1
|
Arimoto A, Nishitsuji K, Hisata K, Satoh N, Tagawa K. Transcriptomic evidence for Brachyury expression in the caudal tip region of adult Ptychodera flava (Hemichordata). Dev Growth Differ 2023; 65:470-480. [PMID: 37483093 DOI: 10.1111/dgd.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Most metazoans have a single copy of the T-box transcription factor gene Brachyury. This gene is expressed in cells of the blastopore of late blastulae and the archenteron invagination region of gastrulae. It appears to be crucial for gastrulation and mesoderm differentiation of embryos. Although this expression pattern is shared by most deuterostomes, Brachyury expression has not been reported in adult stages. Here we show that Brachyury of an indirect developer, the hemichordate acorn worm Ptychodera flava, is expressed not only in embryonic cells, but also in cells of the caudal tip (anus) region of adults. This spatially restricted expression, shown by whole-mount in situ hybridization, was confirmed by Iso-Seq RNA sequencing and single-cell RNA-seq (scRNA-seq) analysis. Iso-Seq analysis showed that gene expression occurs only in the caudal region of adults, but not in anterior regions, including the stomochord. scRNA-seq analysis showed a cluster that contained Brachyury-expressing cells comprising epidermis- and mesoderm-related cells, but which is unlikely to be associated with the nervous system or muscle. Although further investigation is required to examine the roles of Brachyury in adults, this study provides important clues for extending studies on Brachyury expression involved in development of the most posterior region of deuterostomes.
Collapse
Affiliation(s)
- Asuka Arimoto
- Marine Biological Laboratory, Blue Innovation Division, Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kuni Tagawa
- Marine Biological Laboratory, Blue Innovation Division, Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
- Faculty of Science and Technology, Maulana Malik Ibrahim State Islamic University of Malang, Kota Malang, Indonesia
| |
Collapse
|
2
|
Atay C, Medina-Echeverz J, Hochrein H, Suter M, Hinterberger M. Armored modified vaccinia Ankara in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:87-142. [PMID: 37541728 DOI: 10.1016/bs.ircmb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Cancer immunotherapy relies on unleashing the patient´s immune system against tumor cells. Cancer vaccines aim to stimulate both the innate and adaptive arms of immunity to achieve durable clinical responses. Some roadblocks for a successful cancer vaccine in the clinic include the tumor antigen of choice, the adjuvants employed to strengthen antitumor-specific immune responses, and the risks associated with enhancing immune-related adverse effects in patients. Modified vaccinia Ankara (MVA) belongs to the family of poxviruses and is a versatile vaccine platform that combines several attributes crucial for cancer therapy. First, MVA is an excellent inducer of innate immune responses leading to type I interferon secretion and induction of T helper cell type 1 (Th1) immune responses. Second, it elicits robust and durable humoral and cellular immunity against vector-encoded heterologous antigens. Third, MVA has enormous genomic flexibility, which allows for the expression of multiple antigenic and costimulatory entities. And fourth, its replication deficit in human cells ensures a excellent safety profile. In this review, we summarize the current understanding of how MVA induces innate and adaptive immune responses. Furthermore, we will give an overview of the tumor-associated antigens and immunomodulatory molecules that have been used to armor MVA and describe their clinical use. Finally, the route of MVA immunization and its impact on therapeutic efficacy depending on the immunomodulatory molecules expressed will be discussed.
Collapse
Affiliation(s)
- Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, Planegg, Germany
| | | | | | - Mark Suter
- Prof. em. University of Zurich, Switzerland
| | | |
Collapse
|
3
|
Samarasinghe KTG, An E, Genuth MA, Chu L, Holley SA, Crews CM. OligoTRAFTACs: A generalizable method for transcription factor degradation. RSC Chem Biol 2022; 3:1144-1153. [PMID: 36128504 PMCID: PMC9428672 DOI: 10.1039/d2cb00138a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Targeted transcription factor degradation using oligonucleotide-based transcription factor targeting chimeras (TRAFTACs).
Collapse
Affiliation(s)
- Kusal T. G. Samarasinghe
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Elvira An
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
| | - Miriam A. Genuth
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Ling Chu
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Scott A. Holley
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Craig M. Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
4
|
Ozair MZ, Shah PP, Mathios D, Lim M, Moss NS. New Prospects for Molecular Targets for Chordomas. Neurosurg Clin N Am 2020; 31:289-300. [PMID: 32147018 DOI: 10.1016/j.nec.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chordomas are malignant, highly recurrent tumors of the midline skeleton that arise from the remnants of the notochord. The development of systemic therapy is critically important to ultimately managing this tumor. Several ongoing trials are attempting to use molecular targeted therapies for mutated pathways in recurrent and advanced chordomas and have shown promise. In addition, immunotherapies, including brachyury-directed vaccination and checkpoint inhibition, have also been attempted with encouraging results. This article discusses the major pathways that have been implicated in the pathogenesis of chordoma with an emphasis on molecular vulnerabilities that future therapies are attempting to exploit.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Pavan Pinkesh Shah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
5
|
Collins JM, Donahue RN, Tsai YT, Manu M, Palena C, Gatti-Mays ME, Marté JL, Madan RA, Karzai F, Heery CR, Strauss J, Abdul-Sater H, Cordes L, Schlom J, Gulley JL, Bilusic M. Phase I Trial of a Modified Vaccinia Ankara Priming Vaccine Followed by a Fowlpox Virus Boosting Vaccine Modified to Express Brachyury and Costimulatory Molecules in Advanced Solid Tumors. Oncologist 2019; 25:560-e1006. [PMID: 31876334 DOI: 10.1634/theoncologist.2019-0932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023] Open
Abstract
LESSONS LEARNED Modified vaccinia Ankara-Bavarian Nordic (MVA-BN)-Brachyury followed by fowlpox virus-BN-Brachyury was well tolerated upon administration to patients with advanced cancer. Sixty-three percent of patients developed CD4+ and/or CD8+ T-cell responses to brachyury after vaccination. BN-Brachyury vaccine also induced T-cell responses against CEA and MUC1, which are cascade antigens, that is, antigens not encoded in the vaccines. BACKGROUND Brachyury, a transcription factor, plays an integral role in the epithelial-mesenchymal transition, metastasis, and tumor resistance to chemotherapy. It is expressed in many tumor types, and rarely in normal tissues, making it an ideal immunologic target. Bavarian Nordic (BN)-Brachyury consists of vaccination with modified vaccinia Ankara (MVA) priming followed by fowlpox virus (FPV) boosting, each encoding transgenes for brachyury and costimulatory molecules. METHODS Patients with metastatic solid tumors were treated with two monthly doses of MVA-brachyury s.c., 8 × 108 infectious units (IU), followed by FPV-brachyury s.c., 1 × 109 IU, for six monthly doses and then every 3 months for up to 2 years. The primary objective was to determine safety and tolerability. RESULTS Eleven patients were enrolled from March 2018 to July 2018 (one patient was nonevaluable). No dose-limiting toxicities were observed. The most common treatment-related adverse event was grade 1/2 injection-site reaction observed in all patients. Best overall response was stable disease in six patients, and the 6-month progression-free survival rate was 50%. T cells against brachyury and cascade antigens CEA and MUC1 were detected in the majority of patients. CONCLUSION BN-Brachyury vaccine is well tolerated and induces immune responses to brachyury and cascade antigens and demonstrates some evidence of clinical benefit.
