1
|
Beretta C, Dakhel A, Eltom K, Rosqvist F, Uzoni S, Mothes T, Fletcher JS, Risérus U, Sehlin D, Rostami J, Michno WP, Erlandsson A. Astrocytic lipid droplets contain MHCII and may act as cogs in the antigen presentation machinery. J Neuroinflammation 2025; 22:117. [PMID: 40275347 PMCID: PMC12023685 DOI: 10.1186/s12974-025-03452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025] Open
Abstract
Lipid droplets (LDs) are crucial for energy homeostasis, but are also involved in a wide spectrum of other cellular processes. Accumulating data identifies LDs as an important player in inflammation. However, the underlying mechanisms and the impact of LDs on neuroinflammation remain unclear. Here, we describe a novel function of LDs in human astrocytes, in the context of Alzheimer's disease (AD). Although, the overall lipid profile was unchanged in astrocytes with AD pathology, our data show a clear effect on LD metabolism and specific fatty acids involved in neuroinflammation. Importantly, we found astrocytes to be in close contact with infiltrating CD4 + T cells in the AD brain. Moreover, PLIN3 + LDs in astrocytes co-localize with major histocompatibility complex II (MHCII), indicating a role of LDs in adaptive immunity. Comprehensive analysis of human induced pluripotent stem cell (hiPSC)-derived astrocytes revealed that MHCII is in fact loaded within PLIN3 + LDs and forwarded to neighboring cells via tunneling nanotubes and secretion. Notably, the MHCII molecules are cleaved into its active form prior to packing, indicating an alternative route of MHCII shuttling through LDs, transporting functional immune complexes between cells. Quantification of PLIN3 + LDs in astrocytic cultures, human brain tissue and cerebral organoids indicates that AD pathology initially stimulates PLIN3 + LD formation, but in the long-run results in PLIN3 + LD consumption, which may have consequences on the astrocytes' MHCII distribution capacity. Taken together, our findings present a novel function of PLIN3 + LDs that can be of relevance for AD and other inflammatory conditions.
Collapse
Affiliation(s)
- Chiara Beretta
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Abdulkhalek Dakhel
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Khalid Eltom
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, BMC, Uppsala University, Uppsala, Sweden
- Department of Food Studies, Nutrition and Dietetics, BMC, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Simon Uzoni
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Tobias Mothes
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, BMC, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Jinar Rostami
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Wojciech Piotr Michno
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden.
| |
Collapse
|
2
|
Miao J, Qu J, Li D, Zhang M. Deletion of HIF-2α in Dendritic Cells Attenuates Anti-Glomerular Basement Membrane Nephritis. Biomedicines 2025; 13:888. [PMID: 40299471 PMCID: PMC12024703 DOI: 10.3390/biomedicines13040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Anti-glomerular basement membrane (anti-GBM) nephritis is mediated by autoantibodies and may progress to end-stage renal disease. Although its pathogenesis is not completely understood, dendritic cells (DCs) have been reported to play an important role in this process. Hypoxia-inducible factor-2α (HIF-2α) has been reported to have a regulatory effect on DCs under hypoxic conditions, while no research has investigated its role in autoimmune nephritis. Methods: Anti-GBM nephritis was induced in CD11c-specific HIF-2α-deficient and WT mice using nephrotoxic serum (NTS). All mice were divided into four groups: (i) WT+PBS, (ii) CD11c-Cre+ Hif2αfl/fl+PBS, (iii) WT+NTS and (iv) CD11c-Cre+ Hif2αfl/fl+NTS. Seven days after induction, renal function, immune cell infiltration and the expression levels of genes in the renal cortex were assessed in each group. Results: On day 7, the levels of serum creatinine and blood urea nitrogen and the urine albumin-to-creatinine ratio were lower for mice with DC-specific deletion of HIF-2α compared with their WT counterparts (p < 0.05). Histopathological analysis showed that there was less crescent formation in the renal cortex with conditional HIF-2α knockout, and the infiltration of DCs and macrophages was also suppressed (p < 0.05). Genes related to antigen processing and presentation were found to be expressed differentially between the two groups, and the activation of the MAPK pathway was affected (p < 0.05). Western blot analysis validated that HIF-2α knockout inhibited the phosphorylation of p38 MAPK (p < 0.05). Conclusions: In this study, we observed a pro-inflammatory effect of HIF-2α in DCs in early anti-GBM nephritis, and the results suggested a regulating effect of HIF-2α on p38 MAPK pathways.
Collapse
Affiliation(s)
| | | | | | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (J.M.); (D.L.)
| |
Collapse
|
3
|
Moon CY, Belabed M, Park MD, Mattiuz R, Puleston D, Merad M. Dendritic cell maturation in cancer. Nat Rev Cancer 2025; 25:225-248. [PMID: 39920276 PMCID: PMC11954679 DOI: 10.1038/s41568-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are present at low abundance in the circulation and tissues; they serve as crucial immune sentinels by continually sampling their environment, migrating to secondary lymphoid organs and shaping adaptive immune responses through antigen presentation. Owing to their ability to orchestrate tolerogenic or immunogenic responses to a specific antigen, DCs have a pivotal role in antitumour immunity and the response to immune checkpoint blockade and other immunotherapeutic approaches. The multifaceted functions of DCs are acquired through a complex, multistage process called maturation. Although the role of inflammatory triggers in driving DC maturation was established decades ago, less is known about DC maturation in non-inflammatory contexts, such as during homeostasis and in cancer. The advent of single-cell technologies has enabled an unbiased, high-dimensional characterization of various DC states, including mature DCs. This approach has clarified the molecular programmes associated with DC maturation and also revealed how cancers exploit these pathways to subvert immune surveillance. In this Review, we discuss the mechanisms by which cancer disrupts DC maturation and highlight emerging therapeutic opportunities to modulate DC states. These insights could inform the development of DC-centric immunotherapies, expanding the arsenal of strategies to enhance antitumour immunity.
Collapse
Affiliation(s)
- Chang Yoon Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Marina CL, de Castro RJA, Bellozi P, Cruz AM, Bürgel PH, Potter PGW, Beall C, Tavares AH, De Bem A, Alanio A, Coelho C, Bocca AL. Immunometabolic reprogramming in macrophages infected with active and dormant Cryptococcus neoformans: differential modulation of respiration, glycolysis, and fatty acid utilization. Infect Immun 2025; 93:e0048724. [PMID: 39714095 PMCID: PMC11834436 DOI: 10.1128/iai.00487-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024] Open
Abstract
Dormancy is an adaptation in which cells reduce their metabolism, transcription, and translation to stay alive under stressful conditions, preserving the capacity to reactivate once the environment reverts to favorable conditions. Dormancy and reactivation of Cryptococcus neoformans (Cn) are closely linked to intracellular residency within macrophages. Our previous work showed that in vitro murine macrophages rely on the viable but not cultivable (VBNC-a dormancy phenotype) fungus from active Cn, with striking differences in immunometabolic gene expression. Here, we analyzed the influence of VBNC and active Cn on the immunometabolism of infected macrophages, combining metabolic gene expression, mitochondrial membrane potential (ΔΨm), oxygen consumption analysis, and uptake of glucose and fatty acids. The active fungus induced mitochondrial depolarization, and increased glycolysis and mitochondrial oxygen consumption. VBNC infection in bone marrow-derived macrophage (BMDM) caused an attenuated modification in mitochondrial metabolism. However, we found differences in BMDM infected with VBNC vs those infected with active fungus, where VBNC induced an increment in fatty acid uptake in M0 and M1 BMDM, measured by incorporation of BODIPY-palmitate, accompanied by an increase in expression of fatty acid transporters Fabp1 and Fabp4. Overall, distinct fatty acid-related responses induced by VBNC and active Cn suggest different immunomodulatory reactions, depending on the microbial growth stage. We posit that, for VBNC, some of these macrophage metabolic responses reflect the establishment of prolonged microbial intracellular residency and possibly initial stages of granuloma formation.
Collapse
Affiliation(s)
- Clara Luna Marina
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
| | | | - Paula Bellozi
- Laboratory of Bioenergetics and Metabolism, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
| | - Ana M. Cruz
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Pedro Henrique Bürgel
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
| | | | - Craig Beall
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Aldo Henrique Tavares
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, Laboratory of Microorganism, Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | - Andreza De Bem
- Laboratory of Bioenergetics and Metabolism, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
| | - Alexandre Alanio
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, Île-de-France, France
| | - Carolina Coelho
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology at University of Exeter, Exeter, Devon, United Kingdom
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
- Bi-Institutional Translational Medicine Platform, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, State of Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Chang K, Luo P, Guo Z, Yang L, Pu J, Han F, Cai F, Tang J, Wang X. Lipid Metabolism: An Emerging Player in Sjögren's Syndrome. Clin Rev Allergy Immunol 2025; 68:15. [PMID: 39934534 PMCID: PMC11813826 DOI: 10.1007/s12016-025-09023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder that primarily affects the exocrine glands. Due to the intricate nature of the disease progression, the exact mechanisms underlying SS are not completely understood. Recent research has highlighted the complex interplay between immune dysregulation and metabolic abnormalities in inflammatory diseases. Notably, lipid metabolism has emerged as a crucial factor in the modulation of immune function and the progression of autoimmune diseases, including SS. This review explores the prevalence of dyslipidemia in SS, emphasizing its role in the onset, progression, and prognosis of the disease. We specifically described the impact of altered lipid metabolism in exocrine glands and its association with disease-specific features, including inflammation and glandular dysfunction. Additionally, we discussed the potential clinical implications of lipid metabolism regulation, including the role of polyunsaturated fatty acids (PUFAs) and their deficits in SS pathogenesis. By identifying lipid metabolism as a promising therapeutic target, this review highlights the need for further research into lipid-based interventions for the management of SS.
