1
|
Shaw VR, Byun J, Zhu C, Pettit RW, Cohen JM, Han Y, Amos CI. Uncovering shared genetic features between inflammatory bowel disease and systemic lupus erythematosus. Sci Rep 2025; 15:15309. [PMID: 40312552 PMCID: PMC12046011 DOI: 10.1038/s41598-025-98991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease (AD) characterized by chronic, relapsing intestinal inflammation. Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multisystem involvement and overactivation of both innate and adaptive immunity. The extra intestinal manifestations (EIMs) that commonly occur in IBD include many of the organ sites that are affected by SLE. ADs are often comorbid with one another and may have shared underlying genetic features and architectures contributing to their pathogenesis and disease course. We performed both epidemiological and post-genome wide association study (GWAS) analyses to investigate the shared genetic features between IBD and systemic lupus erythematosus (SLE). Specifically, we performed epidemiological association analysis in the All of Us Research Program (AoURP) and genome-wide/local genetic correlation analysis and cell-type specific SNP heritability enrichment analysis using previously published summary level data. A significant epidemiologic association exists between IBD and SLE with an adjusted odds ratio (aOR) of 2.94 (95% CI: 2.45-3.53; P < 0.001) in a multivariable model accounting for confounders in the AoURP data. Genome-wide genetic correlation analysis in previously published summary level data demonstrated a significant genetic correlation between IBD, CD, and UC with SLE, and local genetic correlation analysis demonstrated several positive and significant correlations in local genomic regions harboring disease variants in genes common to both SLE and IBD etiology, including variants in ELF1, CD226, JAZF1, WDFY4, and JAK2. Cell-type SNP heritability enrichment analysis identified both overlapping and distinct functional categories contributing to SNP heritability across IBD phenotypes. Notably, IBD-related phenotypes demonstrated significant enrichment in T-lymphocyte functional groups while SLE signal appeared in distinct categories, such as B-lymphocytes (along with CD). Gene-level collapsing analysis of rare variants in the United Kingdom BioBank (UKBB) identified overlapping nominally-significant genes between SLE and IBD, CD, and UC. By leveraging several post-GWAS methods, the present study identifies shared genetic features between IBD and SLE, highlighting similarities and differences in the genetic features that contribute to the pathogenesis of each disease.
Collapse
Affiliation(s)
- Vikram R Shaw
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jinyoung Byun
- Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Catherine Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Rowland W Pettit
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Cohen
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Younghun Han
- Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
- Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Shaw V, Byun J, Zhu C, Pettit R, Cohen J, Han Y, Amos C. Uncovering shared genetic features between inflammatory bowel disease and systemic lupus erythematosus. RESEARCH SQUARE 2025:rs.3.rs-5804830. [PMID: 40196008 PMCID: PMC11975026 DOI: 10.21203/rs.3.rs-5804830/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Inflammatory bowel disease (IBD) is an autoimmune disease (AD) characterized by chronic, relapsing intestinal inflammation. Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multisystem involvement and overactivation of both innate and adaptive immunity. The extra intestinal manifestations (EIMs) that commonly occur in IBD include many of the organ sites that are affected by SLE. ADs are often comorbid with one another and may have shared underlying genetic features and architectures contributing to their pathogenesis and disease course. Methods We performed both epidemiological and post-genome wide association study (GWAS) analyses to investigate the shared genetic features between IBD and systemic lupus erythematosus (SLE). Specifically, we performed epidemiological association analysis in the All of Us Research Program (AoURP) and genome-wide/local genetic correlation analysis and cell-type specific SNP heritability enrichment analysis using previously published summary level data. Results A significant epidemiologic association exists between IBD and SLE with an adjusted odds ratio (aOR) of 2.94 (95% CI: 2.45-3.53; P < 0.001) in a multivariable model accounting for confounders in the AoURP data. Genome-wide genetic correlation analysis in previously published summary level data demonstrated a significant genetic correlation between IBD, CD, and UC with SLE, and local genetic correlation analysis demonstrated several positive and significant correlations in local genomic regions harboring disease variants in genes common to both SLE and IBD etiology, including variants in ELF1, CD226, JAZF1, WDFY4, and JAK2. Cell-type SNP heritability enrichment analysis identified both overlapping and distinct functional categories contributing to SNP heritability across IBD phenotypes. Notably, IBD-related phenotypes demonstrated significant enrichment in T-lymphocyte functional groups while SLE signal appeared in distinct categories, such as B-lymphocytes (along with CD). Gene-level collapsing analysis of rare variants in the United Kingdom BioBank (UKBB) identified overlapping significant genes between SLE and IBD, CD, and UC. Conclusion By leveraging several post-GWAS methods, the present study identifies shared genetic features between IBD and SLE, highlighting similarities and differences in the genetic features that contribute to the pathogenesis of each disease.
Collapse
|
3
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
4
|
Abdelgalil AA, Monir R, Elmetwally M, Ghattas MH, Bazeed FB, Mesbah NM, Abo-Elmatty DM, Mehanna ET. The Relation of VEGFA, VEGFR2, VEGI, and HIF1A Genetic Variants and Their Serum Protein Levels with Breast Cancer in Egyptian Patients. Biochem Genet 2024; 62:547-573. [PMID: 37392242 DOI: 10.1007/s10528-023-10419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Breast cancer is the most common type of cancer in Egyptian females. Polymorphisms in the angiogenesis pathway have been implicated previously in cancer risk and prognosis. The aim of the current study was to determine whether certain polymorphisms in the genes of vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), vascular endothelial growth inhibitor (VEGI), and hypoxia-inducible factor-1α (HIF1A) associated with breast cancer development. The study included 154 breast cancer patients and 132 apparently healthy age-matched females as a control group. VEGFA rs25648 genotyping was performed using (ARMS) PCR technique; while VEGFR2 rs2071559, VEGI rs6478106, and HIF-1α rs11549465 were genotyped by the PCR-RFLP method. Serum levels of VEGF, VEGFR2, VEGI, and HIF1A proteins in breast cancer patients and controls were measured by ELISA. There was a significant association between the VEGFA rs25648 C allele and breast cancer risk (OR 2.5, 95% CI 1.7-3.6, p < 0.001). VEGFA rs25648 C/C genotype was statistically significantly higher in breast cancer patients vs. control (p < 0.001). Participants with the T/T and T/C VEGFR2 rs2071559 genotypes had 5.46 and 5 higher odds, respectively, of having breast cancer than those with the C/C genotype. For the VEGI rs6478106 polymorphism, there was a higher proportion of C allele in breast cancer patients vs. control (p = 0.003). Moreover, the C/C genotype of VEGI rs6478106 was statistically significantly higher in breast cancer patients vs. control (p = 0.001). There was no significant difference in genotypes and allele frequencies of HIF1A rs11549465 polymorphism between breast cancer cases and control individuals (p > 0.05). Serum levels of VEGFA, VEGI, and HIF1A were considerably greater in women with breast cancer than in the control (p < 0.001). In conclusion, the genetic variants VEGFA rs25648, VEGFR2 rs2071559, and VEGI rs6478106 revealed a significant association with increased breast cancer risk in Egyptian patients.
Collapse
Affiliation(s)
- Amani A Abdelgalil
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| | - Rehan Monir
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Elmetwally
- Department of Surgical Oncology, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Maivel H Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Fagr B Bazeed
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
5
|
Wang S, Kozai M, Hiraishi M, Rubel MZU, Ichii O, Inaba M, Matsuo K, Takada K. Roles of tumor necrosis factor-like ligand 1A in γδT-cell activation and psoriasis pathogenesis. Front Immunol 2024; 15:1340467. [PMID: 38348035 PMCID: PMC10859483 DOI: 10.3389/fimmu.2024.1340467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Background Interleukin (IL)-17-producing γδT (γδT17) cells mediate inflammatory responses in barrier tissues. Dysregulated γδT17 cell activation can lead to the overproduction of IL-17 and IL-22 and the development of inflammatory diseases, including psoriasis. IL-23 and IL-1β are known to synergistically activate γδT17 cells, but the regulatory mechanisms of γδT17 cells have not been fully elucidated. This study aimed to reveal the contribution of the inflammatory cytokine tumor necrosis factor-like ligand 1A (TL1A) to γδT17 cell activation and psoriasis development. Methods Anti-TL1A antibody was injected into an imiquimod (IMQ)-induced murine psoriasis model. TL1A receptor expression was analyzed in splenic and dermal γδT cells. γδT cells were tested for cytokine production in vitro and in vivo under stimulation with IL-23, IL-1β, and TL1A. TL1A was applied to a psoriasis model induced by intradermal IL-23 injection. Mice deficient in γδT cells were intradermally injected with IL-23 plus TL1A to verify the contribution of TL1A-dependent γδT-cell activation to psoriasis development. Results Neutralization of TL1A attenuated γδT17 cell activation in IMQ-treated skin. TL1A induced cytokine production by splenic γδT17 cells in synergy with IL-23. Dermal γδT17 cells constitutively expressed a TL1A receptor at high levels and vigorously produced IL-22 upon intradermal IL-23 and TL1A injection but not IL-23 alone. TL1A exacerbated the dermal symptoms induced by IL-23 injection in wild-type but not in γδT cell-deficient mice. Conclusion These findings suggest a novel regulatory mechanism of γδT cells through TL1A and its involvement in psoriasis pathogenesis as a possible therapeutic target.
Collapse
Affiliation(s)
- Shangyi Wang
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mina Kozai
- Division of Vaccinology for Clinical Development, Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Masaya Hiraishi
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Md. Zahir Uddin Rubel
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mutsumi Inaba
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Matsuo
- Division of Vaccinology for Clinical Development, Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Kensuke Takada
- Division of Vaccinology for Clinical Development, Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Li Y, Zhou L, Huang Z, Yang Y, Zhang J, Yang L, Xu Y, Shi J, Tang S, Yuan X, Xu J, Li Y, Han X, Li J, Liu Y, Sun Y, Jin X, Xiao X, Wang B, Lin Q, Zhou Y, Song X, Cui Y, Hu L, Song Y, Bao J, Gong L, Gershwin ME, Zuo X, Yan H, Zou Z, Tang R, Ma X. Fine mapping identifies independent HLA associations in autoimmune hepatitis type 1. JHEP Rep 2024; 6:100926. [PMID: 38089552 PMCID: PMC10711477 DOI: 10.1016/j.jhepr.2023.100926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND & AIMS Association studies have greatly refined the important role of the major histocompatibility complex (MHC) region in autoimmune hepatitis (AIH). However, the effects of human leucocyte antigen (HLA) polymorphisms on AIH are not well established. The aim of this study is to systematically characterise the association of MHC variants with AIH in our well-defined cohort of patients. METHODS We performed an imputation-based analysis on the extensive association observed within the MHC region using the Han-MHC reference panel, and tested the comprehensive associations of HLA polymorphisms with AIH in 1622 Chinese AIH type 1 patients and 10,466 population controls. RESULTS A total of 588 HLA variants were significantly associated with AIH, with HLA-B∗35:01 (p = 8.17 × 10-304; odds ratio [OR] = 7.32) contributing the strongest signal. Stepwise conditional analysis revealed additional independent signals at HLA-B∗08:01 (p = 1.35 × 10-33; OR = 4.26) and rs7765379 (p = 5.08 × 10-18; OR = 1.66). A strong link between the lead HLA variant and clinical phenotypes of AIH was observed: patients with HLA-B∗35:01 were less frequently positive for ANA and tended to have higher serum AST and ALT levels at diagnosis, but lower serum IgG levels. CONCLUSIONS Our study reveals three novel and independent variants at HLA-B∗35:01, HLA-B∗08:01, and rs7765379 associated with AIH across the whole MHC region in the Han Chinese population. The findings illustrate the value of the MHC region in AIH and provide a new perspective for the immunogenetics of AIH. IMPACT AND IMPLICATIONS This study revealed three novel and independent variants associated with autoimmune hepatitis across the whole major histocompatibility complex region in the Han Chinese population. These findings are significant in identifying autoantigens, providing insights into the activation of the autoimmune processes, and further advancing our understanding of the immunogenetic basis underlying autoimmune hepatitis.