Collapse
Affiliation(s)
- Julie M Collins
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michell Manu
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer L Marté
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi A Madan
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fatima Karzai
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Houssein Abdul-Sater
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Cordes
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marijo Bilusic
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Bilusic M, Heery CR, Collins JM, Donahue RN, Palena C, Madan RA, Karzai F, Marté JL, Strauss J, Gatti-Mays ME, Schlom J, Gulley JL. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J Immunother Cancer 2019; 7:240. [PMID: 31488216 PMCID: PMC6729083 DOI: 10.1186/s40425-019-0706-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND HuMax-IL8 (now known as BMS-986253) is a novel, fully human monoclonal antibody that inhibits interleukin-8 (IL-8), a chemokine that promotes tumor progression, immune escape, epithelial-mesenchymal transition, and recruitment of myeloid-derived suppressor cells. Studies have demonstrated that high serum IL-8 levels correlate with poor prognosis in many malignant tumors. Preclinical studies have shown that IL-8 blockade may reduce mesenchymal features in tumor cells, making them less resistant to treatment. METHODS Fifteen patients with metastatic or unresectable locally advanced solid tumors were enrolled in this 3 + 3 dose-escalation trial at four dose levels (4, 8, 16, or 32 mg/kg). HuMax-IL8 was given IV every 2 weeks, and patients were followed for safety and immune monitoring at defined intervals up to 52 weeks. RESULTS All enrolled patients (five chordoma, four colorectal, two prostate, and one each of ovarian, papillary thyroid, chondrosarcoma, and esophageal) received at least one dose of HuMax-IL8. Eight patients had received three or more prior lines of therapy and five patients had received prior immunotherapy. Treatment-related adverse events occurred in five patients (33%), mostly grade 1. Two patients receiving the 32 mg/kg dose had grade 2 fatigue, hypophosphatemia, and hypersomnia. No dose-limiting toxicities were observed, and maximum tolerated dose was not reached. Although no objective tumor responses were observed, 11 patients (73%) had stable disease with median treatment duration of 24 weeks (range, 4-54 weeks). Serum IL-8 was significantly reduced on day 3 of HuMax-IL8 treatment compared to baseline (p = 0.0004), with reductions in IL-8 seen at all dose levels. CONCLUSIONS HuMax-IL8 is safe and well-tolerated. Ongoing studies are evaluating the combination of IL-8 blockade and other immunotherapies. TRIAL REGISTRATION NCTN, NCT02536469. Registered 23 August 2015, https://clinicaltrials.gov/ct2/show/NCT02536469?term=NCT02536469&rank=1 .
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Precision Biosciences, Durham, NC, USA
| | - Julie M Collins
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Lee KL, Benz SC, Hicks KC, Nguyen A, Gameiro SR, Palena C, Sanborn JZ, Su Z, Ordentlich P, Rohlin L, Lee JH, Rabizadeh S, Soon-Shiong P, Niazi K, Schlom J, Hamilton DH. Efficient Tumor Clearance and Diversified Immunity through Neoepitope Vaccines and Combinatorial Immunotherapy. Cancer Immunol Res 2019; 7:1359-1370. [PMID: 31292145 DOI: 10.1158/2326-6066.cir-18-0620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/03/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Progressive tumor growth is associated with deficits in the immunity generated against tumor antigens. Vaccines targeting tumor neoepitopes have the potential to address qualitative defects; however, additional mechanisms of immune failure may underlie tumor progression. In such cases, patients would benefit from additional immune-oncology agents targeting potential mechanisms of immune failure. This study explores the identification of neoepitopes in the MC38 colon carcinoma model by comparison of tumor to normal DNA and tumor RNA sequencing technology, as well as neoepitope delivery by both peptide- and adenovirus-based vaccination strategies. To improve antitumor efficacies, we combined the vaccine with a group of rationally selected immune-oncology agents. We utilized an IL15 superagonist to enhance the development of antigen-specific immunity initiated by the neoepitope vaccine, PD-L1 blockade to reduce tumor immunosuppression, and a tumor-targeted IL12 molecule to facilitate T-cell function within the tumor microenvironment. Analysis of tumor-infiltrating leukocytes demonstrated this multifaceted treatment regimen was required to promote the influx of CD8+ T cells and enhance the expression of transcripts relating to T-cell activation/effector function. Tumor-targeted IL12 resulted in a marked increase in clonality of T-cell repertoire infiltrating the tumor, which when sculpted with the addition of either a peptide or adenoviral neoepitope vaccine promoted efficient tumor clearance. In addition, the neoepitope vaccine induced the spread of immunity to neoepitopes expressed by the tumor but not contained within the vaccine. These results demonstrate the importance of combining neoepitope-targeting vaccines with a multifaceted treatment regimen to generate effective antitumor immunity.
Collapse
Affiliation(s)
- Karin L Lee
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Kristin C Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Zhen Su
- EMD Serono Research and Development Institute, Billerica, Massachusetts
| | | | - Lars Rohlin
- NantBio, Inc, & ImmunityBio, Culver City, California
| | - John H Lee
- Chan Soon-Shiong Institute for Medicine, El Segundo, California
| | - Shahrooz Rabizadeh
- NantOmics, LLC, Culver City, California.,NantBio, Inc, & ImmunityBio, Culver City, California
| | - Patrick Soon-Shiong
- NantOmics, LLC, Culver City, California.,NantBio, Inc, & ImmunityBio, Culver City, California
| | - Kayvan Niazi
- NantBio, Inc, & ImmunityBio, Culver City, California
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
8
|
Fujii R, Friedman ER, Richards J, Tsang KY, Heery CR, Schlom J, Hodge JW. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget 2018; 7:33498-511. [PMID: 27172898 PMCID: PMC5085098 DOI: 10.18632/oncotarget.9256] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022] Open
Abstract
Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.
Collapse
Affiliation(s)
- Rika Fujii
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eitan R Friedman
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Richards
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kwong Y Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Rodriguez AM, Downs KM. Visceral endoderm and the primitive streak interact to build the fetal-placental interface of the mouse gastrula. Dev Biol 2017; 432:98-124. [PMID: 28882402 PMCID: PMC5980994 DOI: 10.1016/j.ydbio.2017.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
Hypoblast/visceral endoderm assists in amniote nutrition, axial positioning and formation of the gut. Here, we provide evidence, currently limited to humans and non-human primates, that hypoblast is a purveyor of extraembryonic mesoderm in the mouse gastrula. Fate mapping a unique segment of axial extraembryonic visceral endoderm associated with the allantoic component of the primitive streak, and referred to as the "AX", revealed that visceral endoderm supplies the placentae with extraembryonic mesoderm. Exfoliation of the AX was dependent upon contact with the primitive streak, which modulated Hedgehog signaling. Resolution of the AX's epithelial-to-mesenchymal transition (EMT) by Hedgehog shaped the allantois into its characteristic projectile and individualized placental arterial vessels. A unique border cell separated the delaminating AX from the yolk sac blood islands which, situated beyond the limit of the streak, were not formed by an EMT. Over time, the AX became the hindgut lip, which contributed extensively to the posterior interface, including both embryonic and extraembryonic tissues. The AX, in turn, imparted antero-posterior (A-P) polarity on the primitive streak and promoted its elongation and differentiation into definitive endoderm. Results of heterotopic grafting supported mutually interactive functions of the AX and primitive streak, showing that together, they self-organized into a complete version of the fetal-placental interface, forming an elongated structure that exhibited A-P polarity and was composed of the allantois, an AX-derived rod-like axial extension reminiscent of the embryonic notochord, the placental arterial vasculature and visceral endoderm/hindgut.