Collapse
Affiliation(s)
- Keni Chang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Peiming Luo
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Zizhen Guo
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Feiyang Cai
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Jianping Tang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
6
|
Dhayanithy G, Radhakrishnan S, Ann Martin C, Caroline Martin J, Hakeem AR, Jothimani D, Kalkura SN, Rela M. Understanding immunological insights of liver transplantation: a practice for attaining operational tolerance. Clin Exp Immunol 2025; 219:uxae125. [PMID: 39973343 PMCID: PMC11878573 DOI: 10.1093/cei/uxae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/15/2024] [Accepted: 02/19/2025] [Indexed: 02/21/2025] Open
Abstract
Liver transplantation has been at the forefront of medical research, with efforts concentrated on understanding the intricate cellular and molecular dynamics involved this complex procedure. This body of work has chronicled critical clinical advancements, identified challenges, and highlighted progressive improvements in surgical practices. These concerted efforts have significantly contributed to the evolution and enhancement of liver transplantation, elevating it to its current level of sophistication. A successful liver transplant now demands an integrated, multidisciplinary approach that includes not only expanding the donor pool from deceased to living donors but also embracing advances in surgical methods, efficiently managing post-transplant complications, and, importantly, achieving operational tolerance. The latter, operational tolerance, is a state wherein the recipient's immune system is coaxed into accepting the transplanted organ without the long-term use of immunosuppressive drugs, thereby minimizing potential side effects, and improving quality of life. Understanding the critical immune mechanisms that aim to prevent graft rejection is essential from an immunological perspective. This review aims to highlight the crucial areas of host versus graft immune responses, making a clear distinction between organs received from living and deceased donors. It examines how these immune responses, both innate and adaptive, are initiated and proposes the exploration of molecular docking sites as a strategy to curb unwanted immune reactions. Additionally, this review explores the promising potential of biomarkers in predicting graft rejection, and emphasizes the importance of achieving tolerance and the continuous quest for innovative strategies to enhance the success and longevity of liver transplants.
Collapse
Affiliation(s)
| | | | | | - Josette Caroline Martin
- Department of Pathology, Sri Venkateshwara Medical College Hospital and Research Institute, Pondicherry, India
| | | | - Dinesh Jothimani
- Dr. Rela Institute and Medical Centre, Chromepet, Chennai, India
| | - Subbaraya Narayana Kalkura
- Crystal Growth Centre, Anna University, Guindy, Chennai, India
- National Foundation for Liver Research, Chromepet, Chennai, India
| | - Mohamed Rela
- National Foundation for Liver Research, Chromepet, Chennai, India
- Dr. Rela Institute and Medical Centre, Chromepet, Chennai, India
| |
Collapse
|
7
|
Giurini EF, Ralph O, Pappas SG, Gupta KH. Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy. Mol Cancer Ther 2025; 24:18-32. [PMID: 39311547 DOI: 10.1158/1535-7163.mct-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Oliver Ralph
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Sam G Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Ouyang C, Huang J, Huang G, Wang Y. Dendritic cell immunometabolism - a potential therapeutic target for allergic diseases. Int J Med Sci 2025; 22:417-431. [PMID: 39781535 PMCID: PMC11704690 DOI: 10.7150/ijms.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
Allergic diseases are a group of chronic inflammatory disorders driven by abnormal immune responses. Dendritic cells (DCs) play a pivotal role in the initiation and progression of allergic diseases by modulating T cell responses. Extensive progress has been made in characterizing crucial roles of metabolic reprogramming in the regulation of immune cell functions. As the critical upstream regulators and effectors in allergic responses, the activation, migration, and function of DCs are reliant on metabolic reprogramming. In this review, we summarize the metabolic characteristics of DCs, and how the cellular microenvironment shapes DC function. We also elucidate the metabolic regulation of DC biology in the context of allergic diseases and targeted therapeutic strategies based on DC metabolism regulation. Understanding the functional alterations in DCs during allergic responses and the underlying mechanisms governing its metabolic regulation is crucial for the development of effective strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
| | | | | | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University. Dongguan, Guangdong 523808, China
| |
Collapse
|
9
|
Klaimi C, Kong W, Blériot C, Haas JT. The immunological interface: dendritic cells as key regulators in metabolic dysfunction-associated steatotic liver disease. FEBS Lett 2024. [PMID: 39668616 DOI: 10.1002/1873-3468.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a broad spectrum of conditions associating fat accumulation in the liver (steatosis) with varying degrees of inflammation (hepatitis) and fibrosis, which can progress to cirrhosis and potentially cancer (hepatocellular carcinoma). The first stages of these diseases are reversible and the immune system, together with metabolic factors (obesity, insulin resistance, Western diet, etc.), can influence the disease trajectory leading to progression or regression. Dendritic cells are professional antigen-presenting cells that constantly sense environmental stimuli and orchestrate immune responses. Herein, we discuss the existing literature on the heterogeneity of dendritic cell lineages, states, and functions, to provide a comprehensive overview of how liver dendritic cells influence the onset and evolution of MASLD.
Collapse
Affiliation(s)
- Camilla Klaimi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Camille Blériot
- Gustave Roussy, CNRS UMR9018, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, Université Paris-Saclay, Villejuif, France
- Institut Necker Enfants Malades, CNRS, INSERM, Université Paris Cité, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
10
|
Zhang H, Li Y, Huang J, Shen L, Xiong Y. Precise targeting of lipid metabolism in the era of immuno-oncology and the latest advances in nano-based drug delivery systems for cancer therapy. Acta Pharm Sin B 2024; 14:4717-4737. [PMID: 39664426 PMCID: PMC11628863 DOI: 10.1016/j.apsb.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/13/2024] Open
Abstract
Over the past decade, research has increasingly identified unique dysregulations in lipid metabolism within the tumor microenvironment (TME). Lipids, diverse biomolecules, not only constitute biological membranes but also function as signaling molecules and energy sources. Enhanced synthesis or uptake of lipids in the TME significantly promotes tumorigenesis and proliferation. Moreover, lipids secreted into the TME influence tumor-resident immune cells (TRICs), thereby aiding tumor survival against chemotherapy and immunotherapy. This review aims to highlight recent advancements in understanding lipid metabolism in both tumor cells and TRICs, with a particular emphasis on exogenous lipid uptake and endogenous lipid de novo synthesis. Targeting lipid metabolism for intervention in anticancer therapies offers a promising therapeutic avenue for cancer treatment. Nano-drug delivery systems (NDDSs) have emerged as a means to maximize anti-tumor effects by rewiring tumor metabolism. This review provides a comprehensive overview of recent literature on the development of NDDSs targeting tumor lipid metabolism, particularly in the context of tumor immunotherapy. It covers four key aspects: reprogramming lipid uptake, reprogramming lipolysis, reshaping fatty acid oxidation (FAO), and reshuffling lipid composition on the cell membrane. The review concludes with a discussion of future prospects and challenges in this burgeoning field of research.
