1
|
Hernández-Baraza L, Brito-Casillas Y, Valverde-Tercedor C, Recio C, Fernández-Pérez L, Guerra B, Wägner AM. Mechanisms of Fetal Overgrowth in Gestational Diabetes: The Potential Role of SOCS2. Nutrients 2025; 17:1519. [PMID: 40362828 PMCID: PMC12073545 DOI: 10.3390/nu17091519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
During pregnancy, the maternal body adapts in several ways to create an optimal environment for embryonic growth. These changes include endocrine and metabolic shifts that can lead to insulin resistance and gestational diabetes mellitus (GDM), impacting both the mother and fetus in the short and long term. Fetal macrosomia, a condition where the fetus is significantly larger than average, is a primary concern associated with GDM. Although the underlying mechanism remains unclear, a pregnancy-induced proinflammatory state, combined with altered glucose homeostasis, plays a critical role. Several cytokines and hormones, such as interleukin 6 (IL-6), insulin growth factor 1 (IGF-1), prolactin (PRL), or progesterone, are essential for fetal growth, the control of the inflammatory response, and the regulation of lipid and carbohydrate metabolism to meet energy demands during pregnancy. However, although the role of these cytokines in metabolism and body growth during adulthood has been extensively studied, their implication in the pathophysiology of GDM and macrosomia is not well understood. Here, we review this pathophysiology and pose the hypothesis that an aberrant response to cytokine receptor activation, particularly involving the suppressor of cytokine signaling 2 (SOCS2), contributes to GDM and fetal macrosomia. This novel perspective suggests an unexplored mechanism by which SOCS2 dysregulation could impact pregnancy outcomes.
Collapse
Affiliation(s)
- Luisa Hernández-Baraza
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (L.H.-B.); (C.V.-T.); (C.R.); (L.F.-P.); (A.M.W.)
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (L.H.-B.); (C.V.-T.); (C.R.); (L.F.-P.); (A.M.W.)
| | - Carmen Valverde-Tercedor
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (L.H.-B.); (C.V.-T.); (C.R.); (L.F.-P.); (A.M.W.)
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (L.H.-B.); (C.V.-T.); (C.R.); (L.F.-P.); (A.M.W.)
| | - Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (L.H.-B.); (C.V.-T.); (C.R.); (L.F.-P.); (A.M.W.)
| | - Borja Guerra
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (L.H.-B.); (C.V.-T.); (C.R.); (L.F.-P.); (A.M.W.)
| | - Ana M. Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain; (L.H.-B.); (C.V.-T.); (C.R.); (L.F.-P.); (A.M.W.)
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Abou-El-Naga IF. Receptors for growth and development of Schistosoma mansoni. J Helminthol 2025; 99:e29. [PMID: 39949117 DOI: 10.1017/s0022149x24001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The growth and development of schistosomes are tightly regulated by various receptors throughout their life cycle. Each stage of the parasite inhabits a distinct habitat and responds to different factors that drive its growth and development. With two hosts involved in its life cycle (mammalian and snail), the parasite must go through additional free-living stages to transition between them. Moreover, communication between male and female worms is essential for the maturation of females. The ability of adult schistosomes to survive in human hosts for up to thirty years demonstrates their capacity to efficiently utilize host nutrients for metabolic processes and growth. In Schistosoma mansoni, receptors mediate the utilization of growth factors derived from both the parasite itself and the host. Nuclear receptors, in particular, collaborate with other proteins to regulate the expression of genes essential for various developmental functions. Receptors also play a pivotal role in RNA export, which is crucial for the parasite development. Additionally, neurotransmitter receptors are essential for the growth and development of larval stages. This review aims to elucidate the mechanisms by which these receptors regulate cell proliferation, differentiation, and maturation throughout the parasite life cycle. Understanding these processes could provide insights into the role of receptors in Schistosoma mansoni development and potentially lead to innovative therapeutic strategies to combat human schistosomiasis.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
3
|
Karimi R, Hadavi F, Jafarabadi M. Effect of pyridostigmine on growth hormone and IGF-1 levels and outcomes of controlled ovarian stimulation cycle in women with poor ovarian response. Arch Gynecol Obstet 2025; 311:175-182. [PMID: 39708173 DOI: 10.1007/s00404-024-07895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE This study aimed to evaluate the effect of Pyridostigmine on IGF-1 and GH levels and the outcomes of COS cycles in women with POR. METHODS A total of 110 eligible women were randomly allocated to Pyridostigmine (n: 55) and control (n: 55) groups. COS outcomes, including gonadotrophin doses, COS duration, cycle cancellation rate, number of retrieved oocytes, number of MII oocytes, and fertilization rate, were compared between the groups. Also, IGF-1 and GH levels were measured at three time points: baseline, on the 5th day of the cycle, and on the trigger day. RESULTS A total of 92 participants (Pyridostigmine: 44, Control: 48) were included in the final analysis. The Pyridostigmine group required significantly lower gonadotrophin doses (P < 0.0022) and had a shorter COS duration (P = 0.0019). No significant differences were observed in cycle cancellation rate, number of retrieved oocytes, number of MII oocytes, or fertilization rate. Pyridostigmine significantly accelerated GH levels over time compared to the Control group, with larger mean differences observed at each time point. The interaction between time and group indicated that the effect of the intervention on GH levels varied over the course of the COS cycle. Specifically, the intervention augmented the effect of COS agents on GH levels, as evidenced by the higher GH levels observed in the intervention group compared to the control group. For IGF-1 levels, time had a highly significant effect (P < 0.0001), but the interaction between Time and Group was not significant (P = 0.5067). Mean IGF-1 levels were higher in the Pyridostigmine group, though not statistically significant. CONCLUSION Pyridostigmine improved COS efficiency by reducing gonadotrophin doses and COS duration. Further research is needed to explore its potential benefits in enhancing ovarian response in women with POR. TRIAL REGISTRY INFORMATION Iranian Registry of Clinical Trials (IRCT). Registration date: 2023-08-05, Registration number: IRCT20100518003950N8.
Collapse
Affiliation(s)
- Rana Karimi
- Department of Obstetrics and Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Hadavi
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Jafarabadi
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Imam Hospital Complex, Keshavarz Blvd, Tehran, 1419733141, Iran.
| |
Collapse
|
4
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
5
|
Abstract
The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA;
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
6
|
Li J, Wu J, Hall C, Bai XC, Choi E. Molecular basis for the role of disulfide-linked αCTs in the activation of insulin-like growth factor 1 receptor and insulin receptor. eLife 2022; 11:81286. [PMID: 36413010 PMCID: PMC9731570 DOI: 10.7554/elife.81286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) control metabolic homeostasis and cell growth and proliferation. The IR and IGF1R form similar disulfide bonds linked homodimers in the apo-state; however, their ligand binding properties and the structures in the active state differ substantially. It has been proposed that the disulfide-linked C-terminal segment of α-chain (αCTs) of the IR and IGF1R control the cooperativity of ligand binding and regulate the receptor activation. Nevertheless, the molecular basis for the roles of disulfide-linked αCTs in IR and IGF1R activation are still unclear. Here, we report the cryo-EM structures of full-length mouse IGF1R/IGF1 and IR/insulin complexes with modified αCTs that have increased flexibility. Unlike the Γ-shaped asymmetric IGF1R dimer with a single IGF1 bound, the IGF1R with the enhanced flexibility of αCTs can form a T-shaped symmetric dimer with two IGF1s bound. Meanwhile, the IR with non-covalently linked αCTs predominantly adopts an asymmetric conformation with four insulins bound, which is distinct from the T-shaped symmetric IR. Using cell-based experiments, we further showed that both IGF1R and IR with the modified αCTs cannot activate the downstream signaling potently. Collectively, our studies demonstrate that the certain structural rigidity of disulfide-linked αCTs is critical for optimal IR and IGF1R signaling activation.
Collapse
Affiliation(s)
- Jie Li
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jiayi Wu
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Xiao-chen Bai
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States,Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| |
Collapse
|
7
|
Review: Schistosoma mansoni phosphatidylinositol 3 kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110632. [PMID: 34119651 DOI: 10.1016/j.cbpb.2021.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Schistosoma mansoni worms are under a milieu of external and internal signaling pathways. The life-cycle stages are exposed to enormous stimuli within the mammalian and the snail hosts and as free-living stages in the fresh water. Furthermore, there is a unique interplay between the male and the female worms involving many stimuli from the male essential for full development of the female. PI3K/Akt/mTOR is an evolutionarily divergent signal transduction pathway universal to nearly every multicellular organism. This work reviews the Schistosoma mansoni PI3K/Akt/mTOR signal pathways and the involvement of the signal in the worms' physiology concerning the uptake of glucose, reproduction and survival. The inhibitors of the signal pathway used against Schistosoma mansoni were summarized. Given the importance of the PI3K/Akt/mTOR signal pathway, its inhibition could be a promising control strategy against schistosomiasis.
Collapse
|
8
|
Norman RJ, Hart RJ. Human growth hormone use in poor ovarian response - caution and opportunities. Ther Adv Reprod Health 2021; 15:2633494121999420. [PMID: 33796856 PMCID: PMC7983244 DOI: 10.1177/2633494121999420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Human growth hormone has found favour as a co-gonadotrophin in assisted
reproduction particularly in the circumstances of a poor response to
stimulation. Its use has been based on animal studies suggesting
insulin-like growth factor-1 enhances granulosa and cumulus cell
function and possibly oocyte quality. While there is limited ovarian
cellular information in women, the use of human growth hormone is
alleged to improve egg numbers, embryo quality, clinical pregnancies
and live birth in women with a poor ovarian response. A number of
cohort studies have claimed these benefits compared with prior nil
treatment, but there are a limited number of quality randomised
controlled studies. The few good randomised trials indicate an
enhanced ovarian response in terms of oestradiol secretion and oocyte
maturity with controversial improvement in ongoing pregnancy and live
birth. Given the cost of the medication, the lack of convincing data
on enhanced clinical outcomes and the theoretical possibility of side
effects, we propose it is still too early to determine human growth
hormone’s true cost-benefit for widespread use. However, a number of
emerging randomised trials may tilt the equation to a positive outlook
in the future. Meanwhile, the hormone should only be used after full
informed consent from the patient as to its effectiveness and
efficacy.
