1
|
Mendonça IP, Peixoto CA. The Double-Edged Sword: The Complex Function of Enteric Glial Cells in Neurodegenerative Diseases. J Neurochem 2025; 169:e70069. [PMID: 40265276 DOI: 10.1111/jnc.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Over the past two decades, a growing number of studies have been conducted on the role of bidirectional communication through the gut-brain axis in the development of neurodegenerative diseases. These studies were driven by the curious fact that all of these diseases present varying degrees of intestinal involvement included in their wide range of symptoms. A population of cells belonging to the ENS, called enteric glial cells (EGCs), appears to actively participate in this communication between the intestine and the brain, but acting in a dualistic manner, sometimes in reactive gliosis releasing inflammatory mediators, sometimes promoting homeostasis and resilience in the face of inflammatory injuries. To date, the intracellular mechanisms that define the transcriptional profile expressed in EGCs in each situation have not yet been elucidated. This review proposes a discussion on: (1) the complex role of distinct phenotypes of enteric glial cells involved in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and multiple sclerosis (MS); and (2) innovative strategies such as IDO/TDO inhibitors, Brazil nuts, caffeic acid, polyphenols, among others, that act on EGCs and have the potential to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
2
|
Rao M, Gulbransen BD. Enteric Glia. Cold Spring Harb Perspect Biol 2025; 17:a041368. [PMID: 38951022 PMCID: PMC11960695 DOI: 10.1101/cshperspect.a041368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Enteric glia are a unique type of peripheral neuroglia that accompany neurons in the enteric nervous system (ENS) of the digestive tract. The ENS displays integrative neural circuits that are capable of governing moment-to-moment gut functions independent of input from the central nervous system. Enteric glia are interspersed with neurons throughout these intrinsic gut neural circuits and are thought to fulfill complex roles directed at maintaining homeostasis in the neuronal microenvironment and at neuroeffector junctions in the gut. Changes to glial functions contribute to a wide range of gastrointestinal diseases, but the precise roles of enteric glia in gut physiology and pathophysiology are still under examination. This review summarizes current concepts regarding enteric glial development, diversity, and functions in health and disease.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
3
|
Hastings N, Rahman S, Stempor PA, Wayland MT, Kuan WL, Kotter MRN. Connexin 43 is downregulated in advanced Parkinson's disease in multiple brain regions which correlates with symptoms. Sci Rep 2025; 15:10250. [PMID: 40133513 PMCID: PMC11937269 DOI: 10.1038/s41598-025-94188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition with the greatest increase in disability globally. Dysfunction of dopaminergic neurons is a well-known PD hallmark; however, changes in astrocytes also accompany PD progression. One aspect of astrocyte biology not yet investigated in PD is their network coupling. To assess this, we focussed on the major astrocytic gap junctional protein connexin 43 (Cx43, GJA1). A dataset of 20 post-mortem late-stage PD brain tissue samples from the cortex and basal ganglia alongside 20 age-matched control sets was collected, accompanied by clinical histories and data on α-synuclein, tau, and amyloid-β pathology. Protein levels and intracellular distribution of Cx43 and other key markers were measured. Computational re-analysis of open-source mRNA sequencing datasets from the striatum and midbrain complemented the original findings. Two novel observations were made: first, profound Cx43 loss in late-stage PD, and second, differential manifestation of this pathology in different brain areas, including those outside of the midbrain substantia nigra-the region that is most commonly used in PD research. Cx43 downregulation in specific regions correlated with non-motor symptoms of PD such as depression and sleep disturbance. Astrocytic tree simplification in the frontal cortex was further observed. In conclusion, astrocytic network decoupling through Cx43 downregulation in PD may contribute to astrocytic dysfunction and PD symptom development.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK.
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Saifur Rahman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | | | - Matthew T Wayland
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Alborada Drug Discovery Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| |
Collapse
|
4
|
Nardini P, Filippi L, Zizi V, Molino M, Fazi C, Chivetti M, Pini A. Beta-3 Adrenoceptor Agonism Protects the Enteric Nervous Tissue Against Hyperoxia-Induced Damage. Cells 2025; 14:475. [PMID: 40214429 PMCID: PMC11988099 DOI: 10.3390/cells14070475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
The beta-3 adrenergic receptor (β3-AR), whose expression is modulated by oxygen levels, was found to play a key role in organ maturation, and its agonism was reported to mitigate hyperoxia-induced large bowel damage by preventing organ hypoplasia, preserving epithelial integrity, vascularization, and the neurochemical coding in the colonic myenteric plexus. This study explored the effects of β3-AR agonism in preventing hyperoxia-related alterations on the ileal enteric nervous system (ENS). Sprague-Dawley rat pups were reared under normoxia or hyperoxia (85%) during the first two weeks after birth and treated or not with the β3-AR agonist BRL37344 at 1, 3, or 6 mg/kg. Hyperoxia caused an imbalance of inhibitory nitrergic and excitatory cholinergic neurons in both the myenteric and submucosal plexuses and decreased the amounts of neurons in the submucosal plexus and that of S100β+ and GFAP+ glial cells in the myenteric plexus. Administration of 3 mg/kg BRL37344 preserved the neuronal chemical coding and partially prevented the loss of myenteric GFAP+ glial cells, while it did not counteract submucosal neuronal loss. Our findings indicate the potential of β3-AR agonism as a new therapeutic strategy for hyperoxia-induced ileal ENS alterations.
Collapse
Affiliation(s)
- Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (M.C.)
| | - Luca Filippi
- Neonatology and Neonatal Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Virginia Zizi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (M.C.)
| | - Marta Molino
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (M.C.)
| | - Camilla Fazi
- Department of Pediatric, Meyer Children’s University Hospital, 50139 Florence, Italy;
| | - Matteo Chivetti
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (M.C.)
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (M.C.)
| |
Collapse
|
5
|
Han MN, Di Natale MR, Lei E, Furness JB, Finkelstein DI, Hao MM, Diwakarla S, McQuade RM. Assessment of gastrointestinal function and enteric nervous system changes over time in the A53T mouse model of Parkinson's disease. Acta Neuropathol Commun 2025; 13:58. [PMID: 40075409 PMCID: PMC11899089 DOI: 10.1186/s40478-025-01956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) dysfunctions, including constipation and delayed stomach emptying, are prevalent and debilitating non-motor symptoms of Parkinson's disease (PD). These symptoms have been associated with damage in the enteric nervous system (ENS) and the accumulation of pathogenic alpha-synuclein (α-Syn) within the GI tract. While motor deficits and dopaminergic neuron loss in the central nervous system (CNS) of the A53T mouse model are well-characterised, the temporal relationship between GI dysfunction, ENS pathology, and motor symptoms remains unclear. This study aimed to investigate functional alterations in the GI tract at the early stages of the disease, before the appearance of motor deficits, both in vivo and ex vivo. Early colonic motility deficits observed in A53T mice, measured via bead expulsion, preceded motor impairments emerged at 36 weeks. Although whole-gut transit remained unchanged, reduced faecal output was concurrent with marked colonic dysmotility at 36 weeks. Despite a lack of significant neuronal loss, a greater number of enteric neurons in A53T mice showed signs of neuronal hypertrophy and increased nuclear translocation of HuC/D proteins indicative of neuronal stress at 12 and 36 weeks. Calcium imaging revealed differential enteric neuron activity, characterised by exaggerated calcium transients at 12 weeks that normalized by 36 weeks. Furthermore, a reduction in enteric glial populations was observed as early as 12 weeks in both the ileum and colon of A53T mice. These findings provide compelling evidence that ENS pathology, including neuronal stress, disrupted calcium signalling, and glial cell loss, precedes the onset of motor symptoms and may contribute to early GI dysfunction in PD.
Collapse
Affiliation(s)
- Myat Noe Han
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Madeleine R Di Natale
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Enie Lei
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marlene M Hao
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Shanti Diwakarla
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia
| | - Rachel M McQuade
- Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia.
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, University of Melbourne, Parkville VIC, Melbourne, 3010, Australia.
| |
Collapse
|
6
|
Haider S, Sassu E, Stefanovska D, Stoyek MR, Preissl S, Hortells L. News from the old: Aging features in the intracardiac, musculoskeletal, and enteric nervous systems. Ageing Res Rev 2025; 105:102690. [PMID: 39947485 DOI: 10.1016/j.arr.2025.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Aging strongly affects the peripheral nervous system (PNS), triggering alterations that vary depending on the innervated tissue. The most frequent alteration in peripheral nerve aging is reduced nerve fiber and glial density which can lead to abnormal nerve functionality. Interestingly, the activation of a destructive phenotype takes place in macrophages across the PNS while a reduced number of neuronal bodies is a unique feature of some enteric ganglia. Single cell/nucleus RNA-sequencing has unveiled a striking complexity of cell populations in the peripheral nerves, and these refined cell type annotations could facilitate a better understanding of PNS aging. While the effects of senescence on individual PNS cell types requires further characterization, the use of senolytics appears to improve general PNS function in models of aging. Here, we review the current understanding of age-related changes of the intracardiac, musculoskeletal, and enteric nervous system sub-sections of the PNS, highlighting their commonalities and differences.