Collapse
Affiliation(s)
- Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Heery CR, Palena C, McMahon S, Donahue RN, Lepone LM, Grenga I, Dirmeier U, Cordes L, Marté J, Dahut W, Singh H, Madan RA, Fernando RI, Hamilton DH, Schlom J, Gulley JL. Phase I Study of a Poxviral TRICOM-Based Vaccine Directed Against the Transcription Factor Brachyury. Clin Cancer Res 2017; 23:6833-6845. [PMID: 28855356 DOI: 10.1158/1078-0432.ccr-17-1087] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/11/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Purpose: The transcription factor brachyury has been shown in preclinical studies to be a driver of the epithelial-to-mesenchymal transition (EMT) and resistance to therapy of human tumor cells. This study describes the characterization of a Modified Vaccinia Ankara (MVA) vector-based vaccine expressing the transgenes for brachyury and three human costimulatory molecules (B7.1, ICAM-1, and LFA-3, designated TRICOM) and a phase I study with this vaccine.Experimental Design: Human dendritic cells (DC) were infected with MVA-brachyury-TRICOM to define their ability to activate brachyury-specific T cells. A dose-escalation phase I study (NCT02179515) was conducted in advanced cancer patients (n = 38) to define safety and to identify brachyury-specific T-cell responses.Results: MVA-brachyury-TRICOM-infected human DCs activated CD8+ and CD4+ T cells specific against the self-antigen brachyury in vitro No dose-limiting toxicities were observed due to vaccine in cancer patients at any of the three dose levels. One transient grade 3 adverse event (AE) possibly related to vaccine (diarrhea) resolved without intervention and did not recur with subsequent vaccine. All other AEs related to vaccine were transient and ≤grade 2. Brachyury-specific T-cell responses were observed at all dose levels and in most patients.Conclusions: The MVA-brachyury-TRICOM vaccine directed against a transcription factor known to mediate EMT can be administered safely in patients with advanced cancer and can activate brachyury-specific T cells in vitro and in patients. Further studies of this vaccine in combination therapies are warranted and planned. Clin Cancer Res; 23(22); 6833-45. ©2017 AACR.
Collapse
Affiliation(s)
- Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheri McMahon
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lauren M Lepone
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Lisa Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jenn Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Harpreet Singh
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Romaine I Fernando
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
11
|
Sohal SS. Epithelial and endothelial cell plasticity in chronic obstructive pulmonary disease (COPD). Respir Investig 2017; 55:104-113. [PMID: 28274525 DOI: 10.1016/j.resinv.2016.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 01/27/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is mainly caused by smoking and presents with shortness of breath that is progressive and irreversible. It is a worldwide health problem and the fourth most common cause of chronic disability and mortality (even in developed countries). It is a complex disease involving both the airway and lung parenchyma. Small-airway fibrosis is the main contributor to physiological airway dysfunction in COPD. One potential mechanism contributing to small-airway fibrosis is epithelial mesenchymal transition (EMT). When associated with angiogenesis (EMT-type-3), EMT may well also be linked to the development of airway epithelial cancer, which is closely associated with COPD and predominantly observed in large airways. Vascular remodeling has also been widely reported in smokers and patients with COPD but the mechanisms behind it are poorly understood. It is quite possible that the process of endothelial to mesenchymal transition (EndMT) is also active in COPD lungs, in addition to EMT. Understanding these pathological mechanisms will greatly enhance our knowledge of the immunopathology of smoking-related lung disease. Only by understanding these processes can new therapies be developed.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- School of Health Sciences, Faculty of Health, University of Tasmania, Locked Bag - 1322, Newnham Drive, Launceston, Tasmania 7248, Australia; NHMRC Centre of Research Excellence for Chronic Respiratory Disease, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
12
|
Gabitzsch ES, Tsang KY, Palena C, David JM, Fantini M, Kwilas A, Rice AE, Latchman Y, Hodge JW, Gulley JL, Madan RA, Heery CR, Balint JP, Jones FR, Schlom J. The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic. Oncotarget 2016; 6:31344-59. [PMID: 26374823 PMCID: PMC4741610 DOI: 10.18632/oncotarget.5181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted. The unique deletions in this platform result in a dramatic decrease in late gene expression, leading to a marked reduction in host immune response to the vector. Ad5 [E1-, E2b-]-CEA vaccine (ETBX-011) has been employed in clinical studies as an active vaccine to induce immune responses to CEA in metastatic colorectal cancer patients. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no “antigenic competition” in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies.
Collapse
Affiliation(s)
| | - Kwong Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Fantini
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
A poxviral-based cancer vaccine the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget 2016; 6:28194-210. [PMID: 26317648 PMCID: PMC4695054 DOI: 10.18632/oncotarget.4442] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/23/2015] [Indexed: 01/11/2023] Open
Abstract
Several transcription factors play a role in the alteration of gene expression that occurs during cancer metastasis. Twist expression has been shown to be associated with the hallmarks of the metastatic process, as well as poor prognosis and drug resistance in many tumor types. However, primarily due to their location within the cell and the lack of a hydrophobic groove required for drug attachment, transcription factors such as Twist are difficult to target with conventional therapies. An alternative therapeutic strategy is a vaccine comprised of a Modified vaccinia Ankara (MVA), incorporating the Twist transgene and a TRIad of COstimulatory Molecules (B7-1, ICAM-1, LFA-3; TRICOM). Here we characterize an MVA-TWIST/TRICOM vaccine that induced both CD4+ and CD8+ Twist-specific T-cell responses in vivo. In addition, administration of this vaccine reduced both the primary tumor growth and metastasis in the 4T1 model of metastatic breast cancer. In the TRAMP transgenic model of spontaneous prostate cancer, MVA-TWIST/TRICOM alone significantly improved survival, and when combined with the androgen receptor antagonist enzalutamide, the vaccine further improved survival. These studies thus provide a rationale for the use of active immunotherapy targeting transcription factors involved in the metastatic process and for the combination of cancer vaccines with androgen deprivation.