Collapse
Affiliation(s)
- You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zuxiong Huang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yue Yang
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital and Key Laboratory of Medical Molecular Virology (MOH & MOE), Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junping Shi
- Department of Infectious disease and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shanhong Tang
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaoling Yuan
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xu Han
- Tianjin Second People’s Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Jia Li
- Tianjin Second People’s Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Yanmin Liu
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying Sun
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaozhi Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Qiuxiang Lin
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Zhou
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xuejiao Song
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Gong
- Department of Infectious disease and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - M. Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Xianbo Zuo
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Huiping Yan
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhengsheng Zou
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - the Chinese AIH Consortium
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
- Department of Infectious Diseases, Huashan Hospital and Key Laboratory of Medical Molecular Virology (MOH & MOE), Shanghai Medical College, Fudan University, Shanghai, China
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious disease and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, China
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
- Tianjin Second People’s Hospital, Tianjin Institute of Hepatology, Tianjin, China
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Roy VL, Majumder PP. Genomic associations with antibody response to an oral cholera vaccine. Vaccine 2023; 41:6391-6400. [PMID: 37699782 DOI: 10.1016/j.vaccine.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Oral cholera vaccine is one of the key interventions used in our fight to end the longest pandemic of our time, cholera. The immune response conferred by the currently available cholera vaccines, as measured by serum antibody levels, is variable amongst its recipients. We undertook a genome wide association study (GWAS) on antibody response to the cholera vaccine; globally, the first GWAS on cholera vaccine response. We identified three clusters of bi-allelic SNPs, in high within-cluster linkage disequilibrium that were moderately (p < 5 × 10-6) associated with antibody response to the cholera vaccine and mapped to chromosomal regions 4p14, 4p16.1 and 6q23.3. Intronic SNPs of TBC1D1 comprised the cluster on 4p14, intronic SNPs of TBC1D14 comprised that on 4p16.1 and SNPs upstream of TNFAIP3 formed the cluster on 6q23.3. SNPs within and around these clusters have been implicated in immune cell function and immunological aspects of autoimmune or infectious diseases (e.g., diseases caused by Helicobacter pylori and malarial parasite). 6q23.3 is a prominent region harbouring many loci associated with immune related diseases, including multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus, as well as IL2 and INFα response to a smallpox vaccine. The gene clusters identified in this study play roles in vesicle-mediated pathway, autophagy and NF-κB signaling. No significant effect of O blood group on antibody response to the cholera vaccine was observed in this study.
Collapse
Affiliation(s)
- Vijay Laxmi Roy
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India; Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, West Bengal 700108, India.
| |
Collapse
|
8
|
Tang J, Wan X, Zhang J, Diao N, Zhang C, Gao X, Ren D. A frameshift variant in the SIRPB1 gene confers susceptibility to Crohn's disease in a Chinese population. Front Genet 2023; 14:1130529. [PMID: 37323681 PMCID: PMC10267704 DOI: 10.3389/fgene.2023.1130529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/17/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Crohn's disease (CD), a chronic gastrointestinal inflammatory disease, is increasing in China. With a focus on Han Chinese families with CD, the aim of this study was to find genetic variations that increase CD susceptibility by genome sequencing, genetic association, expression, and functional research. Materials and methods: We performed family-based genome sequencing (WGS) analysis on 24 patients with CD from 12 families and then filtered shared potential causal variants by incorporating association results from meta-analyses of CD GWAS and immunology genes and in silico variant effect prediction algorithms. Replication analyses were performed in an independent cohort including 381 patients with CD and 381 control subjects. Results: There were 92 genetic variants significantly associated with CD in Chinese individuals. Among them, 61 candidate loci were validated in replication analyses. As a result, patients carrying a rare frameshift variant (c.1143_1144insG; p. Leu381_Leu382fs) in gene SIRPB1 had significantly higher risk to develop CD (p = 0.03, OR 4.59, 95% CI 0.98-21.36, 81.82% vs. 49.53%). The frameshift variation induced tyrosine phosphorylation of Syk, Akt, and Jak2, elevated the expression of SIRPB1 at the mRNA and protein levels, activated DAP12, and controlled the activation of NF-κB in macrophages. Additionally, it promoted the synthesis of the pro-inflammatory cytokines IL-1, TNF-, and IL-6. Conclusion: Our results suggest that the rare gain-of-function frameshift variant in SIRPB1 is associated in Han Chinese patients with CD. The functional mechanism of SIRPB1 and its downstream inflammatory pathways was preliminarily explored in CD.
Collapse
Affiliation(s)
- Jian Tang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyang Wan
- Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - JunXiao Zhang
- Institute of Biomedical Sciences, SequMed Biotech Inc., Guangzhou, China
| | - Na Diao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caibin Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Gao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donglin Ren
- Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Liu Z, Liu R, Gao H, Jung S, Gao X, Sun R, Liu X, Kim Y, Lee HS, Kawai Y, Nagasaki M, Umeno J, Tokunaga K, Kinouchi Y, Masamune A, Shi W, Shen C, Guo Z, Yuan K, Zhu S, Li D, Liu J, Ge T, Cho J, Daly MJ, McGovern DPB, Ye BD, Song K, Kakuta Y, Li M, Huang H. Genetic architecture of the inflammatory bowel diseases across East Asian and European ancestries. Nat Genet 2023; 55:796-806. [PMID: 37156999 PMCID: PMC10290755 DOI: 10.1038/s41588-023-01384-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic disorders of the gastrointestinal tract with the following two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). To date, most IBD genetic associations were derived from individuals of European (EUR) ancestries. Here we report the largest IBD study of individuals of East Asian (EAS) ancestries, including 14,393 cases and 15,456 controls. We found 80 IBD loci in EAS alone and 320 when meta-analyzed with ~370,000 EUR individuals (~30,000 cases), among which 81 are new. EAS-enriched coding variants implicate many new IBD genes, including ADAP1 and GIT2. Although IBD genetic effects are generally consistent across ancestries, genetics underlying CD appears more ancestry dependent than UC, driven by allele frequency (NOD2) and effect (TNFSF15). We extended the IBD polygenic risk score (PRS) by incorporating both ancestries, greatly improving its accuracy and highlighting the importance of diversity for the equitable deployment of PRS.
Collapse
Affiliation(s)
- Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Han Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Seulgi Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruicong Sun
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoming Liu
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongjae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshitaka Kinouchi
- Student Healthcare Center, Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wenzhao Shi
- Digital Health China Technologies Corp Ltd., Beijing, China
| | - Chengguo Shen
- Digital Health China Technologies Corp Ltd., Beijing, China
| | - Zhenglin Guo
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kai Yuan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shu Zhu
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dalin Li
- Widjaja Inflammatory Bowel Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tian Ge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dermot P B McGovern
- Widjaja Inflammatory Bowel Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Byong Duk Ye
- Department of Gastroenterology and Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea.
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
11
|
Truta B, Begum F, Datta LW, Brant SR. Inflammatory Bowel Diseases Before and After 1990. GASTRO HEP ADVANCES 2023; 2:22-32. [PMID: 36686985 PMCID: PMC9851382 DOI: 10.1016/j.gastha.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) is caused by interaction of genetic and environmental risk factors. We evaluated potential determinants of the post-1990 increased incidence in North America. METHODS Using fitted generalized linear models, we assessed clinical features, smoking and genetic risk scores (GRS) for Crohn's disease (CD) and ulcerative colitis (UC) in the National Institutes of Diabetes, Digestion and Kidney Diseases IBD Genetics Consortium database, before and post 1990. RESULTS Among 2744 patients (55% CD, 42.2% UC), smoking status and GRS were the main determinants of diagnosis age. After 1990, smoking at diagnosis declined significantly in both UC and CD (34.1% vs 20.8%, P < .001, and 14.7% vs 8.7%, P = .06, respectively). In UC, ex-smoking increased (9% vs 15%, P < .001), and nonsmoking rates remained unchanged, whereas in CD, ex-smoking remained unchanged. CD-GRS and IBD-GRS were significantly associated with young diagnosis age, Jewish ethnicity, IBD family history, and surgery. CD-GRS showed a borderline significant decrease (P = .058) in multivariate analysis post 1990 but only when excluding surgery in the model; surgery significantly decreased post 1990 in both CD and UC. CD-GRS inversely correlated with smoking at diagnosis (P < .001) suggesting that, in the presence of smoking, CD may only require a low genetic risk to develop. CONCLUSION Significantly increase in ex-smoking correlates with UC incidence post 1990. Conversely, smoking risk decreased significantly post 1990 despite rising CD incidence. CD-GRS likewise trended to decrease post 1990 only when not accounting for a significant decrease in CD surgery. We therefore deduce that unaccounted risk factors (eg, dietary, obesity, antibiotic use, improved hygiene, etc.) or greater detection or presence of mild CD may underlie post-1990 increased CD incidence.
Collapse
Affiliation(s)
- Brindusa Truta
- Division of Gastroenterology, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ferdouse Begum
- Division of Gastroenterology, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lisa Wu Datta
- Division of Gastroenterology, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Steven R. Brant
- Division of Gastroenterology, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland;,Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, the Rutgers Crohns and Colitis Center of New Jersey, New Brunswick, New Jersey,Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
12
|
Biener-Ramanujan E, Rosier F, Coetzee SG, McGovern DDP, Hazelett D, Targan SR, Gonsky R. Diagnostic and therapeutic potential of RNASET2 in Crohn's disease: Disease-risk polymorphism modulates allelic-imbalance in expression and circulating protein levels and recombinant-RNASET2 attenuates pro-inflammatory cytokine secretion. Front Immunol 2022; 13:999155. [PMID: 36466822 PMCID: PMC9709281 DOI: 10.3389/fimmu.2022.999155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 08/28/2023] Open
Abstract
Ribonuclease T2 gene (RNASET2) variants are associated in genome wide association studies (GWAS) with risk for several autoimmune diseases, including Crohn's disease (CD). In T cells, a functional and biological relationship exists between TNFSF15-mediated enhancement of IFN-γ production, mucosal inflammation and RNASET2. Disease risk variants are associated with decreased mRNA expression and clinical characteristics of severe CD; however, functional classifications of variants and underlying molecular mechanisms contributing to pathogenesis remain largely unknown. In this study we demonstrate that allelic imbalance of RNASET2 disease risk variant rs2149092 is associated with transcriptional and post-transcriptional mechanisms regulating transcription factor binding, promoter-transactivation and allele-specific expression. RNASET2 mRNA expression decreases in response to multiple modes of T cell activation and recovers following elimination of activator. In CD patients with severe disease necessitating surgical intervention, preoperative circulating RNASET2 protein levels were decreased compared to non-IBD subjects and rebounded post-operatively following removal of the inflamed region, with levels associated with allelic carriage. Furthermore, overexpression or treatment with recombinant RNASET2 significantly reduced IFN-γ secretion. These findings reveal that RNASET2 cis- and trans-acting variation contributed regulatory complexity and determined expression and provide a basis for linking genetic variation with CD pathobiology. These data may ultimately identify RNASET2 as an effective therapeutic target in a subset of CD patients with severe disease.