Collapse
Affiliation(s)
- Severin Haider
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Eliza Sassu
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Dragana Stefanovska
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Mathew R Stoyek
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany; Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, University of Graz, Graz 8010, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Luis Hortells
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany; Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT-The Arctic University of Norway, Tromsø 9019, Norway.
| |
Collapse
|
7
|
Chang H, Zhang H, Jiang S, Hu J, Ma H, Cheng B, Wang Q, Li Y. Targeting enteric glial CRF-R1/Cx43 attenuates stress-induced accelerated colonic motility. J Pharmacol Sci 2025; 157:167-178. [PMID: 39929591 DOI: 10.1016/j.jphs.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 03/17/2025] Open
Abstract
Stress triggers disorders in accelerated peristalsis, with corticotropin releasing factor receptor 1 (CRF-R1) playing a pivotal role. Enteric glia cells (EGCs) and glial Cx43 are known to influence gastrointestinal motility, yet their involvement in colonic motor responses to stress remains unclear. Using immunofluorescence and single-cell RNA sequencing data, we identified CRF-R1 expression in EGCs. Male C57BL/6 mice subjected to wrap restraint stress (WRS) revealed stress-induced colonic motility changes. By employing Fluoroacetate, NBI 27914, and Gap26, we elucidated the impact of glial CRF-R1/Cx43 on stress-induced colonic motor responses. Our study demonstrated CRF-R1 expression in EGCs of the small intestine and colon, along with elevated CRF levels and upregulated CRF-R1 in the distal colon under stress. Antagonizing CRF-R1 and disrupting EGC function made mice resistant to colonic stress responses. Mechanistically, increased glial Cx43 expression and activity influenced colonic motor responses in a CRF-R1-dependent manner. Our findings highlight the role of EGC-derived CRF-R1 in stress-induced colonic motor responses via Cx43 activation. Targeting CRF-R1/Cx43 signaling in EGCs may offer a promising approach to mitigate stress-induced colonic transit changes.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Haifeng Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710061, Shaanxi, China
| | - Shiqiu Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Juan Hu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Hongli Ma
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
8
|
Yang W, Liu R, Xu F. Glial cell line-derived neurotrophic factor improves impaired colonic motility in experimental colitis mice through connexin 43. World J Gastroenterol 2025; 31:100069. [PMID: 40062335 PMCID: PMC11886518 DOI: 10.3748/wjg.v31.i8.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Colonic motility dysfunction is a common symptom of ulcerative colitis (UC), significantly affecting patients' quality of life. Evidence suggests that glial cell line-derived neurotrophic factor (GDNF) plays a role in restoring colonic function. AIM To investigate whether GDNF enhances aberrant colonic motility in mice with experimental colitis via connexin 43 (Cx43). METHODS An experimental colitis model was induced in male C57BL/6 mice using dextran sodium sulfate (DSS). The measurement of colonic transit time was conducted, and colon tissues were evaluated through transmission electron microscopy and hematoxylin and eosin staining. The mice were treated with exogenous GDNF and Gap 19, a selective Cx43 inhibitor. The Cx43 and GDNF levels were detected via immunofluorescence, immunohistochemistry, and real-time polymerase chain reaction. The levels of inflammatory markers, including interleukin-1β, tumor necrosis factor-α, interleukin-6, and C-reactive protein, were quantified using enzyme-linked immunosorbent assay. RESULTS Experimental colitis was successfully induced using DSS, and the findings exhibited that the colonic transit time was significantly delayed in colitis mice relative to the UC group (P < 0.01). GDNF treatment improved colonic transit time and alleviated intestinal inflammation in DSS-induced colitis mice (P < 0.05). In the UC + Gap19 + GDNF group, colitis symptoms, colonic transit time, and inflammatory marker levels remained comparable to those in the UC group, indicating that the therapeutic effects of GDNF in UC mice were blocked by Gap 19. CONCLUSION GDNF improves colonic motility in mice with experimental colitis through a partially Cx43-mediated mechanism. GDNF holds promise as a therapeutic option for improving colonic motility in patients with colitis.
Collapse
Affiliation(s)
- Wei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui Liu
- Medical School, Xiangyang Vocational and Technical College, Xiangyang 441021, Hubei Province, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
9
|
Brown RM, Le HH, Babcock IW, Harris TH, Gaultier A. Functional analysis of antigen presentation by enteric glial cells during intestinal inflammation. Glia 2025; 73:291-308. [PMID: 39495092 DOI: 10.1002/glia.24632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
The Enteric Nervous System is composed of a vastly interconnected network of neurons and glial cells that coordinate to regulate homeostatic gut function including intestinal motility, nutrient sensing, and mucosal barrier immunity. Enteric Glial Cells (EGCs) are a heterogeneous cell population located throughout the gastrointestinal tract and have well described roles in regulating intestinal immune responses. Enteric Glial Cells have been suggested to act as nonconventional antigen presenting cells via the Major Histocompatibility Complex II (MHC II), though this has not been confirmed functionally. Here, we investigate the capability of EGCs to present antigen on MHC I and MHC II using in vitro antigen presentation assays performed with primary murine EGC cultures. We found that EGCs are capable of functional antigen presentation on MHC I, including antigen cross-presentation, but are not capable of functional antigen presentation on MHC II. We also determined EGC cell surface MHC I and MHC II expression levels by flow cytometry during intestinal inflammation during Dextran Sodium Sulfate-induced colitis or acute Toxoplasma gondii infection. We found that EGCs upregulate MHC I during acute T. gondii infection and induce low-level MHC II expression. These findings suggest that EGCs may be important in the regulation of CD8+ T cell responses via MHC I mediated antigen (cross) presentation but may not be relevant for MHC II-mediated antigen presentation.
Collapse
Affiliation(s)
- Ryan M Brown
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Helen H Le
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Isaac W Babcock
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tajie H Harris
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Gonzales J, Gulbransen BD. The Physiology of Enteric Glia. Annu Rev Physiol 2025; 87:353-380. [PMID: 39546562 DOI: 10.1146/annurev-physiol-022724-105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Enteric glia are the partners of neurons in the enteric nervous system throughout the gastrointestinal tract. Roles fulfilled by enteric glia are diverse and contribute to maintaining intestinal homeostasis through interactions with neurons, immune cells, and the intestinal epithelium. Glial influences optimize physiological gut processes such as intestinal motility and epithelial barrier integrity through actions that regulate the microenvironment of the enteric nervous system, the activity of enteric neurons, intestinal epithelial functions, and immune response. Changes to glial phenotype in disease switch glial functions and contribute to intestinal inflammation, dysmotility, pain, neuroplasticity, and tumorigenesis. This review summarizes current concepts regarding the physiological roles of enteric glial cells and their potential contributions to gut disease. The discussion is focused on recent evidence that suggests important glial contributions to gastrointestinal health and pathophysiology.
Collapse
Affiliation(s)
- Jacques Gonzales
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA;
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
11
|
Kato R, Yamamoto T, Ogata H, Miyata K, Hayashi S, Gershon MD, Kadowaki M. Indigenous gut microbiota constitutively drive release of ciliary neurotrophic factor from mucosal enteric glia to maintain the homeostasis of enteric neural circuits. Front Immunol 2024; 15:1372670. [PMID: 39606241 PMCID: PMC11598343 DOI: 10.3389/fimmu.2024.1372670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
It has recently become clear that the gut microbiota influence intestinal motility, intestinal barrier function, and mucosal immune function; therefore, the gut microbiota are deeply involved in the maintenance of intestinal homeostasis. The effects of the gut microbiota on the enteric nervous system (ENS) in the adult intestine, however, remain poorly understood. In the current study, we investigated the effects of the gut microbiota on the ENS. Male C57BL/6 SPF mice at 12 weeks of age were given a cocktail of four antibiotics (ABX) orally to induce dysbiosis (ABX mice). As early as six hours after ABX administration, the weight of the cecum of ABX mice increased to be significantly greater than that of vehicle-treated animals; moreover, ABX-induced dysbiosis reduced the density of enteric nerve fibers (marked by tubulin-β3 immunoreactivity) in the lamina propria of the proximal colon to approximately 60% that of control. TAK242, a TLR4 antagonist, significantly lowered the nerve fiber density in the lamina propria of the proximal colonic mucosa to approximately 60% that of vehicle-treated SPF mice. We thus developed and tested the hypothesis that mucosal glia expressing TLR4 are activated by enteric bacteria and release neurotrophic factors that contribute to the maintenance of enteric neural circuits. Neurotrophic factors in the mucosa of the SPF mouse proximal colon were examined immunohistochemically. Ciliary neurotrophic factor (CNTF) was abundantly expressed in the lamina propria; most of the CNTF immunoreactivity was observed in mucosal glia (marked by S100β immunoreactivity). Administration of CNTF (subcutaneously, 0.3 mg/kg, 3 doses, 2 hours apart) to ABX mice significantly increased mucosal nerve fiber density in the ABX mouse proximal colon to nearly control levels. The effect of CNTF on enteric mucosal nerve fibers was examined in isolated preparations of proximal colon of ABX mice. As it did in vivo, exposure to CNTF in vitro significantly increased enteric mucosal nerve fiber density in the ABX-treated colon. In conclusion, our evidence suggests that gut microbiota constitutively activate TLR4 signaling in enteric mucosal glia, which secrete CNTF in response. The resulting bacterial-driven glial release of CNTF helps to maintain the integrity of enteric mucosal nerve fibers.
Collapse
Affiliation(s)
- Ryo Kato
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Hanako Ogata
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Kana Miyata
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Michael D. Gershon
- Departments of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| |
Collapse
|
12
|
Reiner S, Linda S, Ebrahim H, Patrick L, Sven W. The role of reactive enteric glia-macrophage interactions in acute and chronic inflammation. Neurogastroenterol Motil 2024:e14947. [PMID: 39428750 DOI: 10.1111/nmo.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Enteric glia are a heterogeneous population of peripheral glia within the enteric nervous system and play pivotal roles in gut homeostasis, tissue integrity, coordination of motility, and intestinal immune responses. Under physiological conditions, they communicate with enteric neurons to control intestinal motility. In contrast, enteric glia undergo reactive changes in response to inflammatory signals during enteric neuroinflammation and participate in immune control. In this state, these glia are called reactive enteric glia, which promote cytokine and chemokine secretion and perpetuate immune cell recruitment, thereby affecting disease progression. Interestingly, reactive glia exhibit a huge plasticity and adapt to or shape the immune environment towards a resolving phenotype during inflammation and neuropathies. Recent studies revealed a bidirectional communication between enteric glia and resident and infiltrating immune cells under healthy conditions and in the context of inflammation-based intestinal disorders and neuropathies. While recent reviews give a superb general overview of enteric glial reactivity, we herein discuss the latest evidence on enteric glial reactivity in two prominent inflammatory conditions: acute postoperative inflammation, resulting in postoperative ileus, and chronic inflammation in inflammatory bowel diseases. We define their plasticity during inflammation and the interplay between reactive enteric glia and intestinal macrophages. Finally, we sketch important questions that should be addressed to clarify further the impact of enteric glial reactivity on intestinal inflammation.
