/cnr2.1151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND IL-37 is a newly identified IL-1 family cytokine. Unlike other members in IL-1 family, IL-37 has been demonstrated to be an anti-inflammatory cytokine in many inflammatory and autoimmune diseases. IL-37 is regarded as a dual-function cytokine as both the extracellular and intracellular IL-37 are biologically functional. Extracellular IL-37 can bind to IL-18Rα and IL-1R8 to form a triple complex, regulating the downstream STAT3 and PTEN signaling. Intracellular IL-37 can interact with Smad3, translocate into nucleus, and regulate downstream target gene expressions. Recently, the role of IL-37 in tumor development has been extensively studied. RECENT FINDINGS IL-37 has been found to play an antitumor role in various types of tumors, such as non-small cell lung cancer, hepatocellular carcinoma, and renal cell carcinoma. Many mechanism studies have been carried out to elaborate the possible effects of IL-37 on tumor growth, immune responses, and tumor angiogenesis. More importantly, the function of IL-37 may be dependent on its concentration and receptor expression. It can form dimers at high concentrations to be inactivated, thus inhibiting its anti-inflammatory function. We focused on the role of IL-37 in various tumor types and provided the hypothesis regarding the underlying mechanisms. CONCLUSION IL-37 may affect tumor development through multiple mechanisms: (1) IL-37 directly influences tumor cell viability; (2) IL-37 regulates the immune response to promote the antitumor immunity; and (3) IL-37 suppresses tumor angiogenesis in the tumor microenvironment. Future studies are warranted to further investigate the mechanisms of these multifaceted functions of IL-37 in animal models and cancer patients.
Collapse
Affiliation(s)
- Yu Mei
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore
| |
Collapse
|
40
|
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules more than 200 nucleotides in length that do not encode proteins. Recent studies have reported increasing numbers of functional lncRNAs. Maternally expressed gene 3 (MEG3) is a maternally imprinted gene encoding an lncRNA that plays a tumor suppressor role in various tumors. However, there has been rare report on mechanism of tumorigenesis and progression of endometrial carcinoma. In the present study, we found significantly lower MEG3 expression in endometrial carcinoma tissues than in normal endometrial tissues. MEG3 overexpression inhibited endometrial cancer cell proliferation, invasion, and metastasis; promoted apoptosis; and inhibited the activation of the phosphoinositide 3-kinase (PI3K)/m-TOR signaling pathway. RNA immunoprecipitation assay (RIP) showed that MEG3 can combine directly with PI3K. Tumor xenograft implantation in nude mice showed that MEG3 could significantly suppress tumor growth. These findings provide potential new therapeutic targets for treating endometrial cancer.
Collapse
|
41
|
Kässner F, Sauer T, Penke M, Richter S, Landgraf K, Körner A, Kiess W, Händel N, Garten A. Simvastatin induces apoptosis in PTEN‑haploinsufficient lipoma cells. Int J Mol Med 2018; 41:3691-3698. [PMID: 29568880 DOI: 10.3892/ijmm.2018.3568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/31/2018] [Indexed: 11/05/2022] Open
Abstract
Adipose tissue tumors (lipomas) frequently develop in patients with heterozygous germ line phosphatase and tensin homolog (PTEN) mutations. simvastatin has been demonstrated to exhibit antitumor effects, and so the aim of the present study was to assess the effects of simvastatin on the growth of human PTEN haploinsufficient lipoma cells. Whether the effects of simvastatin in lipomas are mediated via PTEN upregulation was also assessed. The results of the present study revealed that simvastatin treatment reduced cell viability and induced apoptosis in human lipoma cells. Furthermore, it was demonstrated that the expression of cellular PTEN mRNA and protein was increased following simvastatin stimulation. In addition, the phosphorylation of protein kinase B and downstream targets of mammalian target of rapamycin and 4E‑binding protein (4E‑BP)‑1 was attenuated. It was also demonstrated that simvastatin induced PTEN transcriptional upregulation by increasing peroxisome proliferator‑activated receptor (PPAR)γ expression. The small interfering RNA‑mediated knockdown of PPARγ abrogated the stimulatory effect of simvastatin on the PTEN protein, but did not influence apoptosis. The results of the present study suggest that simvastatin may be beneficial for patients with inoperable PTEN haploinsufficient lipomas.