Collapse
Affiliation(s)
- Eva Biener-Ramanujan
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Florian Rosier
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Simon G. Coetzee
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States
| | - Dermot D. P. McGovern
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Dennis Hazelett
- Department of Biomedical Sciences, Cedars−Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| | - Rivkah Gonsky
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai, Los Angeles, CA, United States
| |
Collapse
|
13
|
Udagawa C, Nakano MH, Yoshida T, Ohe Y, Kato K, Mushiroda T, Zembutsu H. Association between genetic variants and the risk of nivolumab-induced immune-related adverse events. Pharmacogenomics 2022; 23:887-901. [PMID: 36268685 DOI: 10.2217/pgs-2022-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We sought to identify the variants that could predict the risk of nivolumab-induced immune-related adverse events (irAEs) in patients with cancer. Patients & methods: We enrolled 622 Japanese patients and carried out a genome-wide association study. The associations for 507 single nucleotide polymorphisms (SNPs) showing p < 0.001 were further investigated using an independent cohort. Results: In the combined analysis, possible associations were found for a total of 90 SNPs. Although no SNPs were identified to be significantly associated with nivolumab-induced irAEs, the SNP most strongly associated with nivolumab-induced irAEs was rs469490. Conclusion: This study is an important hypothesis-generating study to guide future studies in larger and/or other ethnic cohorts.
Collapse
Affiliation(s)
- Chihiro Udagawa
- Department of Genetics Medicine & services, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Mari Hara Nakano
- Division of Breast & Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Teruhiko Yoshida
- Department of Genetics Medicine & services, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Science, Yokohama, 230-0045, Japan
| | - Hitoshi Zembutsu
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| |
Collapse
|
14
|
Sauer M, Scheffel J, Frischbutter S, Mahnke N, Maurer M, Burmeister T, Krause K, Metz M. STAT3 gain-of-function is not responsible for low total IgE levels in patients with autoimmune chronic spontaneous urticaria. Front Immunol 2022; 13:902652. [PMID: 35928809 PMCID: PMC9345496 DOI: 10.3389/fimmu.2022.902652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe pathogenesis of chronic spontaneous urticaria (CSU) has not been clarified entirely. Type IIb autoimmune chronic spontaneous urticaria (CSUaiTIIb) is a distinct subtype of CSU that is often difficult to treat and is connected to low levels of total IgE. Previous findings indicate that an enhanced signal transducer and activator of transcription 3 (STAT3) may be responsible for reduced IgE serum levels.ObjectiveOur aim was to investigate a possible underlying gain-of-function mutation or activating polymorphism in STAT3 that could be responsible for the low levels of IgE in patients with CSUaiTIIb.MethodsWe included 10 patients with CSUaiTIIb and low levels of IgE and sequenced selected single nucleotide polymorphisms (SNP) in STAT3 associated with common autoimmune diseases. Exon sequencing was performed for the most relevant exons of STAT3. To test for a gain-of-function of STAT3, we performed a phospho-specific flow cytometry analysis of STAT3 in peripheral blood mononuclear cells before and after stimulation with interleukin-6.ResultsNo differences were found in the prevalence of the tested SNPs between our patients and a control population. Moreover, we could not find any mutations or variants on the tested exons of STAT3. The function of STAT3 was also not altered in our patients.ConclusionIn total, we could not find any evidence for our hypothesis that low IgE in patients with CSUaiTIIb is linked to mutations in STAT3 or altered activity of STAT3. Thus, it remains to be discovered what causes the low serum levels of IgE in patients with CSUaiTIIb.
Collapse
Affiliation(s)
- Merle Sauer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Niklas Mahnke
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Thomas Burmeister
- Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karoline Krause
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
- *Correspondence: Martin Metz,
| |
Collapse
|
15
|
Zhang S, Yao Z, Li X, Zhang Z, Liu X, Yang P, Chen N, Xia X, Lyu S, Shi Q, Wang E, Ru B, Jiang Y, Lei C, Chen H, Huang Y. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genomics 2022; 23:460. [PMID: 35729510 PMCID: PMC9215082 DOI: 10.1186/s12864-022-08645-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Crossbreeding is an important way to improve production beef cattle performance. Pinan cattle is a new hybrid cattle obtained from crossing Piedmontese bulls with Nanyang cows. After more than 30 years of cross-breeding, Pinan cattle show a variety of excellent characteristics, including fast growth, early onset of puberty, and good meat quality. In this study, we analyzed the genetic diversity, population structure, and genomic region under the selection of Pinan cattle based on whole-genome sequencing data of 30 Pinan cattle and 169 published cattle genomic data worldwide. RESULTS: Estimating ancestry composition analysis showed that the composition proportions for our Pinan cattle were mainly Piedmontese and a small amount of Nanyang cattle. The analyses of nucleotide diversity and linkage disequilibrium decay indicated that the genomic diversity of Pinan cattle was higher than that of European cattle and lower than that of Chinese indigenous cattle. De-correlated composite of multiple selection signals, which combines four different statistics including θπ, CLR, FST, and XP-EHH, was computed to detect the signatures of selection in the Pinan cattle genome. A total of 83 genes were identified, affecting many economically important traits. Functional annotation revealed that these selected genes were related to immune (BOLA-DQA2, BOLA-DQB, LSM14A, SEC13, and NAALADL2), growth traits (CYP4A11, RPL26, and MYH10), embryo development (REV3L, NT5E, CDX2, KDM6B, and ADAMTS9), hornless traits (C1H21orf62), and climate adaptation (ANTXR2). CONCLUSION In this paper, we elucidated the genomic characteristics, ancestry composition, and selective signals related to important economic traits in Pinan cattle. These results will provide the basis for further genetic improvement of Pinan cattle and reference for other hybrid cattle related studies.
Collapse
Affiliation(s)
- Shunjin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zhi Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xinmiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Peng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China.
| |
Collapse
|
16
|
Luu LDW, Popple G, Tsang SPW, Vinasco K, Hilmi I, Ng RT, Chew KS, Wong SY, Riordan S, Lee WS, Mitchell HM, Kaakoush NO, Castaño-Rodríguez N. Genetic variants involved in innate immunity modulate the risk of inflammatory bowel diseases in an understudied Malaysian population. J Gastroenterol Hepatol 2022; 37:342-351. [PMID: 34888949 DOI: 10.1111/jgh.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Inflammatory bowel diseases (IBD) are chronic gastrointestinal inflammatory conditions comprising two major subtypes: Crohn's disease (CD) and ulcerative colitis (UC). The incidence of IBD is increasing in Asian countries including Malaysia. The aim of this study was to determine whether 32 single nucleotide polymorphisms (SNPs) strongly associated with IBD from genome-wide association studies, performed mainly in Caucasian populations, are associated with IBD in a Malaysian population, correlating these findings with local and systemic inflammation. METHODS Selected SNPs were investigated in a Malaysian cohort comprising 36 IBD patients and 75 controls using customized matrix-assisted laser desorption ionization time-of-flight genotyping. Local mRNA and/or systemic protein levels of IL-10, IL-12, IL-22, IL-23, and TNF-α were measured in these same subjects. RESULTS ATG16L2 rs11235667 and LINC00824 rs6651252 was significantly associated with increased CD risk while IL12B rs56167332 was a significant protective factor. Three SNPs (SBNO2 rs2024092, CARD9 rs10781499, and rs17085007 between GPR12-USP12) were significantly associated with increased UC risk while NKX2-3 rs4409764 was a significant protective factor. After adjusting for age, gender, and ethnicity, SBNO2 rs2024092, ATG16L2 rs11235667, CARD9 rs10781499, and LINC00824 rs6651252 remained associated with IBD. Interestingly, the risk alleles of IL10 rs3024505, CARD9 rs1078149, and IL12 rs6556412 were associated with higher levels of IL-10, IL-22, and IL-23 in these same subjects, respectively. CONCLUSIONS This study identified eight SNPs associated with IBD and/or its subtypes in the Malaysia population, significantly advancing our understanding of the genetic contribution to IBD in this understudied population. Three of these SNPs modulated relevant cytokine levels and thus, may directly contribute to IBD pathogenesis.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Georgia Popple
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Samuel Pok Wei Tsang
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Karla Vinasco
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Ida Hilmi
- Department of Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Ruey Terng Ng
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Kee Seang Chew
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Shin Yee Wong
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Stephen Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Jung S, Ye BD, Lee HS, Baek J, Kim G, Park D, Park SH, Yang SK, Han B, Liu J, Song K. Identification of Three Novel Susceptibility Loci for Inflammatory Bowel Disease in Koreans in an Extended Genome-Wide Association Study. J Crohns Colitis 2021; 15:1898-1907. [PMID: 33853113 DOI: 10.1093/ecco-jcc/jjab060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Genome-wide association studies [GWAS] of inflammatory bowel disease [IBD] in multiple populations have identified over 240 susceptibility loci. We previously performed a largest-to-date Asian-specific IBD GWAS to identify two new IBD risk loci and confirm associations with 28 established loci. To identify additional susceptibility loci in Asians, we expanded our previous study design by doubling the case size with an additional dataset of 1726 cases and 378 controls. METHODS An inverse-variance fixed-effects meta-analysis was performed between the previous and the new GWAS dataset, comprising a total of 3195 cases and 4419 controls, followed by replication in an additional 1088 cases and 845 controls. RESULTS The meta-analysis of Korean GWAS identified one novel locus for ulcerative colitis at rs76227733 on 10q24 [pcombined = 6.56 × 10-9] and two novel loci for Crohn's disease [CD] at rs2240751 on 19p13 [pcombined = 3.03 × 10-8] and rs6936629 on 6q22 [pcombined = 3.63 × 10-8]. Pathway-based analysis of GWAS data using MAGMA showed that the MHC and antigenic stimulus-related pathways were more significant in Korean CD, whereas cytokine and transcription factor-related pathways were more significant in European CD. Phenotype variance explained by the polygenic risk scores derived from Korean data explained up to 14% of the variance of CD whereas those derived from European data explained 10%, emphasizing the need for large-scale genetic studies in this population. CONCLUSIONS The identification of novel loci not previously associated with IBD suggests the importance of studying IBD genetics in diverse populations.
Collapse
Affiliation(s)
- Seulgi Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Gyeonghoon Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Dohoon Park
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Buhm Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jianjun Liu
- Human Genetics Group, Genome Institute of Singapore, Singapore
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Abstract
INTRODUCTION: The family history of inflammatory bowel disease (IBD) has been strongly associated with risk of developing IBD. This study aimed to identify the host genetic and gut microbial signatures in familial IBD. METHODS: Genetic analyses using genome-wide single nucleotide polymorphism genotyping and whole exome sequencing were performed to calculate weighted genetic risk scores from known IBD-associated common variants and to identify rare deleterious protein-altering variants specific to patients with familial IBD in 8 Korean families that each included more than 2 affected first-degree relatives (FDRs) and their unaffected FDR(s). In parallel, gut microbial community was analyzed by 16S rRNA sequencing of stools from the sample individuals. RESULTS: The risk of familial IBD was not well explained by the genetic burden from common IBD-risk variants, suggesting the presence of family-shared genetic and environmental disease-risk factors. We identified 17 genes (AC113554.1, ACE, AKAP17A, AKAP9, ANK2, ASB16, ASIC3, DNPH1, DUS3L, FAM200A, FZD10, LAMA5, NUTM2F, PKN1, PRR26, WDR66, and ZC3H4) that each contained rare, potentially deleterious variants transmitted to the affected FDRs in multiple families. In addition, metagenomic analyses revealed significantly different diversity of gut microbiota and identified a number of differentially abundant taxa in affected FDRs, highlighting 22 novel familial disease-associated taxa with large abundance changes and the previously reported gut dysbiosis including low alpha diversity in IBD and 16 known IBD-specific taxa. DISCUSSION: This study identified familial IBD-associated rare deleterious variants and gut microbial dysbiosis in familial IBD.
