1
|
Wei F, Lin Z, Lu W, Luo H, Feng H, Liu S, Zhang C, Zheng Y, Chen J, Mo S, Wang C, Zhang Z, Feng W, Zhu J, Yang Q, Du M, Kong W, Liu A, Lai J, Li X, Wu X, Lai N, Chen Y, Yang K, Wang J. Deficiency of Endothelial Piezo2 Impairs Pulmonary Vascular Angiogenesis and Predisposes Pulmonary Hypertension. Hypertension 2025; 82:583-597. [PMID: 39758000 DOI: 10.1161/hypertensionaha.124.22948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Mechanosensitive Piezo1 (Piezo Type Mechanosensitive Ion Channel Component 1) channel plays a key role in pulmonary hypertension (PH). However, the role of Piezo2 in PH remains unclear. METHODS Endothelial cell (EC)-specific Piezo2 knockout (Piezo2flox/flox, Tek-Cre+; Piezo2EC-/-) rats and primarily cultured pulmonary microvascular ECs were used to determine the role of Piezo2 in PH. RESULTS Data analysis of publicly accessible single-cell RNA-sequencing data sets uncovered significant downregulation of Piezo2 in lung ECs from patients with idiopathic pulmonary arterial hypertension, which was verified in the lungs/ECs from PH rat models induced by hypoxia or monocrotaline. Comparing to wild-type rats, Piezo2EC-/- rats exhibited exacerbated PH in both hypoxia-induced PH and monocrotaline-induced PH, characterized by the worsened hemodynamical and histological changes. Piezo2EC-/- rats showed dramatic loss of pulmonary microvessels, in association with the decreased intracellular free calcium concentration ([Ca2+]i) and downregulation of VEGFR2 (vascular endothelial growth factor receptor 2) and phosphorylated SRF (serum response factor) in pulmonary microvascular ECs. Knockout of Piezo2 or treatment with a calcium chelator, EDTA, impaired the ability of tube formation and migration in pulmonary microvascular ECs, which was restored by supplementation of extra calcium. A safflower oil diet rich in linoleic acid, which can enhance the stability and function of Piezo2, effectively alleviated PH development in a hypoxia-induced PH rat model. CONCLUSIONS This study demonstrates that EC-specific knockout of Piezo2 exacerbates PH pathogenesis, at least partially, through the suppression of [Ca2+]i/phosphorylated SRF/VEGFR2 signaling axis in pulmonary vascular ECs. Targeted activation of Piezo2 could be a novel effective strategy for the treatment of PH.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Haiyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Yulin Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Jiyuan Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (J.C.)
| | - Shaocong Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Chen Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Zizhou Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Wei Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Junqi Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Qifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangdong, China (Q.Y., J.W.)
| | - Min Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
- GMU-GIBH Joint School of Life Sciences (M.D.), Guangzhou Medical University, China
| | - Weiguo Kong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Aofeng Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Jiaxuan Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Xiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL (X.L.)
| | - Xuefen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Ning Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.), Guangzhou Medical University, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangdong, China (Q.Y., J.W.)
| |
Collapse
|
2
|
Evlakhov VI, Berezina TP, Pasatetskaya NA. Effects of Ranolazine and Ivabradine on Pulmonary Microhemodynamics in Experimental Model of Pulmonary Thromboembolism. Bull Exp Biol Med 2024; 177:203-206. [PMID: 39093469 DOI: 10.1007/s10517-024-06156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 08/04/2024]
Abstract
We studied changes of pulmonary microhemodynamics when modeling pulmonary artery thromboembolism on perfused isolated rabbit lungs after pretreatment with ranolazine and ivabradine. The increase in pulmonary artery pressure, pulmonary vascular resistance, and pre- and postcapillary resistance was less pronounced than in control animals, but was close to that in case of pulmonary thromboembolism after pretreatment with voltage-gated Na+ channel blockers lidocaine and ropivacaine. The increase of capillary filtration coefficient inversely correlated with values of capillary hydrostatic pressure. Thus, ranolazine and ivabradine exhibit the properties of voltage-gated Na+ channel blockers mainly in smooth muscles of pulmonary arterial vessels and promote the decrease in endothelial permeability.
Collapse
Affiliation(s)
- V I Evlakhov
- Laboratory of Physiology of Visceral Systems, Institute of Experimental Medicine, St. Petersburg, Russia.
| | - T P Berezina
- Laboratory of Physiology of Visceral Systems, Institute of Experimental Medicine, St. Petersburg, Russia
| | - N A Pasatetskaya
- Laboratory of Physiology of Visceral Systems, Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
3
|
Zhang W, Hua Y, Zheng D, Chen Q, Huang R, Wang W, Li X. Expression and clinical significance of miR-8078 in patients with congenital heart disease-associated pulmonary arterial hypertension. Gene 2024; 896:147964. [PMID: 37926175 DOI: 10.1016/j.gene.2023.147964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES This study aimed to analyze the plasma levels of miR-8078 in patients with congenital heart disease-associated pulmonary arterial hypertension (CHD-PAH) and to explore the diagnostic value and potential mechanisms of miR-8078 in CHD-PAH. METHODS Plasma samples were collected from 110 patients with congenital heart disease. Subsequently, based on the mean pulmonary artery pressure (PAPm) measured via right heart catheterization, the patients were divided into three groups: no-PAH group (Group W, PAPm < 25 mmHg), mild group (Group M, 25 mmHg ≤ PAPm < 35 mmHg), and moderate-to-severe group (Group H, PAPm ≥ 35 mmHg). The study also involved a control group (Group C) comprised of 40 healthy individuals. The miR-8078 expression levels were determined by means of reverse transcription-polymerase chain reaction (RT-PCR). The target genes and biological functions of miR-8078 were predicted using TargetScan, PicTar, and miRDB software. Statistical analysis was performed to evaluate the correlation between miR-8078 and hemodynamic parameters in CHD-PAH, in addition to its diagnostic value. RESULTS The plasma miR-8078 expression levels were significantly higher in the moderate-to-severe group when compared with the control group, no-PAH group, and mild group (p < 0.05). Furthermore, the mild group and no-PAH group showed significantly higher miR-8078 expression levels when compared with the control group (p < 0.05). Both results were consistent with the high-throughput sequencing results. KEGG pathway analysis of the miR-8078 target genes revealed associations with morphine addiction, ubiquitin-mediated proteolysis, and parathyroid hormone synthesis and secretion. GO enrichment analysis indicated the involvement of miR-8078 in the regulation of transcription by RNA polymerase II, the positive regulation of stress-activated MAPK cascade, the transmembrane transport of CI- and K+ ions, chromatin organization, and atrioventricular valve morphogenesis. Correlation analysis showed that the miR-8078 expression levels were positively correlated with the pulmonary artery systolic pressure, mean pulmonary artery pressure, and pulmonary vascular resistance (correlation coefficients of 0.404, 0.397, and 0.283, respectively; all p < 0.05). Univariate and multivariate regression analyses revealed plasma miR-8078 (odds ratio: 1.475, 95 % confidence interval: 1.053-2.065, p < 0.05) to be an independent risk factor for CHD-PAH. Receiver operating characteristic curve analysis revealed that the area under the curve (AUC) for miR-8078 alone and for B-type natriuretic peptide alone in diagnosing CHD-PAH was 0.686 and 0.851, respectively, while the AUC for a combined diagnosis was 0.874, which was higher than that associated with the individual diagnoses (p < 0.05). CONCLUSION The findings of this study suggest that miR-8078 is upregulated in CHD-PAH, while the results of the bioinformatics analysis indicate its involvement in the pathogenesis of CHD-PAH, suggesting it to be a potential therapeutic target or biomarker.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China; Department of Geriatrics, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Ying Hua
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Dongdong Zheng
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Qianqian Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Rong Huang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Wei Wang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Xiaofei Li
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China.
| |
Collapse
|
4
|
Akin EJ, Aoun J, Jimenez C, Mayne K, Baeck J, Young MD, Sullivan B, Sanders KM, Ward SM, Bulley S, Jaggar JH, Earley S, Greenwood IA, Leblanc N. ANO1, CaV1.2, and IP3R form a localized unit of EC-coupling in mouse pulmonary arterial smooth muscle. J Gen Physiol 2023; 155:e202213217. [PMID: 37702787 PMCID: PMC10499037 DOI: 10.1085/jgp.202213217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Pulmonary arterial (PA) smooth muscle cells (PASMC) generate vascular tone in response to agonists coupled to Gq-protein receptor signaling. Such agonists stimulate oscillating calcium waves, the frequency of which drives the strength of contraction. These Ca2+ events are modulated by a variety of ion channels including voltage-gated calcium channels (CaV1.2), the Tmem16a or Anoctamin-1 (ANO1)-encoded calcium-activated chloride (CaCC) channel, and Ca2+ release from the sarcoplasmic reticulum through inositol-trisphosphate receptors (IP3R). Although these calcium events have been characterized, it is unclear how these calcium oscillations underly a sustained contraction in these muscle cells. We used smooth muscle-specific ablation of ANO1 and pharmacological tools to establish the role of ANO1, CaV1.2, and IP3R in the contractile and intracellular Ca2+ signaling properties of mouse PA smooth muscle expressing the Ca2+ biosensor GCaMP3 or GCaMP6. Pharmacological block or genetic ablation of ANO1 or inhibition of CaV1.2 or IP3R, or Ca2+ store depletion equally inhibited 5-HT-induced tone and intracellular Ca2+ waves. Coimmunoprecipitation experiments showed that an anti-ANO1 antibody was able to pull down both CaV1.2 and IP3R. Confocal and superresolution nanomicroscopy showed that ANO1 coassembles with both CaV1.2 and IP3R at or near the plasma membrane of PASMC from wild-type mice. We conclude that the stable 5-HT-induced PA contraction results from the integration of stochastic and localized Ca2+ events supported by a microenvironment comprising ANO1, CaV1.2, and IP3R. In this model, ANO1 and CaV1.2 would indirectly support cyclical Ca2+ release events from IP3R and propagation of intracellular Ca2+ waves.