Collapse
Affiliation(s)
- Franziska Kässner
- University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), D‑04103 Leipzig, Germany
| | - Tina Sauer
- University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), D‑04103 Leipzig, Germany
| | - Melanie Penke
- University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), D‑04103 Leipzig, Germany
| | - Sandy Richter
- University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), D‑04103 Leipzig, Germany
| | - Kathrin Landgraf
- University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), D‑04103 Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), D‑04103 Leipzig, Germany
| | - Wieland Kiess
- University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), D‑04103 Leipzig, Germany
| | - Norman Händel
- University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), D‑04103 Leipzig, Germany
| | - Antje Garten
- University Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), D‑04103 Leipzig, Germany
| |
Collapse
|
42
|
Byrd V, Getz T, Padmanabhan R, Arora H, Eng C. The microbiome in PTEN hamartoma tumor syndrome. Endocr Relat Cancer 2018; 25:233-243. [PMID: 29233840 PMCID: PMC5799828 DOI: 10.1530/erc-17-0442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
Abstract
Germline PTEN mutations defining PTEN hamartoma tumor syndrome (PHTS) confer heritable predisposition to breast, endometrial, thyroid and other cancers with known age-related risks, but it remains impossible to predict if any individual will develop cancer. In the general population, gut microbial dysbiosis has been linked to cancer, yet is unclear whether these are associated in PHTS patients. In this pilot study, we aimed to characterize microbial composition of stool, urine, and oral wash from 32 PTEN mutation-positive individuals using 16S rRNA gene sequencing. PCoA revealed clustering of the fecal microbiome by cancer history (P = 0.03, R2 = 0.04). Fecal samples from PHTS cancer patients had relatively more abundant operational taxonomic units (OTUs) from family Rikenellaceae and unclassified members of Clostridia compared to those from non-cancer patients, whereas families Peptostreptococcaceae, Enterobacteriaceae, and Bifidobacteriaceae represented relatively more abundant OTUs among fecal samples from PHTS non-cancer patients. Functional metagenomic prediction revealed enrichment of the folate biosynthesis, genetic information processing and cell growth and death pathways among fecal samples from PHTS cancer patients compared to non-cancer patients. We found no major shifts in overall diversity and no clustering by cancer history among oral wash or urine samples. Our observations suggest the utility of an expanded study to interrogate gut dysbiosis as a potential cancer risk modifier in PHTS patients.
Collapse
Affiliation(s)
- Victoria Byrd
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Western Reserve University School of MedicineCleveland, Ohio, USA
| | - Ted Getz
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Western Reserve University School of MedicineCleveland, Ohio, USA
| | - Roshan Padmanabhan
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hans Arora
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Glickman Urological & Kidney InstituteCleveland Clinic, Cleveland, Ohio, USA
| | - Charis Eng
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Taussig Cancer InstituteCleveland Clinic, Cleveland, Ohio, USA
- Department of Genetics and Genome SciencesCase Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CASE Comprehensive Cancer CenterCase Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
43
|
Shouval DS, Konnikova L, Griffith AE, Wall SM, Biswas A, Werner L, Nunberg M, Kammermeier J, Goettel JA, Anand R, Chen H, Weiss B, Li J, Loizides A, Yerushalmi B, Yanagi T, Beier R, Conklin LS, Ebens CL, Santos FGMS, Sherlock M, Goldsmith JD, Kotlarz D, Glover SC, Shah N, Bousvaros A, Uhlig HH, Muise AM, Klein C, Snapper SB. Enhanced TH17 Responses in Patients with IL10 Receptor Deficiency and Infantile-onset IBD. Inflamm Bowel Dis 2017; 23:1950-1961. [PMID: 29023267 DOI: 10.1097/mib.0000000000001270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND IL10 receptor (IL10R) deficiency causes severe infantile-onset inflammatory bowel disease. Intact IL10R-dependent signals have been shown to be important for innate and adaptive immune cell functions in mice. We have previously reported a key role of IL10 in the generation and function of human anti-inflammatory macrophages. Independent of innate immune cell defects, the aim of the current study was to determine the role of IL10R signaling in regulating human CD4 T-cell function. METHODS Peripheral blood mononuclear cells and intestinal biopsies cells were collected from IL10/IL10R-deficient patients and controls. Frequencies of CD4 T-cell subsets, naive T-cell proliferation, regulatory T cell (Treg)-mediated suppression, and Treg and TH17 generation were determined by flow cytometry. Transcriptional profiling was performed by NanoString