Collapse
Affiliation(s)
- Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingyi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Limei Shen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
11
|
Bojmar L, Zambirinis CP, Hernandez JM, Chakraborty J, Shaashua L, Kim J, Johnson KE, Hanna S, Askan G, Burman J, Ravichandran H, Zheng J, Jolissaint JS, Srouji R, Song Y, Choubey A, Kim HS, Cioffi M, van Beek E, Sigel C, Jessurun J, Velasco Riestra P, Blomstrand H, Jönsson C, Jönsson A, Lauritzen P, Buehring W, Ararso Y, Hernandez D, Vinagolu-Baur JP, Friedman M, Glidden C, Firmenich L, Lieberman G, Mejia DL, Nasar N, Mutvei AP, Paul DM, Bram Y, Costa-Silva B, Basturk O, Boudreau N, Zhang H, Matei IR, Hoshino A, Kelsen D, Sagi I, Scherz A, Scherz-Shouval R, Yarden Y, Oren M, Egeblad M, Lewis JS, Keshari K, Grandgenett PM, Hollingsworth MA, Rajasekhar VK, Healey JH, Björnsson B, Simeone DM, Tuveson DA, Iacobuzio-Donahue CA, Bromberg J, Vincent CT, O'Reilly EM, DeMatteo RP, Balachandran VP, D'Angelica MI, Kingham TP, Allen PJ, Simpson AL, Elemento O, Sandström P, Schwartz RE, Jarnagin WR, Lyden D. Multi-parametric atlas of the pre-metastatic liver for prediction of metastatic outcome in early-stage pancreatic cancer. Nat Med 2024; 30:2170-2180. [PMID: 38942992 PMCID: PMC11416063 DOI: 10.1038/s41591-024-03075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/17/2024] [Indexed: 06/30/2024]
Abstract
Metastasis occurs frequently after resection of pancreatic cancer (PaC). In this study, we hypothesized that multi-parametric analysis of pre-metastatic liver biopsies would classify patients according to their metastatic risk, timing and organ site. Liver biopsies obtained during pancreatectomy from 49 patients with localized PaC and 19 control patients with non-cancerous pancreatic lesions were analyzed, combining metabolomic, tissue and single-cell transcriptomics and multiplex imaging approaches. Patients were followed prospectively (median 3 years) and classified into four recurrence groups; early (<6 months after resection) or late (>6 months after resection) liver metastasis (LiM); extrahepatic metastasis (EHM); and disease-free survivors (no evidence of disease (NED)). Overall, PaC livers exhibited signs of augmented inflammation compared to controls. Enrichment of neutrophil extracellular traps (NETs), Ki-67 upregulation and decreased liver creatine significantly distinguished those with future metastasis from NED. Patients with future LiM were characterized by scant T cell lobular infiltration, less steatosis and higher levels of citrullinated H3 compared to patients who developed EHM, who had overexpression of interferon target genes (MX1 and NR1D1) and an increase of CD11B+ natural killer (NK) cells. Upregulation of sortilin-1 and prominent NETs, together with the lack of T cells and a reduction in CD11B+ NK cells, differentiated patients with early-onset LiM from those with late-onset LiM. Liver profiles of NED closely resembled those of controls. Using the above parameters, a machine-learning-based model was developed that successfully predicted the metastatic outcome at the time of surgery with 78% accuracy. Therefore, multi-parametric profiling of liver biopsies at the time of PaC diagnosis may determine metastatic risk and organotropism and guide clinical stratification for optimal treatment selection.
Collapse
Affiliation(s)
- Linda Bojmar
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Constantinos P Zambirinis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jonathan M Hernandez
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jayasree Chakraborty
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lee Shaashua
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kofi Ennu Johnson
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Samer Hanna
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Gokce Askan
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonas Burman
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hiranmayi Ravichandran
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jian Zheng
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua S Jolissaint
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rami Srouji
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Song
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ankur Choubey
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Han Sang Kim
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Michele Cioffi
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Elke van Beek
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlie Sigel
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose Jessurun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Hakon Blomstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Carolin Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anette Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pernille Lauritzen
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Weston Buehring
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Yonathan Ararso
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Dylanne Hernandez
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Jessica P Vinagolu-Baur
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Madison Friedman
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Caroline Glidden
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Laetitia Firmenich
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Grace Lieberman
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Dianna L Mejia
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Naaz Nasar
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anders P Mutvei
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Doru M Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Bruno Costa-Silva
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Olca Basturk
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Boudreau
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Irina R Matei
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - Ayuko Hoshino
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA
| | - David Kelsen
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jason S Lewis
- Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Kayvan Keshari
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vinagolu K Rajasekhar
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John H Healey
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bergthor Björnsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Diane M Simeone
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | | | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - C Theresa Vincent
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ronald P DeMatteo
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I D'Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter J Allen
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amber L Simpson
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Per Sandström
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - William R Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Lyden
- Departments of Pediatrics and Cell and Developmental Biology, Children's Cancer and Blood Foundation Laboratories, Drukier Institute for Children's Health, Meyer Cancer Center Weill Cornell Medicine, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Wang B, Yang L, Yuan X, Zhang Y. Roles and therapeutic targeting of dendritic cells in liver fibrosis. J Drug Target 2024; 32:647-654. [PMID: 38682473 DOI: 10.1080/1061186x.2024.2347365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Liver fibrosis is a common pathological condition marked by excessive accumulation of extracellular matrix proteins, resulting in irreversible cirrhosis and cancer. Dendritic cells (DCs) act as the crucial component of hepatic immunity and are believed to affect fibrosis by regulating the proliferation and differentiation of hepatic stellate cells (HSCs), a key mediator of fibrogenesis, and by interplaying with immune cells in the liver. This review concisely describes the process of fibrogenesis, and the phenotypic and functional characteristics of DCs in the liver. Besides, it focuses on the interaction between DCs and HSCs, T cells, and natural killer (NK) cells, as well as the dual roles of DCs in liver fibrosis, for the sake of exploring the potential of targeting DCs as a therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Bingyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Liuxin Yang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Yang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| |
Collapse
|
13
|
Li Y, Fu W, Xiang J, Ren Y, Li Y, Zhou M, Yu J, Luo Z, Liu E, Fu Z, Liu B, Ding F. Long-chain acyl-CoA synthetase 4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation. Inflamm Res 2024; 73:819-839. [PMID: 38472395 DOI: 10.1007/s00011-024-01868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
OBJECTIVE This study aims to investigate the role of Acyl-CoA synthetase 4 (ACSL4) in mediating mitochondrial fatty acid metabolism and dendritic cell (DC) antigen presentation in the immune response associated with asthma. METHODS RNA sequencing was employed to identify key genes associated with mitochondrial function and fatty acid metabolism in DCs. ELISA was employed to assess the levels of fatty acid metabolism in DCs. Mitochondrial morphology was evaluated using laser confocal microscopy, structured illumination microscopy, and transmission electron microscopy. Flow cytometry and immunofluorescence were utilized to detect changes in mitochondrial superoxide generation in DCs, followed by immunofluorescence co-localization analysis of ACSL4 and the mitochondrial marker protein COXIV. Subsequently, pathological changes and immune responses in mouse lung tissue were observed. ELISA was conducted to measure the levels of fatty acid metabolism in lung tissue DCs. qRT-PCR and western blotting were employed to respectively assess the expression levels of mitochondrial-associated genes (ATP5F1A, VDAC1, COXIV, TFAM, iNOS) and proteins (ATP5F1A, VDAC1, COXIV, TOMM20, iNOS) in lung tissue DCs. Flow cytometry was utilized to analyze changes in the expression of surface antigens presented by DCs in lung tissue, specifically the MHCII molecule and the co-stimulatory molecules CD80/86. RESULTS The sequencing results reveal that ACSL4 is a crucial gene regulating mitochondrial function and fatty acid metabolism in DCs. Inhibiting ACSL4 reduces the levels of fatty acid oxidases in DCs, increases arachidonic acid levels, and decreases A-CoA synthesis. Simultaneously, ACSL4 inhibition leads to an increase in mitochondrial superoxide production (MitoSOX) in DCs, causing mitochondrial rupture, vacuolization, and sparse mitochondrial cristae. In mice, ACSL4 inhibition exacerbates pulmonary pathological changes and immune responses, reducing the fatty acid metabolism levels within lung tissue DCs and the expression of mitochondria-associated genes and proteins. This inhibition induces an increase in the expression of MHCII antigen presentation molecules and co-stimulatory molecules CD80/86 in DCs. CONCLUSIONS The research findings indicate that ACSL4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation play a crucial regulatory role in the immune response of asthma. This discovery holds promise for enhancing our understanding of the mechanisms underlying asthma pathogenesis and potentially identifying novel targets for its prevention and treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenlong Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - JinYing Xiang
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinying Ren
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuehan Li
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mi Zhou
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jinyue Yu
- Bristol Medical School, University of Bristol, Bristol, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhou Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bo Liu
- Department of Cardiothoracic Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Fengxia Ding
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
14
|
Soedono S, Sharlene S, Vo DHN, Averia M, Rosalie EE, Lee YK, Cho KW. Obese visceral adipose dendritic cells downregulate regulatory T cell development through IL-33. Front Immunol 2024; 15:1335651. [PMID: 38566998 PMCID: PMC10985834 DOI: 10.3389/fimmu.2024.1335651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sharlene Sharlene
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Dan Hoang Nguyet Vo
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Maria Averia
- Magister of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Eufrasia Elaine Rosalie
- Faculty of Biotechnology, Department of Food Technology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
15
|
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med 2024; 95:101231. [PMID: 38056058 DOI: 10.1016/j.mam.2023.101231] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Liver fibrosis, as an excess deposition of extracellular matrix (ECM) components, results from chronic liver injury as well as persistent activation of inflammatory response and of fibrogenesis. Liver fibrosis is a major determinant for chronic liver disease (CLD) progression and in the last two decades our understanding on the major molecular and cellular mechanisms underlying the fibrogenic progression of CLD has dramatically improved, boosting pre-clinical studies and clinical trials designed to find novel therapeutic approaches. From these studies several critical concepts have emerged, starting to reveal the complexity of the pro-fibrotic microenvironment which involves very complex, dynamic and interrelated interactions between different hepatic and extrahepatic cell populations. This review will offer first a recapitulation of established and novel pathophysiological basic principles and concepts by intentionally focus the attention on NAFLD/NASH, a metabolic-related form of CLD with a high impact on the general population and emerging as a leading cause of CLD worldwide. NAFLD/NASH-related pro-inflammatory and profibrogenic mechanisms will be analysed as well as novel information on cells, mediators and signalling pathways which have taken advantage from novel methodological approaches and techniques (single cell genomics, imaging mass cytometry, novel in vitro two- and three-dimensional models, etc.). We will next offer an overview on recent advancement in diagnostic and prognostic tools, including serum biomarkers and polygenic scores, to support the analysis of liver biopsies. Finally, this review will provide an analysis of current and emerging therapies for the treatment of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Maurizio Parola
- Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine - Royal Free Hospital, London, NW32PF, United Kingdom.
