1
|
Huang Z, Zhou Z, Ye Q, Li X, Wang T, Li J, Dong W, Guo R, Ding Y, Xue H, Ding H, Lau CH. Effects of Different Surface Functionalizations of Silica Nanoparticles on Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2024; 7:3295-3305. [PMID: 38701399 DOI: 10.1021/acsabm.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Physicochemical properties of nanoparticles, such as particle size, surface charge, and particle shape, have a significant impact on cell activities. However, the effects of surface functionalization of nanoparticles with small chemical groups on stem cell behavior and function remain understudied. Herein, we incorporated different chemical functional groups (amino, DETA, hydroxyl, phosphate, and sulfonate with charges of +9.5, + 21.7, -14.1, -25.6, and -37.7, respectively) to the surface of inorganic silica nanoparticles. To trace their effects on mesenchymal stem cells (MSCs) of rat bone marrow, these functionalized silica nanoparticles were used to encapsulate Rhodamine B fluorophore dye. We found that surface functionalization with positively charged and short-chain chemical groups facilitates cell internalization and retention of nanoparticles in MSCs. The endocytic pathway differed among functionalized nanoparticles when tested with ion-channel inhibitors. Negatively charged nanoparticles mainly use lysosomal exocytosis to exit cells, while positively charged nanoparticles can undergo endosomal escape to avoid scavenging. The cytotoxic profiles of these functionalized silica nanoparticles are still within acceptable limits and tolerable. They exerted subtle effects on the actin cytoskeleton and migration ability. Last, phosphate-functionalized nanoparticles upregulate osteogenesis-related genes and induce osteoblast-like morphology, implying that it can direct MSCs lineage specification for bone tissue engineering. Our study provides insights into the rational design of biomaterials for effective drug delivery and regenerative medicine.
Collapse
Affiliation(s)
- Zhihao Huang
- Department of Biology, College of Science, Shantou University, 515063 Shantou, Guangdong, China
| | - Zhongqi Zhou
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107 Shenzhen, Guangdong, China
| | - Qiaoyuan Ye
- Department of Dermatology, The Second Clinical Medical College, Guangdong Medical University, 523808 Dongguan, Guangdong, China
| | - Xiaoyan Li
- Center for Vascular Surgery and Wound Care, Jinshan Hospital, Fudan University, 200540 Shanghai, China
| | - Tao Wang
- Department of Biology, College of Science, Shantou University, 515063 Shantou, Guangdong, China
| | - Jiaqi Li
- Department of Biology, College of Science, Shantou University, 515063 Shantou, Guangdong, China
| | - Wenjiao Dong
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, 523808 Dongguan, Guangdong, China
| | - Rui Guo
- Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Science, 430064 Wuhan, Hubei, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture, 430064 Wuhan, Hubei, China
| | - Yuanlin Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, 523808 Dongguan, Guangdong, China
| | - Hongman Xue
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107 Shenzhen, Guangdong, China
| | - Haifeng Ding
- Department of Otolaryngology, Shenzhen Pingshan District People's Hospital, 518118 Shenzhen, Guangdong, China
| | - Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, 515063 Shantou, Guangdong, China
| |
Collapse
|
2
|
Dreher SI, Fischer J, Walker T, Diederichs S, Richter W. Significance of MEF2C and RUNX3 Regulation for Endochondral Differentiation of Human Mesenchymal Progenitor Cells. Front Cell Dev Biol 2020; 8:81. [PMID: 32195247 PMCID: PMC7064729 DOI: 10.3389/fcell.2020.00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Guiding progenitor cell development between chondral versus endochondral pathways is still an unachieved task of cartilage neogenesis, and human mesenchymal progenitor cell (MPC) chondrogenesis is considered as a valuable model to better understand hypertrophic development of chondrocytes. Transcription factors Runx2, Runx3, and Mef2c play prominent roles for chondrocyte hypertrophy during mouse development, but little is known on the importance of these key fate-determining factors for endochondral development of human MPCs. The aim of this study was to unravel the regulation of RUNX2, RUNX3, and MEF2C during MPC chondrogenesis, the pathways driving their expression, and the downstream hypertrophic targets affected by their regulation. RUNX2, RUNX3, and MEF2C gene expression was differentially regulated during chondrogenesis of MPCs, but remained low and unregulated when non-hypertrophic articular chondrocytes were differentiated under the same conditions. RUNX3 and MEF2C mRNA and protein levels rose in parallel to hypertrophic marker upregulation, but surprisingly, RUNX2 gene expression changed only by trend and RUNX2 protein remained undetectable. While RUNX3 expression was driven by TGF-β and BMP signaling, MEF2C responded to WNT-, BMP-, and Hedgehog-pathway inhibition. MEF2C but not RUNX3 levels correlated significantly with COL10A1, IHH, and IBSP gene expression when hypertrophy was attenuated. IBSP was a downstream target of RUNX3 and MEF2C but not RUNX2 in SAOS-2 cells, underlining the capacity of RUNX3 and MEF2C to stimulate osteogenic marker expression in human cells. Conclusively, RUNX3 and MEF2C appeared more important than RUNX2 for human endochondral MPC chondrogenesis. Pathways altering the speed of chondrogenesis (FGF, TGF-β, BMP) affected RUNX2 or RUNX3, while pathways changing hypertrophy (WNT, PTHrP/HH) regulated mainly MEF2C. Taken together, reduction of MEF2C levels is a new goal to shift human cartilage neogenesis toward the chondral pathway.