and quantitative real-time polymerase chain reaction. RNA in situ hybridization was used to determine the quantities of various transcripts in intestinal mucosa. RESULTS Analysis of 16 IL10- and IL10R-deficient patients demonstrated similar frequencies of peripheral blood and intestinal Tregs, compared with control subjects. In addition, in vitro Treg suppression of CD4 T-cell proliferation and generation of Treg were not dependent on IL10R signaling. However, IL10R-deficient T naive cells exhibited higher proliferative capacity, a strong TH17 signature, and an increase in polarization toward TH17 cells, compared with controls. Moreover, the frequency of TH17 cells was increased in the colon and ileum of IL10R-deficient patients. Finally, we show that stimulation of IL10R-deficient Tregs in the presence of IL1β leads to enhanced production of IL17A. CONCLUSIONS IL10R signaling regulates TH17 polarization and T-cell proliferation in humans but is not required for the generation and in vitro suppression of Tregs. Therapies targeting the TH17 axis might be beneficial for IL10- and IL10R-deficient patients as a bridge to allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Dror S Shouval
- 1Division of Pediatric Gastroenterology and Nutrition, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; 2Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 3Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts; 4VEO-IBD Consortium; 5Department of Pediatrics and Newborn Medicine, Brigham and Women's Hospital, Boston, Massachusetts; 6Harvard Medical School, Boston, Massachusetts; 7Great Ormond Street Hospital London, London, England; 8Translational Gastroenterology Unit, University of Oxford, Oxford, England; 9Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida; 10Division of Gastroenterology and Nutrition, The Children's Hospital at Montefiore, Bronx, New York; 11Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 12Department of Pediatrics, Kurume University School of Medicine, Kurume, Japan; 13Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany; 14Department of Gastroenterology, Children's National Medical Center, Washington, DC; 15Division of Pediatric Hematology and Oncology, University of Michigan, Ann Arbor, Michigan; 16Hospital das Clınicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 17Division of Gastroenterology, McMaster Children's Hospital, West Hamilton, Ontario, Canada; 18Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany; 19Division of Pathology, Boston Children's Hospital, Boston, Massachusetts; 20Department of Pediatrics, University of Oxford, Oxford, England; 21Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; 22Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada; 23Department of Biochemistry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; and 24Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Omoyinmi E, Standing A, Keylock A, Price-Kuehne F, Melo Gomes S, Rowczenio D, Nanthapisal S, Cullup T, Nyanhete R, Ashton E, Murphy C, Clarke M, Ahlfors H, Jenkins L, Gilmour K, Eleftheriou D, Lachmann HJ, Hawkins PN, Klein N, Brogan PA. Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis. PLoS One 2017; 12:e0181874. [PMID: 28750028 PMCID: PMC5531484 DOI: 10.1371/journal.pone.0181874] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
Background Monogenic autoinflammatory diseases (AID) are a rapidly expanding group of genetically diverse but phenotypically overlapping systemic inflammatory disorders associated with dysregulated innate immunity. They cause significant morbidity, mortality and economic burden. Here, we aimed to develop and evaluate the clinical impact of a NGS targeted gene panel, the “Vasculitis and Inflammation Panel” (VIP) for AID and vasculitis. Methods The Agilent SureDesign tool was used to design 2 versions of VIP; VIP1 targeting 113 genes, and a later version, VIP2, targeting 166 genes. Captured and indexed libraries (QXT Target Enrichment System) prepared for 72 patients were sequenced as a multiplex of 16 samples on an Illumina MiSeq sequencer in 150bp paired-end mode. The cohort comprised 22 positive control DNA samples from patients with previously validated mutations in a variety of the genes; and 50 prospective samples from patients with suspected AID in whom previous Sanger based genetic screening had been non-diagnostic. Results VIP was sensitive and specific at detecting all the different types of known mutations in 22 positive controls, including gene deletion, small INDELS, and somatic mosaicism with allele fraction as low as 3%. Six/50 patients (12%) with unclassified AID had at least one class 5 (clearly pathogenic) variant; and 11/50 (22%) had at least one likely pathogenic variant (class 4). Overall, testing with VIP resulted in a firm or strongly suspected molecular diagnosis in 16/50 patients (32%). Conclusions The high diagnostic yield and accuracy of this comprehensive targeted gene panel validate the use of broad NGS-based testing for patients with suspected AID.