Collapse
|
14
|
Scheipl S, Barnard M, Cottone L, Jorgensen M, Drewry DH, Zuercher WJ, Turlais F, Ye H, Leite AP, Smith JA, Leithner A, Möller P, Brüderlein S, Guppy N, Amary F, Tirabosco R, Strauss SJ, Pillay N, Flanagan AM. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. J Pathol 2016; 239:320-34. [PMID: 27102572 PMCID: PMC4922416 DOI: 10.1002/path.4729] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/11/2016] [Accepted: 04/10/2016] [Indexed: 12/24/2022]
Abstract
Chordoma is a rare malignant bone tumour with a poor prognosis and limited therapeutic options. We undertook a focused compound screen (FCS) against 1097 compounds on three well-characterized chordoma cell lines; 154 compounds were selected from the single concentration screen (1 µm), based on their growth-inhibitory effect. Their half-maximal effective concentration (EC50 ) values were determined in chordoma cells and normal fibroblasts. Twenty-seven of these compounds displayed chordoma selective cell kill and 21/27 (78%) were found to be EGFR/ERBB family inhibitors. EGFR inhibitors in clinical development were then studied on an extended cell line panel of seven chordoma cell lines, four of which were sensitive to EGFR inhibition. Sapitinib (AstraZeneca) emerged as the lead compound, followed by gefitinib (AstraZeneca) and erlotinib (Roche/Genentech). The compounds were shown to induce apoptosis in the sensitive cell lines and suppressed phospho-EGFR and its downstream pathways in a dose-dependent manner. Analysis of substituent patterns suggested that EGFR-inhibitors with small aniline substituents in the 4-position of the quinazoline ring were more effective than inhibitors with large substituents in that position. Sapitinib showed significantly reduced tumour growth in two xenograft mouse models (U-CH1 xenograft and a patient-derived xenograft, SF8894). One of the resistant cell lines (U-CH2) was shown to express high levels of phospho-MET, a known bypass signalling pathway to EGFR. Neither amplifications (EGFR, ERBB2, MET) nor mutations in EGFR, ERBB2, ERBB4, PIK3CA, BRAF, NRAS, KRAS, PTEN, MET or other cancer gene hotspots were detected in the cell lines. Our findings are consistent with the reported (p-)EGFR expression in the majority of clinical samples, and provide evidence for exploring the efficacy of EGFR inhibitors in the treatment of patients with chordoma and studying possible resistance mechanisms to these compounds in vitro and in vivo. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Susanne Scheipl
- University College London Cancer Institute, London, UK
- Department of Orthopaedics and Orthopaedic Surgery, Medical University of Graz, Austria
| | - Michelle Barnard
- University College London Cancer Institute, London, UK
- Cancer Research Technology Discovery Laboratories, Cambridge, UK
- CRUK-MedImmune Alliance Laboratory, Cambridge, UK
| | - Lucia Cottone
- University College London Cancer Institute, London, UK
| | | | - David H Drewry
- GlaxoSmithKline, Research Triangle Park, NC, USA
- SGC-UNC, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - William J Zuercher
- GlaxoSmithKline, Research Triangle Park, NC, USA
- SGC-UNC, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Fabrice Turlais
- Cancer Research Technology Discovery Laboratories, Cambridge, UK
| | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Ana P Leite
- University College London Cancer Institute, London, UK
| | - James A Smith
- Cancer Research Technology Discovery Laboratories, Cambridge, UK
| | - Andreas Leithner
- Department of Orthopaedics and Orthopaedic Surgery, Medical University of Graz, Austria
| | | | | | - Naomi Guppy
- University College London Advanced Diagnostics, London, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - Nischalan Pillay
- University College London Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Adrienne M Flanagan
- University College London Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
- University College London Advanced Diagnostics, London, UK
| |
Collapse
|
15
|
Hamilton DH, Griner LM, Keller JM, Hu X, Southall N, Marugan J, David JM, Ferrer M, Palena C. Targeting Estrogen Receptor Signaling with Fulvestrant Enhances Immune and Chemotherapy-Mediated Cytotoxicity of Human Lung Cancer. Clin Cancer Res 2016; 22:6204-6216. [PMID: 27267852 DOI: 10.1158/1078-0432.ccr-15-3059] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE The conversion of tumor cells from an epithelial to a mesenchymal-like phenotype, via a process designated as the epithelial-mesenchymal transition (EMT), is known to mediate tumor resistance to a variety of cell death inducers, including cytotoxic effector immune cells. The goal of this study was to identify and potentially repurpose FDA-approved compounds capable of reducing mesenchymal features of human lung carcinoma cells, which could be used in combination with immunotherapies or chemotherapeutic strategies to improve clinical responses. EXPERIMENTAL DESIGN In the current report, we have utilized a quantitative high-throughput screening (qHTS) of a pharmaceutical collection of more than 2,000 compounds to identify clinically approved drugs capable of augmenting the sensitivity of mesenchymal-like, lung cancer cells to immune- and chemotherapy-mediated lysis, both in vitro and in vivo RESULTS: The estrogen receptor antagonist fulvestrant was shown to reduce mesenchymal features of lung carcinoma cells, resulting in tumor sensitization to the cytotoxic effect of antigen-specific T cells, natural killer (NK) effector cells, and chemotherapy both in vivo and in vitro CONCLUSIONS: To our knowledge, this is the first report defining a potential role for estrogenic signaling in promoting tumor resistance to immune-mediated cytotoxicity and chemotherapy in lung cancer. Our data demonstrate a robust association between the acquisition of mesenchymal attributes, therapeutic resistance of lung carcinoma cells, and the expression of estrogen receptor 1 (ESR1), supporting further investigations on the role of estrogen signaling in lung cancer progression via the induction of EMT. Clin Cancer Res; 22(24); 6204-16. ©2016 AACR.
Collapse
Affiliation(s)
- Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - Jonathan M Keller
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Xin Hu
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Noel Southall
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Juan Marugan
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
16
|
Song L, Chen J, Peng G, Tang K, Jing N. Dynamic Heterogeneity of Brachyury in Mouse Epiblast Stem Cells Mediates Distinct Response to Extrinsic Bone Morphogenetic Protein (BMP) Signaling. J Biol Chem 2016; 291:15212-25. [PMID: 27226536 DOI: 10.1074/jbc.m115.705418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 01/11/2023] Open
Abstract
Mouse pluripotent cells, such as embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs), provide excellent in vitro systems to study imperative pre- and postimplantation events of in vivo mammalian development. It is known that mouse ESCs are dynamic heterogeneous populations. However, it remains largely unclear whether and how EpiSCs possess heterogeneity and plasticity similar to that of ESCs. Here, we show that EpiSCs are discriminated by the expression of a specific marker T (Brachyury) into two populations. The T-positive (T(+)) and the T-negative (T(-)) populations can be interconverted within the same culture condition. In addition, the two populations display distinct responses to bone morphogenetic protein (BMP) signaling and different developmental potentials. The T(-) EpiSCs are preferentially differentiated into ectoderm lineages, whereas T(+) EpiSCs have a biased potential for mesendoderm fates. Mechanistic studies reveal that T(+) EpiSCs have an earlier and faster response to BMP4 stimulation than T(-) EpiSCs. Id1 mediates the commitment of T(-) EpiSCs to epidermal lineage during BMP4 treatment. On the other hand, Snail modulates the conversion of T(+) EpiSCs to mesendoderm fates with the presence of BMP4. Furthermore, T expression is essential for epithelial-mesenchymal transition during EpiSCs differentiation. Our findings suggest that the dynamic heterogeneity of the T(+)/T(-) subpopulation primes EpiSCs toward particular cell lineages, providing important insights into the dynamic development of the early mouse embryo.
Collapse
Affiliation(s)
- Lu Song
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Jun Chen
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Guangdun Peng
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Ke Tang
- the Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Naihe Jing
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| |
Collapse
|
17
|
Pinto F, Campanella NC, Abrahão-Machado LF, Scapulatempo-Neto C, de Oliveira AT, Brito MJ, Andrade RP, Guimarães DP, Reis RM. The embryonic Brachyury transcription factor is a novel biomarker of GIST aggressiveness and poor survival. Gastric Cancer 2016; 19:651-659. [PMID: 25995035 DOI: 10.1007/s10120-015-0505-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/29/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The T-box transcription factor Brachyury was recently reported to be upregulated and associated with prognosis in solid tumors. Here, we proposed to evaluate the potential use of Brachyury protein expression as a new prognostic biomarker in gastrointestinal stromal tumors (GIST). METHODS Brachyury protein expression was analyzed by immunohistochemistry in a cohort of 63 bona fide GIST patients. Brachyury expression profiles were correlated with patients' clinicopathological features and prognostic impact. Additionally, an in silico analysis was performed using the Oncomine database to assess Brachyury alterations at DNA and mRNA levels in GISTs. RESULTS We found that Brachyury was overexpressed in the majority (81.0 %) of primary GISTs. We observed Brachyury staining in the nucleus alone in 4.8 % of cases, 23.8 % depicted only cytoplasm staining, and 52.4 % of cases exhibited both nucleus and cytoplasm immunostaining. The presence of Brachyury was associated with aggressive GIST clinicopathological features. Particularly, Brachyury nuclear (with or without cytoplasm) staining was associated with the presence of metastasis, while cytoplasm sublocalization alone was correlated with poor patient survival. CONCLUSIONS Herein, we demonstrate that Brachyury is overexpressed in GISTs and is associated with worse outcome, constituting a novel prognostic biomarker and a putative target for GIST treatment.