Collapse
Affiliation(s)
- Simon I Dreher
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Fischer
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Tilman Walker
- Clinic for Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Zhang Y, Chen G, Gu Z, Sun H, Karaplis A, Goltzman D, Miao D. DNA damage checkpoint pathway modulates the regulation of skeletal growth and osteoblastic bone formation by parathyroid hormone-related peptide. Int J Biol Sci 2018; 14:508-517. [PMID: 29805302 PMCID: PMC5968843 DOI: 10.7150/ijbs.23318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/21/2018] [Indexed: 01/16/2023] Open
Abstract
We previously demonstrated that parathyroid hormone-related peptide (PTHrP) 1-84 knockin (Pthrp KI) mice, which lacked a PTHrP nuclear localization sequence (NLS) and C-terminus, displayed early senescence, defective osteoblastic bone formation, and skeletal growth retardation. However, the mechanism of action of the PTHrP NLS and C-terminus in regulating development of skeleton is still unclear. In this study, we examined alterations of oxidative stress and DNA damage response-related molecules in Pthrp KI skeletal tissue. We found that ROS levels, protein expression levels of γ-H2AX, a DNA damage marker, and the DNA damage response markers p-Chk2 and p53 were up-regulated, whereas gene expression levels of anti-oxidative enzymes were down-regulated significantly. We therefore further disrupted the DNA damage response pathway by deleting the Chk2 in Pthrp KI (Chk2-/-KI) mice and did comparison with WT, Chk2-/- and Pthrp KI littermates. The Pthrp KI mice with Chk2 deletion exhibited a longer lifespan, improvement in osteoblastic bone formation and skeletal growth including width of growth plates and length of long bones, trabecular and epiphyseal bone volume, BMD, osteoblast numbers, type I collagen and ALP positive bone areas, the numbers of total colony-forming unit fibroblasts (CFU-f), ALP+ CFU-f and the expression levels of osteogenic genes. In addition, the genes associated with anti-oxidative enzymes were up-regulated significantly, whereas the tumor suppressor genes related to senescence were down-regulated in Chk2-/- KI mice compared to Pthrp KI mice. Our results suggest that Chk2 deletion in Pthrp KI mice can somewhat rescue defects in osteoblastic bone formation and skeletal growth by enhancing endochondral bone formation and osteogenesis. These studies therefore indicate that the DNA damage checkpoint pathway may be a target for the nuclear action of PTHrP to regulate skeletal development and growth.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.,Department of Anatomy, Histology and Embryology, Suzhou Vocational Health College, Suzhou, China
| | - Guangpei Chen
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhen Gu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Haijian Sun
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | | | | | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.,The Research Center for Aging Research, Friendship Affiliated Hospital of Nanjing Medical University Plastic Surgery, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Takahashi A, de Andrés MC, Hashimoto K, Itoi E, Otero M, Goldring MB, Oreffo ROC. DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Sci Rep 2017; 7:7771. [PMID: 28798419 PMCID: PMC5552713 DOI: 10.1038/s41598-017-08418-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
The Runt-related transcription factor 2 (RUNX2) is critical for bone formation as well as chondrocyte maturation. Matrix metalloproteinase (MMP)-13 is a major contributor to cartilage degradation in osteoarthritis (OA). We and others have shown that the abnormal MMP13 gene expression in OA chondrocytes is controlled by changes in the DNA methylation status of specific CpG sites of the proximal promoter, as well as by the actions of different transactivators, including RUNX2. The present study aimed to determine the influence of the methylation status of specific CpG sites in the RUNX2 promoter on RUNX2-driven MMP13 gene expression in OA chondrocytes. We observed a significant correlation between MMP13 mRNA levels and RUNX2 gene expression in human OA chondrocytes. RUNX2 overexpression enhanced MMP13 promoter activity, independent of the MMP13 promoter methylation status. A significant negative correlation was observed between RUNX2 mRNA levels in OA chondrocytes and the percentage methylation of the CpG sites in the RUNX2 P1 promoter. Accordingly, the activity of the wild type RUNX2 promoter was decreased upon methylation treatment in vitro. We conclude that RUNX2 gene transcription is regulated by the methylation status of specific CpG sites in the promoter and may determine RUNX2 availability in OA cartilage for transactivation of genes such as MMP13.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK.,Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - María C de Andrés
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan.,HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK.
| |
Collapse
|
5
|
Lin YM, Lim JFY, Lee J, Choolani M, Chan JKY, Reuveny S, Oh SKW. Expansion in microcarrier-spinner cultures improves the chondrogenic potential of human early mesenchymal stromal cells. Cytotherapy 2017; 18:740-53. [PMID: 27173750 DOI: 10.1016/j.jcyt.2016.03.293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/26/2016] [Accepted: 03/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Cartilage tissue engineering with human mesenchymal stromal cells (hMSC) is promising for allogeneic cell therapy. To achieve large-scale hMSC propagation, scalable microcarrier-based cultures are preferred over conventional static cultures on tissue culture plastic. Yet it remains unclear how microcarrier cultures affect hMSC chondrogenic potential, and how this potential is distinguished from that of tissue culture plastic. Hence, our study aims to compare the chondrogenic potential of human early MSC (heMSC) between microcarrier-spinner and tissue culture plastic cultures. METHODS heMSC expanded on either collagen-coated Cytodex 3 microcarriers in spinner cultures or tissue culture plastic were harvested for chondrogenic pellet differentiation with empirically determined chondrogenic inducer bone morphogenetic protein 2 (BMP2). Pellet diameter, DNA content, glycosaminoglycan (GAG) and collagen II production, histological staining and gene expression of chondrogenic markers including SOX9, S100β, MMP13 and ALPL, were investigated and compared in both conditions. RESULTS BMP2 was the most effective chondrogenic inducer for heMSC. Chondrogenic pellets generated from microcarrier cultures developed larger pellet diameters, and produced more DNA, GAG and collagen II per pellet with greater GAG/DNA and collagen II/DNA ratios compared with that of tissue culture plastic. Moreover, they induced higher expression of chondrogenic genes (e.g., S100β) but not of hypertrophic genes (e.g., MMP13 and ALPL). A similar trend showing enhanced chondrogenic potential was achieved with another microcarrier type, suggesting that the mechanism is due to the agitated nature of microcarrier cultures. CONCLUSIONS This is the first study demonstrating that scalable microcarrier-spinner cultures enhance the chondrogenic potential of heMSC, supporting their use for large-scale cell expansion in cartilage cell therapy.
Collapse
Affiliation(s)
- Youshan Melissa Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Jessica Fang Yan Lim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jialing Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Jerry Kok Yen Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Steve Kah Weng Oh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
6
|
Karamesinis K, Spyropoulou A, Dalagiorgou G, Katsianou MA, Nokhbehsaim M, Memmert S, Deschner J, Vastardis H, Piperi C. Continuous hydrostatic pressure induces differentiation phenomena in chondrocytes mediated by changes in polycystins, SOX9, and RUNX2. J Orofac Orthop 2016; 78:21-31. [PMID: 27909759 DOI: 10.1007/s00056-016-0061-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2. MATERIALS AND METHODS ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR. RESULTS Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h. CONCLUSIONS Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.
Collapse
Affiliation(s)
- Konstantinos Karamesinis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.,Department of Orthodontics, Dental School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Anastasia Spyropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Georgia Dalagiorgou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Maria A Katsianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - Svenja Memmert
- Department of Orthodontics Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - Heleni Vastardis
- Department of Orthodontics, Dental School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
7
|
Mazor M, Lespessailles E, Coursier R, Daniellou R, Best TM, Toumi H. Mesenchymal stem-cell potential in cartilage repair: an update. J Cell Mol Med 2014; 18:2340-50. [PMID: 25353372 PMCID: PMC4302639 DOI: 10.1111/jcmm.12378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/27/2014] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage damage and subsequent degeneration are a frequent occurrence in synovial joints. Treatment of these lesions is a challenge because this tissue is incapable of quality repair and/or regeneration to its native state. Non-operative treatments endeavour to control symptoms and include anti-inflammatory medications, viscosupplementation, bracing, orthotics and activity modification. Classical surgical techniques for articular cartilage lesions are frequently insufficient in restoring normal anatomy and function and in many cases, it has not been possible to achieve the desired results. Consequently, researchers and clinicians are focusing on alternative methods for cartilage preservation and repair. Recently, cell-based therapy has become a key focus of tissue engineering research to achieve functional replacement of articular cartilage. The present manuscript is a brief review of stem cells and their potential in the treatment of early OA (i.e. articular cartilage pathology) and recent progress in the field.