Collapse
Affiliation(s)
- Robert J Norman
- Professor of Reproductive and Periconceptual Health, Robinson Research Institute, The University of Adelaide, 39 Brookside Avenue, Tranmere, SA 5000, Australia
| | - Roger J Hart
- Department of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
GH/IGF-1 Abnormalities and Muscle Impairment: From Basic Research to Clinical Practice. Int J Mol Sci 2021; 22:ijms22010415. [PMID: 33401779 PMCID: PMC7795003 DOI: 10.3390/ijms22010415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
The impairment of skeletal muscle function is one of the most debilitating least understood co-morbidity that accompanies acromegaly (ACRO). Despite being one of the major determinants of these patients’ poor quality of life, there is limited evidence related to the underlying mechanisms and treatment options. Although growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels are associated, albeit not indisputable, with the presence and severity of ACRO myopathies the precise effects attributed to increased GH or IGF-1 levels are still unclear. Yet, cell lines and animal models can help us bridge these gaps. This review aims to describe the evidence regarding the role of GH and IGF-1 in muscle anabolism, from the basic to the clinical setting with special emphasis on ACRO. We also pinpoint future perspectives and research lines that should be considered for improving our knowledge in the field.
Collapse
|
10
|
Conart JB, Blot G, Augustin S, Millet-Puel G, Roubeix C, Beguier F, Charles-Messance H, Touhami S, Sahel JA, Berrod JP, Léveillard T, Guillonneau X, Delarasse C, Sennlaub F. Insulin inhibits inflammation-induced cone death in retinal detachment. J Neuroinflammation 2020; 17:358. [PMID: 33243251 PMCID: PMC7694924 DOI: 10.1186/s12974-020-02039-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rhegmatogenous retinal detachment (RD) involving the macula is a major cause of visual impairment despite high surgical success rate, mainly because of cone death. RD causes the infiltration of activated immune cells, but it is not clear whether and how infiltrating inflammatory cells contribute to cone cell loss. METHODS Vitreous samples from patients with RD and from control patients with macular hole were analyzed to characterize the inflammatory response to RD. A mouse model of RD and retinal explants culture were then used to explore the mechanisms leading to cone death. RESULTS Analysis of vitreous samples confirms that RD induces a marked inflammatory response with increased cytokine and chemokine expression in humans, which is closely mimicked by experimental murine RD. In this model, we corroborate that myeloid cells and T-lymphocytes contribute to cone loss, as the inhibition of their accumulation by Thrombospondin 1 (TSP1) increased cone survival. Using monocyte/retinal co-cultures and TSP1 treatment in RD, we demonstrate that immune cell infiltration downregulates rod-derived cone viability factor (RdCVF), which physiologically regulates glucose uptake in cones. Insulin and the insulin sensitizers rosiglitazone and metformin prevent in part the RD-induced cone loss in vivo, despite the persistence of inflammation CONCLUSION: Our results describe a new mechanism by which inflammation induces cone death in RD, likely through cone starvation due to the downregulation of RdCVF that could be reversed by insulin. Therapeutic inhibition of inflammation and stimulation of glucose availability in cones by insulin signaling might prevent RD-associated cone death until the RD can be surgically repaired and improve visual outcome after RD. TRIAL REGISTRATION ClinicalTrials.gov NCT03318588.
Collapse
Affiliation(s)
- Jean-Baptiste Conart
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.,Département d'Ophtalmologie, CHRU Nancy, Allée du Morvan, Vandoeuvre-lès-Nancy, France
| | - Guillaume Blot
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Sébastien Augustin
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Géraldine Millet-Puel
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Christophe Roubeix
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Fanny Beguier
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Hugo Charles-Messance
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Sara Touhami
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - José-Alain Sahel
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Jean-Paul Berrod
- Département d'Ophtalmologie, CHRU Nancy, Allée du Morvan, Vandoeuvre-lès-Nancy, France
| | - Thierry Léveillard
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Xavier Guillonneau
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.
| | - Cécile Delarasse
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.
| | - Florian Sennlaub
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
11
|
Vigneri R, Sciacca L, Vigneri P. Rethinking the Relationship between Insulin and Cancer. Trends Endocrinol Metab 2020; 31:551-560. [PMID: 32600959 DOI: 10.1016/j.tem.2020.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
In addition to being a major metabolic hormone, insulin is also a growth factor with a mitogenic effect on all cells, more marked in malignant cells that often overexpress the insulin receptor. In patients with metabolic diseases characterized by hyperinsulinemia (obesity, type 2 diabetes, and metabolic syndrome), the incidence of several types of cancer is increased, as is cancer-related mortality. Because of the worldwide growing prevalence of metabolic diseases and the diffuse use of insulin and its analogs for treating diabetes, the relationship between insulin and cancer has become a clinically relevant issue. Clinical studies have not clarified the degree to which hyperinsulinemia can influence cancer occurrence and prognosis. To better understand this issue, an improved scientific approach is required, with more careful consideration of the mechanisms related to hyperinsulinemia and carcinogenesis.
Collapse
Affiliation(s)
- R Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy.
| | - L Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
| | - P Vigneri
- Center of Experimental Oncology and Hematology, Department of Clinical and Experimental Medicine, University of Catania, A.O.U. Policlinico Vittorio-Emanuele, Catania, Italy
| |
Collapse
|
12
|
Cozzolino M, Cecchino GN, Troiano G, Romanelli C. Growth hormone cotreatment for poor responders undergoing in vitro fertilization cycles: a systematic review and meta-analysis. Fertil Steril 2020; 114:97-109. [PMID: 32553470 DOI: 10.1016/j.fertnstert.2020.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of growth hormone (GH) supplementation in improving the in vitro fertilization (IVF) outcomes of poor responders. DESIGN Systematic review and meta-analysis. SETTING Not applicable. PATIENT(S) Poor ovarian responders undergoing conventional IVF or intracytoplasmic sperm injection (ICSI). INTERVENTION(S) Randomized controlled trials (RCTs) of poor ovarian responders undergoing a single IVF/ICSI cycle with GH supplementation versus conventional controlled ovarian stimulation. This review was registered in the PROSPERO database before starting data extraction (CRD42020151681). MAIN OUTCOME MEASURE(S) Primary outcome was live birth rate. Clinical pregnancy rate, miscarriage rate, ongoing pregnancy rate, number of oocytes, number of mature (metaphase II [MII]) oocytes and the number of embryos available to transfer were considered as secondary outcomes. RESULT(S) Twelve RCTs were included; 586 women were assigned to the intervention group and 553 to the control group. The analysis revealed that patients receiving GH supplementation did not show an increased live birth rate, miscarriage rate, or ongoing pregnancy rate. However, GH supplementation in poor responders increased clinical pregnancy rate, number of oocytes retrieved (mean difference 1.62), number of MII oocytes (mean difference 2.06), and number of embryos available to transfer (mean difference 0.76). Sensitivity and subgroup analyses did not provide statistical changes to pooled results. CONCLUSION(S) The present meta-analysis provides evidence that GH supplementation may improve some reproductive outcomes in poor responders, but not live birth rates.
Collapse
Affiliation(s)
- Mauro Cozzolino
- IVIRMA, IVI Foundation, Health Research Institute La Fe, Valencia, Spain; Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
| | - Gustavo N Cecchino
- Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil; Department of Reproductive Medicine, Mater Prime, São Paulo, Brazil
| | | | - Chiara Romanelli
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. Int J Mol Sci 2020; 21:ijms21114030. [PMID: 32512898 PMCID: PMC7312891 DOI: 10.3390/ijms21114030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the relatively short history of anti-tumor treatment, numerous medications have been developed against a variety of targets. Intriguingly, although many anti-tumor strategies have failed in their clinical trials, metformin, an anti-diabetic medication, demonstrated anti-tumor effects in observational studies and even showed its synergistic potential with immune checkpoint inhibitors (ICIs) in subsequent clinical studies. Looking back from bedside-to-bench, it may not be surprising that the anti-tumor effect of metformin derives largely from its ability to rewire aberrant metabolic pathways within the tumor microenvironment. As one of the most promising breakthroughs in oncology, ICIs were also found to exert their immune-stimulatory effects at least partly via rewiring metabolic pathways. These findings underscore the importance of correcting metabolic pathways to achieve sufficient anti-tumor immunity. Herein, we start by introducing the tumor microenvironment, and then we review the implications of metabolic syndrome and treatments for targeting metabolic pathways in anti-tumor therapies. We further summarize the close associations of certain aberrant metabolic pathways with impaired anti-tumor immunity and introduce the therapeutic effects of targeting these routes. Lastly, we go through the metabolic effects of ICIs and conclude an overall direction to manipulate metabolic pathways in favor of anti-tumor responses.