Collapse
Affiliation(s)
| | - Schneider Linda
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Hamza Ebrahim
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Leven Patrick
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Wehner Sven
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Blank N, Weiner M, Patel S, Köhler S, Thaiss CA. Mind the GAPS: Glia associated with psychological stress. J Neuroendocrinol 2024:e13451. [PMID: 39384366 DOI: 10.1111/jne.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Glial cells are an integral component of the nervous system, performing crucial functions that extend beyond structural support, including modulation of the immune system, tissue repair, and maintaining tissue homeostasis. Recent studies have highlighted the importance of glial cells as key mediators of stress responses across different organs. This review focuses on the roles of glial cells in peripheral tissues in health and their involvement in diseases linked to psychological stress. Populations of glia associated with psychological stress ("GAPS") emerge as a promising target cell population in our basic understanding of stress-associated pathologies, highlighting their role as mediators of the deleterious effects of psychological stress on various health conditions. Ultimately, new insights into the impact of stress on glial cell populations in the periphery may support clinical efforts aimed at improving the psychological state of patients for improved health outcomes.
Collapse
Affiliation(s)
- Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Molly Weiner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shaan Patel
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah Köhler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Obesity, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Liu P, Zhang X, Zhao N, Dai J, Liang G. Effects of exogenous hydrogen sulfide and honokiol intervention on the proliferation, apoptosis, and calcium signaling pathway of rat enteric glial cells. Biomed Pharmacother 2024; 179:117290. [PMID: 39153433 DOI: 10.1016/j.biopha.2024.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that influences digestive and nervous system functions. Enteric glial cells (EGCs) are integral to the enteric nervous system and play a role in regulating gastrointestinal motility. This study explored the dual effects of exogenous H2S on EGCs and the influence of apoptosis-related pathways and ion channels in EGCs. We also administered honokiol for further interventional studies. The results revealed that low-concentration H2S increased the mitochondrial membrane potential (MMP) of EGCs, decreased the whole-cell membrane potential, downregulated BAX and caspase-3, upregulated Bcl2 expression, reduced apoptosis, and promoted cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also increased. A high concentration of H2S had the opposite effect. In addition, GFAP mRNA expression was upregulated in the test-low group, downregulated in the test-high group, and upregulated in the test-high + Hon group. Honokiol treatment increased MMP, reduced whole-cell membrane potential, inhibited BAX and caspase-3 expression, increased Bcl2 expression, decreased cell apoptosis, and increased cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also upregulated. In conclusion, our study showed that exogenous H2S can bidirectionally regulate EGC proliferation and apoptosis by affecting MMP and cell membrane potential via the Bcl2/BAX/caspase-3 pathway and modulate Cx43-mediated Ca2+ responses in EGCs to regulate colonic motility bidirectionally. Honokiol can ameliorate the damage to EGCs induced by high H2S concentrations through the Bcl2/BAX/caspase-3 pathway and improve colon motility by increasing Cx43 expression and Ca2+ concentration.
Collapse
Affiliation(s)
- PengFei Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - XiaoDan Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Nan Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - JiaLing Dai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - GuoGang Liang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China.
| |
Collapse
|
15
|
Xiaoling Q, Yurong G, Ke X, Yuxiang Q, Panpan A, Yinzhen D, Xue L, Tingting L, Chuanxi T. GDNF's Role in Mitigating Intestinal Reactive Gliosis and Inflammation to Improve Constipation and Depressive Behavior in Rats with Parkinson's disease. J Mol Neurosci 2024; 74:78. [PMID: 39158627 DOI: 10.1007/s12031-024-02254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Constipation is a common symptom in patients with Parkinson's disease (PD) and is often associated with depression. Enteric glial cells (EGCs) are crucial for regulating intestinal inflammation and colon motility, and their activation can lead to the death of intestinal neurons. Glial cell line-derived neurotrophic factor (GDNF) has been recognized for its neuroprotective properties in various neurological disorders, including PD. This study explores the potential of GDNF in alleviating intestinal reactive gliosis and inflammation, thereby improving constipation and depressive behavior in a rat model of PD. A PD model was established via unilateral stereotaxic injection of 6-hydroxydopamine (6-OHDA). Five weeks post-injury, AAV5-GDNF (2 ~ 5 × 10^11) was intraperitoneally injected into experimental and control rats. Fecal moisture percentage (FMP) and colonic propulsion rate (CPPR) were used to evaluate colon motility. Colon-related inflammation and colonic epithelial morphology were assessed, and depressive behavior was analyzed one week before sampling. PD rats exhibited reduced colonic motility and GDNF expression, along with increased EGC reactivity and elevated levels of pro-inflammatory cytokines IL-1, IL-6, and TNF-α. Additionally, there was an up-regulation of CX43 and a decrease in PGP 9.5 expression. The intraperitoneal injection of AAV-GDNF significantly protected colonic neurons by inhibiting EGC activation and down-regulating CX43. This treatment also led to a notable reduction in depressive-like symptoms in PD rats with constipation. GDNF effectively reduces markers of reactive gliosis and inflammation, and promotes the survival of colonic neurons, and improves colonic motility in PD rats by regulating CX43 activity. Furthermore, GDNF treatment alleviates depressive behavior, suggesting that GDNF or its agonists could be promising therapeutic agents for managing gastrointestinal and neuropsychiatric symptoms associated with PD.
Collapse
Affiliation(s)
- Qin Xiaoling
- Department of Geriatrics, Shanghai 4th People's Hospital, Tongji University, No.1279 Sanmen Road, Shanghai, 200081, China.
| | - Guo Yurong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xue Ke
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qiu Yuxiang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - An Panpan
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Du Yinzhen
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Xue
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Liu Tingting
- Department of Geriatrics, Shanghai 4th People's Hospital, Tongji University, No.1279 Sanmen Road, Shanghai, 200081, China
| | - Tang Chuanxi
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
16
|
Almeida PP, Brito ML, Thomasi B, Mafra D, Fouque D, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. Is the enteric nervous system a lost piece of the gut-kidney axis puzzle linked to chronic kidney disease? Life Sci 2024; 351:122793. [PMID: 38848938 DOI: 10.1016/j.lfs.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The enteric nervous system (ENS) regulates numerous functional and immunological attributes of the gastrointestinal tract. Alterations in ENS cell function have been linked to intestinal outcomes in various metabolic, intestinal, and neurological disorders. Chronic kidney disease (CKD) is associated with a challenging intestinal environment due to gut dysbiosis, which further affects patient quality of life. Although the gut-related repercussions of CKD have been thoroughly investigated, the involvement of the ENS in this puzzle remains unclear. ENS cell dysfunction, such as glial reactivity and alterations in cholinergic signaling in the small intestine and colon, in CKD are associated with a wide range of intestinal pathways and responses in affected patients. This review discusses how the ENS is affected in CKD and how it is involved in gut-related outcomes, including intestinal permeability, inflammation, oxidative stress, and dysmotility.
Collapse
Affiliation(s)
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University (MSU), East Lansing, MI, USA
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Ana Lúcia Tavares-Gomes
- Neurosciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| |
Collapse
|
17
|
D'Antongiovanni V, Pellegrini C, Antonioli L, Ippolito C, Segnani C, Benvenuti L, D'Amati A, Errede M, Virgintino D, Fornai M, Bernardini N. Enteric Glia and Brain Astroglia: Complex Communication in Health and Disease along the Gut-Brain Axis. Neuroscientist 2024; 30:493-510. [PMID: 37052336 DOI: 10.1177/10738584231163460] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Several studies have provided interesting evidence about the role of the bidirectional communication between the gut and brain in the onset and development of several pathologic conditions, including inflammatory bowel diseases (IBDs), neurodegenerative diseases, and related comorbidities. Indeed, patients with IBD can experience neurologic disorders, including depression and cognitive impairment, besides typical intestinal symptoms. In parallel, patients with neurodegenerative disease, such as Parkinson disease and Alzheimer disease, are often characterized by the occurrence of functional gastrointestinal disorders. In this context, enteric glial cells and brain astrocytes are emerging as pivotal players in the initiation/maintenance of neuroinflammatory responses, which appear to contribute to the alterations of intestinal and neurologic functions observed in patients with IBD and neurodegenerative disorders. The present review was conceived to provide a comprehensive and critical overview of the available knowledge on the morphologic, molecular, and functional changes occurring in the enteric glia and brain astroglia in IBDs and neurologic disorders. In addition, our intent is to identify whether such alterations could represent a common denominator involved in the onset of comorbidities associated with the aforementioned disorders. This might help to identify putative targets useful to develop novel pharmacologic approaches for the therapeutic management of such disturbances.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio D'Amati
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Schneider L, Schneider R, Hamza E, Wehner S. Extracellular matrix substrates differentially influence enteric glial cell homeostasis and immune reactivity. Front Immunol 2024; 15:1401751. [PMID: 39119341 PMCID: PMC11306135 DOI: 10.3389/fimmu.2024.1401751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Enteric glial cells are important players in the control of motility, intestinal barrier integrity and inflammation. During inflammation, they switch into a reactive phenotype enabling them to release inflammatory mediators, thereby shaping the inflammatory environment. While a plethora of well-established in vivo models exist, cell culture models necessary to decipher the mechanistic pathways of enteric glial reactivity are less well standardized. In particular, the composition of extracellular matrices (ECM) can massively affect the experimental outcome. Considering the growing number of studies involving primary enteric glial cells, a better understanding of their homeostatic and inflammatory in vitro culture conditions is needed. Methods We examined the impact of different ECMs on enteric glial culture purity, network morphology and immune responsiveness. Therefore, we used immunofluorescence and brightfield microscopy, as well as 3' bulk mRNA sequencing. Additionally, we compared cultured cells with in vivo enteric glial transcriptomes isolated from Sox10iCreERT2Rpl22HA/+ mice. Results We identified Matrigel and laminin as superior over other coatings, including poly-L-ornithine, different lysines, collagens, and fibronectin, gaining the highest enteric glial purity and most extended glial networks expressing connexin-43 hemichannels allowing intercellular communication. Transcriptional analysis revealed strong similarities between enteric glia on Matrigel and laminin with enrichment of gene sets supporting neuronal differentiation, while cells on poly-L-ornithine showed enrichment related to cell proliferation. Comparing cultured and in vivo enteric glial transcriptomes revealed a 50% overlap independent of the used coating substrates. Inflammatory activation of enteric glia by IL-1β treatment showed distinct coating-dependent gene expression signatures, with an enrichment of genes related to myeloid and epithelial cell differentiation on Matrigel and laminin coatings, while poly-L-ornithine induced more gene sets related to lymphocyte differentiation. Discussion Together, changes in morphology, differentiation and immune activation of primary enteric glial cells proved a strong effect of the ECM. We identified Matrigel and laminin as pre-eminent substrates for murine enteric glial cultures. These new insights will help to standardize and improve enteric glial culture quality and reproducibility between in vitro studies in the future, allowing a better comparison of their functional role in enteric neuroinflammation.