Collapse
Affiliation(s)
- Filipe Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nathalia C Campanella
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Barretos, CEP 14784 400, Sao Paulo, Brazil
| | | | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Barretos, CEP 14784 400, Sao Paulo, Brazil
- Department of Pathology, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - Antonio T de Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Barretos, CEP 14784 400, Sao Paulo, Brazil
- Upper Digestive Surgery Department, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - Maria J Brito
- Department of Pathology, Hospital Garcia de Orta, Almada, Portugal
| | - Raquel P Andrade
- Regenerative Medicine Program, Department of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Denise P Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Barretos, CEP 14784 400, Sao Paulo, Brazil
- Department of Endoscopy, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Barretos, CEP 14784 400, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT. Proc Natl Acad Sci U S A 2016; 113:3820-5. [PMID: 27006501 DOI: 10.1073/pnas.1601252113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial-mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers.
Collapse
|
19
|
Abstract
Chordoma is an extremely rare cancer, with an incidence of about one case per million persons per year in the USA and Europe (about 300 and 450 cases per year, respectively). The estimated median overall survival of patients with chordoma is approximately 6–7 years, yielding a rough estimate of chordoma prevalence at about 2000 in the USA and 3000 in Europe. Primary tumor develops along the axial spine between the clivus and sacrum and develops from the residual embryonic notochord. Brachyury (T), a transcription factor required for normal embryonic development, is expressed in the notochord and overexpressed in almost all cases of chordoma. The primary treatment for chordoma is surgical excision with wide local margins, when possible. Radiotherapy also plays a significant role in the adjuvant setting and when surgery is not possible. Unfortunately, in the advanced and/or metastatic setting, where the role of surgery and/or radiation is less clear, treatment options are very limited. To date, there have been no randomized, controlled trials in chordoma that have resulted in defined agents of clinical benefit for systemic treatment. This review briefly describes the natural history and initial treatment of chordoma and focuses on treatment options for advanced disease and potential avenues of research that may lead to improved treatment options in the future.
Collapse
Affiliation(s)
- Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
20
|
Hamilton DH, Fernando RI, Schlom J, Palena C. Aberrant expression of the embryonic transcription factor brachyury in human tumors detected with a novel rabbit monoclonal antibody. Oncotarget 2016; 6:4853-62. [PMID: 25605015 PMCID: PMC4467120 DOI: 10.18632/oncotarget.3086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/17/2014] [Indexed: 01/05/2023] Open
Abstract
The embryonic transcription factor brachyury is overexpressed in a variety of human tumors, including lung, breast, colon and prostate carcinomas, chordomas and hemangioblastomas. In human carcinoma cells, overexpression of brachyury associates with the occurrence of the phenomenon of epithelial-mesenchymal transition (EMT), acquisition of metastatic propensity and resistance to a variety of anti-cancer therapeutics. Brachyury is preferentially expressed in human tumors vs. normal adult tissues, and high levels of this molecule associate with poor prognosis in patients with lung, colon and prostate carcinomas, and in breast cancer patients treated with adjuvant tamoxifen. Brachyury is immunogenic in humans and vaccines against this novel oncotarget are currently undergoing clinical investigation. While our group and others have employed various anti-brachyury antibodies to interrogate the above findings, we report here on the development and thorough characterization of a novel rabbit monoclonal antibody (MAb 54-1) that reacts with distinct high affinity and specificity with human brachyury. MAb 54-1 was successfully used in ELISA, western blot, immunofluorescence and immunohistochemistry assays to evaluate expression of brachyury in various human tumor cell lines and tissues. We propose the use of this antibody to assist in research studies of EMT and in prognostic studies for a range of human tumors.
Collapse
Affiliation(s)
- Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Romaine I Fernando
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Cao Q, Zhao L, Wang P. [Advances in the molecular mechanisms and prognostic significance of EMT in non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 17:569-74. [PMID: 25034589 PMCID: PMC6000464 DOI: 10.3779/j.issn.1009-3419.2014.07.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
上皮细胞-间叶细胞转化(epithelial to mesenchymal transition, EMT)不仅在胚胎的发育过程中起着十分重要的作用,还参与非小细胞肺癌(non-small cell lung cancer, NSCLC)的转移过程。近期的研究发现,发生EMT的细胞不仅出现了形态的改变,还出现了相关表型的改变。既往有关EMT发生机制的研究多数是针对其他肿瘤的,因此很有必要研究NSCLC中是否有类似发生机制。随着研究的进展,EMT相关的基础研究逐渐被用于预测NSCLC的预后。本文将对NSCLC中EMT的发生机制及其临床应用的研究进展进行探讨。
Collapse
Affiliation(s)
- Qinchen Cao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Lujun Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
22
|
Heery CR, Singh BH, Rauckhorst M, Marté JL, Donahue RN, Grenga I, Rodell TC, Dahut W, Arlen PM, Madan RA, Schlom J, Gulley JL. Phase I Trial of a Yeast-Based Therapeutic Cancer Vaccine (GI-6301) Targeting the Transcription Factor Brachyury. Cancer Immunol Res 2015; 3:1248-56. [PMID: 26130065 DOI: 10.1158/2326-6066.cir-15-0119] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022]
Abstract
The nuclear transcription factor brachyury has previously been shown to be a strong mediator of the epithelial-to-mesenchymal transition (EMT) in human carcinoma cells and a strong negative prognostic factor in several tumor types. Brachyury is overexpressed in a range of human carcinomas as well as in chordoma, a rare tumor for which there is no standard systemic therapy. Preclinical studies have shown that a recombinant Saccharomyces cerevisiae (yeast) vaccine encoding brachyury (GI-6301) can activate human T cells in vitro. A phase I dose-escalation (3+3 design) trial enrolled 34 patients at 4 dose levels [3, 3, 16, and 11 patients, respectively, at 4, 16, 40, and 80 yeast units (YU)]. Expansion cohorts were enrolled at 40- and 80-YU dose levels for analysis of immune response and clinical activity. We observed brachyury-specific T-cell immune responses in the majority of evaluable patients despite most having been heavily pretreated. No evidence of autoimmunity or other serious adverse events was observed. Two chordoma patients showed evidence of disease control (one mixed response and one partial response). A patient with colorectal carcinoma, who enrolled on study with a large progressing pelvic mass and rising carcinoembryonic antigen (CEA), remains on study for greater than 1 year with stable disease, evidence of decreased tumor density, and decreased serum CEA. This is the first-in-human study to demonstrate the safety and immunogenicity of this therapeutic cancer vaccine and provides the rationale for exploration in phase II studies. A randomized phase II chordoma study is now enrolling patients.