Collapse
Affiliation(s)
- Elizabeth J. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Joydeep Aoun
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Katie Mayne
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Julius Baeck
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Michael D. Young
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Brennan Sullivan
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Simon Bulley
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan H. Jaggar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott Earley
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Iain A. Greenwood
- Department of Vascular Pharmacology, Molecular and Clinical Science Research Institute, St. George’s University of London, London, UK
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| |
Collapse
|
5
|
Jimenez C, Hawn MB, Akin E, Leblanc N. Translational potential of targeting Anoctamin-1-Encoded Calcium-Activated chloride channels in hypertension. Biochem Pharmacol 2022; 206:115320. [PMID: 36279919 DOI: 10.1016/j.bcp.2022.115320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Calcium-activated chloride channels (CaCC) provide a depolarizing stimulus to a variety of tissues through chloride efflux in response to a rise in internal Ca2+ and voltage. One of these channels, Anoctamin-1 (ANO1 or TMEM16A) is now recognized to play a central role in promoting smooth muscle tone in various types of blood vessels. Its role in hypertension, and thus the therapeutic promise of targeting ANO1, is less straightforward. This review gives an overview of our current knowledge about the potential role ANO1 may play in hypertension within the systemic, portal, and pulmonary vascular systems and the importance of this information when pursuing potential treatment strategies. While the role of ANO1 is well-established in several forms of pulmonary hypertension, its contributions to both the generation of vascular tone and its role in hypertension within the systemic and portal systems are much less clear. This, combined with ANO1's various roles throughout a multitude of tissues throughout the body, command caution when targeting ANO1 as a therapeutic target and may require tissue-selective strategies.
Collapse
Affiliation(s)
- Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Matthew B Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Elizabeth Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA.
| |
Collapse
|
6
|
Yu J, Liu X, Wang K, Wang H, Han Y, Kang J, Deng R, Zhou H, Duan Z. Underlying mechanism of Qiling Jiaogulan Powder in the treatment of broiler ascites syndrome. Poult Sci 2022; 102:102144. [PMID: 36334473 PMCID: PMC9640339 DOI: 10.1016/j.psj.2022.102144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 01/10/2023] Open
Abstract
Broiler ascites syndrome (AS), is a nutritional and metabolic disease that occurs in fast-growing commercial broiler chickens. AS can cause poor growth and a significant increase in the rate of broiler deaths, which has resulted in serious economic losses to the poultry industry. The classic traditional Chinese medicine Qiling Jiaogulan Powder (QLJP) has been demonstrated to have a certain therapeutic effect on broiler AS. However, its pharmacological mechanism remains to be elucidated. This study was performed to investigate the multitarget action mechanism of QLJP in the treatment of broiler AS based on network pharmacology analysis using a broiler AS model. First, all chemical components and targets of QLJP were obtained from the Traditional Chinese Medicine System Pharmacology Analysis Platform (TCMSP). Targets related to broiler AS were further obtained through the GeneCards database and the NCBI Gene sub-database. A protein-protein interaction (PPI) network was constructed. Then, enrichment analyses were performed to predict the potential mechanisms of QLJP in the treatment of broiler AS. Finally, the treatment effect of QLJP on AS was verified in a broiler AS model. Network pharmacology analysis generated 49 active ingredients and 167 core targets of QLJP, and a QLJP-single drug-target-disease network was successfully constructed. Gene enrichment analysis indicated that the core targets have played major roles in the Cell cycle, FOXO signaling pathways, etc. We demonstrated that QLJP improved clinical and organ damage symptoms and significantly reduced the ascites heart index in broilers with AS induced by administration of high-energy, high-protein diets and high-sodium drinking water in a low-temperature environment. QLJP may regulate lung oxidative stress, the cell cycle and apoptosis by activating the FOXO3a signaling pathway to interfere with the occurrence and development of AS in broilers. QLJP administration may be a good clinical strategy for the prevention and treatment of broiler AS.
Collapse
Affiliation(s)
- Juan Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Xingyou Liu
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, Henan, 453003, China
| | - Keyao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Huimin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Yufeng Han
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Jie Kang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Ruiqiang Deng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Huaijun Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Zhibian Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China,Corresponding author:
| |
Collapse
|
7
|
Liu G, Fu D, Tian H, Dai A. The mechanism of ions in pulmonary hypertension. Pulm Circ 2021; 11:2045894020987948. [PMID: 33614016 PMCID: PMC7869166 DOI: 10.1177/2045894020987948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension(PH)is a kind of hemodynamic and pathophysiological state, in which the pulmonary artery pressure (PAP) rises above a certain threshold. The main pathological manifestation is pulmonary vasoconstriction and remodelling progressively. More and more studies have found that ions play a major role in the pathogenesis of PH. Many vasoactive substances, inflammatory mediators, transcription-inducing factors, apoptosis mediators, redox substances and translation modifiers can control the concentration of ions inside and outside the cell by regulating the activity of ion channels, which can regulate vascular contraction, cell proliferation, migration, apoptosis, inflammation and other functions. We all know that there are no effective drugs to treat PH. Ions are involved in the occurrence and development of PH, so it is necessary to clarify the mechanism of ions in PH as a therapeutic target for PH. The main ions involved in PH are calcium ion (Ca2+), potassium ion (K+), sodium ion (Na+) and chloride ion (Cl-). Here, we mainly discuss the distribution of these ions and their channels in pulmonary arteries and their role in the pathogenesis of PH.
Collapse
Affiliation(s)
- Guogu Liu
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Daiyan Fu
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Heshen Tian
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Aiguo Dai
- Department of Respiratory Diseases, Hunan University of Chinese
Medicine, Changsha, China
| |
Collapse
|
8
|
Jain PP, Hosokawa S, Xiong M, Babicheva A, Zhao T, Rodriguez M, Rahimi S, Pourhashemi K, Balistrieri F, Lai N, Malhotra A, Shyy JYJ, Valdez-Jasso D, Thistlethwaite PA, Makino A, Yuan JXJ. Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung. Pulm Circ 2020; 10:2045894020956592. [PMID: 33282184 PMCID: PMC7691930 DOI: 10.1177/2045894020956592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O2 saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary vasoconstriction with a primary focus on the role of Ca2+ signaling and Ca2+ influx pathways in hypoxic pulmonary vasoconstriction. We used an ex vivo model, isolated perfused/ventilated mouse lung to evaluate hypoxic pulmonary vasoconstriction. Alveolar hypoxia (utilizing a mini ventilator) rapidly and reversibly increased pulmonary arterial pressure due to hypoxic pulmonary vasoconstriction in the isolated perfused/ventilated lung. By applying specific inhibitors for different membrane receptors and ion channels through intrapulmonary perfusion solution in isolated lung, we were able to define the targeted receptors and channels that regulate hypoxic pulmonary vasoconstriction. We show that extracellular Ca2+ or Ca2+ influx through various Ca2+-permeable channels in the plasma membrane is required for hypoxic pulmonary vasoconstriction. Removal of extracellular Ca2+ abolished hypoxic pulmonary vasoconstriction, while blockade of L-type voltage-dependent Ca2+ channels (with nifedipine), non-selective cation channels (with 30 µM SKF-96365), and TRPC6/TRPV1 channels (with 1 µM SAR-7334 and 30 µM capsazepine, respectively) significantly and reversibly inhibited hypoxic pulmonary vasoconstriction. Furthermore, blockers of Ca2+-sensing receptors (by 30 µM NPS2143, an allosteric Ca2+-sensing receptors inhibitor) and Notch (by 30 µM DAPT, a γ-secretase inhibitor) also attenuated hypoxic pulmonary vasoconstriction. These data indicate that Ca2+ influx in pulmonary arterial smooth muscle cells through voltage-dependent, receptor-operated, and store-operated Ca2+ entry pathways all contribute to initiation of hypoxic pulmonary vasoconstriction. The extracellular Ca2+-mediated activation of Ca2+-sensing receptors and the cell-cell interaction via Notch ligands and receptors contribute to the regulation of hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Pritesh P. Jain
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Susumu Hosokawa
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
- Department of Pediatrics, Tokyo Medical
and Dental University, Tokyo, Japan
| | - Mingmei Xiong
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
- Department of Critical Medicine, The
Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aleksandra Babicheva
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Tengteng Zhao
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Marisela Rodriguez
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Shamin Rahimi
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Kiana Pourhashemi
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Francesca Balistrieri
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Ning Lai
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Atul Malhotra
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine,
Department of Medicine, University of California, San Diego, USA
| | | | | | - Ayako Makino
- Division of Endocrinology and
Metabolism, University of California, San Diego, CA, USA
| | - Jason X.-J. Yuan
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| |
Collapse
|
9
|
TRPC and TRPV Channels' Role in Vascular Remodeling and Disease. Int J Mol Sci 2020; 21:ijms21176125. [PMID: 32854408 PMCID: PMC7503586 DOI: 10.3390/ijms21176125] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potentials (TRPs) are non-selective cation channels that are widely expressed in vascular beds. They contribute to the Ca2+ influx evoked by a wide spectrum of chemical and physical stimuli, both in endothelial and vascular smooth muscle cells. Within the superfamily of TRP channels, different isoforms of TRPC (canonical) and TRPV (vanilloid) have emerged as important regulators of vascular tone and blood flow pressure. Additionally, several lines of evidence derived from animal models, and even from human subjects, highlighted the role of TRPC and TRPV in vascular remodeling and disease. Dysregulation in the function and/or expression of TRPC and TRPV isoforms likely regulates vascular smooth muscle cells switching from a contractile to a synthetic phenotype. This process contributes to the development and progression of vascular disorders, such as systemic and pulmonary arterial hypertension, atherosclerosis and restenosis. In this review, we provide an overview of the current knowledge on the implication of TRPC and TRPV in the physiological and pathological processes of some frequent vascular diseases.