Collapse
Affiliation(s)
| | | | | | - Sven Wehner
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
19
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Gonzales J, Dharshika C, Mazhar K, Morales-Soto W, McClain JL, Moeser AJ, Nault R, Price TJ, Gulbransen BD. Early life adversity promotes gastrointestinal dysfunction through a sex-dependent phenotypic switch in enteric glia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596805. [PMID: 38895433 PMCID: PMC11185517 DOI: 10.1101/2024.05.31.596805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Irritable bowel syndrome and related disorders of gut-brain interaction (DGBI) are common and exhibit a complex, poorly understood etiology that manifests as abnormal gut motility and pain. Risk factors such as biological sex, stressors during critical periods, and inflammation are thought to influence DGBI vulnerability by reprogramming gut-brain circuits, but the specific cells affected are unclear. Here, we used a model of early life stress to understand cellular mechanisms in the gut that produce DGBIs. Our findings identify enteric glia as a key cellular substrate in which stress and biological sex converge to dictate DGBI susceptibility. Enteric glia exhibit sexual dimorphism in genes and functions related to cellular communication, inflammation, and disease susceptibility. Experiencing early life stress has sex-specific effects on enteric glia that cause a phenotypic switch in male glia toward a phenotype normally observed in females. This phenotypic transformation is followed by physiological changes in the gut, mirroring those observed in DGBI in humans. These effects are mediated, in part, by alterations to glial prostaglandin and endocannabinoid signaling. Together, these data identify enteric glia as a cellular integration site through which DGBI risk factors produce changes in gut physiology and suggest that manipulating glial signaling may represent an attractive target for sex-specific therapeutic strategies in DGBIs.
Collapse
|
21
|
Costa DVS, Pham N, Loureiro AV, Yang SE, Behm BW, Warren CA. Clostridioides difficile infection promotes gastrointestinal dysfunction in human and mice post-acute phase of the disease. Anaerobe 2024; 87:102837. [PMID: 38527650 PMCID: PMC11180562 DOI: 10.1016/j.anaerobe.2024.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES In the US, Clostridioides difficile (C. difficile) infection (CDI) is the 8th leading cause of hospital readmission and 7th for mortality among all gastrointestinal (GI) disorders. Here, we investigated GI dysfunction post-CDI in humans and mice post-acute infection. MATERIALS AND METHODS From March 2020 to July 2021, we reviewed the clinical records of 67 patients referred to the UVA Complicated C. difficile clinic for fecal microbiota transplantation (FMT) eligibility. C57BL/6 mice were infected with C. difficile and clinical scores were determined daily. Stool samples from mice were collected to measure the shedding of C. difficile and myeloperoxidase (MPO) levels. On day 21 post-infection, Evans's blue and FITC-70kDa methods were performed to evaluate GI motility in mice. RESULTS Of the 67 patients evaluated at the C. difficile clinic, 40 patients (59.7%) were confirmed to have CDI, and 22 patients (32.8%) with post-CDI IBS (diarrhea-type, constipation-type, and mixed-type). In infected mice, levels of MPO in stools and clinical score were higher on day 3. On day 21, mice recovered from body weight loss induced by CDI, and fecal MPO was undetectable. The total GI transit time (TGITT) and FITC-70kDa levels on the proximal colon were increased in infected mice (p = 0.002), suggesting a constipation phenotype post-acute phase of CDI. A positive correlation intestinal inflammation on day 3 and TGITT on day 21 was observed. CONCLUSION In conclusion, post-infection intestinal dysfunction occurs in humans and mice post-CDI. Importantly, we have validated in the mouse model that CDI causes abnormal GI transit in the recovery phase of the disease, indicating the potential utility of the model in exploring the underlying mechanisms of post-infectious IBS in humans.
Collapse
Affiliation(s)
- Deiziane V S Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | - Natalie Pham
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Andrea V Loureiro
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Suemin E Yang
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Brian W Behm
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA, USA
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Li HY, Yan WX, Li J, Ye J, Wu ZG, Hou ZK, Chen B. Global research status and trends of enteric glia: a bibliometric analysis. Front Pharmacol 2024; 15:1403767. [PMID: 38855748 PMCID: PMC11157232 DOI: 10.3389/fphar.2024.1403767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Enteric glia are essential components of the enteric nervous system. Previously believed to have a passive structural function, mounting evidence now suggests that these cells are indispensable for maintaining gastrointestinal homeostasis and exert pivotal influences on both wellbeing and pathological conditions. This study aimed to investigate the global status, research hotspots, and future directions of enteric glia. Methods The literature on enteric glia research was acquired from the Web of Science Core Collection. VOSviewer software (v1.6.19) was employed to visually represent co-operation networks among countries, institutions, and authors. The co-occurrence analysis of keywords and co-citation analysis of references were conducted using CiteSpace (v6.1.R6). Simultaneously, cluster analysis and burst detection of keywords and references were performed. Results A total of 514 publications from 36 countries were reviewed. The United States was identified as the most influential country. The top-ranked institutions were University of Nantes and Michigan State University. Michel Neunlist was the most cited author. "Purinergic signaling" was the largest co-cited reference cluster, while "enteric glial cells (EGCs)" was the cluster with the highest number of co-occurring keywords. As the keyword with the highest burst strength, Crohns disease was a hot topic in the early research on enteric glia. The burst detection of keywords revealed that inflammation, intestinal motility, and gut microbiota may be the research frontiers. Conclusion This study provides a comprehensive bibliometric analysis of enteric glia research. EGCs have emerged as a crucial link between neurons and immune cells, attracting significant research attention in neurogastroenterology. Their fundamental and translational studies on inflammation, intestinal motility, and gut microbiota may promote the treatment of some gastrointestinal and parenteral disorders.
Collapse
Affiliation(s)
- Huai-Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Wei-Xin Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jia Li
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Ye
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhi-Guo Wu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng-Kun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Bin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Thomasi B, Valdetaro L, Gulbransen B, Tavares-Gomes AL. Neuroimmune Connectomes in the Gut and Their Implications in Parkinson's Disease. Mol Neurobiol 2024; 61:2081-2098. [PMID: 37840070 PMCID: PMC11151216 DOI: 10.1007/s12035-023-03679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
The gastrointestinal tract is the largest immune organ and it receives dense innervation from intrinsic (enteric) and extrinsic (sympathetic, parasympathetic, and somatosensory) neurons. The immune and neural systems of the gut communicate with each other and their interactions shape gut defensive mechanisms and neural-controlled gut functions such as motility and secretion. Changes in neuroimmune interactions play central roles in the pathogenesis of diseases such as Parkinson's disease (PD), which is a multicentric disorder that is heterogeneous in its manifestation and pathogenesis. Non-motor and premotor symptoms of PD are common in the gastrointestinal tract and the gut is considered a potential initiation site for PD in some cases. How the enteric nervous system and neuroimmune signaling contribute to PD disease progression is an emerging area of interest. This review focuses on intestinal neuroimmune loops such as the neuroepithelial unit, enteric glial cells and their immunomodulatory effects, anti-inflammatory cholinergic signaling and the relationship between myenteric neurons and muscularis macrophages, and the role of α-synuclein in gut immunity. Special consideration is given to the discussion of intestinal neuroimmune connectomes during PD and their possible implications for various aspects of the disease.
Collapse
Affiliation(s)
- Beatriz Thomasi
- Department of Physiology, Michigan State University, Biomedical and Physical Sciences Building - Gulbransen lab, 567, Wilson Rd, Room 3199, East Lansing, MI, USA.
| | - Luisa Valdetaro
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA
| | - Brian Gulbransen
- Department of Physiology, Michigan State University, Biomedical and Physical Sciences Building - Gulbransen lab, 567, Wilson Rd, Room 3199, East Lansing, MI, USA
| | - Ana Lúcia Tavares-Gomes
- Programa de Pós-Graduação Em Neurociências, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Rajasekhar P, Carbone SE, Johnston ST, Nowell CJ, Wiklendt L, Crampin EJ, She Y, DiCello JJ, Saito A, Sorensen L, Nguyen T, Lee KM, Hamilton JA, King SK, Eriksson EM, Spencer NJ, Gulbransen BD, Veldhuis NA, Poole DP. TRPV4 is expressed by enteric glia and muscularis macrophages of the colon but does not play a prominent role in colonic motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574831. [PMID: 38260314 PMCID: PMC10802399 DOI: 10.1101/2024.01.09.574831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Mechanosensation is an important trigger of physiological processes in the gastrointestinal tract. Aberrant responses to mechanical input are associated with digestive disorders, including visceral hypersensitivity. Transient Receptor Potential Vanilloid 4 (TRPV4) is a mechanosensory ion channel with proposed roles in visceral afferent signaling, intestinal inflammation, and gut motility. While TRPV4 is a potential therapeutic target for digestive disease, current mechanistic understanding of how TRPV4 may influence gut function is limited by inconsistent reports of TRPV4 expression and distribution. Methods In this study we profiled functional expression of TRPV4 using Ca2+ imaging of wholemount preparations of the mouse, monkey, and human intestine in combination with immunofluorescent labeling for established cellular markers. The involvement of TRPV4 in colonic motility was assessed in vitro using videomapping and contraction assays. Results The TRPV4 agonist GSK1016790A evoked Ca2+ signaling in muscularis macrophages, enteric glia, and endothelial cells. TRPV4 specificity was confirmed using TRPV4 KO mouse tissue or antagonist pre-treatment. Calcium responses were not detected in other cell types required for neuromuscular signaling including enteric neurons, interstitial cells of Cajal, PDGFRα+ cells, and intestinal smooth muscle. TRPV4 activation led to rapid Ca2+ responses by a subpopulation of glial cells, followed by sustained Ca2+ signaling throughout the enteric glial network. Propagation of these waves was suppressed by inhibition of gap junctions or Ca2+ release from intracellular stores. Coordinated glial signaling in response to GSK1016790A was also disrupted in acute TNBS colitis. The involvement of TRPV4 in the initiation and propagation of colonic motility patterns was examined in vitro. Conclusions We reveal a previously unappreciated role for TRPV4 in the initiation of distension-evoked colonic motility. These observations provide new insights into the functional role of TRPV4 activation in the gut, with important implications for how TRPV4 may influence critical processes including inflammatory signaling and motility.
