1
|
Visuddho V, Halim P, Helen H, Muhar AM, Iqhrammullah M, Mayulu N, Surya R, Tjandrawinata RR, Ribeiro RIMA, Tallei TE, Taslim NA, Kim B, Syahputra RA, Nurkolis F. Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy. Mar Drugs 2024; 22:338. [PMID: 39195454 DOI: 10.3390/md22080338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Marine algae, encompassing both macroalgae and microalgae, have emerged as a promising and prolific source of bioactive compounds with potent anticancer properties. Despite their significant therapeutic potential, the clinical application of these peptides is hindered by challenges such as poor bioavailability and susceptibility to enzymatic degradation. To overcome these limitations, innovative delivery systems, particularly nanocarriers, have been explored. Nanocarriers, including liposomes, nanoparticles, and micelles, have demonstrated remarkable efficacy in enhancing the stability, solubility, and bioavailability of marine algal peptides, ensuring controlled release and prolonged therapeutic effects. Marine algal peptides encapsulated in nanocarriers significantly enhance bioavailability, ensuring more efficient absorption and utilization in the body. Preclinical studies have shown promising results, indicating that nanocarrier-based delivery systems can significantly improve the pharmacokinetic profiles and therapeutic outcomes of marine algal peptides. This review delves into the diverse anticancer mechanisms of marine algal peptides, which include inducing apoptosis, disrupting cell cycle progression, and inhibiting angiogenesis. Further research focused on optimizing nanocarrier formulations, conducting comprehensive clinical trials, and continued exploration of marine algal peptides holds great promise for developing innovative, effective, and sustainable cancer therapies.
Collapse
Affiliation(s)
- Visuddho Visuddho
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Muhammad Iqhrammullah
- Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh 23123, Indonesia
| | - Nelly Mayulu
- Department of Nutrition, Faculty of Health Science, Muhammadiyah Manado University, Manado 95249, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| |
Collapse
|
2
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
3
|
Immunosuppressive Effect of Geniposide on Mitogen-Activated Protein Kinase Signalling Pathway and Their Cross-Talk in Fibroblast-Like Synoviocytes of Adjuvant Arthritis Rats. Molecules 2018; 23:molecules23010091. [PMID: 29301301 PMCID: PMC6017018 DOI: 10.3390/molecules23010091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/18/2023] Open
Abstract
Geniposide (GE), an iridoid glycoside compound derived from Gardenia jasminoides Ellis fruit, is known to have anti-inflammatory and immunoregulatory activities. The aim of this study was to investigate the protective mechanism of GE in the regulation of the mitogen-activated protein kinase (MAPK) signalling pathway and the cross-talk among the MAPK signalling pathway in fibroblast-like synoviocytes (FLS) of adjuvant arthritis (AA) rats. AA was induced by injecting with Freund's complete adjuvant. Male SD rats and FLS were subjected to treatment with GE (30, 60 and 120 mg/kg) in vivo from day 14 to 21 after immunization and GE (25, 50 and 100 μg/mL) in vitro, respectively. The proliferation of FLS was assessed by MTT. IL-4, IL-17, IFN-γ, and TGF-β1 were determined by ELISA. Key proteins in the MAPK signalling pathway were detected by Western blot. GE significantly reduced the proliferation of FLS, along with decreased IFN-γ and IL-17 and increased IL-4 and TGF-β1. In addition, GE decreased the expression of p-JNK, p-ERK1/2 and p-p38 in FLS of AA rats. Furthermore, disrupting one MAPK pathway inhibited the activation of other MAPK pathways, suggesting cross-talk among MAPK signalling. In vivo study, it was also observed that GE attenuated histopathologic changes in the synovial tissue of AA rats. Collectively, the mechanisms by which GE exerts anti-inflammatory and immunoregulatory effects may be related to the synergistic effect of JNK, ERK1/2 and p38. Targeting MAPK signalling may be a new therapeutic strategy in inflammatory/autoimmune diseases.
Collapse
|
4
|
MAPK inhibitors differently modulate TGF-β/Smad signaling in HepG2 cells. Tumour Biol 2015; 36:3643-51. [PMID: 25560488 DOI: 10.1007/s13277-014-3002-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/19/2014] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the mitogen-activated protein kinase (MAPK) pathway, which crosstalk with TGF-β/Smad signaling via linker phosphorylation of Smad2/3 to promote hepatocarcinogenesis. After DEN-induced hepatocellular carcinoma (HCC) in rats showed increased phosphorylation of JNK1/2, p38, and ERK1/2, we next antagonized TGF-β1-induced phosphorylation of JNK1/2, p38, ERK1/2, Smad2/3 signaling in HepG2 cells using SP600125, SB203580, and PD98059, respectively. Cell proliferation and invasion were assessed by MTT assay and transwell invasion chambers, respectively. Smad2/3, Smad4, and Smad7 expressions and PAI-1 messenger RNA (mRNA) transcription were measured by using immuno-precipitation/immuno-blotting and real-time RT-PCR, respectively. All the MAPK-specific inhibitors suppressed cell invasion, while all but PD98059 suppressed cell proliferation. Both SP600125 and SB203580 blocked pSmad2C/L and oncogenic pSmad3L. PD98059 blocked pSmad2L but had no effect on elevated pSmad2C and oncogenic pSmad3L. All but PD98059 blocked Smad2/3/4 complex formation and restored Smad7 expression, while all the three MAPK-Specific inhibitors repressed PAI-1 mRNA transcription. Both SP600125 and SB203580 inhibited HepG2 cells' proliferation and invasion by blocking oncogenic pSmad3L and Smad2/3/4 complex formation. PD98059 repressed PAI-1 mRNA by an unknown mechanism.
Collapse
|
5
|
Lee JO, Moon JW, Lee SK, Kim SM, Kim N, Ko SG, Kim HS, Park SH. Rhus verniciflua Extract Modulates Survival of MCF-7 Breast Cancer Cells through the Modulation of AMPK-Pathway. Biol Pharm Bull 2014; 37:794-801. [DOI: 10.1248/bpb.b13-00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jung Ok Lee
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine
| | - Ji Wook Moon
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine
| | - Soo Kyung Lee
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine
| | - So Mi Kim
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine
| | - Nami Kim
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine
| | - Seong-Gyu Ko
- Department of Preventive Medicine College of Traditional Korean Medicine, Kyunghee University
| | - Hyeon Soo Kim
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine
| | - Sun Hwa Park
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine
| |
Collapse
|
6
|
Martínez-Palacián A, del Castillo G, Suárez-Causado A, García-Álvaro M, de la Morena-Frutos D, Fernández M, Roncero C, Fabregat I, Herrera B, Sánchez A. Mouse hepatic oval cells require Met-dependent PI3K to impair TGF-β-induced oxidative stress and apoptosis. PLoS One 2013; 8:e53108. [PMID: 23301029 PMCID: PMC3534654 DOI: 10.1371/journal.pone.0053108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/23/2012] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that oval cells harboring a genetically inactivated Met tyrosine kinase (Met−/− oval cells) are more sensitive to TGF-β-induced apoptosis than cells expressing a functional Met (Metflx/flx), demonstrating that the HGF/Met axis plays a pivotal role in oval cell survival. Here, we have examined the mechanism behind this effect and have found that TGF-β induced a mitochondria-dependent apoptotic cell death in Metflx/flx and Met−/− oval cells, associated with a marked increase in levels of the BH3-only proteins Bim and Bmf. Bmf plays a key role during TGF-β-mediated apoptosis since knocking down of BMF significantly diminished the apoptotic response in Met−/− oval cells. TGF-β also induced oxidative stress accompanied by NADPH oxidase 4 (Nox4) mRNA up-regulation and decreased protein levels of antioxidant enzymes. Antioxidants inhibit both TGF-β-induced caspase 3 activity and Bmf up-regulation, revealing an oxidative stress-dependent Bmf regulation by TGF-β. Notably, oxidative stress-related events were strongly amplified in Met−/− oval cells, emphasizing the critical role of Met in promoting survival. Pharmacological inhibition of PI3K did impair HGF-driven protection from TGF-β-induced apoptosis and increased sensitivity of Metflx/flx oval cells to TGF-ß by enhancing oxidative stress, reaching apoptotic indices similar to those obtained in Met−/− oval cells. Interestingly, both PI3K inhibition and/or knockdown itself resulted in caspase-3 activation and loss of viability in Metflx/flx oval cells, whereas no effect was observed in Met−/− oval cells. Altogether, results presented here provide solid evidences that both paracrine and autocrine HGF/Met signaling requires PI3K to promote mouse hepatic oval cell survival against TGF-β-induced oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Adoración Martínez-Palacián
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Gaelle del Castillo
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Amileth Suárez-Causado
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María García-Álvaro
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Diego de la Morena-Frutos
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Margarita Fernández
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Cesáreo Roncero
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Isabel Fabregat
- Laboratori d´Oncologia Molecular and Departament de Ciències Fisiològiques II, Universitat de Barcelona, Institut d´Investigació Biomèdica de Bellvitge, ĹHospitalet de Llobregat, Barcelona, Spain
| | - Blanca Herrera
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Aránzazu Sánchez
- Dep. Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- * E-mail:
| |
Collapse
|
7
|
Antitumor peptides from marine organisms. Mar Drugs 2011; 9:1840-1859. [PMID: 22072999 PMCID: PMC3210608 DOI: 10.3390/md9101840] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 12/24/2022] Open
Abstract
The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new antitumor agents in the field of the development of marine bioactive substances. In this review, the progress on studies of antitumor peptides from marine sources is provided. The biological properties and mechanisms of action of different marine peptides are described; information about their molecular diversity is also presented. Novel peptides that induce apoptosis signal pathway, affect the tubulin-microtubule equilibrium and inhibit angiogenesis are presented in association with their pharmacological properties. It is intended to provide useful information for further research in the fields of marine antitumor peptides.