Collapse
|
10
|
Lopez JR, Uryash A, Faury G, Estève E, Adams JA. Contribution of TRPC Channels to Intracellular Ca 2 + Dyshomeostasis in Smooth Muscle From mdx Mice. Front Physiol 2020; 11:126. [PMID: 32153426 PMCID: PMC7044154 DOI: 10.3389/fphys.2020.00126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an irreversible muscle disease characterized by a progressive loss of muscle function, decreased ambulation, and ultimately death as a result of cardiac or respiratory failure. DMD is caused by the lack of dystrophin, a protein that is important for membrane stability and signaling in excitable cells. Although vascular smooth muscle cells (VSMCs) dysfunction occurs in many pathological conditions, little is known about vascular smooth muscle function in DMD. We have previously shown that striated muscle cells, as well as neurons isolated from dystrophic (mdx) mice have higher intracellular Ca2+ ([Ca2+]i) and Na+ ([Na+]i) concentrations and decreased cell viability in comparison with wild type (Wt). Experiments were carried out in isolated VSMCs from mdx (a murine model of DMD) and congenic C57BL/10SnJ Wt mice. We found elevated [Ca2+]i and [Na+]i in VSMCs from mdx mice compared to Wt. Exposure to 1-oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC3 and TRPC6 channel activator, induced a greater elevation of [Ca2+]i and [Na+]i in mdx than Wt VSMCs. The OAG induced increases in [Ca2+]i could be abolished by either removal of extracellular Ca2+ or by SAR7334, a blocker of TRPC3 and TRPC 6 channels in both genotypes. Mdx and Wt VSMCs were susceptible to muscle cell stretch-induced elevations of [Ca2+]i and [Na+]i which was completely inhibited by GsMTx-4, a mechanosensitive ion channel inhibitor. Western blots showed a significant upregulation of TRPC1 -3, -6 proteins in mdx VSMCs compare to age-matched Wt. The lack of dystrophin in mdx VSMCs produced a profound alteration of [Ca2+]i and [Na+]i homeostasis that appears to be mediated by TRPC channels. Moreover, we have been able to demonstrate pharmacologically that the enhanced stretch-induced elevation of intracellular [Ca2+] and concomitant cell damage in mdx VSMCs also appears to be mediated through TRPC1, -3 and -6 channel activation.
Collapse
Affiliation(s)
- Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami, FL, United States
| | - Arkady Uryash
- Department of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| | - Gilles Faury
- HP2, CHU Grenoble Alpes, Inserm, University Grenoble Alpes, Grenoble, France
| | - Eric Estève
- HP2, CHU Grenoble Alpes, Inserm, University Grenoble Alpes, Grenoble, France
| | - Jose A Adams
- Department of Neonatology, Mount Sinai Medical Center, Miami, FL, United States
| |
Collapse
|
11
|
Wang Z, Yang K, Zheng Q, Zhang C, Tang H, Babicheva A, Jiang Q, Li M, Chen Y, Carr SG, Wu K, Zhang Q, Balistrieri A, Wang C, Song S, Ayon RJ, Desai AA, Black SM, Garcia JGN, Makino A, Yuan JXJ, Lu W, Wang J. Divergent changes of p53 in pulmonary arterial endothelial and smooth muscle cells involved in the development of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2018; 316:L216-L228. [PMID: 30358436 DOI: 10.1152/ajplung.00538.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The tumor-suppressive role of p53, a transcription factor that regulates the expression of many genes, has been linked to cell cycle arrest, apoptosis, and senescence. The noncanonical function or the pathogenic role of p53 has more recently been implicated in pulmonary vascular disease. We previously reported that rapid nuclear accumulation of hypoxia-inducible factor (HIF)-1α in pulmonary arterial smooth muscle cells (PASMCs) upregulates transient receptor potential channels and enhances Ca2+ entry to increase cytosolic Ca2+ concentration ([Ca2+]cyt). Also, we observed differences in HIF-1α/2α expression in PASMCs and pulmonary arterial endothelial cells (PAECs). Here we report that p53 is increased in PAECs, but decreased in PASMCs, isolated from mice with hypoxia-induced pulmonary hypertension (PH) and rats with monocrotaline (MCT)-induced PH (MCT-PH). The increased p53 in PAECs from rats with MCT-PH is associated with an increased ratio of Bax/Bcl-2, while the decreased p53 in PASMCs is associated with an increased HIF-1α. Furthermore, p53 is downregulated in PASMCs isolated from patients with idiopathic pulmonary arterial hypertension compared with PASMCs from normal subjects. Overexpression of p53 in normal PASMCs inhibits store-operated Ca2+ entry (SOCE) induced by passive depletion of intracellularly stored Ca2+ in the sarcoplasmic reticulum, while downregulation of p53 enhances SOCE. These data indicate that differentially regulated expression of p53 and HIF-1α/2α in PASMCs and PAECs and the cross talk between p53 and HIF-1α/2α in PASMCs and PAECs may play an important role in the development of PH via, at least in part, induction of PAEC apoptosis and PASMC proliferation.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Aleksandra Babicheva
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Qian Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Meichan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Shane G Carr
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Kang Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Qian Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Angela Balistrieri
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Christina Wang
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Shanshan Song
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Joe G N Garcia
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,Division of Translational and Regenerative Medicine , Tucson, Arizona.,Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China
| |
Collapse
|
12
|
Abstract
Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Collapse
|
13
|
Mechanisms underlying the impact of exercise training in pulmonary arterial hypertension. Respir Med 2018; 134:70-78. [DOI: 10.1016/j.rmed.2017.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/10/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022]
|
14
|
Ward JPT. Physiological redox signalling and regulation of ion channels: implications for pulmonary hypertension. Exp Physiol 2017; 102:1078-1082. [PMID: 28004868 DOI: 10.1113/ep086040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? The review concerns the role of reactive oxygen species as physiological second messengers in potentiating G-protein-coupled receptor-mediated vasoconstriction and its potential dysregulation by oxidant stress in pulmonary hypertension. What advances does it highlight? The review highlights the concept that physiological signalling by reactive oxygen species must normally be highly compartmentalized to prevent self-regenerating oxidant stress and promiscuous and uncontrolled signalling, which contribute to the aetiology. Pulmonary hypertension is associated with oxidant stress and increased generation of reactive oxygen species (ROS) by NADPH oxidases (NOX), mitochondria and other sources. There is considerable evidence that these contribute to the aetiology via promotion of pulmonary vascular remodelling, endothelial dysfunction and enhanced vasoreactivity. However, it is now recognized that ROS act as important signalling mediators and second messengers in normal physiological conditions. Many ion channels and protein kinases crucial to pulmonary vascular function are directly or indirectly affected by redox/ROS, including K+ , Ca2+ and non-selective cation channels and Rho kinase. However, the inherent difficulties in quantifying ROS, particularly in subcellular compartments, make it uncertain whether these reported effects are of relevance in physiological rather than pathological conditions. In an attempt to address such issues, we have focused on the role of physiologically generated ROS in the regulation of G-protein-coupled receptor (GPCR)-activated vasoconstrictor pathways. We have recently reported a novel mechanism whereby low concentrations of GPCR-linked vasoconstrictors greatly potentiate Ca2+ entry via a NOX1- and ROS-mediated pathway parallel to the classical vasoconstrictor pathways of Ca2+ mobilization and activation of Rho kinase. Our findings imply that ROS signalling is highly compartmentalized in physiological conditions, but that this may be compromised by pathological increases in oxidant production, for example in pulmonary hypertension, leading to promiscuous actions that contribute to the aetiology. This model is consistent with the proposal that targeted antioxidants could prove to be an effective therapy for pulmonary hypertension.
Collapse
Affiliation(s)
- Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| |
Collapse
|
15
|
Niflumic Acid Attenuated Pulmonary Artery Tone and Vascular Structural Remodeling of Pulmonary Arterial Hypertension Induced by High Pulmonary Blood Flow In Vivo. J Cardiovasc Pharmacol 2016; 66:383-91. [PMID: 26132368 DOI: 10.1097/fjc.0000000000000291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcium-activated chloride channels (CaCCs) play a vital role in regulating pulmonary artery tone during pulmonary arterial hypertension (PAH) induced by high blood flow. The role of CaCCs inhibitor niflumic acid (NFA) in vivo during this process requires further investigation. We established the PAH model by abdominal shunt surgery and treated with NFA in vivo. Fifty rats were randomly divided into normal, sham, shunt, NFA group 1 (0.2 mg/kg), and NFA group 2 (0.4 mg/kg). Pathological changes, right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter were analyzed. Then contraction reactions of pulmonary arteries were measured. Finally, the electrophysiological characteristics of pulmonary arterial smooth muscle cells were investigated using patch-clamp technology. After 11 weeks of shunting, PAH developed, accompanied with increased right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter. In the NFA treatment groups, the pressure and pathological changes were alleviated. The pulmonary artery tone in the shunt group increased, whereas it decreased after NFA treatment. The current density of CaCC was higher in the shunt group, and it was decreased in the NFA treatment groups. In conclusion, NFA attenuated pulmonary artery tone and structural remodeling in PAH induced by high pulmonary blood flow in vivo. CaCCs were involved and the augmented current density was alleviated by NFA treatment.