Collapse
Affiliation(s)
- Pradeep Rajasekhar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Centre for Dynamic Imaging, WEHI, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Stuart T Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lukasz Wiklendt
- College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Edmund J Crampin
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yinghan She
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jesse J DiCello
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ayame Saito
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Luke Sorensen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thanh Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kevin Mc Lee
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3010, Australia
| | - John A Hamilton
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3010, Australia
| | - Sebastian K King
- Department of Paediatric Surgery, The Royal Children's Hospital, Parkville, VIC 3052, Australia
- Surgical Research, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Emily M Eriksson
- Population Health and Immunity, WEHI, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nick J Spencer
- College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | | | - Nicholas A Veldhuis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
25
|
Mao X, Shen J. Potential roles of enteric glial cells in Crohn's disease: A critical review. Cell Prolif 2024; 57:e13536. [PMID: 37551711 PMCID: PMC10771111 DOI: 10.1111/cpr.13536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Enteric glial cells in the enteric nervous system are critical for the regulation of gastrointestinal homeostasis. Increasing evidence suggests two-way communication between enteric glial cells and both enteric neurons and immune cells. These interactions may be important in the pathogenesis of Crohn's disease (CD), a chronic relapsing disease characterized by a dysregulated immune response. Structural abnormalities in glial cells have been identified in CD. Furthermore, classical inflammatory pathways associated with CD (e.g., the nuclear factor kappa-B pathway) function in enteric glial cells. However, the specific mechanisms by which enteric glial cells contribute to CD have not been summarized in detail. In this review, we describe the possible roles of enteric glial cells in the pathogenesis of CD, including the roles of glia-immune interactions, neuronal modulation, neural plasticity, and barrier integrity. Additionally, the implications for the development of therapeutic strategies for CD based on enteric glial cell-mediated pathogenic processes are discussed.
Collapse
Affiliation(s)
- Xinyi Mao
- Division of Gastroenterology and HepatologyBaoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive DiseaseShanghaiChina
| | - Jun Shen
- Division of Gastroenterology and HepatologyBaoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
26
|
Yan Q, Feng Z, Jiang B, Yao J. Biological functions of connexins in the development of inflammatory bowel disease. Scand J Gastroenterol 2024; 59:142-149. [PMID: 37837320 DOI: 10.1080/00365521.2023.2267713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory diseases with unknown etiology. Gap junctions composed of connexins (Cxs) have been recently validated as an important factor in the development of IBD. Under IBD-induced inflammatory response in the gut, gap junctions connect multiple signaling pathways involved in the interaction between inflammatory cells with other intestinal cells, which altogether mediate the development of IBD. This paper is a narrative review aiming to comprehensively elucidate the biological function of connexins, especially the ubiquitously and predominantly expressed Cx43, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Qiaojing Yan
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Zhiling Feng
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Bin Jiang
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
27
|
Abstract
Glial cells in the gut are specialized to fine-tune intestinal function.
Collapse
Affiliation(s)
- Marissa Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
28
|
Sun A, Hu A, Lin J, Wang L, Xie C, Shi Y, Hong Q, Zhao G. Involvement of iNOS-induced reactive enteric glia cells in gastrointestinal motility disorders of postoperative Ileus mice. J Chem Neuroanat 2023; 133:102312. [PMID: 37459999 DOI: 10.1016/j.jchemneu.2023.102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 09/05/2023]
Abstract
Postoperative ileus (POI) is the cessation or reduction of gastrointestinal (GI) motility after surgery. Reactive enteric glial cells (EGCs) are critical for maintaining bowel function. However, the triggering mechanisms and downstream effects of reactive EGCs in POI were poorly understood. The goal of this current study was to investigate whether the inducible nitric oxide synthase (iNOS)-driven reactive EGCs participated in GI motility disorders and mechanisms underlying altered GI motility in POI. Intestinal manipulation (IM)-induced POI mice and iNOS-/- mice were used in the study. Longitudinal muscle and myenteric plexuses (LMMPs) from the distal small intestine were stained by immunofluorescence. Our results found that the GI motility disorders occurred in the IM-induced POI mice, and reactive EGCs were observed in LMMPs. Glial metabolic inhibitor gliotoxin fluorocitrate (FC) treatment or iNOS gene knockout attenuated GI motility dysfunction. In addition, we also found that FC treatment or iNOS gene knockout significantly inhibited the fluorescence intensity macrophage colony-stimulating factor (M-CSF), which reduced M2 phenotype macrophages activation in LMMPs of IM-induced POI mice. Our findings demonstrated that iNOS-driven reactive EGCs played a key role and were tightly linked to the MMs homeostasis in the POI mice. EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target.
Collapse
Affiliation(s)
- Ailing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - An Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Jialing Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Linan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Chuangbo Xie
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Yongyong Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China.
| | - Qingxiong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China.
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China.
| |
Collapse
|
29
|
Thomasi B, Valdetaro L, Ricciardi MC, Gonçalves de Carvalho M, Fialho Tavares I, Tavares-Gomes AL. Enteric glia as a player of gut-brain interactions during Parkinson's disease. Front Neurosci 2023; 17:1281710. [PMID: 38027511 PMCID: PMC10644407 DOI: 10.3389/fnins.2023.1281710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The enteric glia has been shown as a potential component of neuroimmune interactions that signal in the gut-brain axis during Parkinson's disease (PD). Enteric glia are a peripheral glial type found in the enteric nervous system (ENS) that, associated with enteric neurons, command various gastrointestinal (GI) functions. They are a unique cell type, with distinct phenotypes and distribution in the gut layers, which establish relevant neuroimmune modulation and regulate neuronal function. Comprehension of enteric glial roles during prodromal and symptomatic phases of PD should be a priority in neurogastroenterology research, as the reactive enteric glial profile, gastrointestinal dysfunction, and colonic inflammation have been verified during the prodromal phase of PD-a moment that may be interesting for interventions. In this review, we explore the mechanisms that should govern enteric glial signaling through the gut-brain axis to understand pathological events and verify the possible windows and pathways for therapeutic intervention. Enteric glia directly modulate several functional aspects of the intestine, such as motility, visceral sensory signaling, and immune polarization, key GI processes found deregulated in patients with PD. The search for glial biomarkers, the investigation of temporal-spatial events involving glial reactivity/signaling, and the proposal of enteric glia-based therapies are clearly demanded for innovative and intestine-related management of PD.
Collapse
Affiliation(s)
- Beatriz Thomasi
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Luisa Valdetaro
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Maria Carolina Ricciardi
- Neuroglial Interaction Lab, Neuroscience Program, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Isabela Fialho Tavares
- Neuroglial Interaction Lab, Neurobiology Department, Universidade Federal Fluminense, Niterói, Brazil
| | - Ana Lucia Tavares-Gomes
- Neuroglial Interaction Lab, Neuroscience Program, Universidade Federal Fluminense, Niterói, Brazil
- Neuroglial Interaction Lab, Neurobiology Department, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
30
|
Mazzotta E, Grants I, Villalobos-Hernandez E, Chaudhuri S, McClain JL, Seguella L, Kendig DM, Blakeney BA, Murthy SK, Schneider R, Leven P, Wehner S, Harzman A, Grider JR, Gulbransen BD, Christofi FL. BQ788 reveals glial ET B receptor modulation of neuronal cholinergic and nitrergic pathways to inhibit intestinal motility: Linked to postoperative ileus. Br J Pharmacol 2023; 180:2550-2576. [PMID: 37198101 PMCID: PMC11085045 DOI: 10.1111/bph.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND AND PURPOSE ET-1 signalling modulates intestinal motility and inflammation, but the role of ET-1/ETB receptor signalling is poorly understood. Enteric glia modulate normal motility and inflammation. We investigated whether glial ETB signalling regulates neural-motor pathways of intestinal motility and inflammation. EXPERIMENTAL APPROACH We studied ETB signalling using: ETB drugs (ET-1, SaTX, BQ788), activity-dependent stimulation of neurons (high K+ -depolarization, EFS), gliotoxins, Tg (Ednrb-EGFP)EP59Gsat/Mmucd mice, cell-specific mRNA in Sox10CreERT2 ;Rpl22-HAflx or ChATCre ;Rpl22-HAflx mice, Sox10CreERT2 ::GCaMP5g-tdT, Wnt1Cre2 ::GCaMP5g-tdT mice, muscle tension recordings, fluid-induced peristalsis, ET-1 expression, qPCR, western blots, 3-D LSM-immunofluorescence co-labelling studies in LMMP-CM and a postoperative ileus (POI) model of intestinal inflammation. KEY RESULTS In the muscularis externa ETB receptor is expressed exclusively in glia. ET-1 is expressed in RiboTag (ChAT)-neurons, isolated ganglia and intra-ganglionic varicose-nerve fibres co-labelled with peripherin or SP. ET-1 release provides activity-dependent glial ETB receptor modulation of Ca2+ waves in neural evoked glial responses. BQ788 reveals amplification of glial and neuronal Ca2+ responses and excitatory cholinergic contractions, sensitive to L-NAME. Gliotoxins disrupt SaTX-induced glial-Ca2+ waves and prevent BQ788 amplification of contractions. The ETB receptor is linked to inhibition of contractions and peristalsis. Inflammation causes glial ETB up-regulation, SaTX-hypersensitivity and glial amplification of ETB signalling. In vivo BQ788 (i.p., 1 mg·kg-1 ) attenuates intestinal inflammation in POI. CONCLUSION AND IMPLICATIONS Enteric glial ET-1/ETB signalling provides dual modulation of neural-motor circuits to inhibit motility. It inhibits excitatory cholinergic and stimulates inhibitory nitrergic motor pathways. Amplification of glial ETB receptors is linked to muscularis externa inflammation and possibly pathogenic mechanisms of POI.