Collapse
Affiliation(s)
- Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - B Harpreet Singh
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Myrna Rauckhorst
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - William Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Philip M Arlen
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
23
|
Palena C, Hamilton DH. Immune Targeting of Tumor Epithelial-Mesenchymal Transition via Brachyury-Based Vaccines. Adv Cancer Res 2015. [PMID: 26216630 DOI: 10.1016/bs.acr.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a manifestation of their inherent plasticity, carcinoma cells undergo profound phenotypic changes during progression toward metastasis. One such phenotypic modulation is the epithelial-mesenchymal transition (EMT), an embryonically relevant process that can be reinstated by tumor cells, resulting in the acquisition of metastatic propensity, stem-like cell properties, and resistance to a variety of anticancer therapies, including chemotherapy, radiation, and some small-molecule targeted therapies. Targeting of the EMT is emerging as a novel intervention against tumor progression. This review focuses on the potential use of cancer vaccine strategies targeting tumor cells that exhibit mesenchymal-like features, with an emphasis on the current status of development of vaccine platforms directed against the T-box transcription factor brachyury, a novel cancer target involved in tumor EMT, stemness, and resistance to therapies. Also presented is a summary of potential mechanisms of resistance to immune-mediated attack driven by EMT and the development of novel combinatorial strategies based on the use of agents that alleviate tumor EMT for an optimized targeting of plastic tumor cells that are responsible for tumor recurrence and the establishment of therapeutic refractoriness.
Collapse
Affiliation(s)
- Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
24
|
Sun S, Sun W, Xia L, Liu L, Du R, He L, Li R, Wang H, Huang C. The T-box transcription factor Brachyury promotes renal interstitial fibrosis by repressing E-cadherin expression. Cell Commun Signal 2014; 12:76. [PMID: 25433496 PMCID: PMC4261244 DOI: 10.1186/s12964-014-0076-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) induced by TGF-β1 is one of well-recognized factors contributing to renal fibrosis. However, the underlying molecular mechanisms of EMT are not fully understood. Brachyury, an evolutionarily conserved transcription factor, was recently identified as an important factor promoting EMT in human carcinoma cell lines. There is no evidence that Brachyury is involved in renal tubular EMT. Results Our results demonstrated that Brachyury was prominently induced in TGF-β1-treated human proximal tubular epithelial (HK-2) cells and that this induction was accompanied by changes characteristic of EMT. Blockage of Brachyury expression by short interfering RNA (siRNA) in HK-2 cells effectively reversed the TGF-β1-induced EMT phenotype. Brachyury induction repressed E-cadherin transcription; the E-cadherin promoter contains a Brachyury binding site, and decreased expression of E-cadherin occurred in Brachyury-overexpressing cells when they were transfected with reporter constructs using the promoter. This effect was partially mediated by Slug and Snail, as knockdown of Snail and Slug by siRNA effectively reversed Brachyury-mediated EMT and partially restored E–cadherin expression. The expression of Brachyury also presented in a rat model of obstructive nephropathy and in tubulointerstitial fibrosis tissues of IgA nephropathy, suggesting that it may have a role in EMT and renal fibrosis in vivo. Conclusion Our results demonstrate for the first time that Brachyury plays an important role in regulating TGF-β1–mediated renal EMT and could be an attractive target for progression of renal disease therapies.
Collapse
Affiliation(s)
- Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, 169 Chang le West Road, Xi'an, Shaanxi Province, 710032, China. .,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Wenjuan Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, 169 Chang le West Road, Xi'an, Shaanxi Province, 710032, China. .,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Lin Xia
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Limin Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, 169 Chang le West Road, Xi'an, Shaanxi Province, 710032, China. .,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Rui Du
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, 169 Chang le West Road, Xi'an, Shaanxi Province, 710032, China.
| | - Lijie He
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, 169 Chang le West Road, Xi'an, Shaanxi Province, 710032, China.
| | - Rong Li
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, 169 Chang le West Road, Xi'an, Shaanxi Province, 710032, China.
| | - Hanmin Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, 169 Chang le West Road, Xi'an, Shaanxi Province, 710032, China.
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, 169 Chang le West Road, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
25
|
Sohal SS, Mahmood MQ, Walters EH. Clinical significance of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD): potential target for prevention of airway fibrosis and lung cancer. Clin Transl Med 2014; 3:33. [PMID: 26932377 PMCID: PMC4607924 DOI: 10.1186/s40169-014-0033-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/12/2014] [Indexed: 01/04/2023] Open
Abstract
Unfortunately, the research effort directed into chronic obstructive pulmonary disease (COPD) has been disproportionately weak compared to its social importance, and indeed it is the least researched of all common chronic conditions. Tobacco smoking is the major etiological factor. Only 25% of smokers will develop "classic" COPD; in these vulnerable individuals the progression of airways disease to symptomatic COPD occurs over two or more decades. We know surprisingly little about the pathobiology of COPD airway disease, though small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and these features occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix (ECM) is epithelial mesenchymal transition (EMT), so called Type-II EMT. When associated with angiogenesis (Type-III EMT) it may well also be a link with the development of lung (airway) cancer which is closely associated with COPD. Active EMT in COPD may help to explain why lung cancer is so common in smokers and also the core pathophysiology of small airway fibrosis. Better understanding may lead to new markers for incipient neoplasia, and better preventive management of patients. There is serious need to understand key components of airway EMT in smokers and COPD, and to demarcate novel drug targets for the prevention of lung cancer and airway fibrosis, as well as better secondary management of COPD. Since over 90% of human cancer arises in epithelia and the involvement of EMT in all of these may be a central paradigm, insights gained in COPD may have important generalizable value.
Collapse
Affiliation(s)
- Sukhwinder Singh Sohal
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS-1, 17 Liverpool Street Private Bag-23, Hobart, 7000, TAS, Australia.
| | - Malik Quasir Mahmood
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS-1, 17 Liverpool Street Private Bag-23, Hobart, 7000, TAS, Australia.
| | - Eugene Haydn Walters
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS-1, 17 Liverpool Street Private Bag-23, Hobart, 7000, TAS, Australia.
| |
Collapse
|
26
|
Tucker JA, Jochems C, Boyerinas B, Fallon J, Greiner JW, Palena C, Rodell TC, Schlom J, Tsang KY. Identification and characterization of a cytotoxic T-lymphocyte agonist epitope of brachyury, a transcription factor involved in epithelial to mesenchymal transition and metastasis. Cancer Immunol Immunother 2014; 63:1307-17. [PMID: 25186612 DOI: 10.1007/s00262-014-1603-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/12/2014] [Indexed: 12/31/2022]
Abstract
The transcription factor brachyury is a major driver of epithelial to mesenchymal transition in human carcinoma cells. It is overexpressed in several human tumor types versus normal adult tissues, except for testes and thyroid. Overexpression is associated with drug resistance and poor prognosis. Previous studies identified a brachyury HLA-A2 cytotoxic T-lymphocyte epitope. The studies reported here describe an enhancer epitope of brachyury. Compared to the native epitope, the agonist epitope: (a) has enhanced binding to MHC class I, (b) increased the IFN-γ production from brachyury-specific T cells, (c) generated brachyury-specific T cells with greater levels of perforin and increased proliferation, (d) generated T cells more proficient at lysing human carcinoma cells endogenously expressing the native epitope, and (e) achieved greater brachyury-specific T-cell responses in vivo in HLA-A2 transgenic mice. These studies also report the generation of a heat-killed recombinant Saccharomyces cerevisiae (yeast) vector expressing the full-length brachyury gene encoding the agonist epitope. Compared to yeast-brachyury (native) devoid of the agonist epitope, the yeast-brachyury (agonist) enhanced the activation of brachyury-specific T cells, which efficiently lysed human carcinoma cells. In addition to providing the rationale for the recombinant yeast-brachyury (agonist) as a potential vaccine in cancer therapy, these studies also provide the rationale for the use of the agonist in (a) dendritic cell (DC) vaccines, (b) adjuvant or liposomal vaccines, (c) recombinant viral and/or bacterial vaccines, (d) protein/polypeptide vaccines, (e) activation of T cells ex vivo in adoptive therapy protocols, and (f) generation of genetically engineered targeted T cells.