Collapse
|
16
|
Tang H, Yamamura A, Yamamura H, Song S, Fraidenburg DR, Chen J, Gu Y, Pohl NM, Zhou T, Jiménez-Pérez L, Ayon RJ, Desai AA, Goltzman D, Rischard F, Khalpey Z, Black SM, Garcia JGN, Makino A, Yuan JXJ. Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 310:L846-59. [PMID: 26968768 DOI: 10.1152/ajplung.00050.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 01/19/2023] Open
Abstract
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and a critical stimulation for PASMC proliferation and migration. Previously, we demonstrated that expression and function of calcium sensing receptors (CaSR) in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH) and animals with experimental pulmonary hypertension (PH) were greater than in PASMC from normal subjects and control animals. However, the mechanisms by which CaSR triggers Ca(2+) influx in PASMC and the implication of CaSR in the development of PH remain elusive. Here, we report that CaSR functionally interacts with TRPC6 to regulate [Ca(2+)]cyt in PASMC. Downregulation of CaSR or TRPC6 with siRNA inhibited Ca(2+)-induced [Ca(2+)]cyt increase in IPAH-PASMC (in which CaSR is upregulated), whereas overexpression of CaSR or TRPC6 enhanced Ca(2+)-induced [Ca(2+)]cyt increase in normal PASMC (in which CaSR expression level is low). The upregulated CaSR in IPAH-PASMC was also associated with enhanced Akt phosphorylation, whereas blockade of CaSR in IPAH-PASMC attenuated cell proliferation. In in vivo experiments, deletion of the CaSR gene in mice (casr(-/-)) significantly inhibited the development and progression of experimental PH and markedly attenuated acute hypoxia-induced pulmonary vasoconstriction. These data indicate that functional interaction of upregulated CaSR and upregulated TRPC6 in PASMC from IPAH patients and animals with experimental PH may play an important role in the development and progression of sustained pulmonary vasoconstriction and pulmonary vascular remodeling. Blockade or downregulation of CaSR and/or TRPC6 with siRNA or miRNA may be a novel therapeutic strategy to develop new drugs for patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Haiyang Tang
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan
| | - Hisao Yamamura
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan; and
| | - Shanshan Song
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Dustin R Fraidenburg
- Departments of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Jiwang Chen
- Departments of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Yali Gu
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Nicole M Pohl
- Departments of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Tong Zhou
- Department of Medicine, Division of Translational and Regenerative Medicine
| | | | - Ramon J Ayon
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Ankit A Desai
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - David Goltzman
- Department of Medicine and Physiology, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Franz Rischard
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Zain Khalpey
- Department of Surgery, University of Arizona College of Medicine, Tucson, Arizona
| | - Stephan M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, Department of Physiology, and
| | - Joe G N Garcia
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Ayako Makino
- Department of Medicine, Division of Translational and Regenerative Medicine, Department of Physiology, and
| | - Jason X J Yuan
- Department of Medicine, Division of Translational and Regenerative Medicine, Department of Physiology, and
| |
Collapse
|
17
|
Bryant AJ, Carrick RP, McConaha ME, Jones BR, Shay SD, Moore CS, Blackwell TR, Gladson S, Penner NL, Burman A, Tanjore H, Hemnes AR, Karwandyar AK, Polosukhin VV, Talati MA, Dong HJ, Gleaves LA, Carrier EJ, Gaskill C, Scott EW, Majka SM, Fessel JP, Haase VH, West JD, Blackwell TS, Lawson WE. Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2015; 310:L249-62. [PMID: 26637636 DOI: 10.1152/ajplung.00258.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.
Collapse
Affiliation(s)
- Andrew J Bryant
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Ryan P Carrick
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melinda E McConaha
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brittany R Jones
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sheila D Shay
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christy S Moore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Thomas R Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Santhi Gladson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Niki L Penner
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ankita Burman
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Anna R Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ayub K Karwandyar
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Megha A Talati
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hui-Jia Dong
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Erica J Carrier
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christa Gaskill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Edward W Scott
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida; and
| | - Susan M Majka
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joshua P Fessel
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Volker H Haase
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James D West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Veterans Affairs Medical Center, Nashville, Tennessee; and
| | - William E Lawson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Veterans Affairs Medical Center, Nashville, Tennessee; and
| |
Collapse
|
18
|
MENG YING, LI WEIZHU, SHI YOUWEI, ZHOU BINGFENG, MA RONG, LI WEIPING. Danshensu protects against ischemia/reperfusion injury and inhibits the apoptosis of H9c2 cells by reducing the calcium overload through the p-JNK-NF-κB-TRPC6 pathway. Int J Mol Med 2015; 37:258-66. [DOI: 10.3892/ijmm.2015.2419] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/17/2015] [Indexed: 11/06/2022] Open
|
19
|
Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HAT, Singer CA, Valencik ML, Britton F, Greenwood IA. Molecular and functional significance of Ca(2+)-activated Cl(-) channels in pulmonary arterial smooth muscle. Pulm Circ 2015; 5:244-68. [PMID: 26064450 DOI: 10.1086/680189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022] Open
Abstract
Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(-) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(-) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH.
Collapse
Affiliation(s)
- Normand Leblanc
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Abigail S Forrest
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Ramon J Ayon
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Michael Wiwchar
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Harry A T Pritchard
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Maria L Valencik
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Fiona Britton
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| |
Collapse
|
20
|
Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22:537-52. [PMID: 25545236 PMCID: PMC4322788 DOI: 10.1089/ars.2014.6234] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. RECENT ADVANCES Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. CRITICAL ISSUES AND FUTURE DIRECTIONS In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellence Cluster Cardiopulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) , Giessen, Germany
| | | | | | | |
Collapse
|
21
|
Fernandez RA, Wan J, Song S, Smith KA, Gu Y, Tauseef M, Tang H, Makino A, Mehta D, Yuan JXJ. Upregulated expression of STIM2, TRPC6, and Orai2 contributes to the transition of pulmonary arterial smooth muscle cells from a contractile to proliferative phenotype. Am J Physiol Cell Physiol 2015; 308:C581-93. [PMID: 25673771 DOI: 10.1152/ajpcell.00202.2014] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/27/2015] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that, if left untreated, eventually leads to right heart failure and death. Elevated pulmonary arterial pressure (PAP) in patients with PAH is mainly caused by an increase in pulmonary vascular resistance (PVR). Sustained vasoconstriction and excessive pulmonary vascular remodeling are two major causes for elevated PVR in patients with PAH. Excessive pulmonary vascular remodeling is mediated by increased proliferation of pulmonary arterial smooth muscle cells (PASMC) due to PASMC dedifferentiation from a contractile or quiescent phenotype to a proliferative or synthetic phenotype. Increased cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in PASMC is a key stimulus for cell proliferation and this phenotypic transition. Voltage-dependent Ca(2+) entry (VDCE) and store-operated Ca(2+) entry (SOCE) are important mechanisms for controlling [Ca(2+)]cyt. Stromal interacting molecule proteins (e.g., STIM2) and Orai2 both contribute to SOCE and we have previously shown that STIM2 and Orai2, specifically, are upregulated in PASMC from patients with idiopathic PAH and from animals with experimental pulmonary hypertension in comparison to normal controls. In this study, we show that STIM2 and Orai2 are upregulated in proliferating PASMC compared with contractile phenotype of PASMC. Additionally, a switch in Ca(2+) regulation is observed in correlation with a phenotypic transition from contractile PASMC to proliferative PASMC. PASMC in a contractile phenotype or state have increased VDCE, while in the proliferative phenotype or state PASMC have increased SOCE. The data from this study indicate that upregulation of STIM2 and Orai2 is involved in the phenotypic transition of PASMC from a contractile state to a proliferative state; the enhanced SOCE due to upregulation of STIM2 and Orai2 plays an important role in PASMC proliferation.