Collapse
|
8
|
Lei WW, Zhang KH, Pan XC, Wang DM, Hu Y, Yang YN, Song JG. Histone deacetylase 1 and 2 differentially regulate apoptosis by opposing effects on extracellular signal-regulated kinase 1/2. Cell Death Dis 2010; 1:e44. [PMID: 21364650 PMCID: PMC3032309 DOI: 10.1038/cddis.2010.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/26/2010] [Accepted: 04/01/2010] [Indexed: 11/22/2022]
Abstract
Histone deacetylases (HDACs) are epigenetic regulators that are important for the control of various pathophysiological events. We found that HDAC inhibitors completely abolished transforming growth factor-β1 (TGF-β1)-induced apoptosis in AML-12 and primary mouse hepatocytes. Expression of a dominant-negative mutant of HDAC1 or downregulation of HDAC1 by RNAi both suppressed TGF-β1-induced apoptosis. In addition, overexpression of HDAC1 enhanced TGF-β1-induced apoptosis, and the rescue of HDAC1 expression in HDAC1 RNAi cells restored the apoptotic response of cells to TGF-β1. These data indicate that HDAC1 functions as a proapoptotic factor in TGF-β1-induced apoptosis. In contrast, downregulation of HDAC2 by RNAi increased spontaneous apoptosis and markedly enhanced TGF-β1-induced apoptosis, suggesting that HDAC2 has a reciprocal role in controlling cell survival. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) by MEK1 inhibitor PD98059 or expression of a kinase-dead mutant of MEK1 restored the apoptotic response to TGF-β1 in HDAC1 RNAi cells. Strikingly, HDAC2 RNAi caused an inhibition of ERK1/2, and the spontaneous apoptosis can be abolished by reactivation of ERK1/2. Taken together, our data demonstrate that HDAC1 and 2 reciprocally affect cell viability by differential regulation of ERK1/2; these observations provide insight into the roles and potential mechanisms of HDAC1 and 2 in apoptosis.
Collapse
Affiliation(s)
- W-W Lei
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Li X, McFarland DC, Velleman SG. Transforming growth factor-beta1-induced satellite cell apoptosis in chickens is associated with beta1 integrin-mediated focal adhesion kinase activation. Poult Sci 2009; 88:1725-34. [PMID: 19590089 DOI: 10.3382/ps.2008-00534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) induces apoptosis in many types of cells. The cell adhesion receptor, beta1 integrin subunit, prevents apoptosis and may be involved in TGF-beta1-induced muscle cell apoptosis. In the current study, chicken primary satellite cells, myogenic precursors, were used to investigate the apoptotic effect of TGF-beta1 on muscle cells. The data from the current study showed that the addition of exogenous TGF-beta1 reduced beta1 integrin expression and altered its localization. Treatment of the satellite cells with TGF-beta1 increased the number of apoptotic cells indicated by annexin-V using flow cytometry. The number of caspase-positive cells was increased in the TGF-beta1-treated immunostained cells, which supported that TGF-beta1 induced satellite cell apoptosis. It has been shown that beta1 integrin is involved in muscle cell survival. In response to the activation of beta1 integrin, focal adhesion kinase (FAK) phosphorylates tyrosine at residue 397 and activates cell survival signal transduction. The phosphorylation of FAK was significantly reduced from 30 min to 4 h after TGF-beta1 treatment during both satellite cell proliferation and differentiation. These data suggested that the apoptotic effect of TGF-beta1 on satellite cells is likely associated with a beta1 integrin-mediated FAK signaling pathway during satellite cell proliferation and differentiation.
Collapse
Affiliation(s)
- X Li
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| | | | | |
Collapse
|
10
|
Montenegro DE, Franklin T, Moscinski LC, Zuckerman KS, Hu XT. TGFbeta inhibits GM-CSF-induced phosphorylation of ERK and MEK in human myeloid leukaemia cell lines via inhibition of phosphatidylinositol 3-kinase (PI3-k). Cell Prolif 2009; 42:1-9. [PMID: 19143758 DOI: 10.1111/j.1365-2184.2008.00567.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Activation of SMAD-independent p44/42 MAPK (ERK1/2) signalling by TGFbeta has been recently reported in various cell types. However, the mechanisms for the linkage between the SMAD-dependent and -independent pathways are poorly understood. In this study, we investigated whether TGF-beta activates the ERK pathway and how TGFbeta communicates with the MAP kinase signals induced by a mitogen, in human myeloid leukaemia cells. MATERIALS AND METHODS AND RESULTS TGFbeta dramatically suppressed proliferation of MV4-11 and TF-1 cells without detectable phosphorylation of ERK1/2 and MEK1/2 for the duration of 48 h, as detected by MTT assay and Western blot analysis, respectively. In contrast, GM-CSF induced rapid and transient phosphorylation of MEK1/2 and ERK1/2 and up-regulated cell proliferation. Both GM-CSF-induced ERK1/2 activation and cell proliferation were significantly inhibited by TGFbeta. GM-CSF also induced transient phosphorylation of the p85 subunit of PI3-kinase. Corresponding to this change, phosphorylated p85 was found to bind to the GM-CSF receptor-alpha subunit, as detected by immunoprecipitation and Western blot analysis. PD98059, a selective inhibitor of MEK, blocked GM-CSF-induced phosphorylation of MEK and ERK but not p85. However, TGFbeta and LY294002, a potent inhibitor of PI3-kinase, significantly inhibited phosphorylation of both p85 and ERK1/2. CONCLUSIONS These studies thus indicate that TGFbeta does not activate the ERK pathway but turns off the GM-CSF-induced ERK signal via inhibition of the PI3-kinase-Akt pathway, in these human leukaemia cells.
Collapse
Affiliation(s)
- D E Montenegro
- School of Natural and Health Science, Barry University, Miami Shores, FL 33161, USA
| | | | | | | | | |
Collapse
|
11
|
TGF-beta activates ERK5 in human renal epithelial cells. Biochem Biophys Res Commun 2008; 373:440-4. [PMID: 18588859 DOI: 10.1016/j.bbrc.2008.06.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/23/2022]
Abstract
The role of the MAP kinase, extracellular signal-regulated kinase 5 (ERK5) remains unknown, however it is involved in cell differentiation and survival as highlighted by the embryonic lethality of the ERK5 knockout. ERK5 can be activated by growth factors and other extracellular signals. TGF-beta, a powerful controller of epithelial cell phenotype, is known to activate the MAP kinase, ERK1/2 however its effect on ERK5 remains unknown. This study demonstrates, fort the first time, ERK5 activation by TGF-beta, observed in both transformed and primary adult human PTEC; activation required ALK-5 receptor activity. In addition this work demonstrates expression of myocyte enhancer factor-2 (MEF2C) by PTEC and that TGF-beta increased the association of MEK5 with phospho-ERK5 and MEF2C. ERK5 activation by either TGF-beta or epidermal growth factor (EGF) was also inhibited by the p38 MAP kinase inhibitor, SB-202190.
Collapse
|
12
|
Wang J, Yang L, Yang J, Kuropatwinski K, Wang W, Liu XQ, Hauser J, Brattain MG. Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer cells. Cancer Res 2008; 68:3152-60. [PMID: 18451140 DOI: 10.1158/0008-5472.can-07-5348] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FET cells, derived from an early-stage colon carcinoma, are nontumorigenic in athymic mice. Stable transfection of a dominant-negative transforming growth factor beta (TGFbeta) type II receptor (DNRII) into FET cells that express autocrine TGFbeta shows loss of TGFbeta signaling and increased tumorigenicity in vivo indicating tumor suppressor activity of TGFbeta signaling in this model. The ability of tumorigenic cells to withstand growth factor and nutrient deprivation stress (GFDS) is widely regarded as a key attribute for tumor formation and progression. We hypothesized that increased tumorigenicity of FET/DNRII cells was due to loss of participation of autocrine TGFbeta in a "fail-safe" mechanism to generate cell death in response to this stress. Here, we document that loss of autocrine TGFbeta in FET/DNRII cells resulted in greater endogenous cell survival in response to GFDS due to activation of the phosphoinositide 3-kinase (PI3K)/Akt/survivin pathway. Treatment of FET DNRII cells with a PI3K inhibitor (LY294002) inhibited Akt phosphorylation and reduced survivin expression resulting in increased apoptosis in FET/DNRII cells. We also show that exogenous TGFbeta increased apoptosis in FET cells through repression of the PI3K/Akt/survivin pathway during GFDS. These results indicate that the PI3K/Akt/survivin pathway is blocked by TGFbeta signaling and that loss of autocrine TGFbeta leads to increased cell survival during GFDS through the novel linkage of TGFbeta-mediated repression of survivin expression. Inhibition of survivin function by dominant-negative approaches showed that this inhibitor of apoptosis family member is critical to cell survival in the FET/DNRII cells, thus indicating the importance of this target for TGFbeta-mediated apoptosis.
Collapse
Affiliation(s)
- Jing Wang
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Moran DM, Mattocks MA, Cahill PA, Koniaris LG, McKillop IH. Interleukin-6 mediates G(0)/G(1) growth arrest in hepatocellular carcinoma through a STAT 3-dependent pathway. J Surg Res 2008; 147:23-33. [PMID: 17574577 PMCID: PMC2587231 DOI: 10.1016/j.jss.2007.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 03/20/2007] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates diverse cell functions including proliferation and differentiation. Within the liver IL-6 signaling plays a central role during normal hepatic growth and regeneration yet can inhibit the proliferation of hepatocellular carcinoma (HCC) cells. The aim of the current study was to identify underlying mechanisms whereby IL-6 induces cell-cycle arrest in HCC cells. These studies demonstrate that IL-6 inhibits cell-cycle progression at the G(0)/G(1) interface through inhibition of cyclin-dependent kinase (cdk) 2 and cdk4 activity in the absence of changes in total cyclin (A, D1, D3, and E) or cdk (cdk2, 4, and cdc2 p34) expression. Inhibition of signal transduction pathways associated with IL-6 receptor activation demonstrates that IL-6-dependent inhibition of G(0)-G(1) progression occurs via Janus tyrosine kinase-signal transducers and activators of transcription-3 (Jak-STAT3)-dependent induction of p21(waf1/cip1) and is independent of ERK-MAPK signaling. These data demonstrate that, while IL-6 plays a central role in hepatocyte priming and proliferation in vivo, the pronounced inhibition of proliferation observed in HCC cells occurs due to IL-6-STAT3-dependent regulation of cdk2/cdk4 activity and p21(waf1/cip1) expression.