| |
Collapse
|
16
|
Zhang S, Lv K, Liu Z, Zhao R, Li F. Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discov 2024; 10:39. [PMID: 38245525 PMCID: PMC10799907 DOI: 10.1038/s41420-024-01807-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Metabolic competition between tumour cells and immune cells for limited nutrients is an important feature of the tumour microenvironment (TME) and is closely related to the outcome of tumour immune escape. A large number of studies have proven that tumour cells need metabolic reprogramming to cope with acidification and hypoxia in the TME while increasing energy uptake to support their survival. Among them, synthesis, oxidation and uptake of fatty acids (FAs) in the TME are important manifestations of lipid metabolic adaptation. Although different immune cell subsets often show different metabolic characteristics, various immune cell functions are closely related to fatty acids, including providing energy, providing synthetic materials and transmitting signals. In the face of the current situation of poor therapeutic effects of tumour immunotherapy, combined application of targeted immune cell fatty acid metabolism seems to have good therapeutic potential, which is blocked at immune checkpoints. Combined application of adoptive cell therapy and cancer vaccines is reflected. Therefore, it is of great interest to explore the role of fatty acid metabolism in immune cells to discover new strategies for tumour immunotherapy and improve anti-tumour immunity.
Collapse
Affiliation(s)
- Sheng Zhang
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kebing Lv
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Liu
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Zhao
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China.
| |
Collapse
|
17
|
Szafranska K, Sørensen KK, Lalor PF, McCourt P. Sinusoidal cells and liver immunology. SINUSOIDAL CELLS IN LIVER DISEASES 2024:53-75. [DOI: 10.1016/b978-0-323-95262-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Christ A, Maas SL, Jin H, Lu C, Legein B, Wijnands E, Temmerman L, Otten J, Isaacs A, Zenke M, Stoll M, Biessen EAL, van der Vorst EPC. In situ lipid-loading activates peripheral dendritic cell subsets characterized by cellular ROS accumulation but compromises their capacity to prime naïve T cells. Free Radic Biol Med 2024; 210:406-415. [PMID: 38061606 DOI: 10.1016/j.freeradbiomed.2023.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND AND AIMS Dendritic cells (DCs), professional antigen-presenting cells, play an important role in pathologies by controlling adaptive immune responses. However, their adaptation to and functionality in hypercholesterolemia, a driving factor in disease onset and progression of atherosclerosis remains to be established. METHODS In this study, we addressed the immediate impact of high fat diet-induced hypercholesterolemia in low-density lipoprotein receptor deficient (Ldlr-/-) mice on separate DC subsets, their compartmentalization and functionality. RESULTS While hypercholesterolemia induced a significant rise in bone marrow myeloid and dendritic cell progenitor (MDP) frequency and proliferation rate after high fat diet feeding, it did not affect DC subset numbers in lymphoid tissue. Hypercholesterolemia led to almost immediate and persistent augmentation in granularity of conventional DCs (cDCs), in particular cDC2, reflecting progressive lipid accumulation by these subsets. Plasmacytoid DCs were only marginally and transiently affected. Lipid loading increased co-stimulatory molecule expression and ROS accumulation by cDC2. Despite this hyperactivation, lipid-laden cDC2 displayed a profoundly reduced capacity to stimulate naïve CD4+ T cells. CONCLUSION Our data provide evidence that in hypercholesterolemic conditions, peripheral cDC2 subsets engulf lipids in situ, leading to a more activated status characterized by cellular ROS accumulation while, paradoxically, compromising their T cell priming ability. These findings will have repercussions not only for lipid driven cardiometabolic disorders like atherosclerosis, but also for adaptive immune responses to pathogens and/or endogenous (neo) antigens under conditions of hyperlipidemia.
Collapse
Affiliation(s)
- Anette Christ
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands; Health Office Frankfurt/Main, Frankfurt/Main, Germany.
| | - Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Han Jin
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Chang Lu
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bart Legein
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Erwin Wijnands
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jeroen Otten
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Aaron Isaacs
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany; Department of Hematology, Oncology and Stem Cell Transplantation, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Monika Stoll
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands; Genetic Epidemiology, Institute for Human Genetics, Westfälische Wilhelms-University, Münster, Germany
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands; Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Emiel P C van der Vorst
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands; Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
19
|
Arvanitakis K, Papadakos SP, Lekakis V, Koufakis T, Lempesis IG, Papantoniou E, Kalopitas G, Georgakopoulou VE, Stergiou IE, Theocharis S, Germanidis G. Meeting at the Crossroad between Obesity and Hepatic Carcinogenesis: Unique Pathophysiological Pathways Raise Expectations for Innovative Therapeutic Approaches. Int J Mol Sci 2023; 24:14704. [PMID: 37834153 PMCID: PMC10572430 DOI: 10.3390/ijms241914704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The escalating global prevalence of obesity and its intricate association with the development of hepatocellular carcinoma (HCC) pose a substantial challenge to public health. Obesity, acknowledged as a pervasive epidemic, is linked to an array of chronic diseases, including HCC, catalyzing the need for a comprehensive understanding of its molecular underpinnings. Notably, HCC has emerged as a leading malignancy with rising incidence and mortality. The transition from viral etiologies to the prominence of metabolic dysfunction-associated fatty liver disease (MAFLD)-related HCC underscores the urgent need to explore the intricate molecular pathways linking obesity and hepatic carcinogenesis. This review delves into the interwoven landscape of molecular carcinogenesis in the context of obesity-driven HCC while also navigating using the current therapeutic strategies and future prospects for combating obesity-related HCC. We underscore the pivotal role of obesity as a risk factor and propose an integrated approach encompassing lifestyle interventions, pharmacotherapy, and the exploration of emerging targeted therapies. As the obesity-HCC nexus continues to challenge healthcare systems globally, a comprehensive understanding of the intricate molecular mechanisms and innovative therapeutic strategies is imperative to alleviate the rising burden of this dual menace.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (E.P.); (G.K.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (S.T.)
| | - Vasileios Lekakis
- Department of Gastroenterology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Ioannis G. Lempesis
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Eleni Papantoniou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (E.P.); (G.K.)
| | - Georgios Kalopitas
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (E.P.); (G.K.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (S.T.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (E.P.); (G.K.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
20
|
Ho NI, Huis In 't Veld LGM, van Eck van der Sluijs J, Heuts BMH, Looman MWG, Kers-Rebel ED, van den Dries K, Dolstra H, Martens JHA, Hobo W, Adema GJ. Saponin-based adjuvants enhance antigen cross-presentation in human CD11c + CD1c + CD5 - CD163 + conventional type 2 dendritic cells. J Immunother Cancer 2023; 11:e007082. [PMID: 37612044 PMCID: PMC10450066 DOI: 10.1136/jitc-2023-007082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Adjuvants are key for effective vaccination against cancer and chronic infectious diseases. Saponin-based adjuvants (SBAs) are unique among adjuvants in their ability to induce robust cell-mediated immune responses in addition to antibody responses. Recent preclinical studies revealed that SBAs induced cross-presentation and lipid bodies in otherwise poorly cross-presenting CD11b+ murine dendritic cells (DCs). METHOD Here, we investigated the response of human DC subsets to SBAs with RNA sequencing and pathway analyses, lipid body induction visualized by laser scanning microscopy, antigen translocation to the cytosol, and antigen cross-presentation to CD8+ T cells. RESULTS RNA sequencing of SBA-treated conventional type 1 DC (cDC1) and type 2 DC (cDC2) subsets uncovered that SBAs upregulated lipid-related pathways in CD11c+ CD1c+ cDC2s, especially in the CD5- CD163+ CD14+ cDC2 subset. Moreover, SBAs induced lipid bodies and enhanced endosomal antigen translocation into the cytosol in this particular cDC2 subset. Finally, SBAs enhanced cross-presentation only in cDC2s, which requires the CD163+ CD14+ cDC2 subset. CONCLUSIONS These data thus identify the CD163+ CD14+ cDC2 subset as the main SBA-responsive DC subset in humans and imply new strategies to optimize the application of saponin-based adjuvants in a potent cancer vaccine.