Collapse
Affiliation(s)
- M Mazor
- IPROS, CHRO, EA4708 Orleans University, Orleans, France
| | | | | | | | | | | |
Collapse
|
8
|
Iwamoto M, Ohta Y, Larmour C, Enomoto-Iwamoto M. Toward regeneration of articular cartilage. ACTA ACUST UNITED AC 2014; 99:192-202. [PMID: 24078496 DOI: 10.1002/bdrc.21042] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Articular cartilage is classified as permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in the epiphyseal growth plate. In the process of synovial joint development, articular cartilage originates from the interzone, developing at the edge of the cartilaginous anlagen, and establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators, such as Wnts, GDF5, Erg, and PTHLH, coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracellular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier's groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Furthermore, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site.
Collapse
Affiliation(s)
- Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perleman School of Medicine, University of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
9
|
Mis EK, Liem KF, Kong Y, Schwartz NB, Domowicz M, Weatherbee SD. Forward genetics defines Xylt1 as a key, conserved regulator of early chondrocyte maturation and skeletal length. Dev Biol 2014; 385:67-82. [PMID: 24161523 PMCID: PMC3895954 DOI: 10.1016/j.ydbio.2013.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/12/2022]
Abstract
The long bones of the vertebrate body are built by the initial formation of a cartilage template that is later replaced by mineralized bone. The proliferation and maturation of the skeletal precursor cells (chondrocytes) within the cartilage template and their replacement by bone is a highly coordinated process which, if misregulated, can lead to a number of defects including dwarfism and other skeletal deformities. This is exemplified by the fact that abnormal bone development is one of the most common types of human birth defects. Yet, many of the factors that initiate and regulate chondrocyte maturation are not known. We identified a recessive dwarf mouse mutant (pug) from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. pug mutant skeletal elements are patterned normally during development, but display a ~20% length reduction compared to wild-type embryos. We show that the pug mutation does not lead to changes in chondrocyte proliferation but instead promotes premature maturation and early ossification, which ultimately leads to disproportionate dwarfism. Using sequence capture and high-throughput sequencing, we identified a missense mutation in the Xylosyltransferase 1 (Xylt1) gene in pug mutants. Xylosyltransferases catalyze the initial step in glycosaminoglycan (GAG) chain addition to proteoglycan core proteins, and these modifications are essential for normal proteoglycan function. We show that the pug mutation disrupts Xylt1 activity and subcellular localization, leading to a reduction in GAG chains in pug mutants. The pug mutant serves as a novel model for mammalian dwarfism and identifies a key role for proteoglycan modification in the initiation of chondrocyte maturation.
Collapse
Affiliation(s)
- Emily K. Mis
- Department of Genetics, Yale University, New Haven, CT 06520
| | - Karel F. Liem
- Department of Pediatrics, Yale University, New Haven, CT 06520
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT 06520
| | | | - Miriam Domowicz
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
10
|
Karl A, Olbrich N, Pfeifer C, Berner A, Zellner J, Kujat R, Angele P, Nerlich M, Mueller MB. Thyroid hormone-induced hypertrophy in mesenchymal stem cell chondrogenesis is mediated by bone morphogenetic protein-4. Tissue Eng Part A 2013; 20:178-88. [PMID: 23937304 DOI: 10.1089/ten.tea.2013.0023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair.
Collapse
Affiliation(s)
- Alexandra Karl
- Department of Trauma Surgery, University of Regensburg Medical Center , Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cleary MA, van Osch GJVM, Brama PA, Hellingman CA, Narcisi R. FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen Med 2013; 9:332-42. [PMID: 23576364 DOI: 10.1002/term.1744] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/30/2013] [Accepted: 02/23/2013] [Indexed: 01/14/2023]
Abstract
Articular cartilage is easily damaged, yet difficult to repair. Cartilage tissue engineering seems a promising therapeutic solution to restore articular cartilage structure and function, with mesenchymal stem cells (MSCs) receiving increasing attention for their promise to promote cartilage repair. It is known from embryology that members of the fibroblast growth factor (FGF), transforming growth factor-β (TGFβ) and wingless-type (Wnt) protein families are involved in controlling different differentiation stages during chondrogenesis. Individually, these pathways have been extensively studied but so far attempts to recapitulate embryonic development in in vitro MSC chondrogenesis have failed to produce stable and functioning articular cartilage; instead, transient hypertrophic cartilage is obtained. We believe a better understanding of the simultaneous integration of these factors will improve how we relate embryonic chondrogenesis to in vitro MSC chondrogenesis. This narrative review attempts to define current knowledge on the crosstalk between the FGF, TGFβ and Wnt signalling pathways during different stages of mesenchymal chondrogenesis. Connecting embryogenesis and in vitro differentiation of human MSCs might provide insights into how to improve and progress cartilage tissue engineering for the future.
Collapse
Affiliation(s)
- Mairéad A Cleary
- Department of Orthopaedics, Erasmus MC, University Medical Centre, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands; School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
12
|
Cook D, Genever P. Regulation of Mesenchymal Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:213-29. [DOI: 10.1007/978-94-007-6621-1_12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Rutges JPHJ, Duit RA, Kummer JA, Oner FC, van Rijen MH, Verbout AJ, Castelein RM, Dhert WJA, Creemers LB. Hypertrophic differentiation and calcification during intervertebral disc degeneration. Osteoarthritis Cartilage 2010; 18:1487-95. [PMID: 20723612 DOI: 10.1016/j.joca.2010.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/01/2010] [Accepted: 08/10/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND In degenerative intervertebral discs (IVDs) collagen type X expression and calcifications have been demonstrated, resembling advanced osteoarthritis (OA), which is associated with hypertrophic differentiation, characterized by the production of collagen type X, Runt-related transcription factor 2 (Runx2), osteoprotegerin (OPG), alkaline phosphatase (ALP) and calcifications. OBJECTIVE The aim of this study was to determine if hypertrophic differentiation occurs during IVD degeneration. METHODS IVDs from all Thompson degeneration grades were prepared for histology, extraction of nucleus pulposus (NP) and annulus fibrosis (AF) tissue (N=50) and micro-CT (N=27). The presence of collagen type X, OPG and Runx2 was determined by immunohistochemistry, with OPG levels also determined by Enzyme-linked immunosorbent assay (ELISA). The presence of calcification was determined by micro-CT, von Kossa and Alizarin Red staining. RESULTS Immunohistochemical staining for collagen type X, OPG, Runx2 appeared more intense in the NP of degenerative compared to healthy IVD samples. OPG levels correlated significantly with degeneration grade (NP: P<0.000; AF: P=0.002) and the number of microscopic calcifications (NP: P=0.002; AF: P=0.008). The extent of calcifications on micro-CT also correlated with degeneration grade (NP: P<0.001, AF: P=0.001) as did von Kossa staining (NP: P=0.015, AF: P=0.016). ALP staining was only incidentally seen in the transition zone of grades IV and V degenerated IVDs. CONCLUSION This study for the first time demonstrates that hypertrophic differentiation occurs during IVD degeneration, as shown by an increase in OPG levels, the presence of ALP activity, increased immunopositivity of Runx2 and collagen type X.