Collapse
Affiliation(s)
- Dairmuid M Moran
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | | | | | | | | |
Collapse
|
14
|
Inaba H, Nagaoka Y, Kushima Y, Kumagai A, Matsumoto Y, Sakaguchi M, Baba K, Uesato S. Comparative examination of anti-proliferative activities of (-)-epigallocatechin gallate and (--)-epigallocatechin against HCT116 colorectal carcinoma cells. Biol Pharm Bull 2008; 31:79-84. [PMID: 18175946 DOI: 10.1248/bpb.31.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared anti-proliferative activities of (-)-epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) against HCT116 colorectal carcinoma cells. These catechins inhibited cell growth to nearly the same extent at low cell confluency in plates. However, their inhibitory effect grew weaker as cell confluence increased, and this tendency was more conspicuous for EGC than for EGCG. Both EGCG and EGC activated the phosphorylation of the major MAPKs, ERK, JNK, and p38, in the HCT116 cells as in many other established human cancer cells though to different extents. Cell cycle analyses, DNA fragmentation assays, and TUNEL assays as well as Western blot assays suggested that these catechins inhibited cell growth through mitogen-activated protein kinase (MAPK)-mediated apoptosis rather than cell cycle regulation.
Collapse
Affiliation(s)
- Hiroyuki Inaba
- Department of Life Science and Biotechnology, Faculty of Chemistry, Material and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Clybouw C, E L Mchichi B, Hadji A, Portier A, Auffredou MT, Arnoult D, Leca G, Vazquez A. TGFβ-mediated apoptosis of Burkitt's lymphoma BL41 cells is associated with the relocation of mitochondrial BimEL. Oncogene 2008; 27:3446-56. [DOI: 10.1038/sj.onc.1211009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Nagaoka Y, Otsuki K, Fujita T, Uesato S. Effects of Phosphorylation of Immunomodulatory Agent FTY720 (Fingolimod) on Antiproliferative Activity against Breast and Colon Cancer Cells. Biol Pharm Bull 2008; 31:1177-81. [DOI: 10.1248/bpb.31.1177] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuo Nagaoka
- Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Kota Otsuki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | | | - Shinichi Uesato
- Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
17
|
Verma-Gandhu M, Peterson MR, Peterson TC. Effect of fetuin, a TGFβ antagonist and pentoxifylline, a cytokine antagonist on hepatic stellate cell function and fibrotic parameters in fibrosis. Eur J Pharmacol 2007; 572:220-7. [PMID: 17678645 DOI: 10.1016/j.ejphar.2007.06.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
Abstract
We have previously shown that monocyte conditioned medium (MCM) from patients with liver fibrosis stimulated proliferation of hepatic stellate cells (HSCs), the major cell involved in hepatic fibrosis. To investigate the potential role of fetuin and pentoxifylline in fibrosis we used MCM samples obtained from patients with biopsy proven hepatic fibrosis related to Hepatitis C (HCV). Our results indicate that the MCM obtained from patients with HCV-related liver fibrosis significantly stimulated collagen synthesis in HSCs as assessed by tritiated proline incorporation into a collagenase sensitive trichloroacetic acid (TCA) precipitate. Collagen synthesis was also stimulated in HSCs using transforming growth factor beta (TGFbeta) and this effect was neutralized using TGFbeta antibody. Incubation of HSCs with fetuin (but not TGFbeta antibody) significantly inhibited collagen synthesis in HSCs that were stimulated by HCV MCM samples. Patient MCM samples would also stimulate proliferation of HSCs as assessed by tritiated thymidine uptake but this effect was not attenuated by fetuin. Likewise the significant stimulatory effect of platelet derived growth factor (PDGF) on HSC proliferation and collagen synthesis was not inhibited by fetuin but could be significantly reduced by 70% and 40% respectively, when treated with pentoxifylline. We also investigated the ability of samples obtained from patients with hepatic fibrosis to inhibit HSC apoptosis, as determined by okadaic acid-induced 4-hydroxynonenal immunocytochemistry in HSCs. We have previously reported that okadaic acid induces apoptosis in HSCs as assessed by Hoescht and TUNEL. Okadaic acid treatment produced a positive 4-hydroxynonenal (4-HNE) immunoreactivity in HSCs and treatment with HCV patient MCM or TGFbeta decreased the 4-HNE positive immunoreactivity in HSCs treated with okadaic acid. Our results suggest that fetuin may be beneficial in hepatic fibrosis and suggest that combination of fetuin and pentoxifylline may target the two key events in hepatic fibrosis by modifying the effects of TGFbeta and PDGF, the two major growth factors in fibrosis.
Collapse
|
18
|
Liu WR, Lu L, Rosenberg DS, Procaccini PSA, Mustoe TA. Synergistic activation of extracellular signal-regulated kinase in human dermal fibroblasts by human telomerase reverse transcriptase and transforming growth factor-beta1. J Surg Res 2007; 143:415-21. [PMID: 17662305 DOI: 10.1016/j.jss.2007.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/08/2007] [Accepted: 02/20/2007] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) is primarily known for its ability to elongate telomeres for maintaining chromosomal integrity and delaying cellular senescence. Recently, hTERT has emerged as having a role in promoting cellular proliferation that is independent of telomere elongation. How hTERT elicits this novel function is a fundamental question in cell biology. Understanding this question may have therapeutic implications in regenerative medicine for patients with damaged organs or tissues, cardiovascular disorders, stroke, ischemic chronic wounds, and other ischemia-reperfusion injuries. Toward this end, we treated hTERT-transfected human dermal fibroblasts (HDFs) with transforming growth factor (TGF)-beta1 and investigated the activation of extracellular signal-regulated kinase (ERK) 1/2, vital mediators of cell proliferation. MATERIALS AND METHODS Primary HDFs were transfected with either recombinant adenovirus expressing hTERT (Ad-hTERT) or control adenovirus (Ad-NULL) and subsequently treated with TGF-beta1 (2 pg/mL). ERK 1/2 activation was determined by Western blotting using an antibody recognizing only activated ERK 1/2 that is dually phosphorylated at Thr(202) and Tyr(204). TGF-beta1, TGFbeta-RI, TGFbeta-RII, and Col1 A1 mRNA levels were analyzed by real-time PCR. RESULTS Ad-hTERT-transfected HDFs showed more than 7-fold up-regulation of phospho-ERK 1/2 over Ad-NULL-transfected HDFs upon TGF-beta1 treatment. The synergistic ERK 1/2 activation in Ad-hTERT-transfected HDFs occurred as early as 10 min and was sustained for at least 30 min after TGF-beta1 treatment. There were no statistically significant differences in TGF-beta1, TGFbeta-RI, TGFbeta-RII, and Col1 A1 mRNA levels between HDFs that were transfected with Ad-hTERT and those that were transfected with Ad-NULL after TGF-beta1 treatment. CONCLUSIONS hTERT and extremely low concentrations of TGF-beta1 (2 pg/mL) synergistically activate ERK 1/2 in HDFs by a mechanism that is independent of the autocrine TGF-beta1 loop.
Collapse
Affiliation(s)
- W Robert Liu
- Wound Healing Research Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
19
|
Kishioka T, Iida C, Fujii K, Nagae R, Onishi Y, Ichi I, Kojo S. Effect of dimethyl sulphoxide on oxidative stress, activation of mitogen activated protein kinase and necrosis caused by thioacetamide in the rat liver. Eur J Pharmacol 2007; 564:190-5. [PMID: 17395177 DOI: 10.1016/j.ejphar.2007.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/18/2007] [Accepted: 03/01/2007] [Indexed: 01/13/2023]
Abstract
Thioacetamide (400 mg/kg body weight, i.p.) was administered to rats. After 12 h the activity of plasma glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) was significantly higher than that of the control group, and after 24 h plasma GOT and GPT activities strongly increased. These results indicated that the necrotic process was initiated at about 12 h and developed thereafter. By co-administration of dimethyl sulphoxide (DMSO, 18 and 1 h before, and 8 h after administration of thioacetamide: each time, 2.5 ml/kg body weight, p.o.), plasma GOT and GPT were significantly decreased and were even comparable to the control group, showing that DMSO totally prevented the necrotic action of thioacetamide. After 12 and 24 h of thioacetamide administration, the hepatic level of vitamin C, the most sensitive chemical indicator of oxidative stress, decreased significantly, indicating that oxidative stress was significantly enhanced 12 h after thioacetamide intoxication and thereafter. DMSO totally restored the liver vitamin C level, demonstrating that DMSO effectively ameliorated the oxidative stress caused by thioacetamide, resulting in the prevention of necrosis of the liver. Phosphorylated c-Jun NH(2)-terminal kinase (JNK) significantly increased transiently 12 h after treatment with thioacetamide. These results indicated that oxidative stress and the activation of JNK took place almost simultaneously. Phosphorylated extracellular signal-related kinase (ERK) 2 was significantly increased 6-12 h after thioacetamide injection. Phosphorylated p38 MAPK (mitogen activated protein kinase) was significantly decreased 24 h after administration of thioacetamide. DMSO treatment inhibited the change of these MAPKs by thioacetamide, corresponding with the prevention of the liver necrosis as well as the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Terumi Kishioka
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Mitchell MD, Laird RE, Brown RD, Long CS. IL-1β stimulates rat cardiac fibroblast migration via MAP kinase pathways. Am J Physiol Heart Circ Physiol 2007; 292:H1139-47. [PMID: 17085539 DOI: 10.1152/ajpheart.00881.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) are elevated following acute myocardial infarction (MI) and have been implicated in the pathophysiology of cardiac disease progression. The cardiac fibroblast represents an important effector cell target for cytokine actions. In particular, cytokine-directed cardiac fibroblast migration is likely to impact both myocardial repair following acute MI and pathological myocardial remodeling in the progression to heart failure. In the present study, we examined the migratory response of neonatal rat cardiac fibroblasts to pro-inflammatory cytokines using modified Boyden chamber assays. On the basis of the knowledge of migration in other cell types, we hypothesized that members of the mitogen-activated protein kinase (MAPK) family may regulate this process. This possibility was addressed with the use of immunoblot detection of active phosphorylated MAPK species and pharmacological inhibitors for individual members of the MAPK cascades. IL-1β stimulated robust and concentration-dependent increases in migration (maximum, 20-fold over control cells). TNF-α had lesser effect (fourfold increase over control). IL-6 did not induce migration. Activation of all three MAPK subfamilies (extracellular signal-regulated kinases, c-Jun NH2-terminal kinases, and p38) was shown to occur in response to cytokine stimulation. Fibroblast migration was attenuated by pharmacological inhibition of each MAPK subfamily. Understanding the regulation of cardiac fibroblast migration may provide insights in the search for therapies aimed at enhancing the functional nature of the remodeling process.