Collapse
Affiliation(s)
- Elvio Mazzotta
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Iveta Grants
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Samhita Chaudhuri
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Jonathon L McClain
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Derek M Kendig
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bryan A Blakeney
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Srinivasa K Murthy
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Patrick Leven
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Alan Harzman
- Department of GI Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - John R Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Fedias L Christofi
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
31
|
Sanchini G, Vaes N, Boesmans W. Mini-review: Enteric glial cell heterogeneity: Is it all about the niche? Neurosci Lett 2023; 812:137396. [PMID: 37442521 DOI: 10.1016/j.neulet.2023.137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Enteric glial cells represent the enteric population of peripheral glia. According to their 'glial' nature, their principal function is to support enteric neurons in both structural and functional ways. Mounting evidence however demonstrates that enteric glial cells crucially contribute to the majority of enteric nervous system functions, thus acting as pivotal players in the maintenance of gut homeostasis. Various types of enteric glia are present within the gut wall, creating an intricate interaction network with other gastrointestinal cell types. Their distribution throughout the different layers of the gut wall translates in characteristic phenotypes that are tailored to the local tissue requirements of the digestive tract. This heterogeneity is assumed to be mirrored by functional specialization, but the extensive plasticity and versatility of enteric glial cells complicates a one on one phenotype/function definition. Moreover, the relative contribution of niche-specific signals versus lineage determinants for driving enteric glial heterogeneity is still uncertain. In this review we focus on the current understanding of phenotypic and functional enteric glial cell heterogeneity, from a microenvironmental and developmental perspective.
Collapse
Affiliation(s)
- Gabriele Sanchini
- Enteric Neurobiology Lab, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Nathalie Vaes
- Enteric Neurobiology Lab, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Werend Boesmans
- Enteric Neurobiology Lab, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium; Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
32
|
Scantlen MD, Majd H, Fattahi F. Modeling enteric glia development, physiology and disease using human pluripotent stem cells. Neurosci Lett 2023; 811:137334. [PMID: 37315730 DOI: 10.1016/j.neulet.2023.137334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Enteric glia play an integral role in many functions of the gastrointestinal (GI) system, but they have not been characterized comprehensively compared to other cells of the gut. Enteric glia are a specialized type of neuroglia in the enteric nervous system (ENS) that support neurons and interact with other cells of the gut such as immune and epithelial cells. The ENS is diffusely spread throughout the GI tract, making it extremely difficult to access and manipulate. As a result, it has remained extremely understudied. Nevertheless, much more is known about enteric neurons than enteric glia despite the glia being 6 times more abundant in humans [1]. In the past two decades, our understanding of enteric glia has greatly expanded and their many roles in the gut have been described and reviewed elsewhere [2-5]. While the field has made substantial progress, there are still a multitude of open questions about enteric glia biology and their role in disease. Many of these questions have remained intractable due to technical limitations of currently available experimental models of the ENS. In this review, we describe the benefits and limitations of the models commonly used to study enteric glia and discuss the ways in which a human pluripotent stem cell (hPSC) derived enteric glia model could help advance the field.
Collapse
Affiliation(s)
- Megan D Scantlen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Homa Majd
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94110, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA.
| |
Collapse
|
33
|
Abstract
Propulsion of contents in the gastrointestinal tract requires coordinated functions of the extrinsic nerves to the gut from the brain and spinal cord, as well as the neuromuscular apparatus within the gut. The latter includes excitatory and inhibitory neurons, pacemaker cells such as the interstitial cells of Cajal and fibroblast-like cells, and smooth muscle cells. Coordination between these extrinsic and enteric neurons results in propulsive functions which include peristaltic reflexes, migrating motor complexes in the small intestine which serve as the housekeeper propelling to the colon the residual content after digestion, and mass movements in the colon which lead to defecation.
Collapse
Affiliation(s)
- Gary M Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, Vermont
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Kuil LE, Kakiailatu NJ, Windster JD, Bindels E, Zink JT, van der Zee G, Hofstra RM, Shepherd IT, Melotte V, Alves MM. Unbiased characterization of the larval zebrafish enteric nervous system at a single cell transcriptomic level. iScience 2023; 26:107070. [PMID: 37426341 PMCID: PMC10329177 DOI: 10.1016/j.isci.2023.107070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/15/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
The enteric nervous system (ENS) regulates many gastrointestinal functions including peristalsis, immune regulation and uptake of nutrients. Defects in the ENS can lead to severe enteric neuropathies such as Hirschsprung disease (HSCR). Zebrafish have proven to be fruitful in the identification of genes involved in ENS development and HSCR pathogenesis. However, composition and specification of enteric neurons and glial subtypes at larval stages, remains mainly unexplored. Here, we performed single cell RNA sequencing of zebrafish ENS at 5 days post-fertilization. We identified vagal neural crest progenitors, Schwann cell precursors, and four clusters of differentiated neurons. In addition, a previously unrecognized elavl3+/phox2bb-population of neurons and cx43+/phox2bb-enteric glia was found. Pseudotime analysis supported binary neurogenic branching of ENS differentiation, driven by a notch-responsive state. Taken together, we provide new insights on ENS development and specification, proving that the zebrafish is a valuable model for the study of congenital enteric neuropathies.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Naomi J.M. Kakiailatu
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Jonathan D. Windster
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC, Rotterdam, the Netherlands
| | - Joke T.M. Zink
- Department of Hematology, Erasmus MC, Rotterdam, the Netherlands
| | - Gaby van der Zee
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Robert M.W. Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | | | - Veerle Melotte
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Scavuzzo MA, Letai KC, Maeno-Hikichi Y, Wulftange WJ, Shah IK, Rameshbabu JS, Tomar A, Shick HE, Shah AK, Xiong Y, Cohn EF, Allan KC, Tesar PJ. Enteric glial hub cells coordinate intestinal motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544052. [PMID: 37333182 PMCID: PMC10274798 DOI: 10.1101/2023.06.07.544052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Enteric glia are the predominant cell type in the enteric nervous system yet their identities and roles in gastrointestinal function are not well classified. Using our optimized single nucleus RNA-sequencing method, we identified distinct molecular classes of enteric glia and defined their morphological and spatial diversity. Our findings revealed a functionally specialized biosensor subtype of enteric glia that we call "hub cells." Deletion of the mechanosensory ion channel PIEZO2 from adult enteric glial hub cells, but not other subtypes of enteric glia, led to defects in intestinal motility and gastric emptying in mice. These results provide insight into the multifaceted functions of different enteric glial cell subtypes in gut health and emphasize that therapies targeting enteric glia could advance the treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Marissa A. Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Katherine C. Letai
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Yuka Maeno-Hikichi
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - William J. Wulftange
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Isha K. Shah
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jeyashri S. Rameshbabu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Alka Tomar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - H. Elizabeth Shick
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Aakash K. Shah
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ying Xiong
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Erin F. Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Kevin C. Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Paul J. Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
36
|
Thomasi B, Gulbransen B. Mini-review: Intercellular communication between enteric glia and neurons. Neurosci Lett 2023; 806:137263. [PMID: 37085112 PMCID: PMC10150911 DOI: 10.1016/j.neulet.2023.137263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
The enteric nervous system is a dense network of enteric neurons and glia housed in the gastrointestinal tract. This system is responsible for performing several functions that enable digestion as well as maintaining gut homeostasis through diverse signaling processes including those that arise from interactions with the immune system. Bidirectional communication between enteric neurons and enteric glia has gained increased attention for playing essential roles in enteric nervous system function. Neuronal mediators such as neurotransmitters stimulate enteric glia and subsequent gliotransmission processes refine neuronal signaling during intestinal motor control. In this mini-review, we present and discuss the basis of intercellular signaling between neurons and glia in the enteric nervous system and the relevance of these interactions to gut function.
Collapse
|
37
|
Prochera A, Rao M. Mini-Review: Enteric glial regulation of the gastrointestinal epithelium. Neurosci Lett 2023; 805:137215. [PMID: 37001854 PMCID: PMC10125724 DOI: 10.1016/j.neulet.2023.137215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Many enteric glia are located along nerve fibers in the gut mucosa where they form close associations with the epithelium lining the gastrointestinal tract. The gut epithelium is essential for absorbing nutrients, regulating fluid flux, forming a physical barrier to prevent the entry of pathogens and toxins into the host, and participating in immune responses. Disruptions to this epithelium are linked to numerous diseases, highlighting its central importance in maintaining health. Accumulating evidence indicates that glia regulate gut epithelial homeostasis. Observations from glial-epithelial co-cultures in vitro and mouse genetic models in vivo suggest that enteric glia influence several important features of the gut epithelium including barrier integrity, ion transport, and capacity for self-renewal. Here we review the evidence for enteric glial regulation of the intestinal epithelium, with a focus on these three features of its biology.