Collapse
Affiliation(s)
- J P H J Rutges
- Department of Orthopaedics, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abe M, Michikami I, Fukushi T, Abe A, Maeda Y, Ooshima T, Wakisaka S. Hand2 regulates chondrogenesis in vitro and in vivo. Bone 2010; 46:1359-68. [PMID: 19932774 DOI: 10.1016/j.bone.2009.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/10/2009] [Accepted: 11/16/2009] [Indexed: 11/17/2022]
Abstract
Hand2 is a transcription factor of the basic helix-loop-helix family that plays essential roles during development. Hand2 determines the anterior-posterior axis during limb development and there is also substantial evidence that Hand2 regulates limb skeletogenesis. However, little is known about how Hand2 might regulate skeletogenesis. Here we show that, in a limb bud micromass culture system, over-expression of Hand2 represses chondrogenesis and the expression of chondrocytic genes, Sox9, type II collagen and aggrecan. Furthermore, we show that Hand2 is induced by the activation of canonical Wnt signaling, which strongly represses chondrogenesis. Surprisingly, Hand2 repressed chondrogenesis in a DNA binding- and dimer formation-independent manner. To examine the in vivo role of Hand2 in mice, we targeted the expression of Hand2 to the cartilage using regulatory elements from the collagen II gene. The resulting transgenic mice displayed a dwarf phenotype, with axial, appendicular and craniofacial skeletal deformities. Hand2 strongly inhibited chondrogenesis in the axial and cranial base skeleton. In the sternum, Hand2 inhibited endochondral ossification by slowing chondrocyte maturation. These data support a model of Hand2 regulating endochondral ossification via at least two steps: (1) determination of the site of chondrogenesis by outlining the region of the future cartilage template and (2) regulation of the rate of chondrocyte maturation.
Collapse
Affiliation(s)
- Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Papachristou DJ, Papachroni KK, Papavassiliou GA, Pirttiniemi P, Gorgoulis VG, Piperi C, Basdra EK. Functional alterations in mechanical loading of condylar cartilage induces changes in the bony subcondylar region. Arch Oral Biol 2009; 54:1035-45. [PMID: 19775676 DOI: 10.1016/j.archoralbio.2009.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
Bone remodeling is orchestrated by cells of the osteoblast lineage and involves an intricate network of cell-cell and cell-matrix interactions. This dynamic process engages systemic hormones, locally produced cytokines and growth factors, as well as the mechanical environment of the cells. In growing subjects, the mandibular condyle consists of both articular and growth components and the presence of progenitor cells is verified by their anabolic responses to growth hormones. The pathways of chondrocyte and osteoblast differentiation during endochondral bone formation are interconnected and controlled by key transcription factors. The present study was undertaken to explore the possibility and the extent by which the mechano-transduction events in chondrocytes are 'sensed' in the subchondral bony area under altered functional loading. To this end, the involvement of the JNK/ERK-AP-1/Runx2 signaling axe was investigated by immunohistochemistry in temporomandibular joints of young rats subjected to different functional mastication loads. Our results showed that mechanical load triggers differentiation phenomena through the induction of master tissue regulators, namely the expression and/or activation of the JNK-c-Jun signaling pathway components and c-Fos in subchondral osteoblasts, as well as the activation of ERK/MAPK and the cellular expression of the transcription factor Runx2 in subchondral osteoblasts.
Collapse
|
16
|
Gebhard S, Hattori T, Bauer E, Schlund B, Bösl MR, de Crombrugghe B, von der Mark K. Specific expression of Cre recombinase in hypertrophic cartilage under the control of a BAC-Col10a1 promoter. Matrix Biol 2008; 27:693-9. [PMID: 18692570 DOI: 10.1016/j.matbio.2008.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/01/2008] [Accepted: 07/01/2008] [Indexed: 12/16/2022]
Abstract
Previously we have shown that insertion of a LacZ reporter gene into the Col10a1 gene in the context of a bacterial artificial chromosome (BAC) drives strong and specific expression of LacZ in hypertrophic cartilage of transgenic mice [Gebhard S., Hattori T., Bauer E., Bosl M.R., Schlund B., Poschl E., Adam N., de Crombrugghe B., von der Mark K., 2007 Histochem. Cell Biol. 19 127:183-194]. BAC constructs in transgenic reporter mouse lines control efficient and specific LacZ expression in hypertrophic chondrocytes under the complete Col10a1 promoter. Here we report on the generation of Col10a1-specific Cre deleter mice using a BAC recombineering technique based on homologous recombination in E. coli. Sixteen BAC-Col10-Cre transgenic lines were generated containing between 1 and 5 copies of the BAC-Col10-Cre gene. All lines tested so far expressed Cre specifically in hypertrophic chondrocytes of E16.5 and P1 growth plates of long bones, ribs, vertebrae and sternum as examined by crossing with ROSA26 reporter mice. Cre activity was detected as early as E13.5 when hypertrophic cartilage develops in the diaphysis of femur and humerus. The data confirm that expression of Cre under the control of the complete BAC-Col10a1 promoter occurs with high efficiency and specificity in hypertrophic chondrocytes. The BAC-Col10-Cre lines should thus provide a valuable tool to get further insight into the role of genes involved in endochondral ossification by allowing their specific deletion in the hypertrophic zone of the growth plate.
Collapse
Affiliation(s)
- Sonja Gebhard
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, Glueckstr.6, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Frith J, Genever P. Transcriptional control of mesenchymal stem cell differentiation. TRANSFUSION MEDICINE AND HEMOTHERAPY : OFFIZIELLES ORGAN DER DEUTSCHEN GESELLSCHAFT FUR TRANSFUSIONSMEDIZIN UND IMMUNHAMATOLOGIE 2008; 35:216-27. [PMID: 21547119 DOI: 10.1159/000127448s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/31/2008] [Indexed: 12/23/2022]
Abstract
SUMMARY In recent years, transcriptomics and proteomics have provided us with a great deal of information about the expression profiles of various cell types and how these change under different conditions. Stem cell research is one area where this has had a major impact by providing an insight into events at the molecular level that control stem cell growth and differentiation. This includes mesenchymal stem cell (MSC) biology where knowledge about the mechanisms governing differentiation is vital for the development of future therapeutic strategies. Although there is still much to learn, we are starting to build up a picture of the main events in these differentiation processes. This review will discuss control of MSC differentiation at the transcriptional level. Not all the factors which have been shown to play a role in lineage-specific mesenchymal differentiation can be covered here. Instead, we will focus specifically on the key factors that contribute to the regulation of osteogenesis, adipogenesis, and chondrogenesis.