Collapse
Affiliation(s)
- M Darren Mitchell
- Division of Cardiology, B-139, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, USA
| | | | | | | |
Collapse
|
21
|
Iida C, Fujii K, Koga E, Washino Y, Ichi I, Kojo S. Inhibitory Effect of Dimethyl Sulfoxide (DMSO) on Necrosis and Oxidative Stress Caused by D-Galactosamine in the Rat Liver. J Nutr Sci Vitaminol (Tokyo) 2007; 53:160-5. [PMID: 17616004 DOI: 10.3177/jnsv.53.160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
D-Galactosamine (D-Galn: 300 mg/kg) was intraperitoneally administered to rats. After 6 h the activity of plasma GOT and GPT was significantly higher than that of the control group and plasma GOT and GPT activities increased thereafter. These results indicated that the necrotic process was initiated at about 6 h and developed thereafter. With coadministration of DMSO (1 h before administration of D-Galn: 2.5 mL/kg, oral), plasma GOT and GPT were significantly lower, showing that DMSO inhibited the necrotic action of D-Galn. After 6-24 h of D-Galn administration, the hepatic level of vitamin C, the most sensitive indicator of oxidative stress, decreased significantly, indicating that oxidative stress was significantly enhanced 6 h after D-Galn intoxication and thereafter. DMSO significantly restored the liver vitamin C level 24 h after D-Galn injection, demonstrating that DMSO effectively ameliorated the oxidative stress caused by D-Galn, resulting in the prevention of necrosis of the liver. Phosphorylated JNK and phospho-ERK were significantly increased transiently 6-12 h after treatment with D-Galn. These results indicated that oxidative stress and the activation of JNK took place almost simultaneously. Phosphorylated p38 MAPK was not changed and DMSO treatment did not affect the change of these MAPKs by D-Galn.
Collapse
Affiliation(s)
- Chinatsu Iida
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Lu Z, Serghides L, Patel SN, Degousee N, Rubin BB, Krishnegowda G, Gowda DC, Karin M, Kain KC. Disruption of JNK2 decreases the cytokine response to Plasmodium falciparum glycosylphosphatidylinositol in vitro and confers protection in a cerebral malaria model. THE JOURNAL OF IMMUNOLOGY 2006; 177:6344-52. [PMID: 17056565 DOI: 10.4049/jimmunol.177.9.6344] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Host inflammatory responses to Plasmodium falciparum GPI (pfGPI) anchors are believed to play an important role in the pathophysiology of severe malaria. However, relatively little is known about the signal transduction pathways involved in pfGPI-stimulated inflammatory response and its potential contribution to severe malaria syndromes. In this study, we investigated the role of MAPK activation in pfGPI-induced cytokine secretion and examined the role of selected MAPKs in a model of cerebral malaria in vivo. We demonstrate that ERK1/2, JNK, p38, c-Jun, and activating transcription factor-2 became phosphorylated in pfGPI-stimulated macrophages. A JNK inhibitor (1,9-pyrazoloanthrone) inhibited pfGPI-induced phosphorylation of JNK, c-Jun, and activating transcription factor-2 and significantly decreased pfGPI-induced TNF-alpha secretion. pfGPI-stimulated JNK and c-Jun phosphorylation was absent in Jnk2(-/-) macrophages but unchanged in Jnk1(-/-) and Jnk3(-/-) macrophages compared with wild-type macrophages. Jnk2(-/-) macrophages secreted significantly less TNF-alpha in response to pfGPI than macrophages from Jnk1(-/-), Jnk3(-/-), and wild-type counterparts. Furthermore, we demonstrate a role for JNK2 in mediating inflammatory responses and severe malaria in vivo. In contrast to wild-type or Jnk1(-/-) mice, Jnk2(-/-) mice had lower levels of TNF-alpha in vivo and exhibited significantly higher survival rates when challenged with Plasmodium berghei ANKA. These results provide direct evidence that pfGPI induces TNF-alpha secretion through activation of MAPK pathways, including JNK2. These results suggest that JNK2 is a potential target for therapeutic interventions in severe malaria.
Collapse
Affiliation(s)
- Ziyue Lu
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University Health Network-Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fukuda M, Kurosaki H, Sairenji T. Loss of functional transforming growth factor (TGF)-beta type II receptor results in insensitivity to TGF-beta1-mediated apoptosis and Epstein-Barr virus reactivation. J Med Virol 2006; 78:1456-64. [PMID: 16998876 DOI: 10.1002/jmv.20719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transforming growth factor (TGF)-beta1 induces not only cell growth inhibition or apoptosis but also Epstein-Barr virus (EBV) reactivation in some Burkitt's lymphoma (BL) cell lines. The purpose of this study was to define the role of TGF-beta signaling molecules in response to TGF-beta1-mediated cell growth inhibition, apoptosis, and EBV reactivation in BL cell lines. First, we confirmed the effect of TGF-beta1 on the cell growth and EBV reactivation in six BL cell lines. TGF-beta1 induced cell growth inhibition and EBV reactivation in these cell lines but did not in Akata cells. To elucidate the mechanism of TGF-beta1 unresponsiveness in Akata cells, we studied the expression of TGF-beta receptors and the intracellular signaling molecules Smads. All cell lines expressed TGF-beta type I receptor, Smad2, Smad3, and Smad4. TGF-beta type II receptor (R-II) was expressed in all cell lines except Akata cells. Introduction of the TGF-beta R-II into Akata cells results in sensitivity to TGF-beta1-mediated growth inhibition, apoptosis, and EBV reactivation. In addition, to test a possibility to the transcriptional repression of the TGF-beta R-II gene in Akata cells, the effect of histone deacetylation (HDAC) inhibitor, trichostatin A (TSA) was examined. The expression of TGF-beta R-II in Akata cells was induced by TSA treatment. These results suggest that the lack of functional TGF-beta R-II impedes the progression of signals through TGF-beta1 and becomes a determinant of unresponsiveness to TGF-beta1-mediated growth inhibition and EBV reactivation.
Collapse
Affiliation(s)
- Makoto Fukuda
- Division of Biosignaling, Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | |
Collapse
|
24
|
Harfouche R, Hussain SNA. Signaling and regulation of endothelial cell survival by angiopoietin-2. Am J Physiol Heart Circ Physiol 2006; 291:H1635-45. [PMID: 16714355 DOI: 10.1152/ajpheart.01318.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiopoietins are ligands for endothelial cell-specific Tie-2 receptors. Whereas angiopoietin-1 (Ang-1) activates these receptors and promotes cell survival, migration, and sprouting, little information is available regarding how Ang-2 influences these cells. In this study, we evaluated signaling pathways and biological effects of physiological concentrations of Ang-2 in cultured human umbilical vein endothelial cells. Ang-2 at 150 and 300 ng/ml elicited a transient (reaching peak values within 15 min of exposure) increase in the phosphorylation of Tie-2 receptors, protein kinase B (Akt), ERK1/2, and p38 members of the mitogen-activated protein kinases. However, unlike Ang-1, Ang-2 significantly inhibited JNK/SAPK phosphorylation. When vascular endothelial growth factor (VEGF) was present along with Ang-2, ERK1/2 phosphorylation was inhibited, whereas augmentation of Ang-1-induced ERK1/2 phosphorylation was triggered by VEGF. Ang-2 treatment had no effect on cell migration and in vitro wound healing but significantly attenuated serum deprivation-induced apoptosis and promoted survival. These effects were completely reversed by phosphatidylinositol 3 (PI3)-kinase and ERK1/2 inhibitors but were augmented by an inhibitor of the p38 pathway. These results suggest that Ang-2 promotes endothelial cell survival through the ERK1/2 and PI3-kinase pathways and that this angiopoietin is not a strong promoter of endothelial cell migration. We also conclude that the nature of interactions in terms of ERK1/2 activation between Ang-2 and VEGF is different from that of Ang-1 and VEGF.
Collapse
Affiliation(s)
- Rania Harfouche
- Rm. L3.05, Critical Care Division, Royal Victoria Hospital, 687 Pine Ave West, Montreal, Quebec, Canada
| | | |
Collapse
|
25
|
Ramjaun AR, Tomlinson S, Eddaoudi A, Downward J. Upregulation of two BH3-only proteins, Bmf and Bim, during TGFβ-induced apoptosis. Oncogene 2006; 26:970-81. [PMID: 16909112 DOI: 10.1038/sj.onc.1209852] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor-beta (TGFbeta)-activated signalling pathways can lead to apoptosis, growth arrest or promotion of malignant behaviour, dependent on cellular context. The molecular mechanisms involved in TGFbeta-induced apoptosis remain controversial; although changes in gene expression are thought to be pivotal to the process, several different candidate apoptotic initiators and mediators have been proposed. Smad4, a critical component of the TGFbeta-induced transcriptional machinery, is shown here to be essential for induction of apoptosis. Gene expression analysis identified the proapoptotic Bcl-2 family members, Bmf and Bim, as induced by TGFbeta, dependent on both Smad4 and p38 function and the generation of reactive oxygen species. TGFbeta-induced Bmf and Bim localize to cellular membranes implicated in apoptosis. Inhibition of the TGFbeta-induced expression of both these proteins together provides significant protection of cells from apoptosis. The TGFbeta-triggered cell death programme thus involves induction of multiple BH3-only proteins during the induction of apoptosis.