Collapse
Affiliation(s)
- Aleksandra Prochera
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Osorio N, Martineau M, Fortea M, Rouget C, Penalba V, Lee CJ, Boesmans W, Rolli-Derkinderen M, Patel AV, Mondielli G, Conrod S, Labat-Gest V, Papin A, Sasabe J, Sweedler JV, Vanden Berghe P, Delmas P, Mothet JP. d-Serine agonism of GluN1-GluN3 NMDA receptors regulates the activity of enteric neurons and coordinates gut motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537136. [PMID: 37131687 PMCID: PMC10153202 DOI: 10.1101/2023.04.19.537136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The enteric nervous system (ENS) is a complex network of diverse molecularly defined classes of neurons embedded in the gastrointestinal wall and responsible for controlling the major functions of the gut. As in the central nervous system, the vast array of ENS neurons is interconnected by chemical synapses. Despite several studies reporting the expression of ionotropic glutamate receptors in the ENS, their roles in the gut remain elusive. Here, by using an array of immunohistochemistry, molecular profiling and functional assays, we uncover a new role for d-serine (d-Ser) and non-conventional GluN1-GluN3 N-methyl d-aspartate receptors (NMDARs) in regulating ENS functions. We demonstrate that d-Ser is produced by serine racemase (SR) expressed in enteric neurons. By using both in situ patch clamp recording and calcium imaging, we show that d-Ser alone acts as an excitatory neurotransmitter in the ENS independently of the conventional GluN1-GluN2 NMDARs. Instead, d-Ser directly gates the non-conventional GluN1-GluN3 NMDARs in enteric neurons from both mouse and guinea-pig. Pharmacological inhibition or potentiation of GluN1-GluN3 NMDARs had opposite effects on mouse colonic motor activities, while genetically driven loss of SR impairs gut transit and fluid content of pellet output. Our results demonstrate the existence of native GluN1-GluN3 NMDARs in enteric neurons and open new perspectives on the exploration of excitatory d-Ser receptors in gut function and diseases.
Collapse
Affiliation(s)
- Nancy Osorio
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | | | - Marina Fortea
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | | | - Virginie Penalba
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | - Cindy J. Lee
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | | | - Amit V. Patel
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Grégoire Mondielli
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | - Sandrine Conrod
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | | | - Amandine Papin
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
| | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Patrick Delmas
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | - Jean-Pierre Mothet
- Neurocentre Magendie, INSERM UMR U862, Bordeaux, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, CentraleSupélec, LuMIn UMR9024, Gif-sur-Yvette 91190, France
| |
Collapse
|
39
|
Tryptase activates enteric glial cells followed by affecting neuronal properties possibly via the stimuli-associated mediators. J Pharmacol Sci 2023; 151:163-170. [PMID: 36925214 DOI: 10.1016/j.jphs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVES Mast cell-derived tryptase causes neuronal elongation/sensitization leading to visceral hypersensitivity. However, effects of tryptase on enteric glial cells (EGCs) and subsequent interaction between EGCs and neurons remain unknown. METHODS We evaluated proteins and mRNA expressions in EGC (CRL-2690, ATCC) after tryptase stimulation: nerve growth factor (NGF), netrin-1, and glial cell-derived neurotrophic factor (GDNF). We examined morphological changes in neurons (PC12 cells, CRL-1721.1) by co-incubation with the conditioned medium of EGCs after tryptase stimulation. RESULTS EGC was activated by tryptase, and proliferated (by 1.8-fold) with cytoplasmic expansion and process elongation. Intercellular connections of EGC were more complexed. Tryptase induced mRNA expression (2.5-fold) and protein expression of NGF. Netrin-1 (3-fold) and GDNF (3-fold) mRNA expressions were increased at 30 min. Increase in netrin-1 continued until 6 h, whereas the latter decreased by 3 h. The conditioned medium of EGC after tryptase stimulation expanded neuronal cytoplasm (round or ramified shapes) and neurite outgrowth with elongation of cytoskeletal filaments in time-dependent and dose-dependent manners. These changes were similar to those after NGF stimulation. Growth cone proteins of neurons were also increased by the conditioned medium. CONCLUSION EGC activated by tryptase changes neuronal morphology (process elongation and cytoplasm expansion) possibly via the stimuli-associated mediators.
Collapse
|
40
|
Baidoo N, Sanger GJ, Belai A. Effect of old age on the subpopulations of enteric glial cells in human descending colon. Glia 2023; 71:305-316. [PMID: 36128665 PMCID: PMC10087700 DOI: 10.1002/glia.24272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Old age is associated with a higher incidence of lower bowel conditions such as constipation. Recent evidence suggest that colonic motility may be influenced by enteric glial cells (EGCs). Little is known about the effect of aging on the subpopulation of EGCs in the human colon. We assessed and compared the pattern of distribution of EGCs in adult and elderly human colon. Human descending colon were obtained from 23 cancer patients comprising of adults (23-63 years; 6 male, 7 female) and elderly (66-81 year; 6 male, 4 female). Specimens were serially-sectioned and immunolabeled with anti-Sox-10, anti-S100 and anti-GFAP for morphometric analysis. Standardized procedures were utilized to ensure unbiased counting and densitometric evaluation of EGCs. The number of Sox-10 immunoreactive (IR) EGCs were unaltered with age in both the myenteric plexus (MP) (respectively, in adult and elderly patients, 1939 ± 82 and 1760 ± 44/mm length; p > .05) and submucosal plexus; there were no apparent differences between adult males and females. The density of S100-IR EGCs declined among the elderly in the circular muscle and within the MP per ganglionic area. In the adult colon, there were more S100-IR EGCs distributed in the circular muscle per unit area than the Taenia coli. There was little or no GFAP-IR EGCs in both adult and elderly colon. We concluded that aging of the human descending colon does not result in a loss of Sox-10-IR EGCs in the MP and SMP but reduces S100-IR EGCs density within the musculature. This alteration in myenteric EGCs density with age may contribute to colonic dysfunction.
Collapse
Affiliation(s)
- Nicholas Baidoo
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Gareth J Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Abi Belai
- School of Life and Health Sciences, University of Roehampton, London, UK
| |
Collapse
|
41
|
Group I Metabotropic Glutamate Receptors Modulate Motility and Enteric Neural Activity in the Mouse Colon. Biomolecules 2023; 13:biom13010139. [PMID: 36671524 PMCID: PMC9856182 DOI: 10.3390/biom13010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, and there is evidence that Group-I metabotropic glutamate receptors (mGlu1 and mGlu5) have established roles in excitatory neurotransmission and synaptic plasticity. While glutamate is abundantly present in the gut, it plays a smaller role in neurotransmission in the enteric nervous system. In this study, we examined the roles of Group-I mGlu receptors in gastrointestinal function. We investigated the expression of Grm1 (mGlu1) and Grm5 (mGlu5) in the mouse myenteric plexus using RNAscope in situ hybridization. Live calcium imaging and motility analysis were performed on ex vivo preparations of the mouse colon. mGlu5 was found to play a role in excitatory enteric neurotransmission, as electrically-evoked calcium transients were sensitive to the mGlu5 antagonist MPEP. However, inhibition of mGlu5 activity did not affect colonic motor complexes (CMCs). Instead, inhibition of mGlu1 using BAY 36-7620 reduced CMC frequency but did not affect enteric neurotransmission. These data highlight complex roles for Group-I mGlu receptors in myenteric neuron activity and colonic function.
Collapse
|
42
|
Mendes CE, Palombit K, Alves Pereira TT, Riceti Magalhães HI, Ferreira Caetano MA, Castelucci P. Effects of probenecid and brilliant blue G on rat enteric glial cells following intestinal ischemia and reperfusion. Acta Histochem 2023; 125:151985. [PMID: 36495673 DOI: 10.1016/j.acthis.2022.151985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The P2X7 receptor participates in several intracellular events and acts with the pannexin-1 channel. This study examined the effects of probenecid (PB) and brilliant blue G (BBG), which are antagonists of the pannexin-1 channel and P2X7 receptor, respectively, on rat ileum enteric glial cells after on ischemia and reperfusion. The ileal vessels were occluded for 45 min with nontraumatic vascular tweezers, and reperfusion was performed for periods of 24 h and 14 and 28 days. After ischemia (IR groups), the animals were treated with BBG (BG group) or PB (PB group). The double-labeling results demonstrated the following: the P2X7 receptor was present in enteric glial cells (S100β) and enteric neurons positive for HuC/D; enteric glial cells exhibited different phenotypes; some enteric glial cells were immunoreactive to only S100β or GFAP; and the pannexin-1 channel was present in enteric glial cells (GFAP). Density (in cells/cm2) analyses showed that the IR group exhibited a decrease in the number of cells immunoreactive for the P2X7 receptor, pannexin-1, and HuC/D and that treatment with BBG or PB resulted in the recovery of the numbers of these cells. The number of glial cells (S100β and GFAP) was higher in the IR group, and the treatments decreased the number of these cells to the normal value. However, the PB group did not exhibit recovery of S100β-positive glia. The cell profile area (μm2) of S100β-positive enteric glial cells decreased to the normal value after BBG treatment, whereas no recovery was observed in the PB group. The ileum contractile activity was decreased in the IR group and returned to baseline in the BG and PB groups. BBG and PB can effectively induce the recovery of neurons and glia cells and are thus potential therapeutic agents in the treatment of gastrointestinal tract diseases.
Collapse
Affiliation(s)
| | - Kelly Palombit
- Department of Morphology, University Federal of Piaui, Brazil
| | | | | | | | | |
Collapse
|
43
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
44
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
45
|
Functional Intraregional and Interregional Heterogeneity between Myenteric Glial Cells of the Colon and Duodenum in Mice. J Neurosci 2022; 42:8694-8708. [PMID: 36319118 PMCID: PMC9671584 DOI: 10.1523/jneurosci.2379-20.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 02/24/2023] Open
Abstract
Enteric glia are a unique population of peripheral neuroglia that regulate homeostasis in the enteric nervous system (ENS) and intestinal functions. Despite existing in functionally diverse regions of the gastrointestinal tract, enteric glia have been approached scientifically as a homogeneous group of cells. This assumption is at odds with the functional specializations of gastrointestinal organs and recent data suggesting glial heterogeneity in the brain and ENS. Here, we used calcium imaging in transgenic mice of both sexes expressing genetically encoded calcium sensors in enteric glia and conducted contractility studies to investigate functional diversity among myenteric glia in two functionally distinct intestinal organs: the duodenum and the colon. Our data show that myenteric glia exhibit regionally distinct responses to neuromodulators that require intercellular communication with neurons to differing extents in the duodenum and colon. Glia regulate intestinal contractility in a region-specific and pathway-specific manner, which suggests regionally diverse engagement of enteric glia in local motor patterns through discrete signaling pathways. Further, functional response profiles delineate four unique subpopulations among myenteric glia that are differentially distributed between the colon and duodenum. Our findings support the conclusion that myenteric glia exhibit both intraregional and interregional heterogeneity that contributes to region-specific mechanisms that regulate digestive functions. Glial heterogeneity adds an unexpected layer of complexity in peripheral neurocircuits, and understanding the specific functions of specialized glial subtypes will provide new insight into ENS physiology and pathophysiology.SIGNIFICANCE STATEMENT Enteric glia modulate gastrointestinal functions through intercellular communication with enteric neurons. Whether heterogeneity exists among neuron-glia interactions in the digestive tract is not understood. Here, we show that myenteric glia display regional heterogeneity in their responses to neuromodulators in the duodenum and the colon, which are functionally distinct organs. Glial-mediated control of intestinal motility is region and pathway specific. Four myenteric glial subtypes are present within a given gut region that are differently distributed between gut regions. These data provide functional and regional insights into enteric circuit specificity in the adult enteric nervous system.