Collapse
Affiliation(s)
- Ruby A Fernandez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, University of Illinois at Chicago, Chicago, Ilinois; Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona; and
| | - Jun Wan
- Department of Medicine, University of Illinois at Chicago, Chicago, Ilinois
| | - Shanshan Song
- Department of Medicine, University of Illinois at Chicago, Chicago, Ilinois; Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona; and
| | - Kimberly A Smith
- Department of Medicine, University of Illinois at Chicago, Chicago, Ilinois
| | - Yali Gu
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona; and
| | - Mohammad Tauseef
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Haiyang Tang
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona; and
| | - Ayako Makino
- Department of Medicine, University of Illinois at Chicago, Chicago, Ilinois; Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Dolly Mehta
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, University of Illinois at Chicago, Chicago, Ilinois; Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona; and Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
22
|
Tang H, Chen J, Fraidenburg DR, Song S, Sysol JR, Drennan AR, Offermanns S, Ye RD, Bonini MG, Minshall RD, Garcia JGN, Machado RF, Makino A, Yuan JXJ. Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 308:L208-20. [PMID: 25416384 DOI: 10.1152/ajplung.00242.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1-3) with distinct but overlapping functions, is involved in regulating cell proliferation and migration. This study aims to investigate whether the Akt/mammalian target of rapamycin (mTOR) pathway, and particularly which Akt isoform, contributes to the development and progression of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Compared with the wild-type littermates, Akt1(-/-) mice were protected against the development and progression of chronic HPH, whereas Akt2(-/-) mice did not demonstrate any significant protection against the development of HPH. Furthermore, pulmonary vascular remodeling was significantly attenuated in the Akt1(-/-) mice, with no significant effect noted in the Akt2(-/-) mice after chronic exposure to normobaric hypoxia (10% O2). Overexpression of the upstream repressor of Akt signaling, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and conditional and inducible knockout of mTOR in smooth muscle cells were also shown to attenuate the rise in right ventricular systolic pressure and the development of right ventricular hypertrophy. In conclusion, Akt isoforms appear to have a unique function within the pulmonary vasculature, with the Akt1 isoform having a dominant role in pulmonary vascular remodeling associated with HPH. The PTEN/Akt1/mTOR signaling pathway will continue to be a critical area of study in the pathogenesis of pulmonary hypertension, and specific Akt isoforms may help specify therapeutic targets for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Haiyang Tang
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona; Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona; Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jiwang Chen
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dustin R Fraidenburg
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shanshan Song
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona; Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona; Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Justin R Sysol
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Abigail R Drennan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Richard D Ye
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Marcelo G Bonini
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Joe G N Garcia
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Roberto F Machado
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ayako Makino
- Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona; Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona; Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
23
|
Liu XR, Liu Q, Chen GY, Hu Y, Sham JSK, Lin MJ. Down-regulation of TRPM8 in pulmonary arteries of pulmonary hypertensive rats. Cell Physiol Biochem 2013; 31:892-904. [PMID: 23817166 DOI: 10.1159/000350107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is characterized by profound vascular remodeling and alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Multiple transient receptor potential melastatin-related (TRPM) subtypes have been identified in vascular tissue. However, the changes in the expression and function of TRPM channels in pulmonary hypertension have not been characterized in detail. METHODS We examined the expression of TRPM channels and characterized the functions of the altered TRPM channels in two widely used rat models of chronic hypoxia (CH)- and monocrotaline (MCT)-induced PH. RESULTS CH-exposed and MCT-treated rats developed severe PH and right ventricular hypertrophy, with a significant decrease in TRPM8 mRNA and protein expression in pulmonary arteries (PAs). The downregulation of TRPM8 was associated with significant reduction in menthol-induced cation-influx. Time-profiles showed that TRPM8 down-regulation occurred prior to the increase of right ventricular systolic pressure (RVSP) and right ventricular mass index (RVMI) in CH-exposed rats, but these changes were delayed in MCT-treated rats. The TRPM8 agonist menthol induced vasorelaxation in phenylephrine-precontracted PAs, and the vasorelaxing effects were significantly attenuated in PAs of both PH rat models, consistent with decreased TRPM8 expression. CONCLUSION Downregulation of TRPM8 may contribute to the enhanced vasoreactivity in PH.
Collapse
Affiliation(s)
- Xiao-Ru Liu
- Department of Physiology and Pathophysiology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Liu XR, Zhang MF, Yang N, Liu Q, Wang RX, Cao YN, Yang XR, Sham JSK, Lin MJ. Enhanced store-operated Ca²+ entry and TRPC channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Cell Physiol 2011; 302:C77-87. [PMID: 21940663 DOI: 10.1152/ajpcell.00247.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pulmonary hypertension (PH) is associated with profound vascular remodeling and alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Previous studies show that canonical transient receptor potential (TRPC) genes are upregulated and store-operated Ca(2+) entry (SOCE) is augmented in PASMCs of chronic hypoxic rats and patients of pulmonary arterial hypertension (PAH). Here we further examine the involvement of TRPC and SOCE in PH with a widely used rat model of monocrotaline (MCT)-induced PAH. Rats developed severe PAH, right ventricular hypertrophy, and significant increase in store-operated TRPC1 and TRPC4 mRNA and protein in endothelium-denuded pulmonary arteries (PAs) 3 wk after MCT injection. Contraction of PA and Ca(2+) influx in PASMC evoked by store depletion using cyclopiazonic acid (CPA) were enhanced dramatically, consistent with augmented SOCE in the MCT-treated group. The time course of increase in CPA-induced contraction corresponded to that of TRPC1 expression. Endothelin-1 (ET-1)-induced vasoconstriction was also potentiated in PAs of MCT-treated rats. The response was partially inhibited by SOCE blockers, including Gd(3+), La(3+), and SKF-96365, as well as the general TRPC inhibitor BTP-2, suggesting that TRPC-dependent SOCE was involved. Moreover, the ET-1-induced contraction and Ca(2+) response in the MCT group were more susceptible to the inhibition caused by the various SOCE blockers. Hence, our study shows that MCT-induced PAH is associated with increased TRPC expression and SOCE, which are involved in the enhanced vascular reactivity to ET-1, and support the hypothesis that TRPC-dependent SOCE is an important pathway for the development of PH.
Collapse
Affiliation(s)
- Xiao-Ru Liu
- Department of Physiology and Pathophysiology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Expression of PDGF-β receptor in broilers with pulmonary hypertension induced by cold temperature and its association with pulmonary vascular remodeling. Res Vet Sci 2010; 88:116-21. [DOI: 10.1016/j.rvsc.2009.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/23/2009] [Accepted: 05/28/2009] [Indexed: 11/17/2022]
|
26
|
Gupte SA, Wolin MS. Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxid Redox Signal 2008; 10:1137-52. [PMID: 18315496 PMCID: PMC2443404 DOI: 10.1089/ars.2007.1995] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been well known for >100 years that systemic blood vessels dilate in response to decreases in oxygen tension (hypoxia; low PO2), and this response appears to be critical to supply blood to the stressed organ. Conversely, pulmonary vessels constrict to a decrease in alveolar PO2 to maintain a balance in the ventilation-to-perfusion ratio. Currently, although little question exists that the PO2 affects vascular reactivity and vascular smooth muscle cells (VSMCs) act as oxygen sensors, the molecular mechanisms involved in modulating the vascular reactivity are still not clearly understood. Many laboratories, including ours, have suggested that the intracellular calcium concentration ([Ca2+]i), which regulates vasomotor function, is controlled by free radicals and redox signaling, including NAD(P)H and glutathione (GSH) redox. In this review article, therefore, we discuss the implications of redox and oxidant alterations seen in pulmonary and systemic hypertension, and how key targets that control [Ca2+]i, such as ion channels, Ca2+ release from internal stores and uptake by the sarcoplasmic reticulum, and the Ca2+ sensitivity to the myofilaments, are regulated by changes in intracellular redox and oxidants associated with vascular PO2sensing in physiologic or pathophysiologic conditions.
Collapse
Affiliation(s)
- Sachin A Gupte
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
27
|
Rubin LJ. Treatment of Pulmonary Arterial Hypertension Due to Scleroderma: Challenges for the Future. Rheum Dis Clin North Am 2008; 34:191-7; viii. [DOI: 10.1016/j.rdc.2007.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Vengust M, Staempfli H, Viel L, Heigenhauser G. Effects of chronic acetazolamide administration on fluid flux from the pulmonary vasculature at rest and during exercise in horses. Equine Vet J 2007:508-15. [PMID: 17402475 DOI: 10.1111/j.2042-3306.2006.tb05596.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY Horses develop high pulmonary pressures during exercise, which force fluid out of pulmonary capillaries. Specific airway diseases in horses, especially those associated with hypoxaemia, hypercapnoea and acidosis may influence pulmonary haemodynamics and pulmonary interstitial fluid equilibrium. OBJECTIVES This study was designed to determine fluid flux (J(V-A) l/min) across the lung in exercising horses treated chronically with acetazolamide. METHODS Six horses were exercised on a treadmill until fatigue without (Con) and with chronic carbonic anhydrase (CA) inhibition (AczTr) and associated hypercapnoea and acidosis. Carbonic anhydrase inhibition was achieved with administration of acetazolamide (Acz). Arterial and mixed venous blood were sampled, and VCO2 and VO2 measured. Blood volume changes across the lung (deltaBV%) were calculated from changes in plasma protein, haemoglobin and packed cell volume (PCV). Cardiac output (Q) was calculated using Fick principle. J(V-A) across the alveolar-capillary barrier was then quantified based on Q and deltaBV. Variables were analysed using 2-way repeated-measures ANOVA (P<0.05). A significant F ratio was further analysed using Tukey post hoc analysis. RESULTS Treatment had a significant effect on J(V-A) (P = 0.002). At rest there was no J(V-A) in Con (0.63 +/- 0.6 l/min) and AczTr (0.84 +/- 0.3 l/min). During exercise Con fluid moved from the pulmonary circulation into the pulmonary interstitium (mean +/- s.e. J(V-A) 9.4 +/- 2.4 l/min). This was different from AczTr (mean +/- s.e. J(V-A) 1.8 +/- 1.9 l/min), where no transvascular fluxes from pulmonary circulation were present during exercise (P = 0.008). CONCLUSIONS Chronic Acz treatment with associated hypercapnoea and acidosis affects J(V-A) in lungs of exercising horses. Lung fluid dynamics adapted to hypercapnoea and acidosis with reduction of fluid flow from the pulmonary circulation. POTENTIAL RELEVANCE The current data provide comprehensive evidence of in vivo fluid homeostasis in lungs of exercising horses without and with CA inhibition.