Collapse
|
14
|
Nesan D, Thornton HF, Sewell LC, Kurrasch DM. An Efficient Method for Generating Murine Hypothalamic Neurospheres for the Study of Regional Neural Progenitor Biology. Endocrinology 2020; 161:5802442. [PMID: 32154873 PMCID: PMC7105385 DOI: 10.1210/endocr/bqaa035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamus is a key homeostatic brain region and the primary effector of neuroendocrine signaling. Recent studies show that early embryonic developmental disruption of this region can lead to neuroendocrine conditions later in life, suggesting that hypothalamic progenitors might be sensitive to exogenous challenges. To study the behavior of hypothalamic neural progenitors, we developed a novel dissection methodology to isolate murine hypothalamic neural stem and progenitor cells at the early timepoint of embryonic day 12.5, which coincides with peak hypothalamic neurogenesis. Additionally, we established and optimized a culturing protocol to maintain multipotent hypothalamic neurospheres that are capable of sustained proliferation or differentiation into neurons, oligodendrocytes, and astrocytes. We characterized media requirements, appropriate cell seeding density, and the role of growth factors and sonic hedgehog (Shh) supplementation. Finally, we validated the use of fluorescence activated cell sorting of either Sox2GFPKI or Nkx2.1GFPKI transgenic mice as an alternate cellular isolation approach to enable enriched selection of hypothalamic progenitors for growth into neurospheres. Combined, we present a new technique that yields reliable culturing of hypothalamic neural stem and progenitor cells that can be used to study hypothalamic development in a controlled environment.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hayley F Thornton
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laronna C Sewell
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Correspondence: Deborah M Kurrasch, Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, HSC 2215, Calgary, AB T2N 4N1. E-mail:
| |
Collapse
|
15
|
Ala M, Jafari RM, Dehpour AR. Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes. Curr Diabetes Rev 2020; 16:984-1001. [PMID: 32208120 DOI: 10.2174/1573399816666200324152517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Diabetes and osteoporosis are two common diseases with different complications. Despite different therapeutic strategies, managing these diseases and reducing their burden have not been satisfactory, especially when they appear one after the other. In this review, we aimed to clarify the similarity, common etiology and possible common adjunctive therapies of these two major diseases and designate the known molecular pattern observed in them. Based on different experimental findings, we want to illuminate that interestingly similar pathways lead to diabetes and osteoporosis. Meanwhile, there are a few drugs involved in the treatment of both diseases, which most of the time act in the same line but sometimes with opposing results. Considering the correlation between diabetes and osteoporosis, more efficient management of both diseases, in conditions of concomitant incidence or cause and effect condition, is required.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| |
Collapse
|
16
|
Abstract
Non-communicable diseases, such as cardiovascular diseases, are the leading cause of mortality worldwide. For this reason, a tremendous effort is being made worldwide to effectively circumvent these afflictions, where insulin-like growth factor 1 (IGF1) is being proposed both as a marker and as a central cornerstone in these diseases, making it an interesting molecule to focus on. Firstly, at the initiation of metabolic deregulation by overfeeding, IGF1 is decreased/inhibited. Secondly, such deficiency seems to be intimately related to the onset of MetS and establishment of vascular derangements leading to atherosclerosis and finally playing a definitive part in cerebrovascular and myocardial accidents, where IGF1 deficiency seems to render these organs vulnerable to oxidative and apoptotic/necrotic damage. Several human cohort correlations together with basic/translational experimental data seem to confirm deep IGF1 implication, albeit with controversy, which might, in part, be given by experimental design leading to blurred result interpretation.
Collapse
|
17
|
Holly JMP, Biernacka K, Perks CM. Systemic Metabolism, Its Regulators, and Cancer: Past Mistakes and Future Potential. Front Endocrinol (Lausanne) 2019; 10:65. [PMID: 30809194 PMCID: PMC6380210 DOI: 10.3389/fendo.2019.00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/23/2019] [Indexed: 12/28/2022] Open
Abstract
There has been a resurgence of interest in cancer metabolism; primarily in the resetting of metabolism within malignant cells. Metabolism within cells has always been a tightly regulated process; initially in protozoans due to metabolic enzymes, and the intracellular signaling pathways that regulate these, being directly sensitive to the availability of nutrients. With the evolution of metazoans many of these controls had been overlaid by extra-cellular regulators that ensured coordinated regulation of metabolism within the community of cells that comprised the organism. Central to these systemic regulators is the insulin/insulin-like growth factor (IGF) system that throughout evolution has integrated the control of tissue growth with metabolic status. Oncological interest in the main systemic metabolic regulators greatly subsided when pharmaceutical strategies designed to treat cancers failed in the clinic. During the same period, however the explosion of new information from genetics has revealed the complexity and heterogeneity of advanced cancers and helped explain the problems of managing cancer when it reaches such a stage. Evidence has also accumulated implying that the setting of the internal environment determines whether cancers progress to advanced disease and metabolic status is clearly an important component of this local ecology. We are in the midst of an epidemic of metabolic disorders and there is considerable research into strategies for controlling metabolism. Integrating these new streams of information suggests new possibilities for cancer prevention; both primary and secondary.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- Faculty of Medicine, School of Translational Health Science, University of Bristol, Southmead Hospital, Bristol, United Kingdom
| | | | | |
Collapse
|
18
|
Song W, Qiao Y, Xue J, Zhao F, Yang X, Li G. The association of insulin-like growth factor-1 standard deviation score and height in Chinese children with type 1 diabetes mellitus. Growth Factors 2018; 36:274-282. [PMID: 30900527 DOI: 10.1080/08977194.2019.1573819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Assessing the relationship between IGF-1 and height in type 1 diabetes children. Seventy-two type 1 diabetes children and 190 controls were recruited. The height standard deviation score of type 1 diabetes children was significantly higher than controls. The height standard deviation score was higher than the target height standard deviation score in both type 1 diabetes and controls. Serum IGF-1 levels and the IGF-1 standard deviation score were significantly lower in type 1 diabetes patients compared with controls. There was a significant difference in IGF-1 standard deviation score between the good glycemic control group and control group. The height standard deviation score was significantly correlated with C-peptide and IGF-1 levels. Furthermore, the IGF-1 standard deviation score was significantly correlated with glycemic control and C-peptide. The growth hormone/IGF-1 axis is impaired in type 1 diabetes, but height with good or poor glycemic control is not impaired.
Collapse
Affiliation(s)
- Wei Song
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , P.R. China
- b Department of Pediatrics , the Second Hospital of Shandong University , Jinan , P.R. China
| | - Yu Qiao
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , P.R. China
| | - Jiang Xue
- b Department of Pediatrics , the Second Hospital of Shandong University , Jinan , P.R. China
| | - Fei Zhao
- b Department of Pediatrics , the Second Hospital of Shandong University , Jinan , P.R. China
| | - Xin Yang
- b Department of Pediatrics , the Second Hospital of Shandong University , Jinan , P.R. China
| | - Guimei Li
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , P.R. China
| |
Collapse
|
19
|
Woll SC, Podrabsky JE. Insulin-like growth factor signaling regulates developmental trajectory associated with diapause in embryos of the annual killifish Austrofundulus limnaeus. ACTA ACUST UNITED AC 2017; 220:2777-2786. [PMID: 28515235 DOI: 10.1242/jeb.151373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/10/2017] [Indexed: 01/12/2023]
Abstract
Annual killifishes exhibit a number of unique life history characters including the occurrence of embryonic diapause, unique cell movements associated with dispersion and subsequent reaggregation of the embryonic blastomeres, and a short post-embryonic life span. Insulin-like growth factor (IGF) signaling is known to play a role in the regulation of metabolic dormancy in a number of animals but has not been explored in annual killifishes. The abundance of IGF proteins during development and the developmental effects of blocking IGF signaling by pharmacological inhibition of the insulin-like growth factor I receptor (IGF1R) were explored in embryos of the annual killifish Austrofundulus limnaeus Blocking of IGF signaling in embryos that would normally escape entrance into diapause resulted in a phenotype that was remarkably similar to that of embryos entering diapause. IGF-I protein abundance spikes during early development in embryos that will not enter diapause. In contrast, IGF-I levels remain low during early development in embryos that will enter diapause II. IGF-II protein is packaged at higher levels in escape-bound embryos compared with diapause-bound embryos. However, IGF-II levels quickly decrease and remain low during early development and only increase substantially during late development in both developmental trajectories. Developmental patterns of IGF-I and IGF-II protein abundance under conditions that would either induce or bypass entrance into diapause are consistent with a role for IGF signaling in the regulation of developmental trajectory and entrance into diapause in this species. We propose that IGF signaling may be a unifying regulatory pathway that explains the larger suite of characters that are associated with the complex life history of annual killifishes.
Collapse
Affiliation(s)
- S Cody Woll
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
20
|
Murine model and mechanisms of treatment-induced painful diabetic neuropathy. Neuroscience 2017; 354:136-145. [PMID: 28476321 DOI: 10.1016/j.neuroscience.2017.04.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 11/21/2022]
Abstract
Diabetes mellitus represents a group of metabolic diseases that are characterized by hyperglycemia caused by either lack of insulin production or a reduced ability to respond to insulin. It is estimated that there were 347 million people worldwide who suffered from diabetes in 2008 and incidence is predicted to double by 2050. Neuropathy is the most common complication of long-term diabetes and approximately 30% of these subjects develop chronic neuropathic pain. A distinct acute, severe form of neuropathic pain, called insulin neuritis or treatment-induced painful neuropathy of diabetes (TIND), may also occur shortly after initiation of intensive glycemic control, with an incidence rate of up to 10.9%. The pathological mechanisms leading to TIND, which is mostly unresponsive to analgesics, are not yet understood, impeding the development of therapies. Studies to date have been clinical and with limited cohorts of patients. In the current study, we developed chronic and acute insulin-induced neuropathic pain in mice with type 2 insulin-resistant diabetes. Furthermore, we determined that insulin-induced acute allodynia is independent of glycemia levels, can also be induced with Insulin-like Growth Factor 1 (IGF1) and be prevented by inhibition of AKT, providing evidence of an insulin/IGF1 signaling pathway-based mechanism for TIND. This mouse model is useful for the elucidation of mechanisms contributing to TIND and for the testing of new therapeutic approaches to treat TIND.