Collapse
Affiliation(s)
- Jess Frith
- Department of Biology (Area 9), University of York, UK
| | | |
Collapse
|
18
|
Frith J, Genever P. Transcriptional Control of Mesenchymal Stem Cell Differentiation. Transfus Med Hemother 2008. [DOI: 10.1159/000127448] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Fu H, Doll B, McNelis T, Hollinger JO. Osteoblast differentiationin vitro andin vivo promoted by Osterix. J Biomed Mater Res A 2007; 83:770-8. [PMID: 17559111 DOI: 10.1002/jbm.a.31356] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
C3H10T1/2/Osx, a stably transfected cell line with Osterix (Osx), was produced and chondrocytic and osteoblastic differentiation were studied in vitro. Osx promoted osteoblastic lineage that was dexamethasone dependent. Furthermore, in vivo, Osx induced ectopic mineralization in a heterotopic mouse muscle model. Skeletogenesis involves a cascade of molecular activities sequentially performed by osteoblasts and chondroblasts. A transcriptional factor gene Osx appears to influence cell disposition toward the chondrocytic or osteoblastic phenotype and therefore may be an important signaling cue for bone formation. Understanding the molecular conditions involved with Osx promoted osteoblast differentiation will facilitate therapeutic applications of Osx. Consequently, the objective of this study was to investigate chondrocytic and osteoblastic phenotype differentiation using an Osx plasmid DNA exploiting both in vitro and in vivo methodologies. In vitro, a stably transfected C3H10T1/2/Osx cell line was established and promotion of either an osteoblast or chondroblast phenotype was performed by selectively introducing dexamethasone (dex) and assaying mRNA content and phenotype markers. In vivo, a mouse muscle model was used to determine heterotopic ossification using designated Osx plasmid DNA doses incorporated in a (50:50 Poly (D,L-lactide-co-glycolide) (i.e., PLGA) 3D scaffold. Histological assessment was used to determine implant responses. Quantitative real-time polymerase chain reaction (q-RT-PCR) showed a significant increase in mRNA expression of osteocalcin (Ocn), Runx2, osteonectin (On) and osteopontin (Op) (p < 0.05) in the C3H10T1/2/Osx cells compared to the empty vector transfected cell control. At day 21, mineralization was demonstrated in the cultures of C3H10T1/2/Osx exposed to dex, but neither in cultures lacking dex nor controls. In the absence of dex, C3H10T1/2/Osx cells revealed a significantly higher expression of Sox9 and Aggrecan (Agc). In vivo, 80 microg of Osx plasmid DNA induced heterotopic mineralization 4 weeks following implantation in a mouse muscle model and the effect was dependent on the Osx plasmid DNA dose delivered in the PLGA scaffold. Using a non-committed cell line (C3H10T1/2), cell differentiation to an osteoblast phenotype appears to be dependent upon an interaction between intracellular events initiated by the transcriptional factor Osx and the presence of dex. The in vivo findings suggest Osx may promote osteoblast differentiationand mineralization at a heterotopic site.
Collapse
Affiliation(s)
- Huihua Fu
- Bone Tissue Engineering Center, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
20
|
Shimizu H, Yokoyama S, Asahara H. Growth and differentiation of the developing limb bud from the perspective of chondrogenesis. Dev Growth Differ 2007; 49:449-54. [PMID: 17661739 DOI: 10.1111/j.1440-169x.2007.00945.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Limb skeletal elements develop from a cartilage template, which is formed by the process termed chondrogenesis. This process is crucial in determining the shape and size of definitive bones in vertebrates. During chondrogenesis, aggregated mesenchymal cells undergo a highly organized process of proliferation and maturation along with secretion of extracellular matrix followed by programmed cell death and replacement by bone. The molecular mechanisms underlying this sophisticated process have been extensively studied. It has been demonstrated that several transcription factors such as Sox genes and Runx genes are indispensable for the major steps in chondrogenesis. Additionally, a number of signaling molecules including Bmps, Fgfs and Ihh/PTHrP are known to regulate chondrogenesis through highly coordinated interactions. This review is meant to provide an overview of the current knowledge of chondrogenesis with particular emphasis on the cellular and molecular aspects.
Collapse
Affiliation(s)
- Hirohito Shimizu
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | |
Collapse
|
21
|
Cheng C, Conte E, Pleshko-Camacho N, Hidaka C. Differences in matrix accumulation and hypertrophy in superficial and deep zone chondrocytes are controlled by bone morphogenetic protein. Matrix Biol 2007; 26:541-53. [PMID: 17618099 PMCID: PMC2080576 DOI: 10.1016/j.matbio.2007.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 12/25/2022]
Abstract
Despite the knowledge that superficial zone chondrocytes (SZC, located within 100 mum of the articular surface) and deep zone chondrocytes (DZC, located near the calcified zone) have distinct phenotypes, previous studies on bone morphogenetic proteins (BMPs) have not differentiated its effects on SZC versus DZC. Using a pellet culture model we have compared phenotype, morphology and matrix accumulation in SZC and DZC with or without adenovirus-mediated overexpression of BMP2 or -7 or the BMP antagonist Noggin. Greater accumulation of proteoglycan (PG)-rich matrix in the untreated DZC was associated with a hypertrophic phenotype with large cell diameters and high gene expression levels of runt-related transcription factor-2 (Runx2) as well as higher endogenous BMP activity. Noggin overexpression decreased matrix accumulation and cell diameters in SZC and DZC, confirming a role for endogenous BMP in both processes. In DZC, overexpression of either BMP2 or -7 increased cell diameter without increasing PG-rich matrix accumulation. In contrast, in SZC, BMP overexpression increased matrix accumulation and type II collagen gene expression without increasing cell diameter. These data indicate that differences in endogenous BMP activity level and responsiveness to BMPs define, in part, the differences between the SZC and DZC phenotype. They also suggest that SZC may be a more appropriate target for BMP therapy than DZC.
Collapse
Affiliation(s)
- Christina Cheng
- Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY, United States
| | | | | | | |
Collapse
|
22
|
Dong YF, Soung DY, Chang Y, Enomoto-Iwamoto M, Paris M, O'Keefe RJ, Schwarz EM, Drissi H. Transforming growth factor-beta and Wnt signals regulate chondrocyte differentiation through Twist1 in a stage-specific manner. Mol Endocrinol 2007; 21:2805-20. [PMID: 17684115 DOI: 10.1210/me.2007-0199] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated the molecular mechanisms underlying the transition between immature and mature chondrocytes downstream of TGF-beta and canonical Wnt signals. We used two developmentally distinct chondrocyte models isolated from the caudal portion of embryonic chick sternum or chick growth plates. Lower sternal chondrocytes exhibited immature phenotypic features, whereas growth plate-extracted cells displayed a hypertrophic phenotype. TGF-beta significantly induced beta-catenin in immature chondrocytes, whereas it repressed it in mature chondrocytes. TGF-beta further enhanced canonical Wnt-mediated transactivation of the Topflash reporter expression in lower sternal chondrocytes. However, it inhibited Topflash activity in a time-dependent manner in growth plate chondrocytes. Our immunoprecipitation experiments showed that TGF-beta induced Sma- and Mad-related protein 3 interaction with T-cell factor 4 in immature chondrocytes, whereas it inhibited this interaction in mature chondrocytes. Similar results were observed by chromatin immunoprecipitation showing that TGF-beta differentially shifts T-cell factor 4 occupancy on the Runx2 promoter in lower sternal chondrocytes vs. growth plate chondrocytes. To further determine the molecular switch between immature and hypertrophic chondrocytes, we assessed the expression and regulation of Twist1 and Runx2 in both cell models upon treatment with TGF-beta and Wnt3a. We show that Runx2 and Twist1 are differentially regulated during chondrocyte maturation. Furthermore, whereas TGF-beta induced Twist1 in mature chondrocytes, it inhibited Runx2 expression in these cells. Opposite effects were observed upon Wnt3a treatment, which predominates over TGF-beta effects on these cells. Finally, overexpression of chick Twist1 in mature chondrocytes dramatically inhibited their hypertrophy. Together, our findings show that Twist1 may be an important regulator of chondrocyte progression toward terminal maturation in response to TGF-beta and canonical Wnt signaling.