Collapse
|
19
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
20
|
Treatments of inflammatory bowel disease toward personalized medicine. Arch Pharm Res 2021; 44:293-309. [PMID: 33763844 DOI: 10.1007/s12272-021-01318-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disease characterized by intestinal inflammation and epithelial injury. For the treatment of IBD, 5-aminosalicylic acids, corticosteroids, immunomodulators, and biologic agents targeting tumor necrosis factor (TNF)-α, α4β7-integrin, and interleukin (IL)-12/23 have been widely used. Especially, anti-TNF-α antibodies are the first biologic agents that presently remain at the forefront. However, 10-30% of patients resist biologic agents, including anti-TNF-α agents (primary non-responder; PNR), and 20-50% of primary responders develop treatment resistance within one year (secondary loss of response; SLR). Nonetheless, the etiologies of PNR and SLR are not clearly understood, and predictors of response to biologic agents are also not defined yet. Numerous studies are being performed to discover prediction markers of the response to biologic agents, and this review will introduce currently available therapeutic options for IBD, biologics under investigation, and recent studies exploring various predictive factors related to PNR and SLR.
Collapse
|
21
|
Dybska E, Adams AT, Duclaux-Loras R, Walkowiak J, Nowak JK. Waiting in the wings: RUNX3 reveals hidden depths of immune regulation with potential implications for inflammatory bowel disease. Scand J Immunol 2021; 93:e13025. [PMID: 33528856 DOI: 10.1111/sji.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complex interactions between the environment and the mucosal immune system underlie inflammatory bowel disease (IBD). The involved cytokine signalling pathways are modulated by a number of transcription factors, one of which is runt-related transcription factor 3 (RUNX3). OBJECTIVE To systematically review the immune roles of RUNX3 in immune regulation, with a focus on the context of IBD. METHODS Relevant articles and reviews were identified through a Scopus search in April 2020. Information was categorized by immune cell types, analysed and synthesized. IBD transcriptome data sets and FANTOM5 regulatory networks were processed in order to complement the literature review. RESULTS The available evidence on the immune roles of RUNX3 allowed for its description in twelve cell types: intraepithelial lymphocyte, Th1, Th2, Th17, Treg, double-positive T, cytotoxic T, B, dendritic, innate lymphoid, natural killer and macrophages. In the gut, the activity of RUNX3 is multifaceted and context-dependent: it may promote homeostasis or exacerbated reactions via cytokine signalling and regulation of receptor expression. RUNX3 is mostly engaged in pathways involving ThPOK, T-bet, IFN-γ, TGF-β/IL-2Rβ, GATA/CBF-β, SMAD/p300 and a number of miRNAs. RUNX3 targets relevant to IBD may include RAG1, OSM and IL-17B. Moreover, in IBD RUNX3 expression correlates positively with GZMM, and negatively with IFNAR1, whereas in controls, it strongly associates with TGFBR3. CONCLUSIONS Dysregulation of RUNX3, mostly in the form of deficiency, likely contributes to IBD pathogenesis. More clinical research is needed to examine RUNX3 in IBD.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rémi Duclaux-Loras
- INSERM U1111, Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
22
|
Jezernik G, Mičetić-Turk D, Potočnik U. Molecular Genetic Architecture of Monogenic Pediatric IBD Differs from Complex Pediatric and Adult IBD. J Pers Med 2020; 10:E243. [PMID: 33255894 PMCID: PMC7712254 DOI: 10.3390/jpm10040243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) manifests as a complex disease resulting from gene-environment interactions or as a monogenic disease resulting from deleterious mutations. While monogenic IBD is predominantly pediatric, only one-quarter of complex IBD is pediatric. In this study, we were the first to systematically compare genetic architecture between monogenic and complex pediatric and adult IBD on genetic and molecular pathway levels. Genes reported as causal for monogenic pediatric IBD and related syndromes and as risk factors for pediatric and adult complex IBD were analyzed using CytoScape and ClueGO software tools to elucidate significantly enriched Gene Ontology (GO) terms. Despite the small overlap (seven genes) between monogenic IBD genes (85) and complex IBD loci (240), GO analysis revealed several enriched GO terms shared between subgroups (13.9%). Terms Th17 cell differentiation and Jak/STAT signaling were enriched in both monogenic and complex IBD subgroups. However, primary immunodeficiency and B-cell receptor signaling pathway were specifically enriched only for pediatric subgroups, confirming existing clinical observations and experimental evidence of primary immunodeficiency in pediatric IBD patients. In addition, comparative analysis identified patients below 6 years of age to significantly differ from complex pediatric and adult IBD and could be considered a separate entity.
Collapse
Affiliation(s)
- Gregor Jezernik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (G.J.); (D.M.-T.)
| | - Dušanka Mičetić-Turk
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (G.J.); (D.M.-T.)
| | - Uroš Potočnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (G.J.); (D.M.-T.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
23
|
Two Variants in the NOTCH4 and HLA-C Genes Contribute to Familial Clustering of Psoriasis. Int J Genomics 2020; 2020:6907378. [PMID: 33134369 PMCID: PMC7593743 DOI: 10.1155/2020/6907378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/05/2022] Open
Abstract
Psoriasis is a multifactorial immune-mediated skin disease with a strong genetic background. Previous studies reported that psoriasis with a family history (PFH) and sporadic psoriasis (SP) have a distinct manifestation and genetic predisposition. However, the genetic heterogeneity of PFH and SP in the major histocompatibility complex (MHC) region has not been fully elucidated. To explore genetic variants in the MHC region that drive family aggregation of psoriasis, we included a total of 8,127 psoriasis cases and 9,906 healthy controls from Han Chinese and divided psoriasis into two subtypes, PFH (n = 1,538) and SP (n = 5,262). Then, we calculated the heritability of PFH and SP and performed a large-scale stratified association analysis. We confirmed that variants in the MHC region collectively explained a higher heritability of PFH (16.8%) than SP (13.3%). Further stratified association analysis illustrated that HLA-C∗06:02 and NOTCH4:G511S contribute to the family aggregation of psoriasis, and BTNL2:R281K specifically confers risk for SP. HLA-C∗06:02 and NOTCH4:G511S could partially explain why patients with PFH have a stronger genetic predisposition, more complex phenotypes, and more frequent other autoimmune diseases. The identification of the SP-specific variant BTNL2:R281K revealed that the genetic architecture of SP is not just a subset of PFH.
Collapse
|
24
|
Kobayashi N, Arihiro S, Shimada K, Hoshino A, Saijo H, Oka N, Saruta M, Kondo K. Activating transcription factor 3 (ATF3) as a perspective biomarker of Crohn’s disease. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220929790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the intestinal tract. Known types are Crohn’s disease (CD) and ulcerative colitis (UC), but their cause remains unclear and there is no convenient biomarker for IBD. The present study aimed to demonstrate an association between the onset of CD and activating transcription factor 3 (ATF3); as a new biomarker, measurement of blood ATF3 mRNA would be useful for distinguishing between CD and UC. Methods: First, in a mouse model of IBD in which damage to the intestinal mucosa was chemically induced with dextran sulfate sodium (DSS), intestinal ATF3 mRNA was evaluated. Next, in human subjects, CD and UC patients, blood ATF3 mRNA and intestinal ATF3 protein production were evaluated. Results: In the mouse model of IBD, intestinal ATF3 mRNA was elevated compared with the control ( P < 0.0001). In CD patients, blood ATF3 mRNA was elevated as compared with normal controls (NCs) and UC patients ( P < 0.05). In addition, we observed an increase in ATF3 production in the intestinal tract specific to CD. Conclusion: ATF3 is involved in the onset of CD, and blood ATF3 mRNA measurements would be useful for distinguishing it from UC.
Collapse
Affiliation(s)
- Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Seiji Arihiro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Katsushika Medical Center, Katsushika-ku, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Atsushi Hoshino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Hiroki Saijo
- Department of Anatomy, The Jikei University School of Medicine, Minato-ku, Japan
| | - Naomi Oka
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| |
Collapse
|
25
|
Zhang Y, Zhang Y, Sun K, Meng Z, Chen L. The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J Mol Cell Biol 2020; 11:1-13. [PMID: 30239845 PMCID: PMC6359923 DOI: 10.1093/jmcb/mjy052] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
The prevalence of metabolic diseases is growing worldwide. Accumulating evidence suggests that solute carrier (SLC) transporters contribute to the etiology of various metabolic diseases. Consistent with metabolic characteristics, the top five organs in which SLC transporters are highly expressed are the kidney, brain, liver, gut, and heart. We aim to understand the molecular mechanisms of important SLC transporter-mediated physiological processes and their potentials as drug targets. SLC transporters serve as ‘metabolic gate’ of cells and mediate the transport of a wide range of essential nutrients and metabolites such as glucose, amino acids, vitamins, neurotransmitters, and inorganic/metal ions. Gene-modified animal models have demonstrated that SLC transporters participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, tissue development, oxidative stress, host defense, and neurological regulation. Furthermore, the human genomic studies have identified that SLC transporters are susceptible or causative genes in various diseases like cancer, metabolic disease, cardiovascular disease, immunological disorders, and neurological dysfunction. Importantly, a number of SLC transporters have been successfully targeted for drug developments. This review will focus on the current understanding of SLCs in regulating physiology, nutrient sensing and uptake, and risk of diseases.
Collapse
Affiliation(s)
- Yong Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.,Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuping Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kun Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ziyi Meng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Vennou KE, Piovani D, Kontou PI, Bonovas S, Bagos PG. Multiple outcome meta-analysis of gene-expression data in inflammatory bowel disease. Genomics 2020; 112:1761-1767. [DOI: 10.1016/j.ygeno.2019.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/02/2023]
|
27
|
Zhang M, Liu S, Xu J, Lv S, Fan Y, Zhang Y, Zhang Y, Wu Y, Su Y, Yu H, Song S, He J, Li H. TNFSF15 Polymorphisms are Associated with Graves’ Disease and Graves’ Ophthalmopathy in a Han Chinese Population. Curr Eye Res 2019; 45:888-895. [PMID: 31869260 DOI: 10.1080/02713683.2019.1705494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meiqin Zhang
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Shichun Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Ji Xu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Sha Lv
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yujie Fan
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yao Zhang
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yongye Zhang
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yufei Wu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Su
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hongsong Yu
- Department of Immunology, Zunyi Medical University, Guizhou, China
| | - Shengfang Song
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Jianhua He
- Department of Nuclear Medicine, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. J Hum Genet 2019; 65:241-249. [PMID: 31857673 DOI: 10.1038/s10038-019-0699-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies (GWAS) had discovered several genetic risk loci for IgA nephropathy (IgAN), where the susceptibility genes of CARD9 and HORMAD2 for IgAN were also implicated in inflammatory bowel disease (IBD), suggesting a shared genetic etiology of these two diseases. The aim of this study is to explore the common susceptibility loci between IgAN and IBD and provide evidences to elucidate the shared pathogenesis between these two autoimmune diseases. Nineteen single-nucleotide polymorphisms (SNPs) associated with IBD in Asian populations were selected through the National Human Genome Research Institute (NHGRI) GWAS Catalog, and 2078 IgAN patients and 2085 healthy individuals of Chinese Han ancestry were included in the two-stage case-control association study. Serum levels of complement factor B (CFB) and complement split product C3a were detected by enzyme-linked immunosorbent assay (ELISA). One significant shared association at rs4151657 (OR = 1.28, 95%CI = 1.13-1.45, P = 1.42 × 10-4) was discovered between these two diseases, which implicated CFB as a susceptibility gene for IgAN. Genotype-phenotype correlation analysis found significant association of the rs4151657-C allele with decreased serum C3 levels. In addition, the rs4151657-C allele was also associated with higher CFB levels and C3a levels, which suggested a certain degree of systemic complement activation in IgAN patients with the rs4151657-CT or CC genotypes. Our study identified one risk locus (CFB) shared by IgAN and IBD, and genetic variants of CFB may affect complement activation and associate with the predisposition to IgAN.