Collapse
Affiliation(s)
- Nataschja I Ho
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lisa G M Huis In 't Veld
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jesper van Eck van der Sluijs
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Maaike W G Looman
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Koen van den Dries
- Radboud Technology Center Microscopy, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Abstract
Dendritic cells (DCs) are innate immune cells that detect and process environmental signals and communicate them with T cells to bridge innate and adaptive immunity. Immune signals and microenvironmental cues shape the function of DC subsets in different contexts, which is associated with reprogramming of cellular metabolic pathways. In addition to integrating these extracellular cues to meet bioenergetic and biosynthetic demands, cellular metabolism interplays with immune signaling to shape DC-dependent immune responses. Emerging evidence indicates that lipid metabolism serves as a key regulator of DC responses. Here, we summarize the roles of fatty acid and cholesterol metabolism, as well as selective metabolites, in orchestrating the functions of DCs. Specifically, we highlight how different lipid metabolic programs, including de novo fatty acid synthesis, fatty acid β oxidation, lipid storage, and cholesterol efflux, influence DC function in different contexts. Further, we discuss how dysregulation of lipid metabolism shapes DC intracellular signaling and contributes to the impaired DC function in the tumor microenvironment. Finally, we conclude with a discussion on key future directions for the regulation of DC biology by lipid metabolism. Insights into the connections between lipid metabolism and DC functional specialization may facilitate the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Zhiyuan You
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
22
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
23
|
van Son KC, Verschuren L, Hanemaaijer R, Reeves H, Takkenberg RB, Drenth JPH, Tushuizen ME, Holleboom AG. Non-Parenchymal Cells and the Extracellular Matrix in Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease. Cancers (Basel) 2023; 15:1308. [PMID: 36831649 PMCID: PMC9954729 DOI: 10.3390/cancers15041308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) in the setting of non-alcoholic fatty liver disease (NAFLD)-related cirrhosis and even in the pre-cirrhotic state is increasing in incidence. NAFLD-related HCC has a poor clinical outcome as it is often advanced at diagnosis due to late diagnosis and systemic treatment response is poor due to reduced immune surveillance. Much of the focus of molecular research has been on the pathological changes in hepatocytes; however, immune cells, hepatic stellate cells, liver sinusoidal endothelial cells and the extracellular matrix may play important roles in the pathogenesis of NAFLD-related HCC as well. Here, we review the role of non-parenchymal cells in the liver in the pathogenesis of HCC in the context of NAFLD-NASH, with a particular focus on the innate and the adaptive immune system, fibrogenesis and angiogenesis. We review the key roles of macrophages, hepatic stellate cells (HSCs), T cells, natural killer (NK) cells, NKT cells and liver sinusoidal endothelial cells (LSECs) and the role of the extracellular matrix in hepatocarcinogenesis within the steatotic milieu.
Collapse
Affiliation(s)
- Koen C. van Son
- Department of Vascular and Internal Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lars Verschuren
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research, 2333 BE Leiden, The Netherlands
| | - Roeland Hanemaaijer
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research, 2333 BE Leiden, The Netherlands
| | - Helen Reeves
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne NE2 4HH, UK
| | - R. Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Maarten E. Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular and Internal Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
24
|
De Martino M, Daviaud C, Hajjar E, Vanpouille-Box C. Fatty acid metabolism and radiation-induced anti-tumor immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:121-141. [PMID: 36997267 DOI: 10.1016/bs.ircmb.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fatty acid metabolic reprogramming has emerged as a major regulator of anti-tumor immune responses with large body of evidence that demonstrate its ability to impact the differentiation and function of immune cells. Therefore, depending on the metabolic cues that stem in the tumor microenvironment, the tumor fatty acid metabolism can tilt the balance of inflammatory signals to either promote or impair anti-tumor immune responses. Oxidative stressors such as reactive oxygen species generated from radiation therapy can rewire the tumor energy supply, suggesting that radiation therapy can further perturb the energy metabolism of a tumor by promoting fatty acid production. In this review, we critically discuss the network of fatty acid metabolism and how it regulates immune response especially in the context of radiation therapy.
Collapse
|
25
|
Qu J, Li D, Jin J, Sun N, Wu J, Yang C, Wu L, Zhuang S, Wu H, Chen R, Ren Y, Zhong C, Ying L, Zhang Y, Yuan X, Zhang M. Hypoxia-Inducible Factor 2α Attenuates Renal Ischemia-Reperfusion Injury by Suppressing CD36-Mediated Lipid Accumulation in Dendritic Cells in a Mouse Model. J Am Soc Nephrol 2023; 34:73-87. [PMID: 36719147 PMCID: PMC10101615 DOI: 10.1681/asn.0000000000000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hypoxia and hypoxia-inducible factors (HIFs) play essential and multiple roles in renal ischemia-reperfusion injury (IRI). Dendritic cells (DCs) comprise a major subpopulation of the immunocytes in the kidney and are key initiators and effectors of the innate immune responses after IRI. The role of HIF-2α in DCs remains unclear in the context of renal IRI. METHODS To investigate the importance of HIF-2α in DCs upon renal IRI, we examined the effects of DC-specific HIF-2α ablation in a murine model. Bone marrow-derived DCs (BMDCs) from DC-specific HIF-2α-ablated mice and wild-type mice were used for functional studies and transcriptional profiling. RESULTS DC-specific ablation of HIF-2α led to hyperactivation of natural killer T (NKT) cells, ultimately exacerbating murine renal IRI. HIF-2α deficiency in DCs triggered IFN-γ and IL-4 production in NKT cells, along with upregulation of type I IFN and chemokine responses that were critical for NKT cell activation. Mechanistically, loss of HIF-2α in DCs promoted their expression of CD36, a scavenger receptor for lipid uptake, increasing cellular lipid accumulation. Furthermore, HIF-2α bound directly to a reverse hypoxia-responsive element (rHRE) in the CD36 promoter. Importantly, CD36 blockade by sulfo-N-succinimidyl oleate (SSO) reduced NKT cell activation and abolished the exacerbation of renal IRI elicited by HIF-2α knockout. CONCLUSIONS Our study reveals a previously unrecognized role of the HIF-2α/CD36 regulatory axis in rewiring DC lipid metabolism under IRI-associated hypoxia. These findings suggest a potential therapeutic target to resolve long-standing obstacles in treatment of this severe complication.
Collapse
Affiliation(s)
- Junwen Qu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Dawei Li
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jingsi Jin
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Nan Sun
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiajin Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chao Yang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lingling Wu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shaoyong Zhuang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haoyu Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ruoyang Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yaofei Ren
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chen Zhong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Liang Ying
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yan Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiaodong Yuan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
26
|
Wu L, Yan Z, Jiang Y, Chen Y, Du J, Guo L, Xu J, Luo Z, Liu Y. Metabolic regulation of dendritic cell activation and immune function during inflammation. Front Immunol 2023; 14:1140749. [PMID: 36969180 PMCID: PMC10030510 DOI: 10.3389/fimmu.2023.1140749] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells that bridge innate and adaptive immune responses. Multiple cell types, including DCs, rely on cellular metabolism to determine their fate. DCs substantially alter cellular metabolic pathways during activation, such as oxidative phosphorylation, glycolysis, fatty acid and amino acid metabolism, which have crucial implications for their functionality. In this review, we summarize and discuss recent progress in DC metabolic studies, focusing on how metabolic reprogramming influences DC activation and functionality and the potential metabolic differences among DC subsets. Improving the understanding of the relationship between DC biology and metabolic regulation may provide promising therapeutic targets for immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ziqi Yan
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhenhua Luo, ; Yi Liu,
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhenhua Luo, ; Yi Liu,
| |
Collapse
|
27
|
The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers (Basel) 2022; 14:cancers14246151. [PMID: 36551635 PMCID: PMC9776867 DOI: 10.3390/cancers14246151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
Collapse
|
28
|
Metabolic guidance and stress in tumors modulate antigen-presenting cells. Oncogenesis 2022; 11:62. [PMID: 36244976 PMCID: PMC9573874 DOI: 10.1038/s41389-022-00438-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Successful antitumor immunity largely relies on efficient T cell priming by antigen-presenting cells (APCs); however, the capacity of APCs is found to be defective in many cancers. Metabolically reprogrammed cancer cells support the energetic and biosynthetic demands of their high proliferation rates by exploiting nutrients available in the tumor microenvironment (TME), which in turn limits proper metabolic reprogramming of APCs during recruitment, differentiation, activation and antigen presentation. Furthermore, some metabolites generated by the TME are unfavorable to antitumor immunity. This review summarizes recent studies on the metabolic features of APCs and their functionality in the TME. Particularly, we will describe how APCs respond to altered TME and how metabolic byproducts from cancer and immunomodulatory cells affect APCs. Finally, we introduce the current status of APC-oriented research and clinical trials targeting metabolic features to boost efficient immunotherapy.