Collapse
Affiliation(s)
- A R Ramjaun
- 1Signal Transduction, Cancer Research UK London Research Institute, London, UK
| | | | | | | |
Collapse
|
26
|
Carmona-Cuenca I, Herrera B, Ventura JJ, Roncero C, Fernández M, Fabregat I. EGF blocks NADPH oxidase activation by TGF-beta in fetal rat hepatocytes, impairing oxidative stress, and cell death. J Cell Physiol 2006; 207:322-30. [PMID: 16331683 DOI: 10.1002/jcp.20568] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor (EGF) is a survival signal for transforming growth factor-beta (TGF-beta)-induced apoptosis in hepatocytes, phosphatidylinositol 3-kinase (PI 3-K) being involved in this effect. Here, we analyze the possible cross talks between EGF and TGF-beta signals to understand how EGF impairs the early pro-apoptotic events induced by TGF-beta. Data have indicated that neither SMAD nor c-Jun NH2 Terminal Kinase (JNK) activations are altered by EGF, which clearly interferes with events directly related to the radical oxygen species (ROS) production, impairing oxidative stress, p38 MAP kinase activation, and cell death. Activation of a NADPH-oxidase-like system, which is responsible for the early ROS production by TGF-beta, is completely inhibited by EGF, through a PI 3-K-dependent mechanism. Activity of RAC1 increases by TGF-beta, but also by EGF, and both act synergistically to get maximum effects. Fetal rat hepatocytes express nox4, in addition to nox1 and nox2, and TGF-beta clearly upregulates nox4. EGF blocks up-regulation of nox4 by TGF-beta. Interestingly, in the presence of PI 3-K inhibitors, EGF is not able to counteract the nox4 upregulation by TGF-beta. Taking together these results indicate that impairment of TGF-beta-induced NADPH oxidase activation by EGF is a RAC1-independent process and correlates with an inhibition of the mechanisms that address the increase of nox4 mRNA levels by TGF-beta.
Collapse
Affiliation(s)
- Irene Carmona-Cuenca
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Nishioka H, Kishioka T, Iida C, Fujii K, Ichi I, Kojo S. Activation of mitogen activated protein kinase (MAPK) during D-galactosamine intoxication in the rat liver. Bioorg Med Chem Lett 2006; 16:3019-22. [PMID: 16530410 DOI: 10.1016/j.bmcl.2006.02.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 02/01/2006] [Accepted: 02/21/2006] [Indexed: 01/08/2023]
Abstract
A significant increase in plasma glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase was observed 6 h after intraperitoneal administration of D-galactosamine (D-Galn). Three hours after administration of D-Galn, the vitamin C concentration in the liver decreased significantly compared to that in a control group and thereafter the hepatic vitamin C concentration remained at a significantly lower level. Phosphorylated JNK (c-Jun NH2-terminal kinase) and phosphorylated ERK (extracellular signal-regulated kinase) started increasing 3 h after D-Galn treatment and remained at a high level for 6-12 h after the treatment, while phosphorylated p38 MAPK increased significantly 6 h after D-Galn administration. These results indicated that oxidative stress and the activation of JNK and ERK took place almost simultaneously, followed by the activation of p38 MAPK.
Collapse
Affiliation(s)
- Hitomi Nishioka
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Shin SM, Cho IJ, Kim SG. CCAAT/enhancer binding protein activation by PD98059 contributes to the inhibition of AhR-mediated 3-methylcholanthrene induction of CYP1A1. Xenobiotica 2006; 35:975-87. [PMID: 16393856 DOI: 10.1080/00498250500354584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
2'-Amino-3'-methoxyflavone (PD98059), an MKK1 inhibitor, negatively regulates the induction of the CYP1A1 gene by polycyclic aromatic hydrocarbons. In view of the observations that PD98059 inhibits AhR-mediated CYP1A1 induction and has the capability to activate C/EBPbeta, the study investigated whether the inhibition by PD98059 of 3-MC induction of CYP1A1 results from C/EBP activation. 3-MC induction of the CYP1A1 and the CYP1A1 promoter-luciferase gene were inhibited by treatment of H4IIE cells with PD98059. PD98059 treatment inhibited 3-MC-induced AhR binding to the XRE, but increased protein binding to the CYP1A1 C/EBP binding site. PD98059 inhibited 3-MC induction of CYP1A1 in cells stably transfected with a dominant negative mutant of MKK1, indicating that PD98059 represses CYP1A1 induction by 3-MC irrespective of its MKK1 inhibition. The role of C/EBP activation by PD98059 in repressing CYP1A1 induction was supported by the observation that a dominant-negative mutant C/EBP abolished the ability of PD98059 to suppress 3-MC induction of CYP1A1.
Collapse
Affiliation(s)
- S M Shin
- National Research Laboratory, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of South Korea
| | | | | |
Collapse
|
29
|
Ohgushi M, Kuroki S, Fukamachi H, O'Reilly LA, Kuida K, Strasser A, Yonehara S. Transforming growth factor beta-dependent sequential activation of Smad, Bim, and caspase-9 mediates physiological apoptosis in gastric epithelial cells. Mol Cell Biol 2005; 25:10017-28. [PMID: 16260615 PMCID: PMC1280259 DOI: 10.1128/mcb.25.22.10017-10028.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) has been implicated in the maintenance of homeostasis in various organs, including the gastric epithelium. In particular, TGF-beta-induced signaling was shown to be required for the differentiation-associated physiological apoptosis of gastric epithelial cells, but its mechanism has not been well understood. In this study, the molecular mechanism of TGF-beta-induced apoptosis was analyzed in a human gastric epithelial cell line, SNU16, as an in vitro model. Expression of Smad7 and Bcl-X(L), but not viral FLIP, was shown to prevent TGF-beta-induced apoptosis, indicating an exclusive requirement of the activation of Smad signaling pathway and mitochondrial dysfunction followed by activation of caspase-9. In addition, treatment with TGF-beta induced binding of Bim, a proapoptotic Bcl-2 homology domain 3 (BH3)-only protein, to Bcl-X(L), which is dependent on the activation of Smad, and reduction in the expression of Bim by RNA interference decreased the sensitivity to TGF-beta-induced apoptosis. Moreover, we found abnormalities in the gastric epithelium of both Bim and caspase-9 knockout mice; these abnormalities were associated with a defect of physiological apoptosis in gastric epithelial cells. These results indicate for the first time that TGF-beta is involved in the physiological loss of gastric epithelial cells by activating apoptosis mediated by Smad, Bim, and caspase-9.
Collapse
Affiliation(s)
- Masatoshi Ohgushi
- Graduate School of Biostudies, Kyoto University, SCRB/Building G, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Transforming growth factor family members (TGF-beta) are secretory polypeptides that have dual tumor-suppressor and oncogenic effects. They signal through kinase receptor complexes on the cell surface, which phosphorylate cytoplasmic mediators (SMADs). Upon phosphorylation, SMADs march to the nucleus and interact with coactivators or corepressors to mediate the transcriptional regulation of several genes resulting in diverse effects. In tumorigenesis, malignant cells escape from the tumor-suppressive effects of TGF-beta by mutational inactivation or dysregulated expression of the molecular components in TGF-beta signaling pathway. Although melanoma cells are resistant to the tumor-suppressive effects of TGF-beta, there are no detectable defects at the receptor/SMAD level. Therefore, in these lesions, it is possible that TGF-beta effects occur independently of TGF-beta receptor/SMAD pathway. This review seeks to examine the present knowledge about TGF-beta receptor/SMAD signaling pathway and its related genes (SMADs, SKI, Filamin, endoglin, Follistatin, and other molecules) in melanomas.
Collapse
Affiliation(s)
- Mahmoud R Hussein
- Department of Pathology, School of Medicine, Assuit University, Assuit, Egypt.
| |
Collapse
|
31
|
Clark JB, Rice L, Sadiq T, Brittain E, Song L, Wang J, Gerber DA. Hepatic progenitor cell resistance to TGF-beta1's proliferative and apoptotic effects. Biochem Biophys Res Commun 2005; 329:337-44. [PMID: 15721312 DOI: 10.1016/j.bbrc.2005.01.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Indexed: 11/20/2022]
Abstract
The success of hepatocellular therapies using stem or progenitor cell populations is dependent upon multiple factors including the donor cell, microenvironment, and etiology of the liver injury. The following experiments investigated the impact of TGF-beta1 on a previously described population of hepatic progenitor cells (HPC). The majority of the hepatic progenitor cells were resistant to endogenously produced TGF-beta1's proapoptotic and anti-proliferative effects unlike more well-differentiated cellular populations (e.g., mature hepatocytes). Surprisingly, in vitro TGF-beta1 supplementation significantly inhibited de novo hepatic progenitor cell colony formation possibly via an indirect mechanism(s). Therefore despite the HPC's direct resistance to supplemental TGF-beta1, this cytokine's inhibitory effect on colony formation could have a potential negative impact on the use of these cells as a therapy for patients with liver disease.