Collapse
|
29
|
Zhang M, Wang X, Jiang X, Yang X, Wen C, Zhi M, Gao X, Hu P, Liu H. Polymorphisms of the TNF Gene and Three Susceptibility Loci Are Associated with Crohn's Disease and Perianal Fistula Crohn's Disease: A Study among the Han Population from South China. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019; 25:9637-9650. [PMID: 31844038 PMCID: PMC6929548 DOI: 10.12659/msm.917244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Although 90 susceptibility loci of Crohn’s disease (CD) have been confirmed in the Asian population, susceptibility genes for perianal fistula of CD (pCD) in this population remain unknown. This study explored susceptibility genes for CD and pCD in the Han population from South China. Material/Methods In total, 490 patients diagnosed with CD between July 2012 and June 2016 at the Sixth Affiliated Hospital of Sun Yat-sen University were included and divided into the CD group (n=240) and the pCD group (n=250). The healthy control group was composed of 260 volunteers. Peripheral blood samples were taken, and single nucleotide polymorphism (SNP) locus sequencing was used to screen for susceptibility loci. SNPs were sequenced using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Results Nine SNPs in TNFSF1 on chromosome 9 were associated with CD. Among them, the rs6478106 locus is a risk locus for CD. The distribution frequency of the T allele of the rs6478106 SNP was significantly different between cases and controls (32.49% versus 18.27%, P<0.001). Rs72553867, located in the IRGM gene on chromosome 5, rs4409764, located in the NKX2–3 gene on chromosome 10, and rs3731772, located in the AOX1 gene on chromosome 2, were susceptibility factors for pCD. Nine SNPs located in TNFSF15 on chromosome 9 were related to CD in Han individuals from Southern China. Conclusions The rs6478106 T allele is associated with the risk of CD in the investigated population. SNPs rs72553867 (IRGM gene), rs4409764 (NKX2–3 gene), and rs3731772 (AOX1 gene) increase the risk of pCD.
Collapse
Affiliation(s)
- Min Zhang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China (mainland)
| | - Xiaoyan Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China (mainland).,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Xiaodong Jiang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China (mainland)
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China (mainland).,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China (mainland).,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Min Zhi
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China (mainland)
| | - Xiang Gao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China (mainland)
| | - Pinjin Hu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China (mainland)
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China (mainland).,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
30
|
Zhu Y, Jiang H, Chen Z, Lu B, Li J, Shen X. Genetic association between IL23R rs11209026 and rs10889677 polymorphisms and risk of Crohn’s disease and ulcerative colitis: evidence from 41 studies. Inflamm Res 2019; 69:87-103. [DOI: 10.1007/s00011-019-01296-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023] Open
|
31
|
Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N. Extracellular Vesicle-derived circular RNAs confers chemoresistance in Colorectal cancer. Sci Rep 2019; 9:16497. [PMID: 31712601 PMCID: PMC6848089 DOI: 10.1038/s41598-019-53063-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Chemo-resistance is associated with poor prognosis in colorectal cancer (CRC), with the absence of early biomarker. Exosomes are microvesicles released by body cells for intercellular communication. Circular RNAs (circRNAs) are non-coding RNAs with covalently closed loops and enriched in exosomes. Crosstalk between circRNAs in exosomes and chemo-resistance in CRC remains unknown. This research aims to identify exosomal circRNAs associated with FOLFOX-resistance in CRC. FOLFOX-resistant HCT116 CRC cells (HCT116-R) were generated from parental HCT116 cells (HCT116-P) using periodic drug induction. Exosomes were characterized using transmission electron microscopy (TEM), Zetasizer and Western blot. Our exosomes were translucent cup-shaped structures under TEM with differential expression of TSG101, CD9, and CD63. We performed circRNAs microarray using exosomal RNAs from HCT116-R and HCT116-P cells. We validated our microarray data using serum samples. We performed drug sensitivity assay and cell cycle analysis to characterize selected circRNA after siRNA-knockdown. Using fold change >2 and p < 0.05, we identified 105 significantly upregulated and 34 downregulated circRNAs in HCT116-R exosomes. Knockdown of circ_0000338 improved the chemo-resistance of CRC cells. We have proposed that circ_0000338 may have dual regulatory roles in chemo-resistant CRC. Exosomal circ_0000338 could be a potential biomarker for further validation in CRC.
Collapse
Affiliation(s)
- Kha Wai Hon
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Syakima Ab-Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik Muhd Aslan Abdullah
- Department of Oncology and Radiotherapy, UKM Medical Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
32
|
Seifert LL, Si C, Saha D, Sadic M, de Vries M, Ballentine S, Briley A, Wang G, Valero-Jimenez AM, Mohamed A, Schaefer U, Moulton HM, García-Sastre A, Tripathi S, Rosenberg BR, Dittmann M. The ETS transcription factor ELF1 regulates a broadly antiviral program distinct from the type I interferon response. PLoS Pathog 2019; 15:e1007634. [PMID: 31682641 PMCID: PMC6932815 DOI: 10.1371/journal.ppat.1007634] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/26/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Induction of vast transcriptional programs is a central event of innate host responses to viral infections. Here we report a transcriptional program with potent antiviral activity, driven by E74-like ETS transcription factor 1 (ELF1). Using microscopy to quantify viral infection over time, we found that ELF1 inhibits eight diverse RNA and DNA viruses after multi-cycle replication. Elf1 deficiency results in enhanced susceptibility to influenza A virus infections in mice. ELF1 does not feed-forward to induce interferons, and ELF1’s antiviral effect is not abolished by the absence of STAT1 or by inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by RNA-seq revealed that the ELF1 transcriptional program is distinct from interferon signatures. Thus, ELF1 provides an additional layer of the innate host response, independent from the action of type I interferons. After decades of research on the innate immune system, we still struggle to understand exactly how this first line of defense protects cells against viral infections. Our gap in knowledge stems, on one hand, from the sheer number of effector genes, few of which have been characterized in mechanistic detail. On the other hand, our understanding of innate gene transcription is constantly evolving. We know that different regulatory mechanisms greatly influence the quality, magnitude, and timing of gene expression, all of which may contribute to the antiviral power of the innate response. Deciphering these regulatory mechanisms is indispensable for harnessing the power of innate immunity in novel antiviral therapies. Here, we report a novel transcriptional program as part of the cell-intrinsic immune system, raised by E74-like ETS transcription factor 1 (ELF1). ELF1 potently restricts multi-cycle propagation of all viruses tested in our study. Reduced levels of ELF1 significantly diminish host defenses against influenza A virus in vitro and in vivo, suggesting a critical but previously overlooked role of this ETS transcription factor. The ELF1 program is complex and comprises over 300 potentially antiviral genes, which are almost entirely distinct from those known to be induced by interferon. Taken together, our data provide evidence for a program of antiviral protection that expands the previously known arsenal of the innate immune response.
Collapse
Affiliation(s)
- Leon Louis Seifert
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Clara Si
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Debjani Saha
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mohammad Sadic
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Maren de Vries
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah Ballentine
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Aaron Briley
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ana M. Valero-Jimenez
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Adil Mohamed
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Uwe Schaefer
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York, United States of America
| | - Hong M. Moulton
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Microbiology and Cell Biology Department, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Meike Dittmann
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Segal AW. Studies on patients establish Crohn's disease as a manifestation of impaired innate immunity. J Intern Med 2019; 286:373-388. [PMID: 31136040 DOI: 10.1111/joim.12945] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The fruitless search for the cause of Crohn's disease has been conducted for more than a century. Various theories, including autoimmunity, mycobacterial infection and aberrant response to food and other ingested materials, have been abandoned for lack of robust proof. This review will provide the evidence, obtained from patients with this condition, that the common predisposition to Crohn's is a failure of the acute inflammatory response to tissue damage. This acute inflammation normally attracts large numbers of neutrophil leucocytes which engulf and clear bacteria and autologous debris from the inflamed site. The underlying predisposition in Crohn's disease is unmasked by damage to the bowel mucosa, predominantly through infection, which allows faecal bowel contents access to the vulnerable tissues within. Consequent upon failure of the clearance of these infectious and antigenic intestinal contents, it becomes contained, leading to a chronic granulomatous inflammation, producing cytokine release, local tissue damage and systemic symptoms. Multiple molecular pathologies extending across the whole spectrum of the acute inflammatory and innate immune response lead to the common predisposition in which defective monocyte and macrophage function plays a central role. Family linkage and exome sequencing together with GWAS have identified some of the molecules involved, including receptors, molecules involved in vesicle trafficking, and effector cells. Current therapy is immunosuppressant, which controls the symptoms but accentuates the underlying problem, which can only logically be tackled by correcting the primary lesion/s by gene therapy or genome editing, or through the development of drugs that stimulate innate immunity.
Collapse
Affiliation(s)
- A W Segal
- From the, Division of Medicine, University College London, London, UK
| |
Collapse
|
34
|
Willis-Owen SAG, Cookson WOC, Moffatt MF. The Genetics and Genomics of Asthma. Annu Rev Genomics Hum Genet 2019; 19:223-246. [PMID: 30169121 DOI: 10.1146/annurev-genom-083117-021651] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Asthma is a common, clinically heterogeneous disease with strong evidence of heritability. Progress in defining the genetic underpinnings of asthma, however, has been slow and hampered by issues of inconsistency. Recent advances in the tools available for analysis-assaying transcription, sequence variation, and epigenetic marks on a genome-wide scale-have substantially altered this landscape. Applications of such approaches are consistent with heterogeneity at the level of causation and specify patterns of commonality with a wide range of alternative disease traits. Looking beyond the individual as the unit of study, advances in technology have also fostered comprehensive analysis of the human microbiome and its varied roles in health and disease. In this article, we consider the implications of these technological advances for our current understanding of the genetics and genomics of asthma.
Collapse
Affiliation(s)
- Saffron A G Willis-Owen
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; , ,
| | - William O C Cookson
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; , ,
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; , ,
| |
Collapse
|
35
|
Fasanelli F, Giraudo MT, Vineis P, Fiano V, Fiorito G, Grasso C, Polidoro S, Trevisan M, Grioni S, Krogh V, Mattiello A, Panico S, Giurdanella MC, Tumino R, De Marco L, Ricceri F, Sacerdote C. DNA methylation, colon cancer and Mediterranean diet: results from the EPIC-Italy cohort. Epigenetics 2019; 14:977-988. [PMID: 31179817 DOI: 10.1080/15592294.2019.1629230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The biological mechanisms through which adherence to Mediterranean Diet (MD) protects against colon cancer (CC) are poorly understood. Evidence suggests that chronic inflammation may be implicated in the pathway. Both diet and CC are related to epigenetic regulation. We performed a nested case-control study on 161 pairs from the Italian component of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, in which we looked for the methylation signals in DNA extracted from leucocytes associated with both CC and MD in 995 CpGs located in 48 inflammation genes. The DNA methylation signals detected in this analysis were validated in a subgroup of 47 case-control pairs and further replicated (where validated) in 95 new pairs by means of pyrosequencing. Among the CpG sites selected a-priori in inflammation-related genes, seven CpG sites were found to be associated with CC status and with MD, in line with its protective effect. Only two CpG sites (cg17968347-SERPINE1 and cg20674490-RUNX3) were validated using bisulphite pyrosequencing and, after replication, we found that DNA methylation of cg20674490-RUNX3 may be a potential molecular mediator explaining the protective effect of MD on CC onset. The use of a 'meet-in-the-middle' approach to identify the overlap between exposure and predictive markers of disease is innovative in studies on the relationship between diet and cancer, in which exposure assessment is difficult and the mechanisms through which the nutrients exert their protective effect is largely unknown.