Collapse
|
21
|
Donejko M, Rysiak E, Galicka E, Terlikowski R, Głażewska EK, Przylipiak A. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:669-676. [PMID: 28293103 PMCID: PMC5345991 DOI: 10.2147/dddt.s125843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aim The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Materials and methods Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Results Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. Conclusion This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.
Collapse
Affiliation(s)
| | - Edyta Rysiak
- Department of Medicinal Chemistry, Faculty of Pharmacy
| | | | - Robert Terlikowski
- Department of Health Restoration, Medical University of Białystok, Białystok, Poland
| | | | | |
Collapse
|
22
|
Othman EM, Altabaa T, Hintzsche H, Stopper H. IR and IGF-1R expression affects insulin induced proliferation and DNA damage. Toxicol In Vitro 2017; 39:68-74. [DOI: 10.1016/j.tiv.2016.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/19/2022]
|
23
|
Ghosh S, Banerjee KK, Vaidya VA, Kolthur-Seetharam U. Early Stress History Alters Serum Insulin-Like Growth Factor-1 and Impairs Muscle Mitochondrial Function in Adult Male Rats. J Neuroendocrinol 2016; 28. [PMID: 27196416 DOI: 10.1111/jne.12397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 04/06/2016] [Accepted: 05/14/2016] [Indexed: 12/19/2022]
Abstract
Early-life adversity is associated with an enhanced risk for adult psychopathology. Psychiatric disorders such as depression exhibit comorbidity for metabolic dysfunction, including obesity and diabetes. However, it is poorly understood whether, besides altering anxiety and depression-like behaviour, early stress also evokes dysregulation of metabolic pathways and enhances vulnerability for metabolic disorders. We used the rodent model of the early stress of maternal separation (ES) to examine the effects of early stress on serum metabolites, insulin-like growth factor (IGF)-1 signalling, and muscle mitochondrial content. Adult ES animals exhibited dyslipidaemia, decreased serum IGF1 levels, increased expression of liver IGF binding proteins, and a decline in the expression of specific metabolic genes in the liver and muscle, including Pck1, Lpl, Pdk4 and Hmox1. These changes occurred in the absence of alterations in body weight, food intake, glucose tolerance, insulin tolerance or insulin levels. ES animals also exhibited a decline in markers of muscle mitochondrial content, such as mitochondrial DNA levels and expression of TFAM (transcription factor A, mitochondrial). Furthermore, the expression of several genes involved in mitochondrial function, such as Ppargc1a, Nrf1, Tfam, Cat, Sesn3 and Ucp3, was reduced in skeletal muscle. Adult-onset chronic unpredictable stress resulted in overlapping and distinct consequences from ES, including increased circulating triglyceride levels, and a decline in the expression of specific metabolic genes in the liver and muscle, with no change in the expression of genes involved in muscle mitochondrial function. Taken together, our results indicate that a history of early adversity can evoke persistent changes in circulating IGF-1 and muscle mitochondrial function and content, which could serve to enhance predisposition for metabolic dysfunction in adulthood.
Collapse
Affiliation(s)
- S Ghosh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - K K Banerjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - V A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - U Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| |
Collapse
|
24
|
Zaika O, Tomilin V, Mamenko M, Bhalla V, Pochynyuk O. New perspective of ClC-Kb/2 Cl- channel physiology in the distal renal tubule. Am J Physiol Renal Physiol 2016; 310:F923-30. [PMID: 26792067 PMCID: PMC5002062 DOI: 10.1152/ajprenal.00577.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Since its identification as the underlying molecular cause of Bartter's syndrome type 3, ClC-Kb (ClC-K2 in rodents, henceforth it will be referred as ClC-Kb/2) is proposed to play an important role in systemic electrolyte balance and blood pressure regulation by controlling basolateral Cl(-) exit in the distal renal tubular segments from the cortical thick ascending limb to the outer medullary collecting duct. Considerable experimental and clinical effort has been devoted to the identification and characterization of disease-causing mutations as well as control of the channel by its cofactor, barttin. However, we have only begun to unravel the role of ClC-Kb/2 in different tubular segments and to reveal the regulators of its expression and function, e.g., insulin and IGF-1. In this review we discuss recent experimental evidence in this regard and highlight unexplored questions critical to understanding ClC-Kb/2 physiology in the kidney.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University, Stanford, California
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas; and
| |
Collapse
|
25
|
Zaika O, Palygin O, Tomilin V, Mamenko M, Staruschenko A, Pochynyuk O. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage. Am J Physiol Renal Physiol 2016; 310:F311-F321. [PMID: 26632606 PMCID: PMC4839479 DOI: 10.1152/ajprenal.00436.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023] Open
Abstract
Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Viktor Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas; Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas;
| |
Collapse
|
26
|
Robajac D, Masnikosa R, Miković Ž, Nedić O. Gestation-associated changes in the glycosylation of placental insulin and insulin-like growth factor receptors. Placenta 2016; 39:70-6. [PMID: 26992677 DOI: 10.1016/j.placenta.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/01/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Insulin receptor (IR) and type 1 and type 2 insulin-like growth factor receptors (IGF1R and IGF2R) play important roles in regulation of placental and foetal growth. All three receptors are abundantly glycosylated. N-glycosylation significantly affects protein conformation and may alter its function. We have recently found that the N-glycome of placental membrane proteins alters during gestation. The aim of the study presented herein was to investigate whether there were gestation-related changes in N-glycan profiles of placental IR and IGFRs. METHODS Placentas from healthy women at first (FTP) and third trimester (TTP) of pregnancy were collected, membrane proteins isolated, solubilised and used as the source of IR and IGFRs. Reactivity of glycoforms of IR and IGFRs with lectins was monitored by measuring radioactivity of (125)I-ligands-receptors complexes. RESULTS Significant differences in the binding pattern of all three receptors to the lectins were observed between FTP and TTP, which suggest gestational changes in N-glycans bound to receptors. These changes include decrease in total fucosylated, core-fucosylated biantennary N-glycan (NA2F) and α2,6-sialo-N-glycans (for IR); decrease in total fucosylated and α2,6-sialo-N-glycans and an increase in NA2F N-glycans (for IGF1R) and an increase in the total fucosylation and NA2F N-glycans (for IGF2R). DISCUSSION The gestational alterations in N-glycans attached to IR and IGFRs may represent a mechanism by which these receptors acquire new/additional roles as gestation progresses.
Collapse
Affiliation(s)
- Dragana Robajac
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
| | - Romana Masnikosa
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia.
| | - Željko Miković
- Clinic of Gynaecology and Obstetrics "Narodni Front", University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 2016; 14:3. [PMID: 26733412 PMCID: PMC4702316 DOI: 10.1186/s12967-015-0762-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/26/2015] [Indexed: 02/06/2023] Open
Abstract
Consistent evidence associates IGF-1 deficiency and metabolic syndrome. In this review, we will focus on the metabolic effects of IGF-1, the concept of metabolic syndrome and its clinical manifestations (impaired lipid profile, insulin resistance, increased glucose levels, obesity, and cardiovascular disease), discussing whether IGF-1 replacement therapy could be a beneficial strategy for these patients. The search plan was made in Medline for Pubmed with the following mesh terms: IGF-1 and "metabolism, carbohydrate, lipids, proteins, amino acids, metabolic syndrome, cardiovascular disease, diabetes" between the years 1963-2015. The search includes animal and human protocols. In this review we discuss the relevant actions of IGF-1 on metabolism and the implication of IGF-1 deficiency in the establishment of metabolic syndrome. Multiple studies (in vitro and in vivo) demonstrate the association between IGF-1 deficit and deregulated lipid metabolism, cardiovascular disease, diabetes, and an altered metabolic profile of diabetic patients. Based on the available data we propose IGF-1 as a key hormone in the pathophysiology of metabolic syndrome; due to its implications in the metabolism of carbohydrates and lipids. Previous data demonstrates how IGF-1 can be an effective option in the treatment of this worldwide increasing condition. It has to distinguished that the replacement therapy should be only undertaken to restore the physiological levels, never to exceed physiological ranges.
Collapse
Affiliation(s)
- G A Aguirre
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| | - J Rodríguez De Ita
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| | - R G de la Garza
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| | - I Castilla-Cortazar
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
- Fundación de Investigación HM Hospitales, Madrid, Spain.