Collapse
Affiliation(s)
- J Brian Clark
- CB# 7211, 2111 Bioinformatics Building, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7211, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hibino T, Nishiyama T. Role of TGF-beta2 in the human hair cycle. J Dermatol Sci 2005; 35:9-18. [PMID: 15194142 DOI: 10.1016/j.jdermsci.2003.12.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 12/05/2003] [Indexed: 01/01/2023]
Abstract
Male pattern baldness is the result of premature entry into catagen due to androgens. In order to prevent hair loss, it is important to understand two critical steps, i.e., the induction mechanism of premature entry and the regression process of catagen. At the initiation, dihydrotestosterone (DHT) stimulates synthesis of transforming growth factor-beta2 (TGF-beta2) in dermal papilla cells. TGF-beta2 suppresses proliferation of epithelial cells and stimulates synthesis of certain caspases. Then TGF-beta2 triggers the intrinsic caspase network and subsequently epithelial cells are eliminated through apoptotic cell death. TGF-beta antagonists are effective in preventing catagen-like morphological changes and in promoting elongation of hair follicles in vivo and in vitro. These lines of evidence strongly suggest the presence of a "catagen cascade" in male pattern baldness, involving: (1) the conversion of testosterone to DHT by type II 5-alpha-reductase; (2) the synthesis of TGF-beta2 in dermal papilla cells; and (3) the activation of the intrinsic caspase network. These sequential events contribute to the shortening of the human hair cycle.
Collapse
Affiliation(s)
- Toshihiko Hibino
- Shiseido Life Science Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama 236-8643, Japan.
| | | |
Collapse
|
33
|
Abstract
Nitric oxide (NO) and peroxynitrite, which serve as cell signal molecules, activate the antioxidant response element (ARE) for the induction of phase II antioxidant enzymes as an adaptive response. The reactive nitrogen species plays an essential role in Nrf2 activation and Nrf2 binding to the ARE present in the target genes. In this chapter, we describe the system by which the NO signaling pathway regulates ARE-mediated gene expression, which includes immunochemical assessment and gel shift analysis of Nrf2 activation.
Collapse
Affiliation(s)
- Eun Young Park
- College of Pharmacy, Seoul National University, Kwanak-gu, Seoul, South Korea
| | | |
Collapse
|
34
|
Zhang H, Ozaki I, Mizuta T, Yoshimura T, Matsuhashi S, Eguchi Y, Yasutake T, Hisatomi A, Sakai T, Yamamoto K. Transforming growth factor-beta 1-induced apoptosis is blocked by beta 1-integrin-mediated mitogen-activated protein kinase activation in human hepatoma cells. Cancer Sci 2004; 95:878-86. [PMID: 15546505 PMCID: PMC11158769 DOI: 10.1111/j.1349-7006.2004.tb02197.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 08/05/2004] [Accepted: 09/02/2004] [Indexed: 12/22/2022] Open
Abstract
Growth factors and extracellular matrices cooperatively regulate cellular behavior. However, the interactions between transforming growth factor-beta 1 (TGF-beta 1) and integrins in hepatic cells are not fully understood. We investigated the effects of beta 1-integrin on TGF-beta 1-regulated growth of hepatoma cells. Human hepatoma cell lines HepG2, Huh7, and Hep3B were stably transfected with beta 1-integrin, and the parental, and mock- and beta 1-integrin-transfected hepatoma cells were treated with TGF-beta 1. Modulation of apoptosis and pathways involved in the process were investigated. TGF-beta 1 suppressed the growth of hepatoma cells, and apoptosis was observed in Hep3B and Huh7. Hepatoma cells transfected with beta 1-integrin were protected from TGF-beta 1-induced apoptosis. Mitogen-activated protein (MAP) kinase inhibitors, PD98059, SB203580, and SP600125, abolished this protective effect of beta 1-integrin, but herbimycin A and wortmannin were ineffective. Hepatoma cells overexpressing beta 1-integrin showed increased activities of MAP kinases, and TGF-beta 1 induced sustained activation of MAP kinases in these cells, but only transient activation in mock-transfected cells. These data suggest that MAP kinases activated by beta 1-integrin provide a strong anti-apoptotic signal during TGF-beta 1-induced apoptosis in human hepatoma cells. Therefore beta 1-integrin-mediated signals may contribute to the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Hepatology and Metabolism, Department of Internal Medicine, Saga Medical School, Saga University, Saga 849-8501
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Waetzig GH, Rosenstiel P, Arlt A, Till A, Bräutigam K, Schäfer H, Rose-John S, Seegert D, Schreiber S. Soluble tumor necrosis factor (TNF) receptor-1 induces apoptosis via reverse TNF signaling and autocrine transforming growth factor-beta1. FASEB J 2004; 19:91-3. [PMID: 15514103 DOI: 10.1096/fj.04-2073fje] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) plays a central role in inflammatory disorders. Transmembrane TNF-alpha and its two receptors are cleaved by the proteinase TNF-alpha converting enzyme (TACE), resulting in appreciable serum levels of soluble TNF-alpha and soluble TNF-alpha receptors (sTNFR1 and -2). The only known functions of sTNFR1 are to antagonize and buffer circulating TNF-alpha. Here, we present evidence that sTNFR1 exerts immunoregulatory functions by induction of apoptosis in monocytes through reverse signaling via transmembrane TNF-alpha. sTNFR1-induced apoptosis is independent of death receptor pathways but depends on autocrine transforming growth factor (TGF)-beta1 signaling through the mitogen-activated protein kinase p38alpha. This novel mechanism has implications for understanding the physiological role of sTNFR1 and for TNF-alpha-blocking therapies of autoimmune diseases.
Collapse
Affiliation(s)
- Georg H Waetzig
- Institute of Clinical Molecular Biology, Schleswig-Holstein University Medical Center, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park SS, Eom YW, Kim EH, Lee JH, Min DS, Kim S, Kim SJ, Choi KS. Involvement of c-Src kinase in the regulation of TGF-beta1-induced apoptosis. Oncogene 2004; 23:6272-81. [PMID: 15208664 DOI: 10.1038/sj.onc.1207856] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of apoptosis in normal hepatocytes, and acquiring resistance to TGF-beta1 may be a critical step in the development of hepatocellular carcinoma (HCC). In this study, we investigated the possible involvement of c-Src in the regulation of TGF-beta1-induced apoptosis. TGF-beta1 induced transient activation of c-Src and its subsequent caspase-mediated degradation concomitant with cell death in FaO hepatoma cells, which are sensitive to TGF-beta1. In response to TGF-beta1, activated c-Src was translocated into the cytoplasmic membrane, then relocated to the nuclei of apoptotic cells during its cleavage. In TGF-beta1-induced apoptotic cells, c-Src maintained its tight association with p85 FAK fragment cleaved by caspases, possibly contributing to focal adhesion disassembly. TGF-beta1-induced apoptosis was enhanced by either inhibition of c-Src activity using PP1 or PP2, or by overexpression of dominant-negative c-Src. In contrast, overexpression of constitutively active c-Src inhibited apoptosis suppressing TGF-beta1-induced activation of p38, JNK and caspases. In many HCC cell lines resistant to TGF-beta1, enhanced c-Src activity was detected. We hypothesize that activated c-Src in HCC may contribute to resistance against the apoptotic and/ or antiproliferative properties of TGF-beta1.
Collapse
Affiliation(s)
- Seok Soon Park
- Institute for Medical Sciences, Ajou University School of Medicine, 5 Wonchon-Dong, Paldal-Gu, Suwon 442-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Maliekal TT, Anto RJ, Karunagaran D. Differential Activation of Smads in HeLa and SiHa Cells That Differ in Their Response to Transforming Growth Factor-β. J Biol Chem 2004; 279:36287-92. [PMID: 15192088 DOI: 10.1074/jbc.m404568200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We assessed the responsiveness of six human cervical cancer cell lines to transforming growth factor (TGF)-beta with p3TP-lux reporter assay and found that HeLa and SiHa cells were highly responsive to TGF-beta. However, when pSBE4-BV/Luc reporter with four Smad binding elements was used, only the SiHa, not the HeLa, cells showed Smad activation. Smad DNA binding activity was relatively more in SiHa than in HeLa cells upon TGF-beta treatment, and the active complex contained Smad 2 and Smad 4. In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, HeLa cells treated with 5 ng/ml of TGF-beta for 24 h showed proliferation, whereas SiHa cells showed growth inhibition under the same conditions. TGF-beta treatment resulted in G(0)/G(1) arrest with a reduction in S-phase only in SiHa cells. A chemical inhibitor of Smad activation (SB203580) blocked the growth inhibitory effect of TGF-beta in SiHa, whereas the proliferative response in HeLa was unaffected. TGF-beta-induced translocation of phospho-Smad 2 was relatively less in HeLa than in SiHa cells. MAPK activation occurred within 5 min and persisted up to 15 min upon TGF-beta treatment in HeLa but was negligible in SiHa cells. TGF-beta activated JNK in HeLa, but SiHa cells showed a down-regulation of its activity. When an inhibitor of MAPK (U0126) was used, the TGF-beta-mediated proliferative response in HeLa cells was completely abolished. SB203580 did not affect MAPK activation induced by TGF-beta in HeLa cells. We report for the first time an activation, presumably independent of Smad activation, of TGF-beta-dependent MAPK within 5 min of treatment that resulted in cell cycle progression in a cervical adenocarcinoma cell line, HeLa.
Collapse
Affiliation(s)
- Tessy T Maliekal
- Division of Cancer Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | | | | |
Collapse
|
38
|
Kim KY, Kim BC, Xu Z, Kim SJ. Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J Biol Chem 2004; 279:29478-84. [PMID: 15069087 DOI: 10.1074/jbc.m313947200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although transforming growth factor beta1 (TGF-beta1) acts via the Smad signaling pathway to initiate de novo gene transcription, the TGF-beta1-induced MAPK kinase activation that is involved in the regulation of apoptosis is less well understood. Even though the p38 MAP kinase and c-Jun NH(2)-terminal kinases (JNKs) are involved in TGF-beta1-induced cell death in hepatoma cells, the upstream mediators of these kinases remain to be defined. We show here that the members of the mixed lineage kinase (MLK) family (including MLK1, MLK2, MLK3, and dual leucine zipper-bearing kinase (DLK)) are expressed in FaO rat hepatoma cells and are likely to act between p38 and TGF-beta receptor kinase in death signaling. TGF-beta1 treatment leads to an increase in MLK3 activity. Overexpression of MLK3 enhances TGF-beta1-induced apoptotic death in FaO cells and Hep3B human hepatoma cells, whereas expression of the dominant-negative forms of MLK3 suppresses cell death induced by TGF-beta1. The dominant-negative forms of MLK1 and -2 also suppress TGF-beta1-induced cell death. In MLK3-overexpressing cells, ERK, JNKs, and p38 MAP kinases were further activated in response to TGF-beta1 compared with the control cells. In contrast, overexpression of the dominant-negative MLK3 resulted in suppression of TGF-beta1-induced MAP kinase activation and TGF-beta1-induced caspase-3 activation. We also show that only the inhibition of the p38 pathway suppressed TGF-beta1-induced apoptosis. These observations support a role for MLKs in the TGF-beta1-induced cell death mechanism.