Collapse
Affiliation(s)
- Yu-Feng Dong
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kerney R, Gross JB, Hanken J. Runx2 is essential for larval hyobranchial cartilage formation inXenopus laevis. Dev Dyn 2007; 236:1650-62. [PMID: 17474117 DOI: 10.1002/dvdy.21175] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The vertebrate transcription factor protein Runx2 is regarded as a "master regulator" of bone formation due to the dramatic loss of the osseous skeleton in the mouse homozygous knockout. However, Runx2 mRNA also is expressed in the pre-hypertrophic cartilaginous skeleton of the mouse and chicken, where its developmental function is largely unknown. Several tiers of Runx2 regulation exist in the mouse, any of which may account for its seeming biological inactivity during early stages of skeletogenesis. Unlike mouse and chicken, zebrafish require Runx2 function in early cartilage differentiation. The present study reveals that the earlier functional role of Runx2 in cartilage differentiation is shared between zebrafish and Xenopus. A combination of morpholino oligonucleotide injections and neural crest transplants indicate that Runx2 is involved in differentiation of the cartilaginous hyobranchial skeleton in the frog, Xenopus laevis. Additionally, in situ hybridizations show runx2 mRNA expression in mesenchymal precursors of the cartilaginous skull, which reveals the earliest pre-patterning of these cartilages described to date. The early distribution of runx2 resolves the homology of the larval suprarostral plate, which is one of the oldest controversies of anuran skull development. Together these data reveal a shift in Runx2 function protein during vertebrate evolution towards its exclusive roles in cartilage hypertrophy and bone differentiation within the amniote lineage.
Collapse
Affiliation(s)
- Ryan Kerney
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
24
|
Gebhard S, Hattori T, Bauer E, Bösl MR, Schlund B, Pöschl E, Adam N, de Crombrugghe B, von der Mark K. BAC constructs in transgenic reporter mouse lines control efficient and specific LacZ expression in hypertrophic chondrocytes under the complete Col10a1 promoter. Histochem Cell Biol 2007; 127:183-94. [PMID: 17051351 PMCID: PMC1779629 DOI: 10.1007/s00418-006-0236-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2006] [Indexed: 02/06/2023]
Abstract
During endochondral ossification hypertrophic chondrocytes in the growth plate of fetal long bones, ribs and vertebrae play a key role in preparing growth plate cartilage for replacement by bone. In order to establish a reporter gene mouse to facilitate functional analysis of genes expressed in hypertrophic chondrocytes in this process, Col10a1- BAC reporter gene mouse lines were established expressing LacZ specifically in hypertrophic cartilage under the control of the complete Col10a1 gene. For this purpose, a bacterial artificial chromosome (BAC RP23-192A7) containing the entire murine Col10a1 gene together with 200 kb flanking sequences was modified by inserting a LacZ-Neo cassette into the second exon of Col10a1 by homologous recombination in E. coli. Transgenic mice containing between one and seven transgene copies were generated by injection of the purified BAC-Col10a1- lLacZ DNA. X-gal staining of newborns and embryos revealed strong and robust LacZ activity exclusively in hypertrophic cartilage of the fetal and neonatal skeleton of the transgenic offspring. This indicates that expression of the reporter gene in its proper genomic context in the BAC Col10a1 environment is independent of the integration site and reflects authentic Col10a1 expression in vivo. The Col10a1 specific BAC recombination vector described here will enable the specific analysis of effector gene functions in hypertrophic cartilage during skeletal development, endochondral ossification, and fracture callus healing.
Collapse
Affiliation(s)
- Sonja Gebhard
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, Glueckstr.6, 91054 Erlangen, Germany
| | - Takako Hattori
- Department of Molecular Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030 USA
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-5525 Japan
| | - Eva Bauer
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, Glueckstr.6, 91054 Erlangen, Germany
| | | | - Britta Schlund
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, Glueckstr.6, 91054 Erlangen, Germany
| | - Ernst Pöschl
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, Glueckstr.6, 91054 Erlangen, Germany
- University of East Anglia, School of Biological Sciences, Norwich, NR4 7TJ UK
| | - Nadia Adam
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, Glueckstr.6, 91054 Erlangen, Germany
| | - Benoit de Crombrugghe
- Department of Molecular Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030 USA
| | - Klaus von der Mark
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, Glueckstr.6, 91054 Erlangen, Germany
| |
Collapse
|
25
|
Abstract
Focal defects of articular cartilage are an unsolved problem in clinical orthopaedics. These lesions do not heal spontaneously and no treatment leads to complete and durable cartilage regeneration. Although the concept of gene therapy for cartilage damage appears elegant and straightforward, current research indicates that an adaptation of gene transfer techniques to the problem of a circumscribed cartilage defect is required in order to successfully implement this approach. In particular, the localised delivery into the defect of therapeutic gene constructs is desirable. Current strategies aim at inducing chondrogenic pathways in the repair tissue that fills such defects. These include the stimulation of chondrocyte proliferation, maturation, and matrix synthesis via direct or cell transplantation-mediated approaches. Among the most studied candidates, polypeptide growth factors have shown promise to enhance the structural quality of the repair tissue. A better understanding of the basic scientific aspects of cartilage defect repair, together with the identification of additional molecular targets and the development of improved gene-delivery techniques, may allow a clinical translation of gene therapy for cartilage defects. The first experimental steps provide reason for cautious optimism.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | | |
Collapse
|
26
|
Teixeira CC, Nemelivsky Y, Karkia C, Legeros RZ. Biphasic Calcium Phosphate: A Scaffold for Growth Plate Chondrocyte Maturation. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/ten.2006.12.ft-131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Li G, Peng H, Corsi K, Usas A, Olshanski A, Huard J. Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation. J Bone Miner Res 2005; 20:1611-23. [PMID: 16059633 DOI: 10.1359/jbmr.050513] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/19/2005] [Accepted: 05/20/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED After intramuscular implantation, BMP4-expressing NIH/3T3 fibroblasts and BMP4-expressing C2C12 myoblasts can promote ectopic cartilage and bone formation. Fibroblasts tend to undergo chondrogenesis, whereas myoblasts primarily undergo osteogenesis. These results suggest that endochondral bone formation may involve different cell types, a finding that could have major implications for the tissue engineering of bone and cartilage. INTRODUCTION The delivery of BMP4 through cell-based gene therapy can trigger ectopic endochondral bone formation in skeletal muscle. We hypothesized that, when stimulated with or transduced to express BMP4, different types of cells residing within skeletal muscle might participate in different stages of endochondral bone formation. MATERIALS AND METHODS We compared the responses of a fibroblast cell line (NIH/3T3), a myoblast cell line (C2C12), primary fibroblasts, and primary myoblasts to BMP4 stimulation in vitro. We then transduced the four cell populations to express BMP4 and compared their ability to promote ectopic endochondral bone formation in skeletal muscle. RESULTS Under the influence of BMP4 in vitro and in vivo, NIH/3T3 cells differentiated toward both chondrogenic and osteogenic lineages, whereas most C2C12 cells underwent primarily osteogenic differentiation. NIH/3T3 cells genetically modified to express BMP4 induced delayed but more robust cartilage formation than did genetically modified C2C12 cells, which promoted rapid ossification. These differences in terms of the timing and amount of cartilage and bone formation persisted even after we introduced a retrovirus encoding dominant negative Runx2 (DNRunx2) into the C2C12 cells, which interferes with the function of Runx2. Superior osteogenic potential was also displayed by the primary myoblasts in vitro and in vivo compared with the primary fibroblasts. The different proliferation abilities and differentiation potentials exhibited by these cells when influenced by BMP4 may at least partially explain the differing roles that BMP4-expressing myogenic cells and BMP4-expressing fibroblastic cells play in endochondral bone formation. CONCLUSIONS Our findings suggest that the process of endochondral bone formation in skeletal muscle after delivery of BMP4 involves different cell types, including fibroblastic cells, which are more involved in the chondrogenic phases, and myoblastic cells, which are primarily involved in osteogenesis. These findings could have important implications for the development of tissue engineering applications focused on bone and cartilage repair.