| |
Collapse
|
28
|
Anjum S, Krishna A, Tsutsui K. Possible Role of GnIH as a Mediator between Adiposity and Impaired Testicular Function. Front Endocrinol (Lausanne) 2016; 7:6. [PMID: 26869993 PMCID: PMC4737883 DOI: 10.3389/fendo.2016.00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/15/2016] [Indexed: 12/01/2022] Open
Abstract
The aim of the present study was to evaluate the roles of gonadotropin-inhibitory hormone (GnIH) as an endocrine link between increasing adiposity and impaired testicular function in mice. To achieve this, the effect of GnIH on changes in nutrients uptake and hormonal synthesis/action in the adipose tissue and testis was investigated simultaneously by in vivo study and separately by in vitro study. Mice were treated in vivo with different doses of GnIH for 8 days. In the in vitro study, adipose tissue and testes of mice were cultured with different doses of GnIH with or without insulin or LH for 24 h at 37°C. The GnIH treatment in vivo showed increased food intake, upregulation of glucose transporter 4 (GLUT4), and increased uptake of triglycerides (TGs) in the adipose tissue. These changes may be responsible for increased accumulation of fat in white adipose tissue, resulting in increase in the body mass. Contrary to the adipose tissue, treatment with GnIH both in vivo and in vitro showed decreased uptake of glucose by downregulation of glucose transporter 8 (GLUT8) expressions in the testis, which in turn resulted in the decreased synthesis of testosterone. The GnIH treatment in vivo also showed the decreased expression of insulin receptor protein in the testis, which may also be responsible for the decreased testicular activity in the mice. These findings thus suggest that GnIH increases the uptake of glucose and TGs in the adipose tissue, resulting in increased accumulation of fat, whereas simultaneously in the testis, GnIH suppressed the GLUT8-mediated glucose uptake, which in turn may be responsible for decreased testosterone synthesis. This study thus demonstrates GnIH as mediator of increasing adiposity and impaired testicular function in mice.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, India
- *Correspondence: Amitabh Krishna,
| | | |
Collapse
|
29
|
Giustina A, Berardelli R, Gazzaruso C, Mazziotti G. Insulin and GH-IGF-I axis: endocrine pacer or endocrine disruptor? Acta Diabetol 2015; 52:433-43. [PMID: 25118998 DOI: 10.1007/s00592-014-0635-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
Abstract
Growth hormone/insulin-like growth factor (IGF) axis may play a role in maintaining glucose homeostasis in synergism with insulin. IGF-1 can directly stimulate glucose transport into the muscle through either IGF-1 or insulin/IGF-1 hybrid receptors. In severely decompensated diabetes including diabetic ketoacidosis, plasma levels of IGF-1 are low and insulin delivery into the portal system is required to normalize IGF-1 synthesis and bioavailability. Normalization of serum IGF-1 correlated with the improvement of glucose homeostasis during insulin therapy providing evidence for the use of IGF-1 as biomarker of metabolic control in diabetes. Taking apart the inherent mitogenic discussion, diabetes treatment using insulins with high affinity for the IGF-1 receptor may act as an endocrine pacer exerting a cardioprotective effect by restoring the right level of IGF-1 in bloodstream and target tissues, whereas insulins with low affinity for the IGF-1 receptor may lack this positive effect. An excessive and indirect stimulation of IGF-1 receptor due to sustained and chronic hyperinsulinemia over the therapeutic level required to overtake acute/chronic insulin resistance may act as endocrine disruptor as it may possibly increase the cardiovascular risk in the short and medium term and mitogenic/proliferative action in the long term. In conclusion, normal IGF-1 may be hypothesized to be a good marker of appropriate insulin treatment of the subject with diabetes and may integrate and make more robust the message coming from HbA1c in terms of prediction of cardiovascular risk.
Collapse
Affiliation(s)
- Andrea Giustina
- Chair of Endocrinology and Metabolism, University of Brescia - A.O. Spedali Civili di Brescia, 25123, Brescia, Italy,
| | | | | | | |
Collapse
|
30
|
Ilatovskaya DV, Levchenko V, Brands MW, Pavlov TS, Staruschenko A. Cross-talk between insulin and IGF-1 receptors in the cortical collecting duct principal cells: implication for ENaC-mediated Na+ reabsorption. Am J Physiol Renal Physiol 2015; 308:F713-9. [PMID: 25651558 DOI: 10.1152/ajprenal.00081.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Insulin and IGF-1 are recognized as powerful regulators of the epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron. As previously described, these hormones both acutely increase ENaC activity in freshly isolated split open tubules and cultured principal cortical collecting duct cells. The present study was aimed at differentiating the effects of insulin and IGF-1 on Na+ transport in immortalized mpkCCDcl4 cells and defining their interrelations. We have shown that both insulin and IGF-1 applied basolaterally, but not apically, enhanced transepithelial Na+ transport in the mpkCCDcl4 cell line with EC50 values of 8.8 and 14.5 nM, respectively. Insulin treatment evoked phosphorylation of both insulin and IGF-1 receptors, whereas the effects of IGF-1 were more profound on its own receptor rather than the insulin receptor. AG-1024 and PPP, inhibitors of IGF-1 and insulin receptor tyrosine kinase activity, diminished insulin- and IGF-1-stimulated Na+ transport in mpkCCDcl4 cells. The effects of insulin and IGF-1 on ENaC-mediated currents were found to be additive, with insulin likely stimulating both IGF-1 and insulin receptors. We hypothesize that insulin activates IGF-1 receptors in addition to its own receptors, making the effects of these hormones interconnected.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Michael W Brands
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | - Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | | |
Collapse
|
31
|
Guevara-Aguirre J, Rosenbloom AL. Obesity, diabetes and cancer: insight into the relationship from a cohort with growth hormone receptor deficiency. Diabetologia 2015; 58:37-42. [PMID: 25316432 DOI: 10.1007/s00125-014-3397-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Obesity with insulin-resistant diabetes and increased cancer risk is a global problem. We consider the alterations of metabolism attendant on the underlying pathogenic overnutrition and the role of the growth hormone (GH)-IGF-1 axis in this interaction. Obesity-induced insulin resistance is a determinant of diabetes. Excess glucose, and an elevated concentration of insulin acting through its own receptors along with complex interactions with the IGF-1 system, will add extra fuel and fuel signalling for malignant growth and induce anti-apoptotic activities, permitting proliferation of forbidden clones. In Ecuador there are ~100 living adults with lifelong IGF-1 deficiency caused by a GH receptor (GHR) mutation who, despite a high percentage of body fat, have markedly increased insulin sensitivity compared with age- and BMI-matched control relatives, and no instances of diabetes, which is present in 6% of unaffected relatives. Only 1 of 20 deceased individuals with GHR deficiency died of cancer vs 20% of ~1,500 relatives. Fewer DNA breaks and increased apoptosis occurred in cell cultures exposed to oxidant agents following addition of serum from GHR-deficient individuals vs serum from control relatives. These changes were reversible by adding IGF-1 to the serum from the GHR-deficient individuals. The reduction in central regulators of pro-ageing signalling thus appears to be the result of an absence of GHR function. The complex inter-relationship of obesity, diabetes and cancer risk is related to excess insulin and fuel supply, in the presence of heightened anti-apoptosis and uninhibited DNA damage when GHR function is normal.
Collapse
Affiliation(s)
- Jaime Guevara-Aguirre
- Universidad San Francisco de Quito, Diego de Robles & Via Interoceanica, Quito, Ecuador,
| | | |
Collapse
|
32
|
Zaika O, Mamenko M, Boukelmoune N, Pochynyuk O. IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts. Am J Physiol Renal Physiol 2015; 308:F39-F48. [PMID: 25339702 PMCID: PMC4281695 DOI: 10.1152/ajprenal.00545.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 01/07/2023] Open
Abstract
Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na(+) transport establishes driving force for Cl(-) reabsorption and K(+) secretion. Using patch-clamp electrophysiology, we document that a Cl(-) channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl(-)>NO3 (-) anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 μM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na(+) and Cl(-) reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na(+) reabsorption with K(+) secretion at the apical membrane contributing to kaliuresis.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nabila Boukelmoune
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
33
|
Mei J, Yan W, Fang J, Yuan G, Chen N, He Y. Identification of a gonad-expression differential gene insulin-like growth factor-1 receptor (Igf1r) in the swamp eel (Monopterus albus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1181-1190. [PMID: 24488410 DOI: 10.1007/s10695-014-9914-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
In vertebrate species, the biopotential embryonic gonad differentiation is affected by many key genes and key steroidogenic enzymes. Insulin-like growth factor-1 receptor (Igf1r) has been considered as an important sex-differentiation gene in mammals and could mediate the biological action of Igf1, an important regulator of key steroidogenic enzymes. However, Igf1r gene is still unknown in the swamp eel, an economically important fish. In our study, we identified Igf1r gene in the swamp eel, which was a 2,148-bp open-reading frame encoding a protein of 716 amino acids. The alignment and the phylogenetic tree showed that Igf1r of the swamp eel had a conservative sequence with other vertebrates, especial fishes. Western blotting of Igf1r showed that Igf1r expressed much more in ovotestis and testis than in ovary, indicating an important role of Igf1r during gonad differentiation. We analyzed ubiquitination of Igf1r by co-immunoprecipitation and found the amount of ubiquitinated Igf1r was increased from ovary, ovotestis to testis, which was reversely to the trend of Hsp10 expression during gonadal transformation. It was possible that Hsp10 could suppress Igf1r ubiquitination during gonadal development of the swamp eel.
Collapse
Affiliation(s)
- Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Morel M, Vanderstraete M, Hahnel S, Grevelding CG, Dissous C. Receptor tyrosine kinases and schistosome reproduction: new targets for chemotherapy. Front Genet 2014; 5:238. [PMID: 25101117 PMCID: PMC4102852 DOI: 10.3389/fgene.2014.00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022] Open
Abstract
Schistosome parasites still represent a serious public health concern and a major economic problem in developing countries. Pathology of schistosomiasis is mainly due to massive egg production by these parasites and to inflammatory responses raised against the eggs which are trapped in host tissues. Tyrosine kinases (TKs) are key molecules that control cell differentiation and proliferation and they already represent important targets in cancer therapy. During recent years, it has been shown that receptor tyrosine kinases (RTK) signaling was active in reproductive organs and that it could regulate sexual maturation of schistosomes and egg production. This opens interesting perspectives for the control of transmission and pathogenesis of schistosomiasis based on new therapies targeting schistosome RTKs. This review relates the numerous data showing the major roles of kinase signaling in schistosome reproduction. It describes the conserved and particular features of schistosome RTKs, their implication in gametogenesis and reproduction processes and summarizes recent works indicating that RTKs and their signaling partners are interesting chemotherapeutical targets in new programs of control.