Collapse
|
29
|
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77:1136-1160. [PMID: 35750137 DOI: 10.1016/j.jhep.2022.06.012] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).
Collapse
|
30
|
Zhang M, Wei T, Zhang X, Guo D. Targeting lipid metabolism reprogramming of immunocytes in response to the tumor microenvironment stressor: A potential approach for tumor therapy. Front Immunol 2022; 13:937406. [PMID: 36131916 PMCID: PMC9483093 DOI: 10.3389/fimmu.2022.937406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
The tumor microenvironment (TME) has become a major research focus in recent years. The TME differs from the normal extracellular environment in parameters such as nutrient supply, pH value, oxygen content, and metabolite abundance. Such changes may promote the initiation, growth, invasion, and metastasis of tumor cells, in addition to causing the malfunction of tumor-infiltrating immunocytes. As the neoplasm develops and nutrients become scarce, tumor cells transform their metabolic patterns by reprogramming glucose, lipid, and amino acid metabolism in response to various environmental stressors. Research on carcinoma metabolism reprogramming suggests that like tumor cells, immunocytes also switch their metabolic pathways, named “immunometabolism”, a phenomenon that has drawn increasing attention in the academic community. In this review, we focus on the recent progress in the study of lipid metabolism reprogramming in immunocytes within the TME and highlight the potential target molecules, pathways, and genes implicated. In addition, we discuss hypoxia, one of the vital altered components of the TME that partially contribute to the initiation of abnormal lipid metabolism in immune cells. Finally, we present the current immunotherapies that orchestrate a potent antitumor immune response by mediating the lipid metabolism of immunocytes, highlight the lipid metabolism reprogramming capacity of various immunocytes in the TME, and propose promising new strategies for use in cancer therapy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
- *Correspondence: Danfeng Guo,
| |
Collapse
|
31
|
Zhang X, Li X, Wang Y, Chen Y, Hu Y, Guo C, Yu Z, Xu P, Ding Y, Mi QS, Wu J, Gu J, Shi Y. Abnormal lipid metabolism in epidermal Langerhans cells mediates psoriasis-like dermatitis. JCI Insight 2022; 7:150223. [PMID: 35801590 PMCID: PMC9310522 DOI: 10.1172/jci.insight.150223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is a chronic, inflammatory skin disease, frequently associated with dyslipidemia. Lipid disturbance in psoriasis affects both circulatory system and cutaneous tissue. Epidermal Langerhans cells (LCs) are tissue-resident DCs that maintain skin immune surveillance and mediate various cutaneous disorders, including psoriasis. However, the role of LCs in psoriasis development and their lipid metabolic alternation remains unclear. Here, we demonstrate that epidermal LCs of psoriasis patients enlarge with longer dendrites and possess elevated IL-23p19 mRNA and a higher level of neutral lipids when compared with normal LCs of healthy individuals. Accordantly, epidermal LCs from imiquimod-induced psoriasis-like dermatitis in mice display overmaturation, enhanced phagocytosis, and excessive secretion of IL-23. Remarkably, these altered immune properties in lesional LCs are tightly correlated with elevated neutral lipid levels. Moreover, the increased lipid content of psoriatic LCs might result from impaired autophagy of lipids. Bulk RNA-Seq analysis identifies dysregulated genes involved in lipid metabolism, autophagy, and immunofunctions in murine LCs. Overall, our data suggest that dysregulated lipid metabolism influences LC immunofunction, which contributes to the development of psoriasis, and therapeutic manipulation of this metabolic process might provide an effective measurement for psoriasis.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaorui Li
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Youdong Chen
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijun Hu
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Zengyang Yu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Peng Xu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, and.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Jianhua Wu
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jun Gu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, and.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
32
|
Sun S, Luo J, Du H, Liu G, Liu M, Wang J, Han S, Che H. Widely Targeted Lipidomics and Transcriptomics Analysis Revealed Changes of Lipid Metabolism in Spleen Dendritic Cells in Shrimp Allergy. Foods 2022; 11:foods11131882. [PMID: 35804699 PMCID: PMC9265612 DOI: 10.3390/foods11131882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Shrimp allergy (SA) is pathological type 2 inflammatory immune responses against harmless shrimp protein allergen, which is caused by complex interactions between dendritic cells (DCs) and other immune cells. Lipid metabolism in different DCs states are significantly changed. However, the lipid metabolism of spleen DCs in SA remain ambiguous. In this study, we established a BALB/c mouse shrimp protein extract-induced allergy model to determine the lipid profile of spleen DCs in SA, and the molecular mechanism between lipid metabolism and immune inflammation was preliminarily studied. Spleen DCs were sorted by fluorescence-activated cell sorting, and then widely targeted lipidomics and transcriptomics analysis were performed. Principal component analysis presented the lipidome alterations in SA. The transcriptomic data showed that Prkcg was involved in lipid metabolism, immune system, and inflammatory signaling pathway. In the correlation analysis, the results suggested that Prkcg was positively correlated with triacylglycerol (Pearson correlation coefficient = 0.917, p = 0.01). The lipidomics and transcriptomics integrated pathway analysis indicated the activated metabolic conversion from triacylglycerol to 1,2-diacyl-sn-glycerol and the transmission of lipid metabolism to immune inflammation (from triacylglycerol and ceramide to Prkcg) in SA spleen DCs, and cellular experiments in vitro showed that glyceryl trioleate and C16 ceramide treatment induced immune function alteration in DCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huilian Che
- Correspondence: ; Tel.: +86-10-6273-7244; Fax: +86-10-6232-3465
| |
Collapse
|
33
|
Moayedfard Z, Sani F, Alizadeh A, Bagheri Lankarani K, Zarei M, Azarpira N. The role of the immune system in the pathogenesis of NAFLD and potential therapeutic impacts of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2022; 13:242. [PMID: 35672797 PMCID: PMC9175371 DOI: 10.1186/s13287-022-02929-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by intra-hepatocyte triglyceride accumulation and concomitant involvement of the immune system with subsequent histological changes, tissue damage, and clinical findings. There are various molecular pathways involved in the progression of NAFLD including lipotoxicity, endoplasmic reticulum stress, and the immune response. Both innate and adaptive immune systems are involved in the NAFLD pathogenesis, and crosstalk between the immune cells and liver cells participates in its initiation and progression. Among the various treatments for this disease, new cell based therapies have been proposed. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC) (MSC-EVs) are new cell-free vehicles with low immunogenicity, which can suppress detrimental immune responses in inflamed tissues. This review aimed to express the immune system's molecular pathways associated with the initiation and progression of NAFLD. Then, the possible role of MSC-EVs in the treatment of this entity through immune response modulation was discussed. Finally, engineered EVs enhanced by specific therapeutic miRNA were suggested for alleviating the pathological cellular events in liver disease.
Collapse
Affiliation(s)
- Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Aliakbar Alizadeh
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Zarei
- Renal Division, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA, USA
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
34
|
Abstract
Adipose tissue is a complex dynamic organ with whole-body immunometabolic influence. Much of the work into understanding the role of immune cells in adipose tissue has been in the context of obesity. These investigations have also uncovered a range of typical (immune) and non-typical functions exerted by adipose tissue leukocytes. Here we provide an overview of the adipose tissue immune system, including its role as an immune reservoir in the whole-body response to infection and as a site of parasitic and viral infections. We also describe the functional roles of specialized immunological structures found within adipose tissue. However, our main focus is on the recently discovered 'non-immune' functions of adipose tissue immune cells, which include the regulation of adipocyte homeostasis, as well as responses to changing nutrient status and body temperature. In doing so, we outline the therapeutic potential of the adipose tissue immune system in health and disease.
Collapse
|
35
|
Saponin-based adjuvant-induced dendritic cell cross-presentation is dependent on PERK activation. Cell Mol Life Sci 2022; 79:231. [PMID: 35396971 PMCID: PMC8994093 DOI: 10.1007/s00018-022-04253-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
Abstract
Saponin-based adjuvants (SBAs) are promising new adjuvants that stand out as they not only enforce CD4 + T cell-mediated immunity and antibody responses, but also induce an unprecedented level of antigen cross-presentation by dendritic cells (DC) and subsequent CD8 + T cell activation. We discovered that SBA’s ability to boost cross-presentation depends on the induction of lipid bodies (LBs). Moreover, the MHCIIloCD11bhi DC subset was identified to be most responsive to SBA-induced cross-presentation. The aim is to further unravel the mechanisms behind the induction of DC cross-presentation by SBAs. Here we show that SBAs specifically induce the PKR-like Endoplasmic Reticulum kinase (PERK) pathway and that SBA-induced DC cross-presentation is dependent on activation of the PERK pathway. PERK activation and LB formation are both crucial for SBA-induced cross-presentation and PERK inhibition has little or no effect on SBA-induced LB formation. SBA’s responsiveness, LB formation and PERK activation are specific for the MHCIIloCD11bhi DCs. These findings contribute to understanding the pathways involved in SBA-induced cross-presentation and immune activation which will ultimately lead to the development of vaccines with improved efficiency and safety.