Collapse
Affiliation(s)
- Ebun Omoyinmi
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
- * E-mail:
| | - Ariane Standing
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| | - Annette Keylock
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| | - Fiona Price-Kuehne
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| | - Sonia Melo Gomes
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| | - Dorota Rowczenio
- National Amyloidosis Centre (NAC), UCL, Royal Free Campus, London, United Kingdom
| | - Sira Nanthapisal
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| | - Thomas Cullup
- NE Thames Regional Genetics laboratory, GOSH NHS Foundation Trust, London, United Kingdom
| | - Rodney Nyanhete
- NE Thames Regional Genetics laboratory, GOSH NHS Foundation Trust, London, United Kingdom
| | - Emma Ashton
- NE Thames Regional Genetics laboratory, GOSH NHS Foundation Trust, London, United Kingdom
| | - Claire Murphy
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| | - Megan Clarke
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| | - Helena Ahlfors
- NE Thames Regional Genetics laboratory, GOSH NHS Foundation Trust, London, United Kingdom
| | - Lucy Jenkins
- NE Thames Regional Genetics laboratory, GOSH NHS Foundation Trust, London, United Kingdom
| | - Kimberly Gilmour
- Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
- Arthritis Research UK Centre for Adolescent Rheumatology, UCL, UCLH and GOSH, London, United Kingdom
| | - Helen J. Lachmann
- National Amyloidosis Centre (NAC), UCL, Royal Free Campus, London, United Kingdom
| | - Philip N. Hawkins
- National Amyloidosis Centre (NAC), UCL, Royal Free Campus, London, United Kingdom
| | - Nigel Klein
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| | - Paul A. Brogan
- UCL Great Ormond Street Institute of Child Health (ICH), London, United Kingdom
| |
Collapse
|
45
|
Guaraldi F, Di Nardo G, Tarani L, Bertelli L, Susca FC, Bagnulo R, Resta N. Association of autoimmune thyroiditis and celiac disease with Juvenile Polyposis due to 10q23.1q23.31 deletion: Potential role of PI3K/Akt pathway dysregulation. Eur J Med Genet 2017; 60:380-384. [PMID: 28434922 DOI: 10.1016/j.ejmg.2017.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
Juvenile Polyposis (JP) is a rare hereditary condition characterized by diffuse hamartomatous gastrointestinal polyposis, associated with a significantly increased risk of neoplastic transformation. Most of the cases are caused by SMAD and BMPR1A mutations, while 10q23 microdeletions, encompassing both PTEN and BMPR1A oncogenes, are extremely rare, typically associated with more aggressive JP, and extraintestinal features overlapping with PTEN Hamartoma Tumor Syndrome. We present the first case of a young female with multiple autoimmune disorders (i.e. thyroiditis and celiac disease), associated with JP, cardiac defects and epilepsy, who carries a de novo heterozygous 10q23.1q23.31 deletion. The dysregulation of the PI3K/Akt pathway is advanced as the putative mechanism connecting autoimmune, malformative and neoplastic disorders. A literature review of clinical manifestation, gene alterations and the treatment of patients with 10q23 deletion is also provided, highlighting the importance of comprehensive, long-term, multi-disciplinary management, aimed at early identification and treatment of both intestinal and extraintestinal disorders.