Collapse
Affiliation(s)
- Ki-Yong Kim
- Laboratory of Cell Regulation and Carcinogenesis, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
39
|
Shifflett DE, Jones SL, Moeser AJ, Blikslager AT. Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum. Am J Physiol Gastrointest Liver Physiol 2004; 286:G906-13. [PMID: 14764449 DOI: 10.1152/ajpgi.00478.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways transduce signals from a diverse array of extracellular stimuli. The three primary MAPK-signaling pathways are the extracellular regulated kinases (ERK1/2), p38 MAPK, and c-Jun NH(2)-terminal kinase (JNK). Previous research in our laboratory has shown that COX-2-elaborated prostanoids participate in recovery of mucosal barrier function in ischemic-injured porcine ileum. Because COX-2 expression is regulated in part by MAPKs, we postulated that MAPK pathways would play an integral role in recovery of injured mucosa. Porcine mucosa was subjected to 45 min of ischemia, after which tissues were mounted in Ussing chambers, and transepithelial electrical resistance (TER) was monitored as an index of recovery of barrier function. Treatment of tissues with the p38 MAPK inhibitor SB-203580 (0.1 mM) or the ERK1/2 inhibitor PD-98059 (0.1 mM) abolished recovery. Western blot analysis revealed that SB-203580 inhibited upregulation of COX-2 that was observed in untreated ischemic-injured mucosa, whereas PD-98059 had no effect on COX-2 expression. Inhibition of TER recovery by SB-203580 or PD-98059 was overcome by administration of exogenous prostaglandin E(2) (1 microM). The JNK inhibitor SP-600125 (0.1 mM) significantly increased TER and resulted in COX-2 upregulation. COX-2 expression appears to be positively and negatively regulated by the p38 MAPK and the JNK pathways, respectively. Alternatively, ERK1/2 appear to be involved in COX-2-independent reparative events that remain to be defined.
Collapse
Affiliation(s)
- Donnie E Shifflett
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | |
Collapse
|
40
|
Rendi MH, Suh N, Lamph WW, Krajewski S, Reed JC, Heyman RA, Berchuck A, Liby K, Risingsong R, Royce DB, Williams CR, Sporn MB. The Selective Estrogen Receptor Modulator Arzoxifene and the Rexinoid LG100268 Cooperate to Promote Transforming Growth Factor β-Dependent Apoptosis in Breast Cancer. Cancer Res 2004; 64:3566-71. [PMID: 15150113 DOI: 10.1158/0008-5472.can-04-0234] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We show that the selective estrogen receptor modulator arzoxifene (Arz) and the rexinoid LG100268 (268) synergize to promote apoptosis in a rat model of estrogen receptor-positive breast carcinoma and in estrogen receptor-positive human breast cancer cells in culture. We also show that it is not necessary to administer Arz and 268 continuously during tumor progression to prevent cancer in the rat model because dosing of these drugs in combination for relatively short periods, each followed by drug-free rests, is highly effective. This new approach to chemoprevention uses high doses of drugs that are too toxic for long-term administration. However, when given for short periods, the agents are nontoxic and still induce apoptosis in breast cancer cells. We also show that the ability of the two drugs to induce apoptosis is the combined result of induction of transforming growth factor beta by Arz, together with inhibition of the prosurvival nuclear factor kappaB and phosphatidylinositol 3' kinase signaling pathways by 268. The new protocol we have developed for chemoprevention allows the efficacious and safe administration of 268 and Arz, and these agents now should be considered for clinical use.
Collapse
Affiliation(s)
- Mara H Rendi
- Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim BC, van Gelder H, Kim TA, Lee HJ, Baik KG, Chun HH, Lee DA, Choi KS, Kim SJ. Activin receptor-like kinase-7 induces apoptosis through activation of MAPKs in a Smad3-dependent mechanism in hepatoma cells. J Biol Chem 2004; 279:28458-65. [PMID: 15107418 DOI: 10.1074/jbc.m313277200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activin receptor-like kinase (ALK)7 is a type I serine/threonine kinase receptor of the transforming growth factor (TGF)-beta family of proteins that has similar properties to other type I receptors when activated. To see whether ALK7 can induce apoptosis as can some of the other ALK proteins, we infected the FaO rat hepatoma cell line with adenovirus expressing a constitutively active form of the ALK7. Cells infected with active ALK7 adenovirus showed an apoptotic-positive phenotype, as opposed to those that were infected with a control protein. DNA fragmentation assays and fluorescence-activated cell sorter analysis also indicated that ALK7 infection induced apoptosis in FaO cells. We also confirmed this finding in Hep3B human hepatoma cells by transiently transfecting the constitutively active form of ALK7, ALK7(T194D). Investigation into the downstream targets and mechanisms involved in ALK7-induced apoptosis revealed that the TGF-beta signaling intermediates, Smad2 and -3, were activated, as well as the MAPKs JNK and p38. In addition, caspase-3 and -9 were also activated, and cytochrome c release from the mitochondria was observed. Short interfering RNA-mediated inhibition of Smad3 markedly suppressed ALK7-induced caspase-3 activation. Treatment with protein synthesis inhibitors or the expression of the dominant-negative form of the stress-activated protein/extracellular signal-regulated kinase 1 abolished not only JNK activation but apoptosis as well. Taken together, these results suggest that ALK7 induces apoptosis through activation of the traditional TGF-beta pathway components, thus resulting in new gene transcription and JNK and p38 activation that initiates cross-talk with the cellular stress death pathway and ultimately leads to apoptosis.
Collapse
Affiliation(s)
- Byung-Chul Kim
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
DaCosta Byfield S, Major C, Laping NJ, Roberts AB. SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2004; 65:744-52. [PMID: 14978253 DOI: 10.1124/mol.65.3.744] [Citation(s) in RCA: 322] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinically, there is a great need for small molecule inhibitors that could control pathogenic effects of transforming growth factor (TGF-beta) and/or modulate effects of TGF-beta in normal responses. Inhibition of TGF-beta signaling would be predicted to enhance re-epithelialization of cutaneous wounds and reduce scarring fibrosis. Selective small molecule inhibitors of the TGF-beta signaling pathway developed for therapeutics will also be powerful tools in experimentally dissecting this complex pathway, especially its cross-talk with other signaling pathways. In this study, we characterized 2-(5-benzo[1,3]dioxol-5-yl-2-tert-butyl-3H-imidazol-4-yl)-6-methylpyridine hydrochloride (SB-505124), a member of a new class of small molecule inhibitors related to imidazole inhibitors of p38, which inhibit the TGF-beta type I receptor serine/threonine kinase known as activin receptor-like kinase (ALK) 5. We demonstrate that this compound selectively and concentration-dependently inhibits ALK4-, ALK5-, and ALK 7-dependent activation of downstream cytoplasmic signal transducers, Smad2 and Smad3, and of TGF-beta-induced mitogen-activated protein kinase pathway components but does not alter ALK1, ALK2, ALK3 or ALK6-induced Smad signaling. SB-505124 also blocks more complex endpoints of TGF-beta action, as evidenced by its ability to abrogate cell death caused by TGF-beta1 treatment. SB-505124 is three to five times more potent than a related ALK5 inhibitor described previously, SB-431542.
Collapse
Affiliation(s)
- Stacey DaCosta Byfield
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA
| | | | | | | |
Collapse
|
43
|
Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ, Liebermann DA, Bottinger EP, Roberts AB. Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 2003; 278:43001-7. [PMID: 12933797 DOI: 10.1074/jbc.m307869200] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta)-dependent apoptosis is important in the elimination of damaged or abnormal cells from normal tissues in vivo. In this report, we identify GADD45b as an effector of TGF-beta-induced apoptosis. GADD45b has been shown to be a positive mediator of apoptosis induced by certain cytokines and oncogenes. We show that Gadd45b is an immediateearly response gene for TGF-beta and that the proximal Gadd45b promoter is activated by TGF-beta through the action of Smad2, Smad3, and Smad4. We show that ectopic expression of GADD45b in AML12 murine hepatocytes is sufficient to activate p38 and to trigger apoptotic cell death, whereas antisense inhibition of Gadd45b expression blocks TGF-beta-dependent p38 activation and apoptosis. Furthermore, we also show that TGF-beta can activate p38 and induce apoptosis in mouse primary hepatocytes from wild-type mice, but not from Gadd45b-/- mice. All of these findings suggest that GADD45b participates in TGF-beta-induced apoptosis by acting upstream of p38 activation.
Collapse
Affiliation(s)
- Jiyun Yoo
- Laboratory of Cell Regulation and Carcinogenesis, National Instituts of Health, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen C, Shen G, Hebbar V, Hu R, Owuor ED, Kong ANT. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis 2003; 24:1369-78. [PMID: 12819184 DOI: 10.1093/carcin/bgg091] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a major component in green tea polyphenols, has been proven to suppress colonic tumorigenesis in animal models and epidemiological studies. As EGCG is retained in the gastrointestinal tract after oral administration, this pharmacokinetics property gives it the potential to function as a chemopreventive agent against colon cancer. In this study, human colorectal carcinoma HT-29 cells were treated with EGCG to examine the anti-proliferative and pro-apoptotic effects of EGCG, as well as the molecular mechanism underlying these effects. Cell viability assay, nuclear staining, DNA fragmentation, caspase assay, cytochrome c release, DiOC6(3) staining, mitogen-activated protein kinases (MAPK) phosphorylation and trypan blue exclusion assays, were utilized to dissect the signaling pathways induced by EGCG. After 36 h treatment, EGCG inhibited HT-29 cell growth with an IC50 of approximately 100 microM. HT-29 cells treated with doses higher than 100 microM showed apparent nuclear condensation and fragmentation, which was confirmed by DNA laddering. Caspase-3 and -9 activation was detected after 12 h treatment, accompanied by mitochondrial transmembrane potential transition and cytochrome c release. Activation of MAPKs was detected as early signaling event elicited by EGCG. Inhibition of c-Jun N-terminal kinase (JNK) pathway showed the involvement of JNK in EGCG-induced cytochrome c release and cell death. EGCG-induced JNK activation was blocked by the antioxidants glutathione and N-acetyl-l-cysteine, suggesting that the cell death signaling was potentially triggered by oxidative stress. In summary, our results from this study suggest that in HT-29 human colon cancer cells (i) EGCG treatment causes damage to mitochondria, and (ii) JNK mediates EGCG-induced apoptotic cell death.