Collapse
Affiliation(s)
- Marion Morel
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France Lille Cedex, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France Lille Cedex, France
| | - Steffen Hahnel
- Biomedical Centre for Research Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen Giessen, Germany
| | - Christoph G Grevelding
- Biomedical Centre for Research Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen Giessen, Germany
| | - Colette Dissous
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France Lille Cedex, France
| |
Collapse
|
35
|
Hedman CA, Frystyk J, Lindström T, Oskarsson P, Arnqvist HJ. Intraperitoneal insulin delivery to patients with type 1 diabetes results in higher serum IGF-I bioactivity than continuous subcutaneous insulin infusion. Clin Endocrinol (Oxf) 2014; 81:58-62. [PMID: 23865977 DOI: 10.1111/cen.12296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/03/2013] [Accepted: 07/14/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Type 1 diabetes (T1D) is associated with low IGF-I and altered levels of IGF-binding proteins (IGFBPs) in plasma. This may be of importance for insulin sensitivity and the risk of developing diabetic complications. We hypothesized that IGF-I bioactivity is affected by the route of insulin administration and that continuous intraperitoneal insulin infusion (CIPII) has a more pronounced effect than continuous subcutaneous insulin infusion (CSII). DESIGN AND METHODS We compared 10 patients with T1D on CIPII with 20 age- and sex-matched patients on CSII. Blood sampling was carried out 7-9 am after an overnight fast. All patients were C-peptide negative. IGF-I bioactivity was measured in vitro using a specific IGF-I kinase receptor activation (KIRA) assay. IGF-I was also measured by immunoassay together with IGF-II, IGFBP-1 and IGFBP-2. RESULTS When compared with subcutaneous insulin, intraperitoneal insulin resulted in (CIPII vs CSII) higher IGF-I bioactivity (1·83 ± 0·76 vs 1·16 ± 0·24 μg/l; P = 0·02), IGF-I (120 ± 35 vs 81 ± 19 μg/l; P = 0·01) and IGF-II (1050 ± 136 vs 879 ± 110 μg/l; P = 0·02). By contrast, log-transformed IGFBP-1 was reduced (P = 0·013), whereas log-transformed IGFBP-2 was not different (P = 0·12). There was a positive correlation between IGF bioactivity and IGF-I (r = 0·69; P < 0·001) and an inverse correlation between IGF-I bioactivity and log10 IGFBP-1 (r = -0·68, P < 0·001). CONCLUSION The in vitro IGF-I bioactivity was higher in patients treated with CIPII compared with CSII supporting the theory that the route of insulin administration is of importance for the activity of the IGF system. Intraperitoneal insulin administration may therefore be beneficial by correcting the alterations of the IGF system in T1D.
Collapse
Affiliation(s)
- Christina A Hedman
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Endocrine Unit, County Council of Östergötland, Linköping, Sweden
| | | | | | | | | |
Collapse
|
36
|
Zhang F, He Q, Tsang WP, Garvey WT, Chan WY, Wan C. Insulin exerts direct, IGF-1 independent actions in growth plate chondrocytes. Bone Res 2014; 2:14012. [PMID: 26273523 PMCID: PMC4472128 DOI: 10.1038/boneres.2014.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/06/2023] Open
Abstract
Insufficient insulin production or action in diabetic states is associated with growth retardation and impaired bone healing, while the underling mechanisms are unknown. In this study, we sought to define the role of insulin signaling in the growth plate. Insulin treatment of embryonic metatarsal bones from wild-type mice increased chondrocyte proliferation. Mice lacking insulin receptor (IR) selectively in chondrocytes (CartIR−/−) had no discernable differences in total femoral length compared to control littermates. However, CartIR−/− mice exhibited an increase in chondrocyte numbers in the growth plate than that of the controls. Chondrocytes lacking IR had elevated insulin-like growth factor (IGF)-1R mRNA and protein levels. Subsequently, IGF-1 induced phosphorylation of Akt and ERK was enhanced, while this action was eliminated when the cells were treated with IGF-1R inhibitor Picropodophyllin. Deletion of the IR impaired chondrogenic differentiation, and the effect could not be restored by treatment of insulin, but partially rescued by IGF-1 treatment. Intriguingly, the size of hypertrophic chondrocytes was smaller in CartIR−/− mice when compared with that of the control littermates, which was associated with upregulation of tuberous sclerosis complex 2 (TSC2). These results suggest that deletion of the IR in chondrocytes sensitizes IGF-1R signaling and action, IR and IGF-1R coordinate to regulate the proliferation, differentiation and hypertrophy of growth plate chondrocytes.
Collapse
Affiliation(s)
- Fengjie Zhang
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong SAR, China ; School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen, China
| | - Qiling He
- Departments of Microbiology and Pathology, University of Alabama at Birmingham , AL, USA
| | - Wing Pui Tsang
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong SAR, China ; School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen, China
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham , AL, USA
| | - Wai Yee Chan
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong SAR, China ; School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen, China
| | - Chao Wan
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Hong Kong SAR, China ; School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen, China
| |
Collapse
|
37
|
Hughes SB, Quan M, Guthrie A, Schulman M. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue. Onderstepoort J Vet Res 2014; 80:402. [PMID: 24396909 DOI: 10.4102/ojvr.v80i1.402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins) and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation), real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/μL and 891 copies/μL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95% limit of detection), and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor). This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1 receptor physiology in the horse.
Collapse
|
38
|
van Dijk PR, Logtenberg SJJ, Groenier KH, Kleefstra N, Bilo HJG, Arnqvist HJ. Effect of i.p. insulin administration on IGF1 and IGFBP1 in type 1 diabetes. Endocr Connect 2014; 3:17-23. [PMID: 24327601 PMCID: PMC3899582 DOI: 10.1530/ec-13-0089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In type 1 diabetes mellitus (T1DM), low concentrations of IGF1 and high concentrations of IGF-binding protein 1 (IGFBP1) have been reported. It has been suggested that these abnormalities in the GH-IGF1 axis are due to low insulin concentrations in the portal vein. We hypothesized that the i.p. route of insulin administration increases IGF1 concentrations when compared with the s.c. route of insulin administration. IGF1 and IGFBP1 concentrations in samples derived from an open-label, randomized cross-over trial comparing the effects of s.c. and i.p. insulin delivery on glycaemia were determined. T1DM patients were randomized to receive either 6 months of continuous i.p. insulin infusion (CIPII) through an implantable pump (MIP 2007C, Medtronic) followed by 6 months of s.c. insulin infusion or vice versa with a washout phase in between. Data from 16 patients who had complete measurements during both treatment phases were analysed. The change in IGF1 concentrations during CIPII treatment was 10.4 μg/l (95% CI -0.94, 21.7 μg/l; P=0.06) and during s.c. insulin treatment was -2.2 μg/l (95% CI -13.5, 9.2 μg/l; P=0.69). When taking the effect of treatment order into account, the estimated change in IGF1 concentrations was found to be 12.6 μg/l (95% CI -3.1, 28.5 μg/l; P=0.11) with CIPII treatment compared with that with s.c. insulin treatment. IGFBP1 concentrations decreased to -100.7 μg/l (95% CI -143.0, -58.3 μg/l; P<0.01) with CIPII treatment. During CIPII treatment, parts of the GH-IGF1 axis changed compared with that observed during s.c. insulin treatment. This supports the hypothesis that the i.p. route of insulin administration is of importance in the IGF1 system.
Collapse
Affiliation(s)
- P R van Dijk
- Diabetes Centre, Isala ClinicsPO Box 10400, Zwolle, 8000 G.K.The Netherlands
- Correspondence should be addressed to P R van Dijk
| | - S J J Logtenberg
- Diabetes Centre, Isala ClinicsPO Box 10400, Zwolle, 8000 G.K.The Netherlands
- Department of Internal MedicineUniversity Medical Center GroningenGroningenThe Netherlands
| | - K H Groenier
- Diabetes Centre, Isala ClinicsPO Box 10400, Zwolle, 8000 G.K.The Netherlands
- Department of General PracticeUniversity Medical Center GroningenGroningenThe Netherlands
| | - N Kleefstra
- Diabetes Centre, Isala ClinicsPO Box 10400, Zwolle, 8000 G.K.The Netherlands
- Department of Internal MedicineUniversity Medical Center GroningenGroningenThe Netherlands
- Langerhans Medical Research GroupZwolleThe Netherlands
| | - H J G Bilo
- Diabetes Centre, Isala ClinicsPO Box 10400, Zwolle, 8000 G.K.The Netherlands
- Department of Internal MedicineUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Internal MedicineIsala ClinicsZwolleThe Netherlands
| | - H J Arnqvist
- Division of Cell Biology, Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
- Faculty of Health SciencesDiabetes Research Centre, Linköping UniversityLinköpingSweden
| |
Collapse
|
39
|
Liang PI, Wang YH, Wu TF, Wu WR, Liao AC, Shen KH, Hsing CH, Shiue YL, Huang HY, Hsu HP, Chen LT, Lin CY, Tai C, Wu JY, Li CF. IGFBP-5 overexpression as a poor prognostic factor in patients with urothelial carcinomas of upper urinary tracts and urinary bladder. J Clin Pathol 2013; 66:573-582. [PMID: 23539739 DOI: 10.1136/jclinpath-2012-201278] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Urothelial carcinoma (UC) is prevalent worldwide. Dysregulation of cell growth is a critical event of tumorigenesis and has not been assessed systemically in UC. We thus assessed the published transcriptome of urinary bladder urothelial carcinoma (UBUC) and identified insulin-like growth factor-binding protein-5 (IGFBP-5) as the most significantly upregulated gene associated with the regulation of cell growth. Moreover, validated by using public domain data set, IGFBP-5 expression also significantly predicted worse outcome. IGFBP-5 is one of the binding proteins that regulate insulin-like growth factors (IGFs) and its significance has not been comprehensively evaluated in UCs. METHODS Using immunohistochemistry, we evaluated the IGFBP-5 expression status and its associations with clinicopathological features and survival in 340 cases of upper urinary tract urothelial carcinoma (UTUC) and 295 cases of UBUC. Western blot analysis was used to evaluate IGFBP-5 protein expression in human urothelial cell (HUC) lines. RESULTS IGFBP-5 overexpression was significantly associated with advanced pT stage (p<0.001), high histological grade (UTUC, p<0.001; UBUC, p=0.035), lymph node metastasis (UTUC, p=0.006; UBUC, p=0.004), vascular invasion (UTUC, p<0.001; UBUC, p=0.003), perineural invasion (UTUC, p=0.034; UBUC, p=0.021) and frequent mitosis (UTUC, p<0.001; UBUC, p=0.023). IGFBP-5 overexpression also independently predicted poor disease-specific survival and metastasis-free survival in both groups of patients. Western blot analysis showed IGFBP-5 protein as overexpressed in human urothelial cancer cell lines and not in normal urothelial cancer cells. CONCLUSIONS IGFBP-5 plays an important role in tumour progression in UC. Its overexpression is associated with advanced tumour stage and conferred poorer clinical outcome.