Collapse
Affiliation(s)
- Federica Guaraldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Italy.
| | - Giovanni Di Nardo
- Pediatric Gastroenterology Unit, AORN Santobono-Pausilipon, Naples, Italy
| | - Luigi Tarani
- Department of Pediatrics, La Sapienza University of Rome, Italy
| | - Luca Bertelli
- Department of Pediatrics, University of Bologna, Italy
| | - Francesco Claudio Susca
- Department of Biomedical Sciences and Human Oncology, Medical Genetics Unit, Aldo Moro University of Bari, Italy
| | - Rosanna Bagnulo
- Department of Biomedical Sciences and Human Oncology, Medical Genetics Unit, Aldo Moro University of Bari, Italy
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology, Medical Genetics Unit, Aldo Moro University of Bari, Italy
| |
Collapse
|
46
|
Munn DH, Sharma MD, Johnson TS, Rodriguez P. IDO, PTEN-expressing Tregs and control of antigen-presentation in the murine tumor microenvironment. Cancer Immunol Immunother 2017; 66:1049-1058. [PMID: 28488123 DOI: 10.1007/s00262-017-2010-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023]
Abstract
The tumor microenvironment is profoundly immunosuppressive. This creates a major barrier for attempts to combine immunotherapy with conventional chemotherapy or radiation, because the tumor antigens released by these cytotoxic agents are not cross-presented in an immunogenic fashion. In this Focused Research Review, we focus on mouse preclinical studies exploring the role of immunosuppressive Tregs expressing the PTEN lipid phosphatase, and the links between PTEN+ Tregs and the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO). IDO has received attention because it can be expressed by a variety of human tumor types in vivo, but IDO can also be induced in host immune cells of both humans and mice in response to inflammation, infection or dying (apoptotic) cells. Mechanistically, IDO and PTEN+ Tregs are closely connected, with IDO causing activation of the PTEN pathway in Tregs. Genetic ablation or pharmacologic inhibition of PTEN in mouse Tregs destabilizes their suppressive phenotype, and this prevents transplantable and autochthonous tumors from creating their normal immunosuppressive microenvironment. Genetic ablation of either IDO or PTEN+ Tregs in mice results in a fundamental defect in the ability to maintain tolerance to antigens associated with apoptotic cells, including dying tumor cells. Consistent with this, pharmacologic inhibitors of either pathway show synergy when combined with cytotoxic agents such as chemotherapy or radiation. Thus, we propose that IDO and PTEN+ Tregs represent closely linked checkpoints that can influence the choice between immune activation versus tolerance to dying tumor cells.
Collapse
Affiliation(s)
- David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Room CN4141, Augusta, GA, 30912, USA. .,Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Madhav D Sharma
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Room CN4141, Augusta, GA, 30912, USA.,Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Theodore S Johnson
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Room CN4141, Augusta, GA, 30912, USA.,Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Paulo Rodriguez
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Room CN4141, Augusta, GA, 30912, USA
| |
Collapse
|
47
|
Mauro A, Omoyinmi E, Sebire NJ, Barnicoat A, Brogan P. De Novo PTEN Mutation in a Young Boy with Cutaneous Vasculitis. Case Rep Pediatr 2017; 2017:9682803. [PMID: 28523199 PMCID: PMC5421084 DOI: 10.1155/2017/9682803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is the protein encoded by the PTEN gene (10q23.3). PTEN mutations are related to a variety of rare diseases referred to collectively as PTEN hamartoma tumor syndromes (PHTS), which include Cowden Syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus Syndrome, and Proteus-like syndrome. These diseases are associated with an increased risk of malignancy and for this reason an accurate and early diagnosis is essential in order to institute cancer surveillance. PTEN is a regulator of growth and homeostasis in immune system cells, although there are limited data describing immune dysregulation caused by PTEN mutations. We describe a case of PHTS syndrome caused by a de novo mutation in PTEN detected using a targeted next generation sequencing (NGS) gene panel which was instigated for workup of cutaneous vasculitis. We highlight the diagnostic utility of this approach and that mutations in PTEN may be associated with immune-dysregulatory features such as vasculitis in young children.