Collapse
Affiliation(s)
- M Vengust
- Veterinary Faculty, University of Ljubljana, Ljubljana SI- 115, PO Box 3425, Slovenia
| | | | | | | |
Collapse
|
29
|
Kim SE, Ahn HS, Choi BH, Jang HJ, Kim MJ, Rhie DJ, Yoon SH, Jo YH, Kim MS, Sung KW, Hahn SJ. Open channel block of A-type, kv4.3, and delayed rectifier K+ channels, Kv1.3 and Kv3.1, by sibutramine. J Pharmacol Exp Ther 2007; 321:753-62. [PMID: 17312186 DOI: 10.1124/jpet.106.117747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of sibutramine on voltage-gated K+ channel (Kv)4.3, Kv1.3, and Kv3.1, stably expressed in Chinese hamster ovary cells, were investigated using the whole-cell patch-clamp technique. Sibutramine did not significantly decrease the peak Kv4.3 currents, but it accelerated the rate of decay of current inactivation in a concentration-dependent manner. This phenomenon was effectively characterized by integrating the total current over the duration of a depolarizing pulse to +40 mV. The IC50 value for the sibutramine block of Kv4.3 was 17.3 microM. Under control conditions, the inactivation of Kv4.3 currents could be fit to a biexponential function, and the time constants for the fast and slow components were significantly decreased after the application of sibutramine. The association (k+1) and dissociation (k-1) rate constants for the sibutramine block of Kv 4.3 were 1.51 microM-1s-1 and 27.35 s-1, respectively. The theoretical KD value, derived from k-1/k+1, yielded a value of 18.11 microM. The block of Kv4.3 by sibutramine displayed a weak voltage dependence, increasing at more positive potentials, and it was use-dependent at 2 Hz. Sibutramine did not affect the time course for the deactivating tail currents. Neither steady-state activation and inactivation nor the recovery from inactivation was affected by sibutramine. Sibutramine caused the concentration-dependent block of the Kv1.3 and Kv3.1 currents with an IC50 value of 3.7 and 32.7 microM, respectively. In addition, sibutramine reduced the tail current amplitude and slowed the deactivation of the tail currents of Kv1.3 and Kv3.1, resulting in a crossover phenomenon. These results indicate that sibutramine acts on Kv4.3, Kv1.3, and Kv3.1 as an open channel blocker.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, Medical Research Center, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang Y, Qiao J, Wang H, Gao M, Ou D, Zhang J, Sun M, Yang X, Zhang X, Guo Y. Calcium antagonist verapamil prevented pulmonary arterial hypertension in broilers with ascites by arresting pulmonary vascular remodeling. Eur J Pharmacol 2007; 561:137-43. [PMID: 17320074 DOI: 10.1016/j.ejphar.2007.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
Calcium signaling has been reported to be involved in the pathogenesis of hypertension. Verapamil, one of the calcium antagonists, is used to characterize the role of calcium signaling in the development of pulmonary arterial hypertension syndrome in broilers. The suppression effect of verapamil on pulmonary arterial hypertension and pulmonary vascular remodeling was examined in broilers, from the age of 16 days to 43 days. Our results showed that oral administration of lower dose of verapamil (5 mg/kg body weight every 12 h) prevented the mean pulmonary arterial pressure, the ascites heart index and the erythrocyte packed cell volume of birds at low temperature from increasing, the heart rate from decreasing, and pulmonary arteriole median from thickening, and no pulmonary arteriole remodeling in broilers treated with the two doses of verapamil at low temperature was observed. Our results indicated that calcium signaling was involved in the development of broilers' pulmonary arterial hypertension, which leads to the development of ascites, and we suggest that verapamil may be used as a preventive agent to reduce the occurrence and development of pulmonary arterial hypertension in broilers.
Collapse
Affiliation(s)
- Ying Yang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nishida M, Hara Y, Yoshida T, Inoue R, Mori Y. TRP channels: molecular diversity and physiological function. Microcirculation 2006; 13:535-50. [PMID: 16990213 DOI: 10.1080/10739680600885111] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calcium ions (Ca(2+)) are particularly important in cellular homeostasis and activity. To elicit physiologically relevant timing and spatial patterns of Ca(2+) signaling, ion channels in the surface of each cell precisely control Ca(2+) influx across the plasma membrane. A group of surface membrane ion channels called receptor-activated cation/Ca(2+) channels (RACCs) are activated by diverse cellular stimuli from the surrounding extracellular environment via receptors and other pathways such as heat, osmotic pressure, and mechanical and oxidative stress. An important clue to understanding the molecular mechanisms underlying the functional diversity of RACCs was first attained by molecular identification of the transient receptor potential (trp) protein (TRP), which mediates light-induced depolarization in Drosophila photoreceptor cells, and its homologues from various biological species. Recent studies have revealed that respective TRP channels are indeed activated by characteristic cellular stimuli. Furthermore, the involvement of TRP channels has been demonstrated in the signaling pathways essential for tissue-specific functions as well as ubiquitous biological responses, such as cell proliferation, differentiation, and death. These findings encourage the usage of TRP channels and their signalplexes as powerful tools for developing novel pharmaceutical targets.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology & Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
32
|
Wang H, Tang Y, Zhang YL. Hypoxic pulmonary hypertension (HPH) and iptakalim, a novel ATP-sensitive potassium channel opener targeting smaller arteries in hypertension. ACTA ACUST UNITED AC 2006; 23:293-316. [PMID: 16614730 DOI: 10.1111/j.1527-3466.2005.tb00174.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypoxic pulmonary hypertension (HPH) is a serious and potentially devastating chronic disorder of the pulmonary circulation. Attempts to use drugs in the therapy of hypoxic pulmonary hypertension indicated the importance of prevention or reduction of vasoconstriction as well as of the reversal of remodeling within the cardiovascular system. Iptakalim (2,3-dimethyl-N-(1-methylethyl)-2-butylamine), a novel ATP-sensitive potassium channel opener, has the desired effects on hypoxic pulmonary arteries. Iptakalim decreases the elevated mean pressure in pulmonary arteries, and attenuates remodeling in the right ventricle, pulmonary arteries and airways. Moreover, iptakalim has selective antihypertensive effects: it significantly lowers arterial pressure in hypertensive animals, but has little if any effect in normotensive animals. In HPH iptakalim has selective effects on smaller arteries. Long-term iptakalim therapy decreases expression of sulfonylurea receptor 2 and of mRNA of inwardly rectifying potassium channel in smaller arteries of spontaneously hypertensive rats. Iptakalim inhibits the effects of endothelin-1, reduces the intracellular calcium concentration and inhibits the cell cycle in smooth muscle cells of pulmonary arteries. There is no evidence for the development of tolerance to the long-lasting antihypertensive action of iptakalim. At therapeutic doses iptakalim has no effects on the central nervous, respiratory, digestive, or endocrine systems. It has a broad therapeutic range, so that it can be safely used in the therapy of HPH.
Collapse
Affiliation(s)
- Hai Wang
- Department of Cardiovascular Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, Peoples' Republic of China.
| | | | | |
Collapse
|
33
|
Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y. Transient receptor potential channels in cardiovascular function and disease. Circ Res 2006; 99:119-31. [PMID: 16857972 DOI: 10.1161/01.res.0000233356.10630.8a] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sustained elevation in the intracellular Ca2+ concentration via Ca2+ influx, which is activated by a variety of mechanisms, plays a central regulatory role for cardiovascular functions. Recent molecular biological research has disclosed an unexpectedly diverse array of Ca(2+-entry channel molecules involved in this Ca2+ influx. These include more than ten transient receptor potential (TRP) superfamily members such as TRPC1, TRPC3-6, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, and polycystin (TRPP2). Most of them appear to be multimodally activated or modulated and show relevant features to both acute hemodynamic control and long-term remodeling of the cardiovascular system, and many of them have been found to respond not only to receptor stimulation but also to various forms of stimuli. There is good evidence to implicate TRPC1 in neointimal hyperplasia after vascular injury via store-depletion-operated Ca2+ entry. TRPC6 likely contributes to receptor-operated and mechanosensitive Ca2+ mobilizations, being involved in vasoconstrictor and myogenic responses and pulmonary arterial proliferation and its associated disease (idiopathic pulmonary arterial hypertension). Considerable evidence has also been accumulated for unique involvement of TRPV1 in blood flow/pressure regulation via sensory vasoactive neuropeptide release. New lines of evidence suggest that TRPV2 may act as a Ca2+-overloading pathway associated with dystrophic cardiomyopathy, TRPV4 as a mediator of endothelium-dependent hyperpolarization, TRPM7 as a proproliferative vascular Mg2+ entry channel, and TRPP2 as a Ca2+-entry channel requisite for vascular integrity. This review attempts to provide an overview of the current knowledge on TRP proteins and discuss their possible roles in cardiovascular functions and diseases.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Morrell ED, Tsai BM, Crisostomo PR, Wang M, Markel TA, Lillemoe KD, Meldrum DR. Therapeutic concepts for hypoxic pulmonary vasoconstriction involving ion regulation and the smooth muscle contractile apparatus. J Mol Cell Cardiol 2006; 40:751-60. [PMID: 16697004 DOI: 10.1016/j.yjmcc.2006.03.431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/13/2006] [Accepted: 03/27/2006] [Indexed: 11/25/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) and pulmonary hypertension present a common and formidable clinical problem for practicing intensivists, thoracic, transplant, and trauma surgeons. The Redox Theory for the mechanisms of HPV has provided researchers with a new understanding of the etiology behind HPV that has opened the door to many new avenues of therapy for the disease. Potassium channels have been proposed to be the main mediator contributing to HPV, and treatment concepts that attempt to manipulate the function and number of those channels have been explored. Additionally, attempts to transfer genes that express the formation of specific potassium channels directly into pulmonary hypertensive lungs have proven to be very promising. Finally, rho kinase (ROK) has been discovered to play a very central role in the formation of hypoxia-induced pulmonary hypertension, and the advent of very specific ROK inhibitors has shown positive clinical results. The purposes of this review are to: (1) briefly discuss some of the basic mechanisms that undergird HPV, including the Redox Theory for the mechanisms of HPV; (2) address current research involving treatments concepts related to ion channels; (3) report on research involving gene therapy to combat pulmonary hypertension; and (4) examine potential therapeutic avenues associated with inhibition of rho kinase.