Collapse
Affiliation(s)
- Peir-In Liang
- Department of Pathology, Chi-Mei Foundation Medical Center, Liouying, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hale LJ, Welsh GI, Perks CM, Hurcombe JA, Moore S, Hers I, Saleem MA, Mathieson PW, Murphy AJ, Jeansson M, Holly JM, Hardouin SN, Coward RJ. Insulin-like growth factor-II is produced by, signals to and is an important survival factor for the mature podocyte in man and mouse. J Pathol 2013; 230:95-106. [PMID: 23299523 DOI: 10.1002/path.4165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/03/2012] [Accepted: 12/26/2012] [Indexed: 01/10/2023]
Abstract
Podocytes are crucial for preventing the passage of albumin into the urine and, when lost, are associated with the development of albuminuria, renal failure and cardiovascular disease. Podocytes have limited capacity to regenerate, therefore pro-survival mechanisms are critically important. Insulin-like growth factor-II (IGF-II) is a potent survival and growth factor; however, its major function is thought to be in prenatal development, when circulating levels are high. IGF-II has only previously been reported to continue to be expressed in discrete regions of the brain into adulthood in rodents, with systemic levels being undetectable. Using conditionally immortalized human and ex vivo adult mouse cells of the glomerulus, we demonstrated the podocyte to be the major glomerular source and target of IGF-II; it signals to this cell via the IGF-I receptor via the PI3 kinase and MAPK pathways. Functionally, a reduction in IGF signalling causes podocyte cell death in vitro and glomerular disease in vivo in an aged IGF-II transgenic mouse that produces approximately 60% of IGF-II due to a lack of the P2 promoter of this gene. Collectively, this work reveals the fundamental importance of IGF-II in the mature podocyte for glomerular health across mammalian species.
Collapse
Affiliation(s)
- L J Hale
- Academic and Children's Renal Unit, University of Bristol, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rostoker R, Bitton-Worms K, Caspi A, Shen-Orr Z, LeRoith D. Investigating new therapeutic strategies targeting hyperinsulinemia's mitogenic effects in a female mouse breast cancer model. Endocrinology 2013; 154:1701-10. [PMID: 23515289 DOI: 10.1210/en.2012-2263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological and experimental studies have identified hyperinsulinemia as an important risk factor for breast cancer induction and for the poor prognosis in breast cancer patients with obesity and type 2 diabetes. Recently it was demonstrated that both the insulin receptor (IR) and the IGF-IR mediate hyperinsulinemia's mitogenic effect in several breast cancer models. Although IGF-IR has been intensively investigated, and anti-IGF-IR therapies are now in advanced clinical trials, the role of the IR in mediating hyperinsulinemia's mitogenic effect remains to be clarified. Here we aimed to explore the potential of IR inhibition compared to dual IR/IGF-IR blockade on breast tumor growth. To initiate breast tumors, we inoculated the mammary carcinoma Mvt-1 cell line into the inguinal mammary fat pad of the hyperinsulinemic MKR female mice, and to study the role of IR, we treated the mice bearing tumors with the recently reported high-affinity IR antagonist-S961, in addition to the well-documented IGF-IR inhibitor picropodophyllin (PPP). Although reducing IR activation, with resultant severe hyperglycemia and hyperinsulinemia, S961-treated mice had significantly larger tumors compared to the vehicle-treated group. This effect maybe secondary to the severe hyperinsulinemia mediated via the IGF-1 receptor. In contrast, PPP by partially inhibiting both IR and IGF-IR activity reduced tumor growth rate with only mild metabolic consequences. We conclude that targeting (even partially) both IR and IGF-IRs impairs hyperinsulinemia's effects in breast tumor development while simultaneously sparing the metabolic abnormalities observed when targeting IR alone with virtual complete inhibition.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/complications
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma/complications
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma/therapy
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- Female
- Growth Substances/adverse effects
- Hyperinsulinism/complications
- Hyperinsulinism/drug therapy
- Hyperinsulinism/genetics
- Hyperinsulinism/pathology
- Insulin/adverse effects
- Mammary Neoplasms, Experimental/complications
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Transgenic
- Molecular Targeted Therapy/methods
- Peptides/therapeutic use
- Podophyllotoxin/analogs & derivatives
- Podophyllotoxin/therapeutic use
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Therapies, Investigational/methods
Collapse
Affiliation(s)
- Ran Rostoker
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam and the Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | |
Collapse
|
42
|
Versteyhe S, Klaproth B, Borup R, Palsgaard J, Jensen M, Gray SG, De Meyts P. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor. Front Endocrinol (Lausanne) 2013; 4:98. [PMID: 23950756 PMCID: PMC3738877 DOI: 10.3389/fendo.2013.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/26/2013] [Indexed: 01/02/2023] Open
Abstract
Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts that was not regulated by the other two ligands. Many of the functions and pathways these regulated genes were involved in, were consistent with the known biological effects of these ligands. The differences in gene expression might therefore account for some of the different biological effects of insulin, IGF-I, and IGF-II. This work adds to the evidence that not only the affinity of a ligand determines its biological response, but also its nature, even through the same receptor.
Collapse
Affiliation(s)
- Soetkin Versteyhe
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
- *Correspondence: Soetkin Versteyhe, Faculty of Health Sciences, The Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Physiology, University of Copenhagen, Blegdamsvej 3B, 2200 København N, Denmark e-mail:
| | - Birgit Klaproth
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Rehannah Borup
- Genomic Medicine, Microarray Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane Palsgaard
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Maja Jensen
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Steven G. Gray
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
- Thoracic Oncology Research Group, Trinity Centre for Health Sciences, Institute of Molecular Medicine, St. James’s Hospital, Dublin, Ireland
| | - Pierre De Meyts
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| |
Collapse
|
43
|
Garcia-Garcia RM. Integrative control of energy balance and reproduction in females. ISRN VETERINARY SCIENCE 2012; 2012:121389. [PMID: 23762577 PMCID: PMC3671732 DOI: 10.5402/2012/121389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/04/2012] [Indexed: 11/23/2022]
Abstract
There is a strong association between nutrition and reproduction. Chronic dietary energy deficits as well as energy surpluses can impair reproductive capacity. Metabolic status impacts reproductive function at systemic level, modulating the hypothalamic GnRH neuronal network and/or the pituitary gonadotropin secretion through several hormones and neuropeptides, and at the ovarian level, acting through the regulation of follicle growth and steroidogenesis by means of the growth hormone-IGF-insulin system and local ovarian mediators. In the past years, several hormones and neuropeptides have been emerging as important mediators between energy balance and reproduction. The present review goes over the main sites implicated in the control of energy balance linked to reproductive success and summarizes the most important metabolic and neuroendocrine signals that participate in reproductive events with special emphasis on the role of recently discovered neuroendocrine peptides. Also, a little overview about the effects of maternal nutrition, affecting offspring reproduction, has been presented.
Collapse
Affiliation(s)
- R M Garcia-Garcia
- Physiology Department (Animal Physiology), Complutense University, Avenida Puerta de Hierro S/N, 28040 Madrid, Spain
| |
Collapse
|
44
|
Striatal dopamine receptors modulate the expression of insulin receptor, IGF-1 and GLUT-3 in diabetic rats: effect of pyridoxine treatment. Eur J Pharmacol 2012; 696:54-61. [PMID: 23001013 DOI: 10.1016/j.ejphar.2012.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/27/2012] [Accepted: 09/06/2012] [Indexed: 11/22/2022]
Abstract
The incidence of type 2 diabetes mellitus is rising at alarming proportions. Central nervous system plays an important part in orchestrating glucose metabolism, with accumulating evidence linking dysregulated central nervous system circuits to the failure of normal glucoregulatory mechanisms. Pyridoxine is a water soluble vitamin and it has important role in brain function. This study aims to evaluate the role of pyridoxine in striatal glucose regulation through dopaminergic receptor expressions in streptozotocin induced diabetic rats. Radio receptor binding assays for dopamine D(1), D(2) receptors were done using [(3)H] 7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol and [(3)H] 5-chloro-2-methoxy-4-methylamino-N-[-2-methyl-1-(phenylmethyl)pyrrolidin-3-yl]benzamide. Gene expressions were done using fluorescently labeled Taqman probes of dopamine D(1), D(2) receptor, Insulin receptor, Insulin like growth factor-1(IGF-1) and Glucose transporter-3 (GLUT-3). Bmax of dopamine D(1) receptor is decreased and B(max) of dopamine D(2) was increased in diabetic rats compared to control. Gene expression of dopamine D(1) receptor was down regulated and dopamine D(2) receptor was up regulated in diabetic rats. Our results showed decreased gene expression of Insulin receptor, IGF-1 and increased gene expression of GLUT-3 in diabetic rats compared to control. Pyridoxine treatment restored diabetes induced alterations in dopamine D(1), D(2) receptors, Insulin receptor, IGF-1, GLUT-3 gene expressions in striatum compared to diabetic rats. Insulin treatment reversed dopamine D(1), D(2) receptor, GLUT-3 mRNA expression, D(2) receptor binding parameters in the striatum compared to diabetic group. Our results suggest the potential role of pyridoxine supplementation in ameliorating diabetes mediated dysfunctions in striatal dopaminergic receptor expressions and insulin signaling. Thus pyridoxine has therapeutic significance in diabetes management.