Collapse
Affiliation(s)
- Angela Mauro
- Department of Paediatrics, San Giacomo Hospital, Via Edilio Raggio, Novi Ligure, Italy
| | - Ebun Omoyinmi
- Infection, Inflammation, and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Neil James Sebire
- Department of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Angela Barnicoat
- Department of Clinical Genetics, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Paul Brogan
- Infection, Inflammation, and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
48
|
Arora HC, Eng C, Shoskes DA. Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:30. [PMID: 28217695 DOI: 10.21037/atm.2016.12.32] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Analysis of the human microbiome continues to reveal new and previously unrealized associations between microbial dysbiosis and disease. Novel approaches to bacterial identification using culture-independent methods allow practitioners to discern the presence of alterations in the taxa and diversity of the microbiome and identify correlations with disease processes. While some of these diseases that have been extensively studied are well-defined in their etiology and treatment methods (colorectal cancer), others have provided much more significant challenges in both diagnosis and treatment. One such condition, chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), has several etiological and potentiating contributions from infection, inflammation, central nervous system (CNS) changes, stress, and central sensitization-all factors that play important roles in the crosstalk between the human body and its microbiome. No singular cause of CP/CPPS has been identified and it is most likely a syndrome with multifactorial causes. This heterogeneity and ambiguity are sources of significant frustration for patients and providers alike. Despite multiple attempts, treatment of chronic prostatitis with monotherapy has seen limited success, which is thought to be due to its heterogeneous nature. Phenotypic approaches to both classify the disease and direct treatment for CP/CPPS have proven beneficial in these patients, but questions still remain regarding etiology. Newer microbiome research has found correlations between symptom scores and disease severity and the degree of dysbiosis in urine and gut (stool) microbiomes in these patients as compared to un-afflicted controls. These findings present potential new diagnostic and therapeutic targets in CP/CPPS patients.
Collapse
Affiliation(s)
- Hans C Arora
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel A Shoskes
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
49
|
Andrew NH, Coupland SE, Pirbhai A, Selva D. Lymphoid hyperplasia of the orbit and ocular adnexa: A clinical pathologic review. Surv Ophthalmol 2016; 61:778-790. [DOI: 10.1016/j.survophthal.2016.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 12/11/2022]
|
50
|
Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol 2016; 139:607-620.e15. [PMID: 27477328 PMCID: PMC5292998 DOI: 10.1016/j.jaci.2016.03.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/25/2016] [Accepted: 03/22/2016] [Indexed: 12/14/2022]
Abstract
Background Patients with heterozygous germline mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) experience autoimmunity and lymphoid hyperplasia. Objectives Because regulation of the phosphoinositide 3-kinase (PI3K) pathway is critical for maintaining regulatory T (Treg) cell functions, we investigate Treg cells in patients with heterozygous germline PTEN mutations (PTEN hamartoma tumor syndrome [PHTS]). Methods Patients with PHTS were assessed for immunologic conditions, lymphocyte subsets, forkhead box P3 (FOXP3)+ Treg cell levels, and phenotype. To determine the functional importance of phosphatases that control the PI3K pathway, we assessed Treg cell induction in vitro, mitochondrial depolarization, and recruitment of PTEN to the immunologic synapse. Results Autoimmunity and peripheral lymphoid hyperplasia were found in 43% of 79 patients with PHTS. Immune dysregulation in patients with PHTS included lymphopenia, CD4+ T-cell reduction, and changes in T- and B-cell subsets. Although total CD4+FOXP3+ Treg cell numbers are reduced, frequencies are maintained in the blood and intestine. Despite pathogenic PTEN mutations, the FOXP3+ T cells are phenotypically normal. We show that the phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP) downstream of PTEN is highly expressed in normal human Treg cells and provides complementary phosphatase activity. PHLPP is indispensable for the differentiation of induced Treg cells in vitro and Treg cell mitochondrial fitness. PTEN and PHLPP form a phosphatase network that is polarized at the immunologic synapse. Conclusion Heterozygous loss of function of PTEN in human subjects has a significant effect on T- and B-cell immunity. Assembly of the PTEN-PHLPP phosphatase network allows coordinated phosphatase activities at the site of T-cell receptor activation, which is important for limiting PI3K hyperactivation in Treg cells despite PTEN haploinsufficiency.
Collapse
|