Collapse
Affiliation(s)
- Jo A Tucker
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B09, MSC 1750, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine. Oncotarget 2014; 4:1777-90. [PMID: 24125763 PMCID: PMC3858563 DOI: 10.18632/oncotarget.1295] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The embryonic T-box transcription factor brachyury is aberrantly expressed in a range of human tumors. Previous studies have demonstrated that brachyury is a driver of the epithelial-mesenchymal transition (EMT), a process associated with cancer progression. Brachyury expression in human tumor cells enhances tumor invasiveness in vitro and metastasis in vivo, and induces resistance to various conventional therapeutics including chemotherapy and radiation. These characteristics, and the selective expression of brachyury for a range of human tumor types vs. normal adult tissues, make brachyury an attractive tumor target. Due to its intracellular localization and the “undruggable” character of transcription factors, available options to target brachyury are currently limited. Here we report on the development and characterization of an immunological platform for the efficient targeting of brachyury-positive tumors consisting of a heat-killed, recombinant Saccharomyces cerevisiae (yeast)–brachyury vector-based vaccine (designated as GI-6301) that expresses the full-length human brachyury protein. We demonstrate that human dendritic cells treated with recombinant yeast-brachyury can activate and expand brachyury-specific CD4+ and CD8+ T cells in vitro that, in turn, can effectively lyse human tumor cells expressing the brachyury protein. Vaccination of mice with recombinant yeast-brachyury is also shown here to elicit brachyury-specific CD4+ and CD8+ T-cell responses, and to induce anti-tumor immunity in the absence of toxicity. Based on these results, a Phase I clinical trial of GI-6301 is currently ongoing in patients with advanced tumors; to our knowledge, this is the first vaccine platform aimed at targeting a driver of tumor EMT that has successfully reached the clinical stage.
Collapse
|
28
|
Pires MM, Aaronson SA. Brachyury: a new player in promoting breast cancer aggressiveness. J Natl Cancer Inst 2014; 106:dju094. [PMID: 24815862 DOI: 10.1093/jnci/dju094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Maira M Pires
- Affiliation of authors: Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (MMP, SAA)
| | - Stuart A Aaronson
- Affiliation of authors: Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (MMP, SAA).
| |
Collapse
|
29
|
Ardiani A, Gameiro SR, Palena C, Hamilton DH, Kwilas A, King TH, Schlom J, Hodge JW. Vaccine-mediated immunotherapy directed against a transcription factor driving the metastatic process. Cancer Res 2014; 74:1945-57. [PMID: 24520078 DOI: 10.1158/0008-5472.can-13-2045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous reports have now demonstrated that the epithelial-to-mesenchymal transition (EMT) process is involved in solid tumor progression, metastasis, and drug resistance. Several transcription factors have been implicated as drivers of EMT and metastatic progression, including Twist. Overexpression of Twist has been shown to be associated with poor prognosis and drug resistance for many carcinomas and other tumor types. The role of Twist in experimental cancer metastases has been principally studied in the 4T1 mammary tumor model, where silencing of Twist in vitro has been shown to greatly reduce in vivo metastatic spread. Transcription factors such as Twist are generally believed to be "undruggable" because of their nuclear location and lack of a specific groove for tight binding of a small molecule inhibitor. An alternative approach to drug therapy targeting transcription factors driving the metastatic process is T-cell-mediated immunotherapy. A therapeutic vaccine platform that has been previously characterized consists of heat-killed recombinant Saccharomyces cerevisiae (yeast) capable of expressing tumor-associated antigen protein. We report here the construction and characterization of a recombinant yeast expressing the entire Twist protein, which is capable of inducing both CD8(+) and CD4(+) Twist-specific T-cell responses in vivo. Vaccination of mice reduced the size of primary transplanted 4T1 tumors and had an even greater antitumor effect on lung metastases of the same mice, which was dependent on Twist-specific CD8(+) T cells. These studies provide the rationale for vaccine-induced T-cell-mediated therapy of transcription factors involved in driving the metastatic process.
Collapse
Affiliation(s)
- Andressa Ardiani
- Authors' Affiliations: Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; and GlobeImmune Inc., Louisville, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ardiani A, Farsaci B, Rogers CJ, Protter A, Guo Z, King TH, Apelian D, Hodge JW. Combination therapy with a second-generation androgen receptor antagonist and a metastasis vaccine improves survival in a spontaneous prostate cancer model. Clin Cancer Res 2013; 19:6205-18. [PMID: 24048332 PMCID: PMC3833876 DOI: 10.1158/1078-0432.ccr-13-1026] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Enzalutamide, a second-generation androgen antagonist, was approved by the U.S. Food and Drug Administration (FDA) for castration-resistant prostate cancer (CRPC) treatment. Immunotherapy has been shown to be a promising strategy for prostate cancer. This study was performed to provide data to support the combination of enzalutamide and immunotherapy for CRPC treatment. EXPERIMENTAL DESIGN Male C57BL/6 or TRAMP (transgenic adenocarcinoma of the mouse prostate) prostate cancer model mice were exposed to enzalutamide and/or a therapeutic vaccine targeting Twist, an antigen involved in epithelial-to-mesenchymal transition and metastasis. The physiologic and immunologic effects of enzalutamide were characterized. The generation of Twist-specific immunity by Twist-vaccine was assessed. Finally, the combination of enzalutamide and Twist-vaccine to improve TRAMP mice overall survival was evaluated. RESULTS Enzalutamide mediated immunogenic modulation in TRAMP-C2 cells. In vivo, enzalutamide mediated reduced genitourinary tissue weight, enlargement of the thymus, and increased levels of T-cell excision circles. Because no changes were seen in T-cell function, as determined by CD4(+) T-cell proliferation and regulatory T cell (Treg) functional assays, enzalutamide was determined to be immune inert. Enzalutamide did not diminish the ability of Twist-vaccine to generate Twist-specific immunity. Twist was confirmed as a valid tumor antigen in TRAMP mice by immunohistochemistry. The combination of enzalutamide and Twist-vaccine resulted in significantly increased overall survival of TRAMP mice compared with other treatment groups (27.5 vs. 10.3 weeks). Notably, the effectiveness of the combination therapy increased with disease stage, i.e., the greatest survival benefit was seen in mice with advanced-stage prostate tumors. CONCLUSIONS These data support the combination of enzalutamide and immunotherapy as a promising treatment strategy for CRPC. Clin Cancer Res; 19(22); 6205-18. ©2013 AACR.