Collapse
Affiliation(s)
- Francesca Fasanelli
- a Unit of Cancer Epidemiology- CeRMS, Department of Medical Sciences, University of Turin , Turin , Italy
| | | | - Paolo Vineis
- c Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London , UK.,d Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM) , Turin , Italy
| | - Valentina Fiano
- a Unit of Cancer Epidemiology- CeRMS, Department of Medical Sciences, University of Turin , Turin , Italy
| | - Giovanni Fiorito
- d Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM) , Turin , Italy
| | - Chiara Grasso
- a Unit of Cancer Epidemiology- CeRMS, Department of Medical Sciences, University of Turin , Turin , Italy
| | - Silvia Polidoro
- d Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM) , Turin , Italy
| | - Morena Trevisan
- a Unit of Cancer Epidemiology- CeRMS, Department of Medical Sciences, University of Turin , Turin , Italy
| | - Sara Grioni
- e Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Vittorio Krogh
- e Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Amalia Mattiello
- f Department of Clinical Medicine and Surgery, Federico II University , Naples , Italy
| | - Salvatore Panico
- f Department of Clinical Medicine and Surgery, Federico II University , Naples , Italy
| | | | - Rosario Tumino
- g Cancer Registry, Department of Prevention, ASP , Ragusa , Italy
| | - Laura De Marco
- a Unit of Cancer Epidemiology- CeRMS, Department of Medical Sciences, University of Turin , Turin , Italy.,h Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO) , Turin , Italy
| | - Fulvio Ricceri
- i Epidemiology Unit, Regional Health Services ASL TO3 , Grugliasco , Italy.,j Department of Clinical and Biological Sciences, University of Turin , Turin , Italy
| | - Carlotta Sacerdote
- h Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO) , Turin , Italy
| |
Collapse
|
36
|
Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients. Cells 2019; 8:cells8050404. [PMID: 31052430 PMCID: PMC6563043 DOI: 10.3390/cells8050404] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is not well-understood; however, increased and persistent intestinal inflammation, due to inappropriate immune responses that are caused by interactions between genetic factors, gut microbiota, and environmental factors, are thought to lead to IBD. Various studies have identified more than 240 genetic variants related to IBD. These genetic variants are involved in innate and adaptive immunity, autophagy, defective bacterial handing, interleukin-23 and 10 signaling, and so on. According to several epidemiological and clinical studies, the phenotypes and clinical course of IBD differ between Asians and Europeans. Although the risk loci for IBD typically overlap between Asians and Westerners, genetic heterogeneity has been detected in many loci/genes, such as NOD2/CARD15, TNFSF15 and human leukocyte antigen, contributing to the risk of IBD. Thus, although common pathways exist between Westerners and Asians in the development of IBD, their significance may differ for individual pathways. Although genetic studies are not universally applicable in the clinical field, they may be useful for diagnosing and categorizing IBD, predicting therapeutic responses and toxicity to drugs, and assessing prognosis by risk modeling, thereby enabling precision medicine for individual patients.
Collapse
|
37
|
Matsuno Y, Umeno J, Esaki M, Hirakawa Y, Fuyuno Y, Okamoto Y, Hirano A, Yasukawa S, Hirai F, Matsui T, Hosomi S, Watanabe K, Hosoe N, Ogata H, Hisamatsu T, Yanai S, Kochi S, Kurahara K, Yao T, Torisu T, Kitazono T, Matsumoto T. Measurement of prostaglandin metabolites is useful in diagnosis of small bowel ulcerations. World J Gastroenterol 2019; 25:1753-1763. [PMID: 31011259 PMCID: PMC6465938 DOI: 10.3748/wjg.v25.i14.1753] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We recently reported on a hereditary enteropathy associated with a gene encoding a prostaglandin transporter and referred to as chronic enteropathy associated with SLCO2A1 gene (CEAS). Crohn's disease (CD) is a major differential diagnosis of CEAS, because these diseases share some clinical features. Therefore, there is a need to develop a convenient screening test to distinguish CEAS from CD. AIM To examine whether prostaglandin E major urinary metabolites (PGE-MUM) can serve as a biomarker to distinguish CEAS from CD. METHODS This was a transactional study of 20 patients with CEAS and 98 patients with CD. CEAS was diagnosed by the confirmation of homozygous or compound heterozygous mutation of SLCO2A1. We measured the concentration of PGE-MUM in spot urine by radioimmunoassay, and the concentration was compared between the two groups of patients. We also determined the optimal cut-off value of PGE-MUM to distinguish CEAS from CD by receiver operating characteristic (ROC) curve analysis. RESULTS Twenty Japanese patients with CEAS and 98 patients with CD were enrolled. PGE-MUM concentration in patients with CEAS was significantly higher than that in patients with CD (median 102.7 vs 27.9 μg/g × Cre, P < 0.0001). One log unit increase in PGE-MUM contributed to 7.3 increase in the likelihood for the diagnosis of CEAS [95% confidence interval (CI) 3.2-16.7]. A logistic regression analysis revealed that the association was significant even after adjusting confounding factors (adjusted odds ratio 29.6, 95%CI 4.7-185.7). ROC curve analysis revealed the optimal PGE-MUM cut-off value for the distinction of CEAS from CD to be 48.9 μg/g × Cre with 95.0% sensitivity and 79.6% specificity. CONCLUSION PGE-MUM measurement is a convenient, non-invasive and useful test for the distinction of CEAS from CD.
Collapse
Affiliation(s)
- Yuichi Matsuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Motohiro Esaki
- Department of Endoscopic Diagnostics and Therapeutic, Saga University Hospital, Saga 849-8501, Japan
| | - Yoichiro Hirakawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuharu Okamoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Hirano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigeyoshi Yasukawa
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino 818-8502, Japan
| | - Fumihito Hirai
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino 818-8502, Japan
| | - Toshiyuki Matsui
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino 818-8502, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka 545-8586, Japan
| | - Kenji Watanabe
- Department of Intestinal Inflammation Research, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo 160-0016, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo 160-0016, Japan
| | - Tadakazu Hisamatsu
- the Third Department of Internal Medicine, Kyorin University School of Medicine, Mitaka 181-8611, Japan
| | - Shunichi Yanai
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka 020-8505, Japan
| | - Shuji Kochi
- Division of Gastroenterology, Matsuyama Red Cross Hospital, Matsuyama 790-8524, Japan
| | - Koichi Kurahara
- Division of Gastroenterology, Matsuyama Red Cross Hospital, Matsuyama 790-8524, Japan
| | - Tsuneyoshi Yao
- Department of Gastroenterology, Sada Hospital, Fukuoka 810-0004, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka 020-8505, Japan
| |
Collapse
|
38
|
Kakuta Y, Kawai Y, Naito T, Hirano A, Umeno J, Fuyuno Y, Liu Z, Li D, Nakano T, Izumiyama Y, Ichikawa R, Okamoto D, Nagai H, Matsumoto S, Yamamoto K, Yokoyama N, Chiba H, Shimoyama Y, Onodera M, Moroi R, Kuroha M, Kanazawa Y, Kimura T, Shiga H, Endo K, Negoro K, Yasuda J, Esaki M, Tokunaga K, Nakamura M, Matsumoto T, McGovern DPB, Nagasaki M, Kinouchi Y, Shimosegawa T, Masamune A. A Genome-wide Association Study Identifying RAP1A as a Novel Susceptibility Gene for Crohn's Disease in Japanese Individuals. J Crohns Colitis 2019; 13:648-658. [PMID: 30500874 PMCID: PMC7458277 DOI: 10.1093/ecco-jcc/jjy197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Genome-wide association studies [GWASs] of European populations have identified numerous susceptibility loci for Crohn's disease [CD]. Susceptibility genes differ by ethnicity, however, so GWASs specific for Asian populations are required. This study aimed to clarify the Japanese-specific genetic background for CD by a GWAS using the Japonica array [JPA] and subsequent imputation with the 1KJPN reference panel. METHODS Two independent Japanese case/control sets (Tohoku region [379 CD patients, 1621 controls] and Kyushu region [334 CD patients, 462 controls]) were included. GWASs were performed separately for each population, followed by a meta-analysis. Two additional replication sets [254 + 516 CD patients and 287 + 565 controls] were analysed for top hit single nucleotide polymorphisms [SNPs] from novel genomic regions. RESULTS Genotype data of 4 335 144 SNPs from 713 Japanese CD patients and 2083 controls were analysed. SNPs located in TNFSF15 (rs78898421, Pmeta = 2.59 × 10-26, odds ratio [OR] = 2.10), HLA-DQB1 [rs184950714, pmeta = 3.56 × 10-19, OR = 2.05], ZNF365, and 4p14 loci were significantly associated with CD in Japanese individuals. Replication analyses were performed for four novel candidate loci [p <1 × 10-6], and rs488200 located upstream of RAP1A was significantly associated with CD [pcombined = 4.36 × 10-8, OR = 1.31]. Transcriptome analysis of CD4+ effector memory T cells from lamina propria mononuclear cells of CD patients revealed a significant association of rs488200 with RAP1A expression. CONCLUSIONS RAP1A is a novel susceptibility locus for CD in the Japanese population.
Collapse
Affiliation(s)
- Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan,Corresponding author: Yoichi Kakuta, MD, PhD, Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aoba, Sendai, 980-8574, Japan. Tel.: +81-22-717-7171; fax: +81-22-717-7177;
| | - Yosuke Kawai
- Tohoku Medical Megabank Organisation, Tohoku University, Sendai, Japan
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Hirano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Zhenqiu Liu
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Dalin Li
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Takeru Nakano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Izumiyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Ichikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Okamoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Nagai
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Matsumoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsutoshi Yamamoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naonobu Yokoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Chiba
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Shimoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoyuki Onodera
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitake Kanazawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoya Kimura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Endo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Negoro
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Yasuda
- Tohoku Medical Megabank Organisation, Tohoku University, Sendai, Japan
| | - Motohiro Esaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Centre, National Hospital Organisation [NHO] Nagasaki Medical Centre, Omura, Japan
| | - Takayuki Matsumoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Dermot P B McGovern
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Masao Nagasaki
- Tohoku Medical Megabank Organisation, Tohoku University, Sendai, Japan
| | - Yoshitaka Kinouchi
- Health Administration Centre, Centre for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
39
|
Lagou V, Garcia-Perez JE, Smets I, Van Horebeek L, Vandebergh M, Chen L, Mallants K, Prezzemolo T, Hilven K, Humblet-Baron S, Moisse M, Van Damme P, Boeckxstaens G, Bowness P, Dubois B, Dooley J, Liston A, Goris A. Genetic Architecture of Adaptive Immune System Identifies Key Immune Regulators. Cell Rep 2018; 25:798-810.e6. [PMID: 30332657 PMCID: PMC6205839 DOI: 10.1016/j.celrep.2018.09.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/16/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is highly diverse, but characterization of its genetic architecture has lagged behind the vast progress made by genome-wide association studies (GWASs) of emergent diseases. Our GWAS for 54 functionally relevant phenotypes of the adaptive immune system in 489 healthy individuals identifies eight genome-wide significant associations explaining 6%-20% of variance. Coding and splicing variants in PTPRC and COMMD10 are involved in memory T cell differentiation. Genetic variation controlling disease-relevant T helper cell subsets includes RICTOR and STON2 associated with Th2 and Th17, respectively, and the interferon-lambda locus controlling regulatory T cell proliferation. Early and memory B cell differentiation stages are associated with variation in LARP1B and SP4. Finally, the latrophilin family member ADGRL2 correlates with baseline pro-inflammatory interleukin-6 levels. Suggestive associations reveal mechanisms of autoimmune disease associations, in particular related to pro-inflammatory cytokine production. Pinpointing these key human immune regulators offers attractive therapeutic perspectives.