Collapse
|
46
|
Heng Y, Li YY, Wen L, Yan JQ, Chen NH, Yuan YH. Gastric Enteric Glial Cells: A New Contributor to the Synucleinopathies in the MPTP-Induced Parkinsonism Mouse. Molecules 2022; 27:7414. [PMID: 36364248 PMCID: PMC9656042 DOI: 10.3390/molecules27217414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/19/2024] Open
Abstract
Accumulating evidence has shown that Parkinson's disease (PD) is a systemic disease other than a mere central nervous system (CNS) disorder. One of the most important peripheral symptoms is gastrointestinal dysfunction. The enteric nervous system (ENS) is regarded as an essential gateway to the environment. The discovery of the prion-like behavior of α-synuclein makes it possible for the neurodegenerative process to start in the ENS and spread via the gut-brain axis to the CNS. We first confirmed that synucleinopathies existed in the stomachs of chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid (MPTP/p)-induced PD mice, as indicated by the significant increase in abnormal aggregated and nitrated α-synuclein in the TH-positive neurons and enteric glial cells (EGCs) of the gastric myenteric plexus. Next, we attempted to clarify the mechanisms in single MPTP-injected mice. The stomach naturally possesses high monoamine oxidase-B (MAO-B) activity and low superoxide dismutase (SOD) activity, making the stomach susceptible to MPTP-induced oxidative stress, as indicated by the significant increase in reactive oxygen species (ROS) in the stomach and elevated 4-hydroxynonenal (4-HNE) in the EGCs after MPTP exposure for 3 h. Additionally, stomach synucleinopathies appear before those of the nigrostriatal system, as determined by Western blotting 12 h after MPTP injection. Notably, nitrated α-synuclein was considerably increased in the EGCs after 3 h and 12 h of MPTP exposure. Taken together, our work demonstrated that the EGCs could be new contributors to synucleinopathies in the stomach. The early-initiated synucleinopathies might further influence neighboring neurons in the myenteric plexus and the CNS. Our results offer a new experimental clue for interpreting the etiology of PD.
Collapse
Affiliation(s)
- Yang Heng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lu Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Qing Yan
- Department of Pharmacy, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union, Medical College, Beijing 100021, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
47
|
The Enteric Glia and Its Modulation by the Endocannabinoid System, a New Target for Cannabinoid-Based Nutraceuticals? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196773. [PMID: 36235308 PMCID: PMC9570628 DOI: 10.3390/molecules27196773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
The enteric nervous system (ENS) is a part of the autonomic nervous system that intrinsically innervates the gastrointestinal (GI) tract. Whereas enteric neurons have been deeply studied, the enteric glial cells (EGCs) have received less attention. However, these are immune-competent cells that contribute to the maintenance of the GI tract homeostasis through supporting epithelial integrity, providing neuroprotection, and influencing the GI motor function and sensation. The endogenous cannabinoid system (ECS) includes endogenous classical cannabinoids (anandamide, 2-arachidonoylglycerol), cannabinoid-like ligands (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)), enzymes involved in their metabolism (FAAH, MAGL, COX-2) and classical (CB1 and CB2) and non-classical (TRPV1, GPR55, PPAR) receptors. The ECS participates in many processes crucial for the proper functioning of the GI tract, in which the EGCs are involved. Thus, the modulation of the EGCs through the ECS might be beneficial to treat some dysfunctions of the GI tract. This review explores the role of EGCs and ECS on the GI tract functions and dysfunctions, and the current knowledge about how EGCs may be modulated by the ECS components, as possible new targets for cannabinoids and cannabinoid-like molecules, particularly those with potential nutraceutical use.
Collapse
|
48
|
Kapur RP, Tisoncik-Go J, Gale M. Myelin Protein Zero Immunohistochemistry Is Not a Reliable Marker of Extrinsic Mucosal Innervation in Patients With Hirschsprung Disease. Pediatr Dev Pathol 2022; 25:388-396. [PMID: 34904460 DOI: 10.1177/10935266211059395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Innervation of aganglionic rectum in Hirschsprung disease derives from extrinsic nerves which project from cell bodies located outside the bowel wall and markers that distinguish extrinsic from intrinsic innervation are diagnostically useful. Myelin protein zero (MPZ) is a putative marker of extrinsic glial cells which could distinguish mucosal innervation in aganglionic vs ganglionic colon. METHODS Sections and protein blots from ganglionic and aganglionic colon were immunolabeled with MPZ-specific antibodies. RESULTS Immunolabeling of MPZ with a chicken polyclonal or mouse monoclonal antibody confirmed glial specificity and reliably labeled hypertrophic submucosal nerves in Hirschsprung disease. In contrast, a rabbit polyclonal antibody strongly labeled extrinsic and intrinsic nerves, including most mucosal branches. Immunoblots showed MPZ is expressed in mucosal glial cells, albeit at lower levels than in extrinsic nerves, and that the rabbit antibody is more sensitive that the other two probes. Unfortunately, none of these antibodies consistently distinguished mucosal innervation in aganglionic vs ganglionic rectum. CONCLUSIONS The results suggest that (a) glial cell myelin protein zero expression is influenced more by location (mucosa vs submucosa) than the extrinsic vs intrinsic origin of the accompanied nerves and (b) myelin protein zero immunohistochemistry has limited value as a diagnostic adjunct for Hirschsprung disease.
Collapse
Affiliation(s)
- Raj P Kapur
- Department of Laboratory Medicine and Pathology, 7274Seattle Children's Hospital and the University of Washington, Seattle, WA, USA
| | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, 7284University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, 7284University of Washington, Seattle, WA, USA
| |
Collapse
|
49
|
Li N, Xu J, Gao H, Zhang Y, Li Y, Chang H, Tan S, Li S, Wang Q. Effect of Reactive EGCs on Intestinal Motility and Enteric Neurons During Endotoxemia. J Mol Neurosci 2022; 72:1831-1845. [PMID: 35773377 DOI: 10.1007/s12031-022-02044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Paralytic ileus is common in patients with septic shock, causing high morbidity and mortality. Enteric neurons and enteric glial cells (EGCs) regulate intestinal motility. However, little is known about their interaction in endotoxemia. This study aimed to investigate whether reactive EGCs had harmful effects on enteric neurons and participated in intestinal motility disorder in mice during endotoxemia. Endotoxemia was induced by the intraperitoneal injection of lipopolysaccharide (LPS) in mice. Fluorocitrate (FC) was administered before LPS injection to inhibit the reactive EGCs. The effects of reactive EGCs on intestinal motility were analyzed by motility assays in vivo and colonic migrating motor complexes ex vivo. The number of enteric neurons was evaluated by immunofluorescent staining of HuCD, nNOS, and ChAT in vivo. In addition, we stimulated EGCs with IL-1β and TNF-α in vitro and cultured the primary enteric neurons in the conditioned medium, detecting the apoptosis and morphology of neurons through staining TUNEL, cleaved caspase-3 protein, and anti-β-III tubulin. Intestinal motility and peristaltic reflex were improved by inhibiting reactive EGCs in vivo. The density of the neuronal population in the colonic myenteric plexus increased significantly, while the reactive EGCs were inhibited, especially the nitrergic neurons. In vitro, the enteric neurons cultured in the conditioned medium of reactive EGCs had a considerably higher apoptotic rate, less dendritic complexity, and fewer primary neurites. Reactive enteric glial cells probably participated in paralytic ileus by damaging enteric neurons during endotoxemia. They might provide a novel therapeutic strategy for intestinal motility disorders during endotoxemia or sepsis.
Collapse
Affiliation(s)
- Na Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jing Xu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hui Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuxin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuwen Tan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
50
|
Nguyen VTT, Taheri N, Chandra A, Hayashi Y. Aging of enteric neuromuscular systems in gastrointestinal tract. Neurogastroenterol Motil 2022; 34:e14352. [PMID: 35279912 PMCID: PMC9308104 DOI: 10.1111/nmo.14352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aging is a complex biological process and associated with a progressive decline in functions of most organs including the gastrointestinal (GI) tract. Age-related GI motor disorders/dysfunctions include esophageal reflux, dysphagia, constipation, fecal incontinence, reduced compliance, and accommodation. Although the incidence and severity of these diseases and conditions increase with age, they are often underestimated due in part to nonspecific and variable symptoms and lack of sufficient medical attention. They negatively affect quality of life and predispose the elderly to other diseases, sarcopenia, and frailty. The mechanisms underlying aging-associated GI dysfunctions remain unclear, and there is limited data examining the effect of aging on GI motor functions. Many studies on aging-associated changes to cells within the tunica muscularis including enteric neurons, smooth muscles, and interstitial cells have proposed that cell loss and/or molecular changes may be involved in the pathogenesis of age-related GI motor disorders/dysfunctions. There is also evidence that the aging contributes to phenotypic changes in innate immune cells, which are physically and functionally linked to other cells in the tunica muscularis and can alter GI (patho) physiology. However, various patterns of changes have been reported, some of which are contradictory, indicating a need for additional work in this area. PURPOSE Although GI infection due to intestinal bacterial overgrowth, bleeding, and cancers are also important and common problems in the elderly patients, this mini-review focuses on data obtained from enteric neuromuscular aging research with the goal of better understanding the cellular and molecular mechanisms of enteric neuromuscular aging to enhance future therapy.
Collapse
Affiliation(s)
- Vy Truong Thuy Nguyen
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Abhishek Chandra
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA,Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|