Collapse
Affiliation(s)
- Guangheng Li
- Growth and Development Laboratory, Children's Hospital of Pittsburgh, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-2582, USA
| | | | | | | | | | | |
Collapse
|
28
|
Papachristou DJ, Pirttiniemi P, Kantomaa T, Papavassiliou AG, Basdra EK. JNK/ERK–AP-1/Runx2 induction “paves the way” to cartilage load-ignited chondroblastic differentiation. Histochem Cell Biol 2005; 124:215-23. [PMID: 16041628 DOI: 10.1007/s00418-005-0026-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2005] [Indexed: 10/25/2022]
Abstract
Chondro-osteogenesis and subsequently skeletal morphology are greatly influenced by mechanical loads. The exact mechanism(s) by which mechanical stimuli are transduced in chondrocytes remains obscure and appears to be equally complex with similar signal transducing systems. Here we investigated whether and to what extent the MAPK (JNK/ERK)-AP-1/Runx2 signaling pathways are engaged in this phenomenon, and assessed their involvement in the functional biology of articular cartilage. For this purpose, 14-day-old female Wistar rats were divided into 2 groups: the first group was fed hard diet (simulating physiologic temporomandibular joint (TMJ) loading), while the second group was fed soft diet (reduced TMJ loading). On day 21 (experiment initiation day - weaning day), biopsies from condyles of both groups were obtained after 6, 12 and 48 h of functional TMJ loading. Immunohistochemical methodology was employed to evaluate the expression levels of pc-Jun, c-Fos, JNK2, p-JNK, p-ERK and Runx2 due to alteration in functional load. Our data demsonstrate that the protein levels of all the aforementioned molecules were markedly increased in animals fed with the hard diet, throughout the experimental procedure. These results indicate that functional cartilage loading induces the AP-1 and Runx2 transcription factors through the JNK and ERK MAPK cascades. In as much as the above signaling mediators/effectors are considered to be crucial in the differentiation/maturation process of cartilage tissue, we pose that functional mechanical loading of condylar cartilage serves to "fine tune" chondroblastic differentiation/maturation.
Collapse
|
29
|
Lengner CJ, Hassan MQ, Serra RW, Lepper C, van Wijnen AJ, Stein JL, Lian JB, Stein GS. Nkx3.2-mediated Repression of Runx2 Promotes Chondrogenic Differentiation. J Biol Chem 2005; 280:15872-9. [PMID: 15703179 DOI: 10.1074/jbc.m411144200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Runx2, a transcription factor known to be essential for osteoblast maturation and skeletogenesis, is also expressed in pre-cartilaginous mesenchymal condensations in the developing embryo. It is therefore necessary to understand the control and consequential regulatory activity of the Runx2 gene within the context of chondrogenic differentiation of a mesenchymal progenitor cell. We identify the homeodomain protein Nkx3.2 as a potent sequence-specific repressor of the Runx2 promoter that acts through a regulatory element 0.1 kb upstream from the site of transcriptional initiation. The biological significance of this repression is established by utilizing bone morphogenic protein 2 (BMP-2)-induced chondrogenic differentiation of pluripotent C3H10T1/2 cells as a model for the initial events of mesenchymal chondrogenesis. We demonstrate that induction of the chondrogenic phenotype and endogenous Nkx3.2 expression is accompanied by a repression of Runx2 gene activity. Bypassing Runx2 repression by adenoviral-mediated introduction of Runx2 into C3H10T1/2 cells can prevent the induction of chondrogenesis, but cannot reverse the chondrogenic phenotype once it has been initiated, as evidenced by Sox9 and type II collagen expression and extracellular matrix deposition. Our results demonstrate that Runx2 is a direct transcriptional target of Nkx3.2, and that repression of Runx2 at the onset of chondrogenesis is a prerequisite for the activation of a chondrocyte-specific program of gene expression. We postulate that Runx2 is a critical link in BMP-2-mediated initiation of mesenchymal chondrogenesis that results in activation of Sox9 at least in part through the Nkx3.2-dependent repression of Runx2.
Collapse
Affiliation(s)
- Christopher J Lengner
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The RUNX are key regulators of lineage-specific gene expression in major developmental pathways. The expression of RUNX genes is tightly regulated, leading to a highly specific spatio/temporal expression pattern and to distinct phenotypes of gene knockouts. This review highlights the extensive structural similarities between the three mammalian RUNX genes and delineates how regulation of their expression at the levels of transcription and translation are orchestrated into the unique RUNX expression pattern.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
31
|
Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue KI, Yamana K, Zanma A, Takada K, Ito Y, Komori T. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 2004; 18:952-63. [PMID: 15107406 PMCID: PMC395853 DOI: 10.1101/gad.1174704] [Citation(s) in RCA: 470] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The differentiation of mesenchymal cells into chondrocytes and chondrocyte proliferation and maturation are fundamental steps in skeletal development. Runx2 is essential for osteoblast differentiation and is involved in chondrocyte maturation. Although chondrocyte maturation is delayed in Runx2-deficient (Runx2(-/-)) mice, terminal differentiation of chondrocytes does occur, indicating that additional factors are involved in chondrocyte maturation. We investigated the involvement of Runx3 in chondrocyte differentiation by generating Runx2-and-Runx3-deficient (Runx2(-/-)3(-/-)) mice. We found that chondrocyte differentiation was inhibited depending on the dosages of Runx2 and Runx3, and Runx2(-/-)3(-/-) mice showed a complete absence of chondrocyte maturation. Further, the length of the limbs was reduced depending on the dosages of Runx2 and Runx3, due to reduced and disorganized chondrocyte proliferation and reduced cell size in the diaphyses. Runx2(-/-)3(-/-) mice did not express Ihh, which regulates chondrocyte proliferation and maturation. Adenoviral introduction of Runx2 in Runx2(-/-) chondrocyte cultures strongly induced Ihh expression. Moreover, Runx2 directly bound to the promoter region of the Ihh gene and strongly induced expression of the reporter gene driven by the Ihh promoter. These findings demonstrate that Runx2 and Runx3 are essential for chondrocyte maturation and that Runx2 regulates limb growth by organizing chondrocyte maturation and proliferation through the induction of Ihh expression.