Collapse
Affiliation(s)
- Vasiliki Lagou
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Josselyn E Garcia-Perez
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Ide Smets
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lies Van Horebeek
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Marijne Vandebergh
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Liye Chen
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Klara Mallants
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Teresa Prezzemolo
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Kelly Hilven
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Stephanie Humblet-Baron
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Matthieu Moisse
- Leuven Brain Institute (LBI), Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium; KU Leuven Department of Neurosciences, Experimental Neurology, 3000 Leuven, Belgium
| | - Philip Van Damme
- Leuven Brain Institute (LBI), Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium; KU Leuven Department of Neurosciences, Experimental Neurology, 3000 Leuven, Belgium
| | - Guy Boeckxstaens
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for GI Disorders (TARGID), 3000 Leuven, Belgium; Department of Gastroenterology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Paul Bowness
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Bénédicte Dubois
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - James Dooley
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Adrian Liston
- VIB Center for Brain & Disease Research, Laboratory for Translational Immunology, 3000 Leuven, Belgium; KU Leuven Department of Immunology and Microbiology, Laboratory for Translational Immunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium.
| | - An Goris
- KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, 3000 Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium.
| |
Collapse
|
40
|
Richard AC, Peters JE, Savinykh N, Lee JC, Hawley ET, Meylan F, Siegel RM, Lyons PA, Smith KGC. Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease. PLoS Genet 2018; 14:e1007458. [PMID: 30199539 PMCID: PMC6130856 DOI: 10.1371/journal.pgen.1007458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation in inflammatory bowel disease (IBD) results from a breakdown of intestinal immune homeostasis and compromise of the intestinal barrier. Genome-wide association studies have identified over 200 genetic loci associated with risk for IBD, but the functional mechanisms of most of these genetic variants remain unknown. Polymorphisms at the TNFSF15 locus, which encodes the TNF superfamily cytokine commonly known as TL1A, are associated with susceptibility to IBD in multiple ethnic groups. In a wide variety of murine models of inflammation including models of IBD, TNFSF15 promotes immunopathology by signaling through its receptor DR3. Such evidence has led to the hypothesis that expression of this lymphocyte costimulatory cytokine increases risk for IBD. In contrast, here we show that the IBD-risk haplotype at TNFSF15 is associated with decreased expression of the gene by peripheral blood monocytes in both healthy volunteers and IBD patients. This association persists under various stimulation conditions at both the RNA and protein levels and is maintained after macrophage differentiation. Utilizing a "recall-by-genotype" bioresource for allele-specific expression measurements in a functional fine-mapping assay, we localize the polymorphism controlling TNFSF15 expression to the regulatory region upstream of the gene. Through a T cell costimulation assay, we demonstrate that genetically regulated TNFSF15 has functional relevance. These findings indicate that genetically enhanced expression of TNFSF15 in specific cell types may confer protection against the development of IBD.
Collapse
Affiliation(s)
- Arianne C. Richard
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James E. Peters
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Natalia Savinykh
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James C. Lee
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eric T. Hawley
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Françoise Meylan
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Richard M. Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Paul A. Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kenneth G. C. Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Saito H, Hirayama A, Umemura T, Joshita S, Mukawa K, Suga T, Tanaka E, Ota M. Association between KIR-HLA combination and ulcerative colitis and Crohn's disease in a Japanese population. PLoS One 2018; 13:e0195778. [PMID: 29649328 PMCID: PMC5897008 DOI: 10.1371/journal.pone.0195778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) consists of ulcerative colitis (UC) and Crohn’s disease (CD). Natural killer cell responses play a crucial role in autoimmune disease through innate immunity, in which killer cell immunoglobulin-like receptors (KIRs) are closely involved. Although the genetic combination of KIRs with their specific HLA class I ligands has been associated with IBD in Caucasians, such KIR-HLA receptor-ligand combinations are not fully understood in the Japanese. We investigated 14 KIR genes along with HLA-Bw and -C ligands in 90 patients with UC and 50 patients with CD and compared them with the characteristics of 325 healthy control subjects. The frequency of HLA-Bw4 was significantly increased in patients with UC (P = 1.3 × 10−6; odds ratio [OR] = 3.39) and CD (P = 0.0065; OR = 2.32) versus controls. The UC group had a significantly higher frequency of KIR2DS3 (P = 0.024; OR = 1.94) and lower frequency of KIR2DS4 (P = 0.019; OR = 0.40) and KIR2DL1-HLA-C2 (P = 0.035; OR = 0.47). The Tel-A/B haplotype was significantly decreased in UC patients (P = 0.0056; OR = 0.49). The frequency of KIR3DL1-HLA-Bw4 was significantly higher in patients with UC (P = 4.3 × 10−6; OR = 3.12) and CD (P = 0.0067; OR = 2.30). In conclusion, HLA-Bw4 and KIR-HLA pairs may play an important role in the genetic susceptibility to IBD in the Japanese.
Collapse
Affiliation(s)
- Hiromi Saito
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsuhiro Hirayama
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
- * E-mail:
| | - Satoru Joshita
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenji Mukawa
- Department of Gastroenterology, Suwa Red Cross Hospital, Suwa, Japan
| | - Tomoaki Suga
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eiji Tanaka
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
42
|
Wu WK, Sun R, Zuo T, Tian Y, Zeng Z, Ho J, Wu JC, Chan FK, Chan MT, Yu J, Sung JJ, Wong SH, Wang MH, Ng SC. A novel susceptibility locus in MST1 and gene-gene interaction network for Crohn's disease in the Chinese population. J Cell Mol Med 2018; 22:2368-2377. [PMID: 29441677 PMCID: PMC5867068 DOI: 10.1111/jcmm.13530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
The incidence of Crohn's disease is increasing in many Asian countries, but considerable differences in genetic susceptibility have been reported between Western and Asian populations. This study aimed to fine-map 23 previously reported Crohn's disease genes and identify their interactions in the Chinese population by Illumina-based targeted capture sequencing. Our results showed that the genetic polymorphism A>G at rs144982232 in MST1 showed the most significant association (P = 1.78 × 10-5 ; odds ratio = 4.87). JAK2 rs1159782 (T>C) was also strongly associated with Crohn's disease (P = 2.34 × 10-4 ; odds ratio = 3.72). Gene-gene interaction analysis revealed significant interactions between MST1 and other susceptibility genes, including NOD2, MUC19 and ATG16L1 in contributing to Crohn's disease risk. Main genetic associations and gene-gene interactions were verified using ImmunoChip data set. In conclusion, a novel susceptibility locus in MST1 was identified. Our analysis suggests that MST1 might interact with key susceptibility genes involved in autophagy and bacterial recognition. These findings provide insight into the genetic architecture of Crohn's disease in Chinese and may partially explain the disparity of genetic signals in Crohn's disease susceptibility across different ethnic populations by highlighting the contribution of gene-gene interactions.
Collapse
Affiliation(s)
- William K.K. Wu
- State Key Laboratory of Digestive DiseasesInstitute of Digestive Diseases and Department of Medicine & TherapeuticsLKS Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong Kong
| | - Rui Sun
- The Jockey Club School of Public Health and Primary CareThe Chinese University of Hong KongHong Kong
| | - Tao Zuo
- State Key Laboratory of Digestive DiseasesInstitute of Digestive Diseases and Department of Medicine & TherapeuticsLKS Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
| | - Yuanyuan Tian
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong Kong
| | - Zhirong Zeng
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jeffery Ho
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong Kong
| | - Justin C.Y. Wu
- State Key Laboratory of Digestive DiseasesInstitute of Digestive Diseases and Department of Medicine & TherapeuticsLKS Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
| | - Francis K.L. Chan
- State Key Laboratory of Digestive DiseasesInstitute of Digestive Diseases and Department of Medicine & TherapeuticsLKS Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
| | - Matthew T.V. Chan
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong Kong
| | - Jun Yu
- State Key Laboratory of Digestive DiseasesInstitute of Digestive Diseases and Department of Medicine & TherapeuticsLKS Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
| | - Joseph J.Y. Sung
- State Key Laboratory of Digestive DiseasesInstitute of Digestive Diseases and Department of Medicine & TherapeuticsLKS Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
| | - Sunny H. Wong
- State Key Laboratory of Digestive DiseasesInstitute of Digestive Diseases and Department of Medicine & TherapeuticsLKS Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
| | - Maggie H. Wang
- The Jockey Club School of Public Health and Primary CareThe Chinese University of Hong KongHong Kong
| | - Siew C. Ng
- State Key Laboratory of Digestive DiseasesInstitute of Digestive Diseases and Department of Medicine & TherapeuticsLKS Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
| |
Collapse
|
43
|
Asada T, Nakayama G, Tanaka C, Kobayashi D, Ezaka K, Hattori N, Kanda M, Yamada S, Koike M, Kodera Y. Postoperative adalimumab maintenance therapy for Japanese patients with Crohn's disease: a single-center, single-arm phase II trial (CCOG-1107 study). Surg Today 2018; 48:609-617. [PMID: 29476258 DOI: 10.1007/s00595-018-1634-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the efficacy and safety of planned postoperative adalimumab (ADA) therapy for Japanese patients with Crohn's disease (CD). METHODS The subjects of this study were 26 patients who underwent bowel resection for CD. All patients received subcutaneous injections of ADA 160/80 mg at the time of surgery and 2 weeks later, followed by 40 mg every 2 weeks thereafter. The primary endpoint of this study was the incidence of endoscopic recurrence, defined by Rutgeerts endoscopic recurrence scale ≥ i2, 1 year after surgery. RESULTS After the median follow-up period of 41.3 months, the median number of treatments with ADA was 56 and the median time-to-treatment failure was 25.6 months. Endoscopic recurrence was observed in 34.6% of the patients 1 year after surgery. Univariate analyses showed that preoperative ADA therapy was significantly associated with endoscopic recurrence. Clinical recurrence developed in 16.7% of the patients within 1 year after surgery. Secondary surgery for recurrence was not required. Although adverse events (≥ grade 3) were experienced by 15.4% of patients, none was withdrawn from this study. CONCLUSION Planned postoperative ADA therapy reduced the incidence of endoscopic and clinical recurrence after bowel resection in Japanese patients with CD. TRIAL REGISTRATION This trial is registered with the University Hospital Medical Information Network (UMIN000007514).
Collapse
Affiliation(s)
- Takahiro Asada
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazuhiro Ezaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
44
|
Evangelatos N, Bauer P, Reumann M, Satyamoorthy K, Lehrach H, Brand A. Metabolomics in Sepsis and Its Impact on Public Health. Public Health Genomics 2018; 20:274-285. [PMID: 29353273 DOI: 10.1159/000486362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022] Open
Abstract
Sepsis, with its often devastating consequences for patients and their families, remains a major public health concern that poses an increasing financial burden. Early resuscitation together with the elucidation of the biological pathways and pathophysiological mechanisms with the use of "-omics" technologies have started changing the clinical and research landscape in sepsis. Metabolomics (i.e., the study of the metabolome), an "-omics" technology further down in the "-omics" cascade between the genome and the phenome, could be particularly fruitful in sepsis research with the potential to alter the clinical practice. Apart from its benefit for the individual patient, metabolomics has an impact on public health that extends beyond its applications in medicine. In this review, we present recent developments in metabolomics research in sepsis, with a focus on pneumonia, and we discuss the impact of metabolomics on public health, with a focus on free/libre open source software.