Collapse
Affiliation(s)
- Eric D Morrell
- Sections of General and Cardiothoracic Surgery, Department of Surgery, Indiana University Medical Center, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
A proper rate of programmed cell death or apoptosis is required to maintain normal tissue homeostasis. In disease states such as cancer and some forms of hypertension, apoptosis is blocked, resulting in hyperplasia. In neurodegenerative diseases, uncontrolled apoptosis leads to loss of brain tissue. The flow of ions in and out of the cell and its intracellular organelles is becoming increasingly linked to the generation of many of these diseased states. This review focuses on the transport of K(+) across the cell membrane and that of the mitochondria via integral K(+)-permeable channels. We describe the different types of K(+) channels that have been identified, and investigate the roles they play in controlling the different phases of apoptosis: early cell shrinkage, cytochrome c release, caspase activation, and DNA fragmentation. Attention is also given to K(+) channels on the inner mitochondrial membrane, whose activity may underlie anti- or pro-apoptotic mechanisms in neurons and cardiomyocytes.
Collapse
Affiliation(s)
- E D Burg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0725, La Jolla, 92093-0725, USA
| | | | | |
Collapse
|
36
|
Tao J, Zhang Y, Soong TW, Li S. Urocortin II Inhibits the Apoptosis of Mesenteric Arterial Smooth Muscle Cells Via L-type Calcium Channels in Spontaneously Hypertensive Rats. Cell Physiol Biochem 2006; 17:111-20. [PMID: 16543727 DOI: 10.1159/000092072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Urocortin (UCN) II, a newly isolated corticotropinreleasing- factor (CRF) related peptide, has been found to have potent cardiovascular protective effects. To investigate the mechanisms of its vascular protective effects, we exposed mesenteric arterial smooth muscle cells (MASMC) from spontaneously hypertensive rats (SHR) to UCN II to observe the change in cell apoptosis using TUNEL assay and measured intracellular calcium concentration ([Ca2+]i) using confocal laser scanning microscope. In addition, effects of UCN II on L-type calcium currents (ICa,L) were also measured using whole-cell patch clamp. Our results showed that UCN II concentration-dependently, but time-independently inhibited cell apoptosis. Astressin 2B, a special CRF 2 receptor antagonist, had no influence on this inhibition. Hypoxia or Bay K8644, the L-type calcium channel activator, induced the apoptosis of MASMC from SHR. Pretreatment of the cells with UCN II diminished the effects of hypoxia or Bay K8644. UCN II was also observed to reduce [Ca2+]i increase induced by KCl or Bay K8644. UCN II concentration-dependently inhibited ICa,L, which was not affected by astressin 2B. It did not affect the activation of ICa,L, but markedly shifted the inactivation curve to the left. In conclusion, UCN II inhibits the apoptosis of MASMC from SHR via inhibiting L-type calcium channels.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Apoptosis/drug effects
- Calcium/analysis
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Cell Hypoxia
- Cell Line
- Corticotropin-Releasing Hormone/pharmacology
- Dose-Response Relationship, Drug
- Humans
- Kinetics
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mesentery/blood supply
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Nifedipine/pharmacology
- Nitric Oxide/analysis
- Patch-Clamp Techniques
- Rats
- Rats, Inbred SHR
- Urocortins
Collapse
Affiliation(s)
- Jin Tao
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
37
|
Tan X, Pan JQ, Li JC, Liu YJ, Sun WD, Wang XL. l-Arginine inhibiting pulmonary vascular remodelling is associated with promotion of apoptosis in pulmonary arterioles smooth muscle cells in broilers. Res Vet Sci 2005; 79:203-9. [PMID: 16054890 DOI: 10.1016/j.rvsc.2004.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 11/29/2004] [Accepted: 12/06/2004] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Pulmonary vascular remodelling is one of the important pathological bases of broiler pulmonary hypertension syndrome (PHS). Nitric oxide (NO) has been found to inhibit proliferation and to induce apoptosis in pulmonary artery smooth muscle cells (SMC) in mammals with pulmonary hypertension. The present study was conducted to evaluate the effects of NO precursor l-arginine on pulmonary vascular remodelling in broilers with pulmonary hypertension induced by cold exposure and to examine whether NO-induced apoptosis in pulmonary arteriole SMC is involved in the regulatory mechanisms. METHODS Two hundred and forty mixed-sex commercial broilers were equally assigned to three groups and reared in normal brooding temperatures before day 14. Starting on day 14 continuing until the end of the experiment, the control group was brooded in normal temperatures whereas the other two groups were subjected to low ambient temperatures with or without l-arginine added to the basal diets. Cumulative PHS mortality and body weight were recorded in each group. Right/total ventricle ratio (RV/TV), plasma NO concentration and pulmonary vascular morphological changes were analyzed. TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay was used to detect apoptosis in pulmonary arteriole SMC. RESULT l-Arginine, in group A, had no effect on body weights under cold temperature condition. Birds kept in group B had increased PHS mortality, RV/TV ratio, vessel wall area/vessel total area ratios (WA/TA) and mean media thickness in pulmonary arterioles (mMTPA) (P<0.05). Percentages of apoptotic SMC in pulmonary arterioles in group B were not altered by cold exposure (P>0.05). Supplemental dietary l-arginine in group A elevated plasma NO level (P<0.05), reduced PHS mortality (P<0.05), attenuated pulmonary vascular remodelling and increased the percentages of apoptotic SMC (P<0.05) when compared with the group B. CONCLUSION Supplemental l-arginine partially inhibited pulmonary vascular remodelling that occurred secondary to increased pulmonary pressure; NO-induced apoptosis in arteriole SMC might contribute to its regulatory effect on pulmonary vascular structural changes.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Arginine/pharmacology
- Arterioles/cytology
- Body Weight/drug effects
- Chickens
- Cold Temperature
- Female
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/veterinary
- Lung/blood supply
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Pathologic/veterinary
- Poultry Diseases/physiopathology
- Pulmonary Artery/cytology
Collapse
Affiliation(s)
- Xun Tan
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
38
|
Jochmann N, Kiecker F, Borges AC, Hofmann MA, Eddicks S, Sterry W, Baumann G, Trefzer U. Long-term therapy of interferon-alpha induced pulmonary arterial hypertension with different PDE-5 inhibitors: a case report. Cardiovasc Ultrasound 2005; 3:26. [PMID: 16138923 PMCID: PMC1208925 DOI: 10.1186/1476-7120-3-26] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 09/02/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interferon alpha2 is widely used in hepatitis and high-risk melanoma. Interferon-induced pulmonary arterial hypertension as a side effect is rare. CASE PRESENTATION We describe a melanoma patient who developed severe pulmonary arterial hypertension 30 months after initiation of adjuvant interferon alpha2b therapy. Discontinuation of interferon did not improve pulmonary arterial hypertension. This patient could be treated successfully with phosphodiesterase-5 inhibitor therapy. CONCLUSION This is only the 5th case of interferon-induced pulmonary arterial hypertension and the first documented case where pulmonary arterial hypertension was not reversible after termination of interferon alpha2 therapy. If interferon alpha2 treated patients develop respiratory symptoms, pulmonary arterial hypertension should be considered in the differential diagnosis. For these patients phosphodiesterase-5 inhibitors, e.g. sildenafil or vardenafil, could be an effective therapeutic approach.
Collapse
Affiliation(s)
- Nicoline Jochmann
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany, Schumannstrasse 20/21, 10117 Berlin, Germany
| | - Felix Kiecker
- Department of Dermatology and Allergy, Skin Cancer Centre, Charité – Universitätsmedizin Berlin, Schumannstrasse 20/21, 10117 Berlin, Germany
| | - Adrian C Borges
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany, Schumannstrasse 20/21, 10117 Berlin, Germany
| | - Maja A Hofmann
- Department of Dermatology and Allergy, Skin Cancer Centre, Charité – Universitätsmedizin Berlin, Schumannstrasse 20/21, 10117 Berlin, Germany
| | - Stephan Eddicks
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany, Schumannstrasse 20/21, 10117 Berlin, Germany
| | - Wolfram Sterry
- Department of Dermatology and Allergy, Skin Cancer Centre, Charité – Universitätsmedizin Berlin, Schumannstrasse 20/21, 10117 Berlin, Germany
| | - Gert Baumann
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany, Schumannstrasse 20/21, 10117 Berlin, Germany
| | - Uwe Trefzer
- Department of Dermatology and Allergy, Skin Cancer Centre, Charité – Universitätsmedizin Berlin, Schumannstrasse 20/21, 10117 Berlin, Germany
| |
Collapse
|
39
|
Platoshyn O, Remillard CV, Fantozzi I, Sison T, Yuan JXJ. Identification of functional voltage-gated Na(+) channels in cultured human pulmonary artery smooth muscle cells. Pflugers Arch 2005; 451:380-387. [PMID: 16052353 PMCID: PMC1351366 DOI: 10.1007/s00424-005-1478-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
Electrical excitability, which plays an important role in excitation-contraction coupling in the pulmonary vasculature, is regulated by transmembrane ion flux in pulmonary artery smooth muscle cells (PASMC). This study aimed to characterize the electrophysiological properties and molecular identities of voltage-gated Na(+) channels in cultured human PASMC. We recorded tetrodotoxin (TTX) sensitive and rapidly inactivating Na(+) currents with properties similar to those described in cardiac myocytes. Using RT-PCR, we detected transcripts of seven Na(+) channel alpha genes (SCN2A, 3A, 4A, 7A, 8A, 9A, and 11A), and two beta subunit genes (SCN1B and 2B). Our results demonstrate that human PASMC express TTX-sensitive voltage-gated Na(+) channels. Their physiological functions remain unresolved, although our data suggest that Na(+) channel activity does not directly influence membrane potential, intracellular Ca(2+) release, or proliferation in normal human PASMC. Whether their expression and/or activity are heightened in the pathological state is discussed.