Collapse
Affiliation(s)
- Andressa Ardiani
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benedetto Farsaci
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Connie J. Rogers
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Zhang L, Guo S, Schwab JH, Nielsen GP, Choy E, Ye S, Zhang Z, Mankin H, Hornicek FJ, Duan Z. Tissue microarray immunohistochemical detection of brachyury is not a prognostic indicator in chordoma. PLoS One 2013; 8:e75851. [PMID: 24086644 PMCID: PMC3781148 DOI: 10.1371/journal.pone.0075851] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/22/2013] [Indexed: 12/13/2022] Open
Abstract
Brachyury is a marker for notochord-derived tissues and neoplasms, such as chordoma. However, the prognostic relevance of brachyury expression in chordoma is still unknown. The improvement of tissue microarray technology has provided the opportunity to perform analyses of tumor tissues on a large scale in a uniform and consistent manner. This study was designed with the use of tissue microarray to determine the expression of brachyury. Brachyury expression in chordoma tissues from 78 chordoma patients was analyzed by immunohistochemical staining of tissue microarray. The clinicopathologic parameters, including gender, age, location of tumor and metastatic status were evaluated. Fifty-nine of 78 (75.64%) tumors showed nuclear staining for brachyury, and among them, 29 tumors (49.15%) showed 1+ (<30% positive cells) staining, 15 tumors (25.42%) had 2+ (31% to 60% positive cells) staining, and 15 tumors (25.42%) demonstrated 3+ (61% to 100% positive cells) staining. Brachyury nuclear staining was detected more frequently in sacral chordomas than in chordomas of the mobile spine. However, there was no significant relationship between brachyury expression and other clinical variables. By Kaplan-Meier analysis, brachyury expression failed to produce any significant relationship with the overall survival rate. In conclusion, brachyury expression is not a prognostic indicator in chordoma.
Collapse
Affiliation(s)
- Linlin Zhang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shang Guo
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Orthopaedics, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Joseph H. Schwab
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - G. Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Edwin Choy
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Shunan Ye
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Zhan Zhang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Larocca C, Cohen JR, Fernando RI, Huang B, Hamilton DH, Palena C. An autocrine loop between TGF-β1 and the transcription factor brachyury controls the transition of human carcinoma cells into a mesenchymal phenotype. Mol Cancer Ther 2013; 12:1805-15. [PMID: 23783250 PMCID: PMC3815539 DOI: 10.1158/1535-7163.mct-12-1007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a process associated with the metastasis of solid tumors as well as with the acquisition of resistance to standard anticancer modalities. A major initiator of EMT in carcinoma cells is TGF-β, which has been shown to induce the expression of several transcription factors ultimately responsible for initiating and maintaining the EMT program. We have previously identified Brachyury, a T-box transcription factor, as an inducer of mesenchymal features in human carcinoma cells. In this study, a potential link between Brachyury and TGF-β signaling has been investigated. The results show for the first time that Brachyury expression is enhanced during TGF-β1-induced EMT in various human cancer cell lines, and that a positive feedback loop is established between Brachyury and TGF-β1 in mesenchymal-like tumor cells. In this context, Brachyury overexpression is shown to promote upregulation of TGF-β1 at the mRNA and protein levels, an effect mediated by activation of the TGF-β1 promoter in the presence of high levels of Brachyury. Furthermore, inhibition of TGF-β1 signaling by a small-molecule inhibitor of TGF-β receptor type I decreases Brachyury expression, induces a mesenchymal-to-epithelial transition, and renders cancer cells more susceptible to chemotherapy. This study thus has implications for the future development of clinical trials using TGF-β inhibitors in combination with other anticancer agents.
Collapse
Affiliation(s)
- Cecilia Larocca
- Corresponding Author: Claudia Palena, Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH; 10 Center Drive, Room 8B14, MSC 1750, Bethesda, MD 20892.
| | | | | | | | | | | |
Collapse
|
33
|
The embryonic transcription factor Brachyury blocks cell cycle progression and mediates tumor resistance to conventional antitumor therapies. Cell Death Dis 2013; 4:e682. [PMID: 23788039 PMCID: PMC3702290 DOI: 10.1038/cddis.2013.208] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The T-box transcription factor Brachyury, a molecule frequently detected in human cancers but seldom found in normal adult tissue, has recently been characterized as a driver of the epithelial-to-mesenchymal switch of human carcinomas. In the current investigation, we present data demonstrating that in two different human lung carcinoma models expression of Brachyury strongly correlates with increased in vitro resistance to cytotoxic therapies, such as chemotherapy and radiation. We also demonstrate that chemotherapy treatment in vitro selects for tumor cells with high levels of Brachyury and that the degree of resistance to therapy correlates with the level of Brachyury expression. In vitro and in vivo, human lung carcinoma cells with higher levels of Brachyury divide at slower rates than those with lower levels of Brachyury, a phenomenon associated with marked downregulation of cyclin D1, phosphorylated Rb and CDKN1A (p21). Chromatin immunoprecipitation and luciferase reporter assays revealed that Brachyury binds to a half T-box consensus site located within the promoter region of the p21 gene, indicating a potential mechanism for the observed therapeutic resistance associated with Brachyury expression. Finally, we demonstrate that in vivo treatment of tumor xenografts with chemotherapy results in the selective growth of resistant tumors characterized by high levels of Brachyury expression. Altogether, these results suggest that Brachyury expression may attenuate cell cycle progression, enabling tumor cells to become less susceptible to chemotherapy and radiation in human carcinomas.
Collapse
|
34
|
Shang Y, Li Z, Li H, Xia H, Lin Z. TIM-3 expression in human osteosarcoma: Correlation with the expression of epithelial-mesenchymal transition-specific biomarkers. Oncol Lett 2013; 6:490-494. [PMID: 24137353 PMCID: PMC3789023 DOI: 10.3892/ol.2013.1410] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/07/2013] [Indexed: 01/22/2023] Open
Abstract
Signals from the T cell Ig- and mucin-domain-containing molecules (TIMs) have been demonstrated to be actively involved in regulating the progression of carcinomas. However, the expression and distribution of these molecules in osteosarcoma, the most common primary bone malignancy with poor prognosis, have not been investigated. In this study, the expression of TIMs was examined in nine invasive human osteosarcomas using immunohistochemistry, and the phenotypes were detected by dual immunofluorescence staining. Using immunohistochemistry, it was observed that only TIM-3, rather than TIM-1 or TIM-4, was expressed in these tumor specimens, where it was localized in the cytoplasm and plasma membrane of tumor cells. Dual immunofluorescence staining revealed that the expression of TIM-3 was observed in all cell types investigated, including CD68+ macrophages, CD31+ endothelial cells, CK-18+ epithelial cells and PCNA+ tumor cells. Notably, in sarcoma cells, TIM-3 was co-expressed with certain biomarkers of epithelial-mesenchymal transition (EMT), including vimentin, Slug, Snail and Smad. These combined results suggest that TIM-3 triggers tumor cells to acquire features of aggressive EMT and may be involved in the pathogenesis of this malignancy.
Collapse
Affiliation(s)
- Yongjun Shang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, Jilin 133002; ; Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000
| | | | | | | | | |
Collapse
|
35
|
From notochord formation to hereditary chordoma: the many roles of Brachyury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826435. [PMID: 23662285 PMCID: PMC3626178 DOI: 10.1155/2013/826435] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 12/25/2022]
Abstract
Chordoma is a rare, but often malignant, bone cancer that preferentially affects the axial skeleton and the skull base. These tumors are both sporadic and hereditary and appear to occur more frequently after the fourth decade of life; however, modern technologies have increased the detection of pediatric chordomas. Chordomas originate from remnants of the notochord, the main embryonic axial structure that precedes the backbone, and share with notochord cells both histological features and the expression of characteristic genes. One such gene is Brachyury, which encodes for a sequence-specific transcription factor. Known for decades as a main regulator of notochord formation, Brachyury has recently gained interest as a biomarker and causative agent of chordoma, and therefore as a promising therapeutic target. Here, we review the main characteristics of chordoma, the molecular markers, and the clinical approaches currently available for the early detection and possible treatment of this cancer. In particular, we report on the current knowledge of the role of Brachyury and of its possible mechanisms of action in both notochord formation and chordoma etiogenesis.
Collapse
|