Collapse
|
36
|
Millar CL, Anto L, Garcia C, Kim MB, Jain A, Provatas AA, Clark RB, Lee JY, Nichols FC, Blesso CN. Gut microbiome-derived glycine lipids are diet-dependent modulators of hepatic injury and atherosclerosis. J Lipid Res 2022; 63:100192. [PMID: 35278409 PMCID: PMC9020096 DOI: 10.1016/j.jlr.2022.100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr-/- model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr-/- mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe-/- mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr-/- mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr-/- were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.
Collapse
Affiliation(s)
- Courtney L Millar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA; The Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| | - Liya Anto
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Anisha Jain
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Anthony A Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA
| | - Robert B Clark
- Department of Immunology, UConn Health, Farmington, CT, USA; Department of Medicine, UConn Health, Farmington, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Frank C Nichols
- Department of Periodontology, UConn Health, Farmington, CT, USA
| | | |
Collapse
|
37
|
Ramadori P, Kam S, Heikenwalder M. T cells: Friends and foes in NASH pathogenesis and hepatocarcinogenesis. Hepatology 2022; 75:1038-1049. [PMID: 35023202 DOI: 10.1002/hep.32336] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
In association with the pandemic spreading of obesity and metabolic syndrome, the prevalence of NAFLD-related HCC is increasing almost exponentially. In recent years, many of the underlining multifactorial causes of NAFLD have been identified, and the cellular mechanisms sustaining disease development have been dissected up to the single-cell level. However, there is still an urgent need to provide clinicians with more therapeutic targets, with particular attention on NAFLD-induced HCC, where immune checkpoint inhibitors do not work as efficiently. Whereas much effort has been invested in elucidating the role of innate immune response in the hepatic NAFLD microenvironment, only in the past decade have novel critical roles been unraveled for T cells in driving chronic inflammation toward HCC. The metabolic and immune microenvironment interact to recreate a tumor-promoting and immune-suppressive terrain, responsible for resistance to anticancer therapy. In this article, we will review the specific functions of several T-cell populations involved in NAFLD and NAFLD-driven HCC. We will illustrate the cellular crosstalk with other immune cells, regulatory networks or stimulatory effects of these interactions, and role of the metabolic microenvironment in influencing immune cell functionality. Finally, we will present the pros and cons of the current therapeutic strategies against NAFLD-related HCC and delineate possible novel approaches for the future.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Division of Chronic Inflammation and CancerGerman Center for Cancer Research (DKFZ)HeidelbergGermany
| | | | | |
Collapse
|
38
|
Sun W, Li P, Cai J, Ma J, Zhang X, Song Y, Liu Y. Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Front Immunol 2022; 13:860586. [PMID: 35371016 PMCID: PMC8971568 DOI: 10.3389/fimmu.2022.860586] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease characterized by the production of abnormal autoantibodies and immune complexes that can affect the organ and organ systems, particularly the kidneys and the cardiovascular system. Emerging evidence suggests that dysregulated lipid metabolism, especially in key effector cells, such as T cells, B cells, and innate immune cells, exerts complex effects on the pathogenesis and progression of SLE. Beyond their important roles as membrane components and energy storage, different lipids can also modulate different cellular processes, such as proliferation, differentiation, and survival. In this review, we summarize altered lipid metabolism and the associated mechanisms involved in the pathogenesis and progression of SLE. Furthermore, we discuss the recent progress in the role of lipid metabolism as a potential therapeutic target in SLE.
Collapse
Affiliation(s)
- Wei Sun
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Pengchong Li
- Department of Rheumatology and Clinical Immunology, The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Beijing, China
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| |
Collapse
|
39
|
Ayariga JA, Huang H, Dean D. Decellularized Avian Cartilage, a Promising Alternative for Human Cartilage Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1974. [PMID: 35269204 PMCID: PMC8911734 DOI: 10.3390/ma15051974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023]
Abstract
Articular cartilage defects, and subsequent degeneration, are prevalent and account for the poor quality of life of most elderly persons; they are also one of the main predisposing factors to osteoarthritis. Articular cartilage is an avascular tissue and, thus, has limited capacity for healing and self-repair. Damage to the articular cartilage by trauma or pathological causes is irreversible. Many approaches to repair cartilage have been attempted with some potential; however, there is no consensus on any ideal therapy. Tissue engineering holds promise as an approach to regenerate damaged cartilage. Since cell adhesion is a critical step in tissue engineering, providing a 3D microenvironment that recapitulates the cartilage tissue is vital to inducing cartilage regeneration. Decellularized materials have emerged as promising scaffolds for tissue engineering, since this procedure produces scaffolds from native tissues that possess structural and chemical natures that are mimetic of the extracellular matrix (ECM) of the native tissue. In this work, we present, for the first time, a study of decellularized scaffolds, produced from avian articular cartilage (extracted from Gallus Gallus domesticus), reseeded with human chondrocytes, and we demonstrate for the first time that human chondrocytes survived, proliferated and interacted with the scaffolds. Morphological studies of the decellularized scaffolds revealed an interconnected, porous architecture, ideal for cell growth. Mechanical characterization showed that the decellularized scaffolds registered stiffness comparable to the native cartilage tissues. Cell growth inhibition and immunocytochemical analyses showed that the decellularized scaffolds are suitable for cartilage regeneration.
Collapse
Affiliation(s)
| | | | - Derrick Dean
- The Biomedical Engineering Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street, Montgomery, AL 36104, USA; (J.A.A.); (H.H.)
| |
Collapse
|
40
|
Møller SH, Wang L, Ho PC. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cell Mol Immunol 2022; 19:370-383. [PMID: 34413487 PMCID: PMC8891341 DOI: 10.1038/s41423-021-00753-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
It is being increasingly acknowledged that immune cells depend on certain metabolic traits to perform their functions and that the extracellular environment can influence cell metabolism and vice versa. Dendritic cell (DC) subsets traffic through highly diverse environments from the bone marrow, where they develop, to the various peripheral tissues, where they differentiate and capture antigens, before they migrate to the lymph node to present antigens and prime T cells. It is plausible that DC subsets modulate their stimulatory abilities in response to unique metabolic programming. The metabolic requirements of DCs are just recently being discovered, and subset- and context-specific metabolic phenotypes in DCs are highly intertwined with DC functions. In this review, we present the current knowledge on the intrinsic and extrinsic determinants of DC metabolism, how they regulate DC function with examples from tumor biology and in interaction with the microbiota, and discuss how this can be applied therapeutically.
Collapse
Affiliation(s)
- Sofie Hedlund Møller
- grid.9851.50000 0001 2165 4204Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Limei Wang
- grid.9851.50000 0001 2165 4204Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- grid.9851.50000 0001 2165 4204Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
41
|
Sung JY, Cheong JH. New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells 2022; 11:768. [PMID: 35269390 PMCID: PMC8909366 DOI: 10.3390/cells11050768] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Immunometabolism is an emerging discipline in cancer immunotherapy. Tumor tissues are heterogeneous and influenced by metabolic reprogramming of the tumor immune microenvironment (TIME). In the TIME, multiple cell types interact, and the tumor and immune cells compete for limited nutrients, resulting in altered anticancer immunity. Therefore, metabolic reprogramming of individual cell types may influence the outcomes of immunotherapy. Understanding the metabolic competition for access to limited nutrients between tumor cells and immune cells could reveal the breadth and complexity of the TIME and aid in developing novel therapeutic approaches for cancer. In this review, we highlight that, when cells compete for nutrients, the prevailing cell type gains certain advantages over other cell types; for instance, if tumor cells prevail against immune cells for nutrients, the former gains immune resistance. Thus, a strategy is needed to selectively suppress such resistant tumor cells. Although challenging, the concept of cell type-specific metabolic pathway inhibition is a potent new strategy in anticancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
42
|
Alves RW, da Silva EM, Doretto-Silva L, Andrade-Oliveira V. Metabolic Pathways in Immune Cells Commitment and Fate. ESSENTIAL ASPECTS OF IMMUNOMETABOLISM IN HEALTH AND DISEASE 2022:53-82. [DOI: 10.1007/978-3-030-86684-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Pancreatic Cancer and Gut Microbiome-Related Aspects: A Comprehensive Review and Dietary Recommendations. Nutrients 2021; 13:nu13124425. [PMID: 34959977 PMCID: PMC8709322 DOI: 10.3390/nu13124425] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays a significant role in the human body providing many beneficial effects on the host. However, its dysbiotic alterations may affect the tumorigenic pathway and then trigger the development of pancreatic cancer. This dysbiosis can also modulate the aggressiveness of the tumor, influencing the microenvironment. Because pancreatic cancer is still one of the most lethal cancers worldwide with surgery as the only method that influences prognosis and has curative potential, there is a need to search for other strategies which will enhance the efficiency of standard therapy and improve patients' quality of life. The administration of prebiotics, probiotics, next-generation probiotics (Faecalibacterium prausnitzii, Akkermansia muciniphila), synbiotics, postbiotics, and fecal microbiota transplantation through multiple mechanisms affects the composition of the gut microbiota and may restore its balance. Despite limited data, some studies indicate that the aforementioned methods may allow to achieve better effect of pancreatic cancer treatment and improve therapeutic strategies for pancreatic cancer patients.