Collapse
Affiliation(s)
- Oleksandr Platoshyn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0725
| | - Carmelle V Remillard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0725
| | - Ivana Fantozzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0725
| | - Tiffany Sison
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0725
| | - Jason X-J Yuan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0725
| |
Collapse
|
40
|
Abstract
Pulmonary vascular medial hypertrophy due to enhanced pulmonary artery smooth muscle cell (PASMC) proliferation and/or decreased PASMC apoptosis is a primary cause of increased pulmonary vascular resistance and arterial pressure in patients with pulmonary arterial hypertension. While many factors can contribute to this form of vascular remodeling, it is generally agreed upon that altered transmembrane ion flux via ion channels is involved. While much focus has centered on the role of cations and cation channels in controlling PASMC contraction and proliferation, anion efflux via Cl- channels has recently gained interest for its role in SMC proliferation, differentiation, migration, contraction, and angiogenesis. In this issue, Dai et al. report that the putative volume-sensitive ClC-3 channel is upregulated in PASMC from monocrotaline-induced pulmonary hypertensive rats and in inflammatory cytokine-treated canine PASMC. They also provide evidence that ClC-3 upregulation may protect against oxidative stress-induced PASMC necrosis, thereby improving PASMC survival and promoting medial hypertrophy.
Collapse
Affiliation(s)
- Carmelle V Remillard
- Department of Medicine, School of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093-0725, U.S.A
| | - Jason X-J Yuan
- Department of Medicine, School of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093-0725, U.S.A
- Department of Medicine, School of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093-0725, U.S.A. E-mail:
| |
Collapse
|
41
|
Höhne C, Krebs MO, Seiferheld M, Boemke W, Kaczmarczyk G, Swenson ER. Acetazolamide prevents hypoxic pulmonary vasoconstriction in conscious dogs. J Appl Physiol (1985) 2005; 97:515-21. [PMID: 15247196 DOI: 10.1152/japplphysiol.01217.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O(2) for the first hour and then 8 or 10% O(2) for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O(2) fraction (Fi(O(2))) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 microg.kg(-1).min(-1) continuously), Fi(O(2)) = 0.10; protocol 3: Acz given as above, but with Fi(O(2)) reduced to 0.08 to match the arterial Po(2) (Pa(O(2))) observed during hypoxia in controls. Pa(O(2)) was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 +/- 1 to 23 +/- 1 mmHg, and pulmonary vascular resistance increased from 464 +/- 26 to 679 +/- 40 dyn.s(-1).cm(-5) (P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 +/- 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn.s(-1).cm(-5). These values did not change during hypoxia. In dogs given Acz at 10% O(2), the arterial Pa(O(2)) was 50 Torr owing to hyperventilation, whereas in those breathing 8% O(2) the Pa(O(2)) was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po(2), nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.
Collapse
Affiliation(s)
- Claudia Höhne
- Experimentelle Anaesthesie, Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Rubin LJ, Galiè N. Pulmonary arterial hypertension: a look to the future. J Am Coll Cardiol 2004; 43:89S-90S. [PMID: 15194184 DOI: 10.1016/j.jacc.2004.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 02/03/2004] [Indexed: 11/19/2022]
Abstract
The Third World Symposium on Pulmonary Arterial Hypertension served not only as a forum for the presentation of state-of-the art overviews of the pathobiologic and clinical aspects of pulmonary arterial hypertension (PAH), but also afforded an opportunity to the international scientific community to explore future directions of research and collaboration. This summary provides a brief overview of future directions in the field.
Collapse
Affiliation(s)
- Lewis J Rubin
- Pulmonary Vascular Center, University of California-San Diego School of Medicine, La Jolla, California, USA.
| | | |
Collapse
|
43
|
Li Z, Huang W, Jiang ZL, Gregersen H, Fung YC. Tissue remodeling of rat pulmonary arteries in recovery from hypoxic hypertension. Proc Natl Acad Sci U S A 2004; 101:11488-93. [PMID: 15277667 PMCID: PMC509227 DOI: 10.1073/pnas.0404084101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reversibility of tissue remodeling is of general interest to medicine. Pulmonary arterial tissue remodeling during hypertension induced by hypoxic breathing is well known, but little has been said about the recovery of the arterial wall when the blood pressure is lowered again. We hypothesize that tissue recovery is a function of the oxygen concentration, blood pressure, location on the vascular tree, and time. We measured the changes of blood pressure, vessel lumen, vessel wall thicknesses, and opening angle of each segment of the blood vessel at its zero-stress state after step changes of the oxygen concentration in the breathing gas. The zero-stress state of each vessel is emphasized because it is important to the analysis of stress and strain and in morphometry. Experimental results are presented as histories of tissue parameters after step changes of the oxygen level. Tissue characteristics are examined under the hypothesis that they are linearly related to changes in the local blood pressure. Under this linearity hypothesis, each aspect of the tissue change can be expressed as a convolution integral of the blood pressure history with a kernel called the indicial response function. It is shown the indicial response function for rising blood pressure is different from that for falling blood pressure. This difference represents a major nonlinearity of the tissue remodeling process of the blood vessels.
Collapse
Affiliation(s)
- Zhuangjie Li
- Department of Bioengineering and Whitaker Institute for Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | | | |
Collapse
|
44
|
Platoshyn O, Remillard CV, Fantozzi I, Mandegar M, Sison TT, Zhang S, Burg E, Yuan JXJ. Diversity of voltage-dependent K+ channels in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L226-38. [PMID: 15047570 DOI: 10.1152/ajplung.00438.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical excitability, which plays an important role in excitation-contraction coupling in the pulmonary vasculature, is regulated by transmembrane ion flux in pulmonary artery smooth muscle cells (PASMC). This study examined the heterogeneous nature of native voltage-dependent K(+) channels in human PASMC. Both voltage-gated K(+) (K(V)) currents and Ca(2+)-activated K(+) (K(Ca)) currents were observed and characterized. In cell-attached patches of PASMC bathed in Ca(2+)-containing solutions, depolarization elicited a wide range of K(+) unitary conductances (6-290 pS). When cells were dialyzed with Ca(2+)-free and K(+)-containing solutions, depolarization elicited four components of K(V) currents in PASMC based on the kinetics of current activation and inactivation. Using RT-PCR, we detected transcripts of 1) 22 K(V) channel alpha-subunits (K(V)1.1-1.7, K(V)1.10, K(V)2.1, K(V)3.1, K(V)3.3-3.4, K(V)4.1-4.2, K(V)5.1, K(V) 6.1-6.3, K(V)9.1, K(V)9.3, K(V)10.1, and K(V)11.1), 2) three K(V) channel beta-subunits (K(V)beta 1-3), 3) four K(Ca) channel alpha-subunits (Slo-alpha 1 and SK2-SK4), and 4) four K(Ca) channel beta-subunits (K(Ca)beta 1-4). Our results show that human PASMC exhibit a variety of voltage-dependent K(+) currents with variable kinetics and conductances, which may result from various unique combinations of alpha- and beta-subunits forming the native channels. Functional expression of these channels plays a critical role in the regulation of membrane potential, cytoplasmic Ca(2+), and pulmonary vasomotor tone.
Collapse
MESH Headings
- Calcium/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Electric Conductivity
- Electrophysiology
- Gene Expression
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Osmolar Concentration
- Potassium Channels, Calcium-Activated/metabolism
- Potassium Channels, Voltage-Gated/classification
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- Potassium Channels, Voltage-Gated/physiology
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiology
Collapse
Affiliation(s)
- Oleksandr Platoshyn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, 92103, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Remillard CV, Yuan JXJ. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 2004; 286:L49-67. [PMID: 14656699 DOI: 10.1152/ajplung.00041.2003] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell apoptosis and proliferation are two counterparts in sharing the responsibility for maintaining normal tissue homeostasis. In recent years, the process of the programmed cell death has gained much interest because of its influence on malignant cell growth and other pathological states. Apoptosis is characterized by a distinct series of morphological and biochemical changes that result in cell shrinkage, DNA breakdown, and, ultimately, phagocytic death. Diverse external and internal stimuli trigger apoptosis, and enhanced K+ efflux has been shown to be an essential mediator of not only early apoptotic cell shrinkage, but also of downstream caspase activation and DNA fragmentation. The goal of this review is to discuss the role(s) played by K+ transport or flux across the plasma membrane in the regulation of the apoptotic volume decrease and apoptosis. Attention has also been paid to the role of inner mitochondrial membrane ion transport in the regulation of mitochondrial permeability and apoptosis. We provide specific examples of how deregulation of the apoptotic process contributes to pulmonary arterial medial hypertrophy, a major pathological feature in patients with pulmonary arterial hypertension. Finally, we discuss the targeting of K+ channels as a potential therapeutic tool in modulating apoptosis to maintain the balance between cell proliferation and cell death that is essential to the normal development and function of an organism.
Collapse
Affiliation(s)
- Carmelle V Remillard
- Division of Pulmonary and Critical Care Medicine, Dep[artment of Medicine, School of Medicine, University of California, San Diego, 92103-8382, USA
| | | |
Collapse
|