Collapse
Affiliation(s)
- Carolina A Yoshida
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wong M, Siegrist M, Goodwin K. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 2003; 33:685-93. [PMID: 14555274 DOI: 10.1016/s8756-3282(03)00242-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endochondral ossification is regulated by many factors, including mechanical stimuli, which can suppress or accelerate chondrocyte maturation. Mathematical models of endochondral ossification have suggested that tension (or shear stress) can accelerate the formation of endochondral bone, while hydrostatic stress preserves the cartilage phenotype. The goal of this study was to test this hypothesis by examining the expression of hypertrophic chondrocyte markers (transcription factor Cbfa1, MMP-13, type X collagen, VEGF, CTGF) and cartilage matrix proteins under cyclic tension and cyclic hydrostatic pressure. Chondrocyte-seeded alginate constructs were exposed to one of the two loading modes for a period of 3 h per day for 3 days. Gene expression was analyzed using real-time RT-PCR. Cyclic tension upregulated the expression of Cbfa1, MMP-13, CTGF, type X collagen and VEGF and downregulated the expression of TIMP-1. Cyclic tension also upregulated the expression of type 2 collagen, COMP and lubricin, but did not change the expression of SOX9 and aggrecan. Cyclic hydrostatic pressure downregulated the expression of MMP-13 and type I collagen and upregulated expression of TIMP-1 compared to the unloaded controls. Hydrostatic pressure may slow chondrocyte differentiation and have a chondroprotective, anti-angiogenic influence on cartilage tissue. Our results suggest that cyclic tension activates the Cbfa1/MMP-13 pathway and increases the expression of terminal differentiation hypertrophic markers. Mammalian chondrocytes appear to have evolved complex mechanoresponsive mechanisms, the effects of which can be observed in the histomorphologic establishment of the cartilaginous skeleton during development and maturation.
Collapse
Affiliation(s)
- Marcy Wong
- Institute for Biomedical Engineering, ETH-Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.
| | | | | |
Collapse
|
33
|
Weston AD, Hoffman LM, Underhill TM. Revisiting the role of retinoid signaling in skeletal development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:156-73. [PMID: 12955859 DOI: 10.1002/bdrc.10010] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several years ago, it was discovered that an imbalance of vitamin A during embryonic development has dramatic teratogenic effects. These effects have since been attributed to vitamin A's most active metabolite, retinoic acid (RA), which itself profoundly influences the development of multiple organs including the skeleton. After decades of study, researchers are still uncovering the molecular basis whereby retinoids regulate skeletal development. Retinoid signaling involves several components, from the enzymes that control the synthesis and degradation of RA, to the cytoplasmic RA-binding proteins, and the nuclear receptors that modulate gene transcription. As new functions for each component continue to be discovered, their developmental roles appear increasingly complex. Interestingly, each component has been implicated in skeletal development. Moreover, retinoid signaling comes into play at distinct stages throughout the developmental sequence of skeletogenesis, highlighting a fundamental role for this pathway in forming the adult skeleton. Consistent with these roles, manipulation of the retinoid signaling pathway significantly affects the expression of the skeletogenic master regulatory factors, Sox9 and Cbfa1. In addition to the fact that we now have a greater understanding of the retinoid signaling pathway on a molecular level, much more information is now available to begin placing retinoid signaling within the context of other factors that regulate skeletogenesis. Here we review these recent advances and describe our current understanding of how retinoid signaling functions to coordinate skeletal development. We also discuss future directions and clinical implications in this field.
Collapse
|
34
|
Iwamoto M, Kitagaki J, Tamamura Y, Gentili C, Koyama E, Enomoto H, Komori T, Pacifici M, Enomoto-Iwamoto M. Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide (PTHrP). Osteoarthritis Cartilage 2003; 11:6-15. [PMID: 12505482 DOI: 10.1053/joca.2002.0860] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Runx2 (also known as Cbfa1) is a transcription factor required for chondrocyte maturation and osteoblast differentiation. While there is information on the regulation of its expression during osteogenesis, much less is known about it during cartilage maturation. Here we asked whether Runx2 expression and function are affected by retinoic acid (RA) and parathyroid hormone-related peptide (PTHrP), which represent an important stimulator and inhibitor of chondrocyte maturation, respectively. DESIGN We first cloned and characterized Runx2 expressed by chick chondrocytes (cRunx2). We then constructed expression vectors of cRunx2 and a dominant-negative form (DN-cRunx2) and determined their effects on chondrocyte maturation in culture before and during retinoid and PTHrP treatment. RESULTS cRunx2 showed similar transactivation activity to that of its mammalian counterparts although it has a very short QA domain and lacks a small portion of the PST domain. cRunx2 over-expression stimulated chondrocyte maturation, as indicated by increases in alkaline phosphatase activity (APase), mineralization, and type X collagen and MMP-13 expression, and by maintenance of Indian hedgehog (Ihh) expression. RA treatment stimulated cRunx2 gene expression and boosted its pro-maturation effects. PTHrP treatment blocked Runx2 expression and its pro-maturation effects. Over-expression of DN-cRunx2 inhibited maturation and even prevented RA from exerting its pro-maturation role. CONCLUSIONS As previously indicated by mammalian studies, cRunx2 has chondrocyte pro-maturation activity. Its expression and roles are favorably modulated by retinoid signaling but are completely inhibited by PTHrP. A model integrating cRunx2 with PTHrP, Ihh and retinoid signaling and operating during skeletogenesis is proposed.
Collapse
Affiliation(s)
- M Iwamoto
- Department of Oral Anatomy & Developmental Biology, Osaka University Faculty of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Runx2/Cbfa1 plays a central role in skeletal development as demonstrated by the absence of osteoblasts/bone in mice with inactivated Runx2/Cbfa1 alleles. To further investigate the role of Runx2 in cartilage differentiation and to assess the potential of Runx2 to induce bone formation, we cloned chicken Runx2 and overexpressed it in chick embryos using a retroviral system. Infected chick wings showed multiple phenotypes consisting of (1) joint fusions, (2) expansion of carpal elements, and (3) shortening of skeletal elements. In contrast, bone formation was not affected. To investigate the function of Runx2/Cbfa1 during cartilage development, we have generated transgenic mice that express a dominant negative form of Runx2 in cartilage. The selective inactivation of Runx2 in chondrocytes results in a severe shortening of the limbs due to a disturbance in chondrocyte differentiation, vascular invasion, osteoclast differentiation, and periosteal bone formation. Analysis of the growth plates in transgenic mice and in chick limbs shows that Runx2 is a positive regulator of chondrocyte differentiation and vascular invasion. The results further indicate that Runx2 promotes chondrogenesis either by maintaining or by initiating early chondrocyte differentiation. Furthermore, Runx2 is essential but not sufficient to induce osteoblast differentiation. To analyze the role of runx genes in skeletal development, we performed in situ hybridization with Runx2- and Runx3-specific probes. Both genes were coexpressed in cartilaginous condensations, indicating a cooperative role in the regulation of early chondrocyte differentiation and thus explaining the expansion/maintenance of cartilage in the carpus and joints of infected chick limbs.
Collapse
Affiliation(s)
- Sigmar Stricker
- Max-Planck-Institut für Molekulare Genetik, Charité, Berlin, Germany
| | | | | | | |
Collapse
|