Collapse
Affiliation(s)
- Nikolaos Evangelatos
- Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Nuremberg, Germany.,UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands
| | - Pia Bauer
- Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Matthias Reumann
- UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands.,IBM Research - Zurich, Rueschlikon, Switzerland
| | | | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angela Brand
- UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands.,Public Health Genomics, Department of International Health, Maastricht University, Maastricht, the Netherlands.,Manipal University, Madhav Nagar, Manipal, India
| |
Collapse
|
45
|
Suzuki K, Yamada T, Yamazaki K, Hirota M, Ishihara N, Sakamoto M, Takahashi D, Iijima H, Hase K. Intestinal Epithelial Cell-specific Deletion of α-Mannosidase II Ameliorates Experimental Colitis. Cell Struct Funct 2018; 43:25-39. [PMID: 29343654 DOI: 10.1247/csf.17022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a refractory disease of the gastrointestinal tract that is believed to develop in genetically susceptible individuals. Glycosylation, a type of post-translational modification, is involved in the development of a wide range of diseases, including IBD, by modulating the function of various glycoproteins. To identify novel genes contributing to the development of IBD, we analyzed single nucleotide polymorphisms (SNPs) of glycosylation-related genes in IBD patients and identified MAN2A1, encoding alpha-mannosidase II (α-MII), as a candidate gene. α-MII plays a crucial, but not exclusive, role in the maturation of N-glycans. We also observed that intestinal epithelial cells (IECs), which establish the first-line barrier and regulate gut immunity, selectively expressed α-MII with minimal expression of its isozyme, alpha-mannosidase IIx (α-MIIx). This led us to hypothesize that IEC-intrinsic α-MII is implicated in the pathogenesis of IBD. To test this hypothesis, we generated IEC-specific α-MII-deficient (α-MIIΔIEC) mice. Although α-MII deficiency has been shown to have a minimal effect on N-glycan maturation in most cell types due to the compensation by α-MIIx, ablation of α-MII impaired the maturation of N-glycans in IECs. α-MIIΔIEC mice were less susceptible to dextran sulfate sodium-induced colitis compared with control littermates. In accordance with this, neutrophil infiltration in the colonic mucosa was attenuated in α-MIIΔIEC mice. Furthermore, gene expression levels of neutrophil-attracting chemokines were downregulated in the colonic tissue. These results suggest that IEC-intrinsic α-MII promotes intestinal inflammation by facilitating chemokine expression. We propose SNPs in MAN2A1 as a novel genetic factor for IBD.Key words: inflammatory bowel disease, alpha-mannosidase II, intestinal epithelial cell, N-glycosylation.
Collapse
Affiliation(s)
- Koichiro Suzuki
- Division of Biochemistry, Faculty of Pharmacy, Keio University.,Research Fellow of Japan Society for the Promotion of Science
| | - Takahiro Yamada
- Division of Biochemistry, Faculty of Pharmacy, Keio University
| | - Keiko Yamazaki
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine.,Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences
| | - Masato Hirota
- Division of Biochemistry, Faculty of Pharmacy, Keio University
| | - Narumi Ishihara
- Division of Biochemistry, Faculty of Pharmacy, Keio University
| | - Mizuki Sakamoto
- Division of Biochemistry, Faculty of Pharmacy, Keio University
| | | | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT)
| |
Collapse
|
46
|
Xu S, Zou H, Zhang H, Zhu S, Zhou R, Li J. Investigation of inflammatory bowel disease risk factors in 4 families in central China. Exp Ther Med 2017; 15:1367-1375. [PMID: 29399122 PMCID: PMC5774536 DOI: 10.3892/etm.2017.5582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 05/05/2017] [Indexed: 12/17/2022] Open
Abstract
The prevalence of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is increasing markedly in China. The present study performed pedigree analysis of 4 families with a history of IBD and investigated the association of genetic and environmental factors with susceptibility to IBD. A total of 10 IBD patients (8 CD patients and 2 UC patients) and 90 family members were included in the present study. The clinical characteristics of familial subjects were compared with those of patients with sporadic IBD. Previously reported mutations, namely interleukin-10 receptor (IL10R)-A Thr84Ile, IL10RA Gly141Arg, IL10RB Trp159X, X-linked inhibitor of apoptosis (XIAP) Cys203Tyr, nucleotide-binding oligomerization domain-containing protein 2 (NOD2) Arg702Trp, NOD2 Gly908Arg and NOD2 Leu1007fsinsC, were screened in the patients with IBD, and selected demographic factors were compared between the patients and their unaffected family members. It was observed that single-gene and multi-gene inheritance patterns contributed to IBD in Chinese families. Based on data from the registry system, the ratio of patients with a family history of IBD was 1.25%, which was lower than that in the Western population. First-degree relatives were found to be more susceptible to IBD, and siblings were affected more frequently. Furthermore, the median age of diagnosis was younger in familial patients than in sporadic patients (29.0 vs. 36.0 for CD; 35.5 vs. 41.0 for UC). However, none of the 7 susceptibility loci were present in any of the familial patients. Immigration was a significant risk factor of IBD (odds ratio: 4.667; 95% confidence interval: 1.165-18.690; P=0.021). In conclusion, genetic heterogeneity exits between Chinese families with IBD and the Western population. The present findings suggest that genetic background and environmental factors serve a role in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Shufang Xu
- Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Hui Zou
- Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Heng Zhang
- Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Siying Zhu
- Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Rui Zhou
- Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jin Li
- Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
47
|
Hashiramoto A, Konishi Y, Murayama K, Kawasaki H, Yoshida K, Tsumiyama K, Tanaka K, Mizuhara M, Shiotsuki T, Kitamura H, Komai K, Kimura T, Yagita H, Shiozawa K, Shiozawa S. A variant of death-receptor 3 associated with rheumatoid arthritis interferes with apoptosis-induction of T cell. J Biol Chem 2017; 293:1933-1943. [PMID: 29180447 PMCID: PMC5808757 DOI: 10.1074/jbc.m117.798884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic polyarthritis of unknown etiology. To unravel the molecular mechanisms in RA, we performed targeted DNA sequencing analysis of patients with RA. This analysis identified a variant of the death receptor 3 (DR3) gene, a member of the family of apoptosis-inducing Fas genes, which contains four single-nucleotide polymorphisms (SNPs) and a 14-nucleotide deletion within exon 5 and intron 5. We found that the deletion causes the binding of splicing regulatory proteins to DR3 pre-mRNA intron 5, resulting in a portion of intron 5 becoming part of the coding sequence, thereby generating a premature stop codon. We also found that this truncated DR3 protein product lacks the death domain and forms a heterotrimer complex with wildtype DR3 that dominant-negatively inhibits ligand-induced apoptosis in lymphocytes. Myelocytes from transgenic mice expressing the human DR3 variant produced soluble truncated DR3, forming a complex with TNF-like ligand 1A (TL1A), which inhibited apoptosis induction. In summary, our results reveal that a DR3 splice variant that interferes with ligand-induced T cell responses and apoptosis may contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Akira Hashiramoto
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Yoshitake Konishi
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Koichi Murayama
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Hiroki Kawasaki
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Kohsuke Yoshida
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Ken Tsumiyama
- the Department of Medicine, Rheumatic Diseases Unit, Kyushu University Beppu Hospital, Beppu 874-0838
| | - Kimie Tanaka
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Masaru Mizuhara
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Toshio Shiotsuki
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Hitomi Kitamura
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Koichiro Komai
- From the Department of Biophysics, Kobe University Graduate School of Health Science, Kobe 654-0142
| | - Tomoatsu Kimura
- the Department of Orthopedic Surgery, Faculty of Medicine, University of Toyama, 3190 Gofuku, 930-0194 Toyama
| | - Hideo Yagita
- the Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8431, and
| | - Kazuko Shiozawa
- the Department of Rheumatology, Hyogo Prefectural Kakogawa Medical Center, Kakogawa 675-8555, Japan
| | - Shunichi Shiozawa
- the Department of Medicine, Rheumatic Diseases Unit, Kyushu University Beppu Hospital, Beppu 874-0838,
| |
Collapse
|
48
|
Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 2017; 44:1005-19. [PMID: 27192566 DOI: 10.1016/j.immuni.2016.04.019] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Cytokines related to tumor necrosis factor (TNF) provide a communication network essential for coordinating multiple cell types into an effective host defense system against pathogens and malignant cells. The pathways controlled by the TNF superfamily differentiate both innate and adaptive immune cells and modulate stromal cells into microenvironments conducive to host defenses. Members of the TNF receptor superfamily activate diverse cellular functions from the production of type 1 interferons to the modulation of survival of antigen-activated T cells. Here, we focus attention on the subset of TNF superfamily receptors encoded in the immune response locus in chromosomal region 1p36. Recent studies have revealed that these receptors use diverse mechanisms to either co-stimulate or restrict immune responses. Translation of the fundamental mechanisms of TNF superfamily is leading to the design of therapeutics that can alter pathogenic processes in several autoimmune diseases or promote immunity to tumors.
Collapse
Affiliation(s)
- Lindsay K Ward-Kavanagh
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wai Wai Lin
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Šedý
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Zhou M, He J, Shen Y, Zhang C, Wang J, Chen Y. New Frontiers in Genetics, Gut Microbiota, and Immunity: A Rosetta Stone for the Pathogenesis of Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8201672. [PMID: 28831399 PMCID: PMC5558637 DOI: 10.1155/2017/8201672] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which encompasses ulcerative colitis (UC) and Crohn's disease (CD), is a complicated, uncontrolled, and multifactorial disorder characterized by chronic, relapsing, or progressive inflammatory conditions that may involve the entire gastrointestinal tract. The protracted nature has imposed enormous economic burdens on patients with IBD, and the treatment is far from optimal due to the currently limited comprehension of IBD pathogenesis. In spite of the exact etiology still remaining an enigma, four identified components, including personal genetic susceptibility, external environment, internal gut microbiota, and the host immune response, are responsible for IBD pathogenesis, and compelling evidence has suggested that IBD may be triggered by aberrant and continuing immune responses to gut microbiota in genetically susceptibility individuals. The past decade has witnessed the flourishing of research on genetics, gut microbiota, and immunity in patients with IBD. Therefore, in this review, we will comprehensively exhibit a series of novel findings and update the major advances regarding these three fields. Undoubtedly, these novel findings have opened a new horizon and shed bright light on the causality research of IBD.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing He
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yujie Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Cong Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiazheng Wang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
50
|
Wu J, Cheng Y, Zhang R, Shen H, Ma L, Yang J, Zhang Y, Zhang J. Evaluating the Association of Common Variants of the SLC44A4 Gene with Ulcerative Colitis Susceptibility in the Han Chinese Population. Genet Test Mol Biomarkers 2017; 21:555-559. [PMID: 28753073 DOI: 10.1089/gtmb.2017.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The SLC44A4 gene was recently reported to be associated with ulcerative colitis (UC) susceptibility in the Indian and Japanese populations. The aim of our study was to investigate the association of common variants within the SLC44A4 gene and the susceptibility to UC among the Han Chinese. METHODS We examined 16 tag single nucleotide polymorphisms (SNPs) within the SLC44A4 gene in a Han Chinese population that consisted of 311 UC patients and 675 healthy controls; both SNP and haplotypic association analyses were performed. RESULTS We found that rs2736428 was significantly associated with UC risk (allelic p = 0.0004), and the CT and TT genotypes of rs2736428 had a higher distribution compared with the CC genotypes (genotypic p = 0.001), suggesting that the T allele was a risk allele (odds ratio = 1.45, 95% confidence interval = 1.18-1.78). Moreover, one haplotype block that included rs2736428 was found to be strongly associated with UC risk as well (global p < 0.001). CONCLUSION Our results provide further supportive evidence for an important role of the SLC44A4 gene in the pathogenesis of UC.
Collapse
Affiliation(s)
- Jie Wu
- 1 Department of Digestive Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Yan Cheng
- 1 Department of Digestive Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Rong Zhang
- 2 Department of Digestive Diseases, Shaanxi People's Hospital , Xi'an, China
| | - Hao Shen
- 3 Department of Digestive Diseases, Xi'an Central Hospital , Xi'an, China
| | - Li Ma
- 4 Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Jun Yang
- 4 Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Yanting Zhang
- 3 Department of Digestive Diseases, Xi'an Central Hospital , Xi'an, China
| | - Jun Zhang
- 1 Department of Digestive Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| |
Collapse
|