Collapse
|
44
|
Torre P, Motta BM, Sciorio R, Masarone M, Persico M. Inflammation and Fibrogenesis in MAFLD: Role of the Hepatic Immune System. Front Med (Lausanne) 2021; 8:781567. [PMID: 34957156 PMCID: PMC8695879 DOI: 10.3389/fmed.2021.781567] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) is the definition recently proposed to better circumscribe the spectrum of conditions long known as non-alcoholic fatty liver disease (NAFLD) that range from simple steatosis without inflammation to more advanced liver diseases. The progression of MAFLD, as well as other chronic liver diseases, toward cirrhosis, is driven by hepatic inflammation and fibrogenesis. The latter, result of a "chronic wound healing reaction," is a dynamic process, and the understanding of its underlying pathophysiological events has increased in recent years. Fibrosis progresses in a microenvironment where it takes part an interplay between fibrogenic cells and many other elements, including some cells of the immune system with an underexplored or still unclear role in liver diseases. Some therapeutic approaches, also acting on the immune system, have been probed over time to evaluate their ability to improve inflammation and fibrosis in NAFLD, but to date no drug has been approved to treat this condition. In this review, we will focus on the contribution of the liver immune system in the progression of NAFLD, and on therapies under study that aim to counter the immune substrate of the disease.
Collapse
Affiliation(s)
- Pietro Torre
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Roberta Sciorio
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| |
Collapse
|
45
|
Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, Ping Y, Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol 2021; 14:187. [PMID: 34742349 PMCID: PMC8572421 DOI: 10.1186/s13045-021-01200-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Complex interactions between the immune system and tumor cells exist throughout the initiation and development of cancer. Although the immune system eliminates malignantly transformed cells in the early stage, surviving tumor cells evade host immune defense through various methods and even reprogram the anti-tumor immune response to a pro-tumor phenotype to obtain unlimited growth and metastasis. The high proliferation rate of tumor cells increases the demand for local nutrients and oxygen. Poorly organized vessels can barely satisfy this requirement, which results in an acidic, hypoxic, and glucose-deficient tumor microenvironment. As a result, lipids in the tumor microenvironment are activated and utilized as a primary source of energy and critical regulators in both tumor cells and related immune cells. However, the exact role of lipid metabolism reprogramming in tumor immune response remains unclear. A comprehensive understanding of lipid metabolism dysfunction in the tumor microenvironment and its dual effects on the immune response is critical for mapping the detailed landscape of tumor immunology and developing specific treatments for cancer patients. In this review, we have focused on the dysregulation of lipid metabolism in the tumor microenvironment and have discussed its contradictory roles in the tumor immune response. In addition, we have summarized the current therapeutic strategies targeting lipid metabolism in tumor immunotherapy. This review provides a comprehensive summary of lipid metabolism in the tumor immune response.
Collapse
Affiliation(s)
- Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
46
|
Dendritic Cells and T Cell Subsets in the Development of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Nonalcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are associated with steatosis, inflammation and fibrosis. Liver dendritic cells (DCs) are usually tolerogenic in the sinusoidal milleu composed of immunosuppressive cytokines. In NAFLD and NASH, DCs become pro-inflammatory and modulate hepatic immune response. Murine liver DCs are three major subtypes: classical (lymphoid) cDC1 or the crosspresenters (CD8α+CD103+), classical (myeloid) cDC2 (CD11b+) and plasmacytoid pDCs (PDCA-1+Siglec-H+) and two additional subtypes or lymphoid + myeloid DCs and NKDCs. Similarly, human liver DCs are three subtypes or CD141+CLEC9A+, CD1c+ (BDCA1+) and pDCs (CD303+BDCA2+). Compared to blood human hepatic DCs are less immature and predominantly induce regulatory T cells (Tregs) and IL-4 secreting T cells (Th2). DCs polarize T cells into different Th types that are in interrelations in NAFLD/NASH. T helper 1 (Th1) (T-bet) cells are associated with adipose tissue inflammation. The differentiation of Th2 (GATA3) cells is induced by IL-4 DCs, increased in NAFLD. Similarly, Th17 cells (RORγt/ RORc) are increased in NAFLD and NASH. Tregs (FoxP3) are increased in the liver in steatosis and Th22 cells (AHR) are elevated in diabetes mellitus 2 (DM2) and adiposity. CD8+ T cells γδT cells and MAIT cells also contribute to liver inflammation.
Collapse
|
47
|
Li X, Yang Y, Huang Q, Deng Y, Guo F, Wang G, Liu M. Crosstalk Between the Tumor Microenvironment and Cancer Cells: A Promising Predictive Biomarker for Immune Checkpoint Inhibitors. Front Cell Dev Biol 2021; 9:738373. [PMID: 34692696 PMCID: PMC8529050 DOI: 10.3389/fcell.2021.738373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the landscape of cancer treatment and are emerging as promising curative treatments in different type of cancers. However, only a small proportion of patients have benefited from ICIs and there is an urgent need to find robust biomarkers for individualized immunotherapy and to explore the causes of immunotherapy resistance. In this article, we review the roles of immune cells in the tumor microenvironment (TME) and discuss the effects of ICIs on these cell populations. We discuss the potential of the functional interaction between the TME and cancer cells as a predictive biomarker for ICIs. Furthermore, we outline the potential personalized strategies to improve the effectiveness of ICIs with precision.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yueyao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Qian Huang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Deng
- School of Basic Medical Science, Chengdu University, Chengdu, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Harnessing Metabolic Reprogramming to Improve Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms221910268. [PMID: 34638609 PMCID: PMC8508898 DOI: 10.3390/ijms221910268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023] Open
Abstract
Immune escape is one of the hallmarks of cancer. While metabolic reprogramming provides survival advantage to tumor cancer cells, accumulating data also suggest such metabolic rewiring directly affects the activation, differentiation and function of immune cells, particularly in the tumor microenvironment. Understanding how metabolic reprogramming affects both tumor and immune cells, as well as their interplay, is therefore critical to better modulate tumor immune microenvironment in the era of cancer immunotherapy. In this review, we discuss alterations in several essential metabolic pathways in both tumor and key immune cells, provide evidence on their dynamic interaction, and propose innovative strategies to improve cancer immunotherapy via the modulation of metabolic pathways.
Collapse
|
49
|
Chen R, Chen L. Solute carrier transporters: emerging central players in tumour immunotherapy. Trends Cell Biol 2021; 32:186-201. [PMID: 34511324 DOI: 10.1016/j.tcb.2021.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
Solute carrier transporters (SLCs) mediate nutrient and metabolite cellular homeostasis. Immune cells depend on SLCs to induce rapid and robust metabolic reprogramming, thereby controlling diverse immunological responses. Recent studies hint toward an important role of SLCs in immunity. Here, we review the emerging roles of SLCs in immunotherapy via modifying the metabolism and effector functions of immune cells. We focus on the roles of three major nutrient (glucose, amino acid, and lipid)-related transporters in immunity of representative cells [T cells, dendritic cells (DCs), natural killer (NK) cells, and macrophages) in innate and adaptive immunity. Other SLCs, such as ion transporters are also briefly discussed. Finally, we propose some potential strategies for targeting SLCs to augment tumour immunotherapy.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
50
|
Soedono S, Cho KW. Adipose Tissue Dendritic Cells: Critical Regulators of Obesity-Induced Inflammation and Insulin Resistance. Int J Mol Sci 2021; 22:ijms22168666. [PMID: 34445379 PMCID: PMC8395475 DOI: 10.3390/ijms22168666] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation of the adipose tissue (AT) is a critical component of obesity-induced insulin resistance and type 2 diabetes. Adipose tissue immune cells, including AT macrophages (ATMs), AT dendritic cells (ATDCs), and T cells, are dynamically regulated by obesity and participate in obesity-induced inflammation. Among AT resident immune cells, ATDCs are master immune regulators and engage in crosstalk with various immune cells to initiate and regulate immune responses. However, due to confounding markers and lack of animal models, their exact role and contribution to the initiation and maintenance of AT inflammation and insulin resistance have not been clearly elucidated. This paper reviews the current understanding of ATDCs and their role in obesity-induced AT inflammation. We also provide the potential mechanisms by which ATDCs regulate AT inflammation and insulin resistance in obesity. Finally, this review offers perspectives on ways to better dissect the distinct functions and contributions of ATDCs to obesity.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea;
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea;
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: ; Tel.: +82-41-413-5028
| |
Collapse
|