Collapse
Affiliation(s)
- Chi Chen
- Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
45
|
Curran BP, Murray HJ, O'Connor JJ. A role for c-Jun N-terminal kinase in the inhibition of long-term potentiation by interleukin-1beta and long-term depression in the rat dentate gyrus in vitro. Neuroscience 2003; 118:347-57. [PMID: 12699771 DOI: 10.1016/s0306-4522(02)00941-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent evidence has emphasised the importance of mitogen-activated protein kinase activation in the modulation of hippocampal synaptic plasticity. Whilst extracellular-regulated kinase activation is now regarded as a critical step in the induction of long-term potentiation (LTP), activation of p38 and c-Jun N-terminal kinase (JNK) is associated with its inhibition. Here, the effects of the novel JNK inhibitor anthra[1,9-cd]pyrazol-6(2H)-1 (SP600125) were investigated on the inhibition of LTP by cytokines interleukin-1beta, interleukin-18 and tumour necrosis factor-alpha in the dentate gyrus. Perfusion of SP600125 alone prior to tetanic stimulation of the medial perforant path did not significantly affect baseline synaptic transmission, post-tetanic potentiation or the magnitude of induced LTP. When SP600125 was perfused onto slices prior to application of cytokines, this resulted in a complete reversal of the cytokine-mediated inhibition of LTP. Moreover, the magnitude of LTP attained in these slices was significantly greater than that obtained in vehicle control slices. Next, we investigated the effects of the JNK inhibitor on the impairment of pharmacologically isolated N-methyl-D-aspartate receptor-mediated potentials (NMDA-EPSPs) by interleukin-18. Whilst not affecting baseline amplitude when perfused alone, prior perfusion of SP600125 alleviated the depressive effect of interleukin-18 on NMDA-EPSPs. Finally, we examined the possibility of JNK involvement in the induction of long-term depression (LTD) in the dentate gyrus. Perfusion of SP600125 prior to low-frequency stimulation of the perforant path resulted in a significant attenuation of induced LTD, which suggests that JNK activation is a critical mediator of LTD in the dentate gyrus. These results directly implicate, for the first time, differential activation of JNK in the modulation of distinct forms of hippocampal synaptic plasticity. Whereas acute over-activation of JNK by pathophysiological concentrations of cytokines is detrimental to LTP, physiologic activation of JNK appears necessary for the induction of LTD.
Collapse
Affiliation(s)
- B P Curran
- Department of Human Anatomy and Physiology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Earlsfort Terrace, Dublin 2, Ireland
| | | | | |
Collapse
|
46
|
Iyoda K, Sasaki Y, Horimoto M, Toyama T, Yakushijin T, Sakakibara M, Takehara T, Fujimoto J, Hori M, Wands JR, Hayashi N. Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 2003; 97:3017-26. [PMID: 12784337 DOI: 10.1002/cncr.11425] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK) cascade is activated in response to various extracellular stimuli. The authors investigated the involvement of the p38 MAPK, a member of the MAPK superfamily, cascade in hepatoma cell lines and in human hepatocellular carcinoma (HCC) tissue specimens. METHODS Constitutively active mutant of MAPK kinase 6 (MKK6), which is upstream of p38 MAPK, was transfected into the HepG2 and HuH7 human hepatoma cell lines. The constitutive active mutant was constructed by replacing Ser-189 and Thr-193 with Glu. The growth and death of mutant MKK6-transfected hepatoma cells were analyzed by the WST-1 and sub-G1 assays. The surgically resected livers of 20 HCC patients were divided histologically into tumorous (T) and nontumorous (NT) lesions. p38 MAPK activity was analyzed using in vitro kinase assay and MKK6 activity was measured using Western blot analysis. RESULTS Mutant MKK6 transfection increased p38 MAPK activity, cytochrome c release from the mitochondria to the cytosol, and caspase-3 activity, accompanied by apoptosis. In contrast, SB203580, a p38 MAPK-specific inhibitor, prevented MKK6-induced apoptosis in hepatoma cell lines. In the T lesions of 20 HCC parients, p38 MAPK and MKK6 activities were significantly lower compared with NT lesions (P < 0.05). There was a significant positive correlation between p38 MAPK and MKK6 activity (r = 0.507, P < 0.05). Larger tumors (> 20 mm) exhibited lower levels of p38 MAPK and MKK6 activity than did smaller tumors (P < 0.05). CONCLUSIONS These findings suggested that reduction of the p38 MAPK cascade may account, in part, for the resistance to apoptosis, leading to the unrestricted cell growth of human HCC.
Collapse
Affiliation(s)
- Kenya Iyoda
- Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Leask A, Holmes A, Black CM, Abraham DJ. Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem 2003; 278:13008-15. [PMID: 12571253 DOI: 10.1074/jbc.m210366200] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skin, the profibrotic protein connective tissue growth factor (CTGF) is not normally expressed. However, when skin cells are exposed to transforming growth factor-beta (TGF-beta), CTGF is induced in fibroblasts but not in epithelial cells. We have begun to investigate the requirements for the fibroblast-selective induction of CTGF by TGF-beta. Previously we found that this response was Smad-dependent. Now we show that protein kinase C and Ras/MEK/ERK are necessary for the TGF-beta induction of the CTGF promoter but not of a generic Smad-responsive promoter (SBE-lux). Induction of the CTGF promoter is antagonized by c-Jun or by MEKK1, suggesting that a proper balance between the Ras/MEK/ERK and JNK MAPK cascades is necessary for TGF-beta induction of CTGF. We identify the minimal CTGF promoter element necessary and sufficient to confer TGF-beta responsiveness to a heterologous promoter and show that a tandem repeat of a consensus transcription enhancer factor binding element, 5'-GAGGAATGG-3', is necessary for this induction. This element has not been previously shown to play a role in TGF-beta induction of gene expression in fibroblasts. Gel shift analysis shows that this sequence binds nuclear factors that are greatly enriched in fibroblasts relative to epithelial cells. Thus Smads, Ras/MEK/ERK, protein kinase C, and fibroblast-enriched factors that bind GAGGAATGG act together to drive the TGF-beta-mediated induction of CTGF in fibroblasts.
Collapse
Affiliation(s)
- Andrew Leask
- Fibrogen, Inc., South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
48
|
Dai C, Yang J, Liu Y. Transforming growth factor-beta1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem 2003; 278:12537-12545. [PMID: 12560323 DOI: 10.1074/jbc.m300777200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tubular atrophy resulting from epithelial cell loss is one of the characteristic features in the development of chronic renal interstitial fibrosis. Although the trigger(s) and mechanism for tubular cell loss remain undefined, the hyperactive transforming growth factor (TGF)-beta1 signaling has long been suspected to play an active role. Here we demonstrate that although TGF-beta1 did not induce cell death per se, it dramatically potentiated renal tubular cell apoptosis initiated by other death cues in vitro. Pre-incubation of human kidney epithelial cells (HKC) with TGF-beta1 markedly promoted staurosporine-induced cell death in a time- and dose-dependent manner. TGF-beta1 dramatically accelerated the cleavage and activation of pro-caspase-9, but not pro-caspase-8, in HKC cells. This event was followed by an accelerated activation of pro-caspase-3. To elucidate the mechanism underlying TGF-beta1 promotion of tubular cell death, we investigated the signaling pathways activated by TGF-beta1. Both Smad-2 and p38 mitogen-activated protein (MAP) kinase were rapidly activated by TGF-beta1, as demonstrated by the early induction of phosphorylated Smad-2 and p38 MAP kinase, respectively. We found that overexpression of inhibitory Smad-7 completely abolished Smad-2 phosphorylation and activation induced by TGF-beta1 but did not inhibit TGF-beta1-induced apoptosis. However, suppression of p38 MAP kinase with chemical inhibitor SC68376 not only abolished p38 MAP kinase phosphorylation but also obliterated apoptosis induced by TGF-beta1. These results suggest that hyperactive TGF-beta1 signaling potentiates renal tubular epithelial cell apoptosis by a Smad-independent, p38 MAP kinase-dependent mechanism.
Collapse
Affiliation(s)
- Chunsun Dai
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
49
|
Meisse D, Van de Casteele M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F, Hue L. Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett 2002; 526:38-42. [PMID: 12208500 DOI: 10.1016/s0014-5793(02)03110-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this work was to study the effect of a sustained activation of AMP-activated protein kinase (AMPK) on liver cell survival. AMPK activation was achieved by incubating FTO2B cells with AICA-riboside, which is transformed into ZMP, an AMP analogue, or by adenoviral transfection of hepatocytes with a constitutively active form of AMPK. Prolonged AMPK activation triggered apoptosis and activated c-Jun N-terminal kinase (JNK) and caspase-3. Experiments with iodotubercidin, dicoumarol and z-VAD-fmk, which inhibited AMPK, JNK and caspase activation, respectively, supported the notion that prolonged AMPK activation in liver cells induces apoptosis through an activation pathway that involves JNK and caspase-3.
Collapse
Affiliation(s)
- Delphine Meisse
- Hormone and Metabolic Research Unit, University of Louvain Medical School and Christian de Duve International Institute of Molecular and Cellular Pathology, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|