Collapse
|
45
|
Ghezzi C, Wright EM. Regulation of the human Na+-dependent glucose cotransporter hSGLT2. Am J Physiol Cell Physiol 2012; 303:C348-54. [PMID: 22673616 DOI: 10.1152/ajpcell.00115.2012] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human Na(+)-glucose cotransporter SGLT2 is expressed mainly in the kidney proximal convoluted tubule where it is considered to be responsible for the bulk of glucose reabsorption. Phosphorylation profiling has revealed that SGLT2 exists in a phosphorylated state in the rat renal proximal tubule cortex, so we decided to investigate the regulation of human SGLT2 (hSGLT2) by protein kinases. hSGLT2 was expressed in human embryonic kidney (HEK) 293T cells, and the activity of the protein was measured using radiotracer and whole cell patch-clamp electrophysiology assays before and after activation of protein kinases. 8-Bromo-adenosine cAMP (8-Br-cAMP) was used to activate protein kinase A, and sn-1,2-dioctanoylglycerol (DOG) was used to activate protein kinase C (PKC). 8-Br-cAMP stimulated D-[α-methyl-(14)C]glucopyranoside ([(14)C]α-MDG) uptake and Na(+)-glucose currents by 200% and DOG increased [(14)C]α-MDG uptake and Na(+)-glucose currents by 50%. In both cases the increase in SGLT2 activity was marked by an increase in the maximum rate of transport with no change in glucose affinity. These effects were completely negated by mutation of serine 624 to alanine. Insulin induced a 250% increase in Na(+)-glucose transport by wild-type but not S624A SGLT2. Parallel studies confirmed that the activity of hSGLT1 was regulated by PKA and PKC due to changes in the number of transporters in the cell membrane. hSGLT1 was relatively insensitive to insulin. We conclude that hSGLT1 and hSGLT2 are regulated by different mechanisms and suggest that insulin is an SGLT2 agonist in vivo.
Collapse
Affiliation(s)
- Chiara Ghezzi
- Department of Physiology, David Geffen School of Medicine, Univeristy of California at Los Angeles, Los Angeles, California 90095-1751, USA.
| | | |
Collapse
|
46
|
Holly JMP, Perks CM. Insulin-like growth factor physiology: what we have learned from human studies. Endocrinol Metab Clin North Am 2012; 41:249-63, v. [PMID: 22682629 DOI: 10.1016/j.ecl.2012.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although very similar to insulin and its receptor; the modus operandi of the insulin-like growth factors (IGFs) within the body is very different from that of the traditional peptide hormone. The IGF-binding proteins bind the IGFs with greater affinity than the cell surface receptors, enabling them to tightly control tissue activity. In addition to their role in fetal and childhood growth, IGFs play an important role in metabolic regulation. This article describes the basic underlying human physiology of IGFs, how this differs from that of experimental models, and why some information can only be learned from human clinical studies.
Collapse
Affiliation(s)
- Jeff M P Holly
- School of Clinical Sciences, University of Bristol, IGFs & Metabolic Endocrinology Group, Learning & Research Building, 2nd Floor, Southmead Hospital, Bristol BS10 5NB, UK.
| | | |
Collapse
|
47
|
Pasco MY, Léopold P. High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo. PLoS One 2012; 7:e36583. [PMID: 22567167 PMCID: PMC3342234 DOI: 10.1371/journal.pone.0036583] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/10/2012] [Indexed: 12/18/2022] Open
Abstract
In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD) that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D) patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz), a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome.
Collapse
Affiliation(s)
- Matthieu Y. Pasco
- Institute of Biology Valrose (iBV), CNRS UMR 7707, INSERM UMR 1091, University of Nice-Sophia Antipolis, Nice, France
| | - Pierre Léopold
- Institute of Biology Valrose (iBV), CNRS UMR 7707, INSERM UMR 1091, University of Nice-Sophia Antipolis, Nice, France
- * E-mail:
| |
Collapse
|
48
|
Patil AS, Sable RB, Kothari RM. Role of insulin-like growth factors (IGFs), their receptors and genetic regulation in the chondrogenesis and growth of the mandibular condylar cartilage. J Cell Physiol 2012; 227:1796-804. [PMID: 21732349 DOI: 10.1002/jcp.22905] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth of the mandibular condylar cartilage (MCC) is reviewed as a function of genetic and epigenetic factors. The growth centers around the differential spatial concentration of the chondrocytes, influence of growth factors like TGF-β and heterogeneity in the number of IGF receptors, control the action of IGF. Besides these factors, growth of the mandibular condyle is influenced by differential response of chondrocytes as a function of their source/ageing, which in turn is regulated by TGF-β, BMPs and IGFs. While IGF-1 promotes proteoglycan synthesis and survival of the chondrocytes to maintain cartilage homeostasis, TGF-β synergistically catalysed the effect of IGF-1, while BMPs catalysed proteolysis as and when physiologically needed. To understand these processes, role of IGF-1 and its six receptors is at the center to a number of physiological processes being regulated by its mode of application for the growth and differentiation. Probing deeper, biological functions of IGFs seemed to depend on their level of free status rather than bound status to respective IGF-binding proteins (IGF-BPs), considered prerequisite to modulate their biological functions. Genetic regulation of their secretion has thrown light on their insulin-like structural homology, level and response in osteo-arthritis (OA), rheumatic arthritis (RA) and diabetes type-II. Biochemistry and spatial distribution of IGF receptors in different domains exerts control on IGF-1 activities. In ultimate analysis, IGF-axis conserved during the evolution to regulate cell growth and proliferation affect nearly every organ in the body as judged from the techniques determining skeletal maturity and decision making dependent on it for orthodontic, orthognathic/orthopedic and dental implant applications.
Collapse
Affiliation(s)
- Amol S Patil
- Department of Orthodontics and Dentofacial Orthopedics, Bharati Vidyapeeth Dental College and Hospital, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India.
| | | | | |
Collapse
|
49
|
Stone RC, Kim S, Barnes BJ, Aviv A. Diverging antioxidative responses to IGF-1 in cultured human skin fibroblasts versus vascular endothelial cells. J Gerontol A Biol Sci Med Sci 2012; 67:939-46. [PMID: 22466317 DOI: 10.1093/gerona/gls081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) stimulates cell proliferation and is crucial for maintenance of somatic tissues. However, this effect is associated with the inhibition of FOXO transcription factors and downregulation of antioxidative enzymes. In this study, we compared the responses of primary dermal fibroblasts and human umbilical vein endothelial cells with IGF-1 treatment. We found that IGF-1 primarily downregulated enzymatic antioxidants in skin fibroblasts. However, human umbilical vein endothelial cells were protected from an IGF-1-mediated decrease in antioxidative capacity. Moreover, IGF-1 also activated endothelial nitric oxide synthase in human umbilical vein endothelial cells. These observations suggest a dichotomous role for IGF-1, which provides for growth and repair needs of the soma, while attenuating the effect of oxidative stress on the vasculature by activating endothelial nitric oxide synthase. This increases the production of nitric oxide, an antiproliferative and, under certain circumstances, an antioxidant agent. Findings could help clarify the role of IGF-1 in aging and longevity of lower organisms, short-lived mammals, and humans.
Collapse
Affiliation(s)
- Rivka C Stone
- The Center of Human Development and Aging, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
50
|
Jacques C, Holzenberger M, Mladenovic Z, Salvat C, Pecchi E, Berenbaum F, Gosset M. Proinflammatory actions of visfatin/nicotinamide phosphoribosyltransferase (Nampt) involve regulation of insulin signaling pathway and Nampt enzymatic activity. J Biol Chem 2012; 287:15100-8. [PMID: 22399297 DOI: 10.1074/jbc.m112.350215] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Visfatin (also termed pre-B-cell colony-enhancing factor (PBEF) or nicotinamide phosphoribosyltransferase (Nampt)) is a pleiotropic mediator acting on many inflammatory processes including osteoarthritis. Visfatin exhibits both an intracellular enzymatic activity (nicotinamide phosphoribosyltransferase, Nampt) leading to NAD synthesis and a cytokine function via the binding to its hypothetical receptor. We recently reported the role of visfatin in prostaglandin E(2) (PGE(2)) synthesis in chondrocytes. Here, our aim was to characterize the signaling pathways involved in this response in exploring both the insulin receptor (IR) signaling pathway and Nampt activity. IR was expressed in human and murine chondrocytes, and visfatin triggered Akt phosphorylation in murine chondrocytes. Blocking IR expression with siRNA or activity using the hydroxy-2-naphthalenyl methyl phosphonic acid tris acetoxymethyl ester (HNMPA-(AM)(3)) inhibitor diminished visfatin-induced PGE(2) release in chondrocytes. Moreover, visfatin-induced IGF-1R(-/-) chondrocytes released higher concentration of PGE(2) than IGF-1R(+/+) cells, a finding confirmed with an antibody that blocked IGF-1R. Using RT-PCR, we found that visfatin did not regulate IR expression and that an increased insulin release was also unlikely to be involved because insulin was unable to increase PGE(2) release. Inhibition of Nampt activity using the APO866 inhibitor gradually decreased PGE(2) release, whereas the addition of exogenous nicotinamide increased it. We conclude that the proinflammatory actions of visfatin in chondrocytes involve regulation of IR signaling pathways, possibly through the control of Nampt enzymatic activity.
Collapse
Affiliation(s)
- Claire Jacques
- UR4, Pierre and Marie Curie University, 75252 Paris, France
| | | | | | | | | | | | | |
Collapse
|