1
|
Walters ET. Adaptive mechanisms driving maladaptive pain: how chronic ongoing activity in primary nociceptors can enhance evolutionary fitness after severe injury. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190277. [PMID: 31544606 DOI: 10.1098/rstb.2019.0277] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is considered maladaptive by clinicians because it provides no apparent protective or recuperative benefits. Similarly, evolutionary speculations have assumed that chronic pain represents maladaptive or evolutionarily neutral dysregulation of acute pain mechanisms. By contrast, the present hypothesis proposes that chronic pain can be driven by mechanisms that evolved to reduce increased vulnerability to attack from predators and aggressive conspecifics, which often target prey showing physical impairment after severe injury. Ongoing pain and anxiety persisting long after severe injury continue to enhance vigilance and behavioural caution, decreasing the heightened vulnerability to attack that results from motor impairment and disfigurement, thereby increasing survival and reproduction (fitness). This hypothesis is supported by evidence of animals surviving and reproducing after traumatic amputations, and by complex specializations that enable primary nociceptors to detect local and systemic signs of injury and inflammation, and to maintain low-frequency discharge that can promote ongoing pain indefinitely. Ongoing activity in nociceptors involves intricate electrophysiological and anatomical specializations, including inducible alterations in the expression of ion channels and receptors that produce persistent hyperexcitability and hypersensitivity to chemical signals of injury. Clinically maladaptive chronic pain may sometimes result from the recruitment of this powerful evolutionary adaptation to severe bodily injury. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
2
|
Ackerley R, Watkins RH. Microneurography as a tool to study the function of individual C-fiber afferents in humans: responses from nociceptors, thermoreceptors, and mechanoreceptors. J Neurophysiol 2018; 120:2834-2846. [PMID: 30256737 DOI: 10.1152/jn.00109.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The technique of microneurography-recording neural traffic from nerves in awake humans-has provided us with unrivaled insights into afferent and efferent processes in the peripheral nervous system for over 50 years. We review the use of microneurography to study single C-fiber afferents and provide an overview of the knowledge gained, with views to future investigations. C-fibers have slowly conducting, thin-diameter, unmyelinated axons and make up the majority of the fibers in peripheral nerves (~80%). With the use of microneurography in humans, C-fiber afferents have been differentiated into discrete subclasses that encode specific qualities of stimuli on the skin, and their functional roles have been investigated. Afferent somatosensory information provided by C-fibers underpins various positive and negative affective sensations from the periphery, including mechanical, thermal, and chemical pain (C-nociceptors), temperature (C-thermoreceptors), and positive affective aspects of touch (C-tactile afferents). Insights from microneurographic investigations have revealed the complexity of the C-fiber system, methods for delineating fundamental C-fiber populations in a translational manner, how C-fiber firing can be used to identify nerve deficits in pathological states, and how the responses from C-fibers may be modified to change sensory percepts, including decreasing pain. Understanding these processes may lead to future medical interventions to diagnose and treat C-fiber dysfunction. NEW & NOTEWORTHY The technique of microneurography allows us to directly investigate the functional roles of single C-fiber afferents in awake human beings. Here we outline and discuss the current field of C-fiber research on this heterogeneous population of afferents in healthy subjects, in pathological states, and from a translational perspective. We cover C-fibers encoding touch, temperature, and pain and provide perspectives on the future of C-fiber microneurography investigations in humans.
Collapse
Affiliation(s)
- Rochelle Ackerley
- Aix Marseille University, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France.,Department of Physiology, University of Gothenburg , Gothenburg , Sweden
| | | |
Collapse
|
3
|
Evidence for Increased Magnetic Resonance Imaging Signal Intensity and Morphological Changes in the Brachial Plexus and Median Nerves of Patients With Chronic Arm and Neck Pain Following Whiplash Injury. J Orthop Sports Phys Ther 2018; 48:523-532. [PMID: 29690828 DOI: 10.2519/jospt.2018.7875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Whiplash following a motor vehicle accident can result in chronic neck and arm pain. Patients frequently present with cutaneous hypersensitivities and hypoesthesia, but without obvious clinical signs of nerve injury. T2-weighted magnetic resonance imaging (MRI) has previously been used to identify nerve pathology. Objectives To determine whether there are signs of peripheral nerve pathology on MRI in patients with chronic arm and neck pain following whiplash injury. Methods This cross-sectional study used T2-weighted MRI to examine the brachial plexus and median nerve in patients and age-matched, healthy control subjects. Clinical examination included tests of plexus and nerve trunk mechanical sensitivity. Results The T2 signal intensity was greater in the brachial plexus and median nerve at the wrist in the patient group (mean intensity ratio = 0.52 ± 0.13 and 2.09 ± 0.33, respectively) compared to the control group (mean intensity ratio = 0.45 ± 0.07 and 1.38 ± 0.31, respectively; P<.05). Changes in median nerve morphology were also observed, which included an enlargement (mean area: patient group, 8.05 ± 1.29 mm2; control group, 6.52 ± 1.08 mm2; P<.05) and flattening (mean aspect ratio: patient group, 2.46 ± 0.53; control group, 1.62 ± 0.30; P<.05) at the proximal carpal row. All patients demonstrated signs of nerve trunk mechanical sensitivity. Conclusion These findings suggest that patients with chronic whiplash may have inflammatory changes and/or mild neuropathy, which may contribute to symptoms. J Orthop Sports Phys Ther 2018;48(7):523-532. Epub 24 Apr 2018. doi:10.2519/jospt.2018.7875.
Collapse
|
4
|
Sorkin LS, Eddinger KA, Woller SA, Yaksh TL. Origins of antidromic activity in sensory afferent fibers and neurogenic inflammation. Semin Immunopathol 2018; 40:237-247. [PMID: 29423889 PMCID: PMC7879713 DOI: 10.1007/s00281-017-0669-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
Abstract
Neurogenic inflammation results from the release of biologically active agents from the peripheral primary afferent terminal. This release reflects the presence of releasable pools of active product and depolarization-exocytotic coupling mechanisms in the distal afferent terminal and serves to alter the physiologic function of innervated organ systems ranging from the skin and meninges to muscle, bone, and viscera. Aside from direct stimulation, this biologically important release from the peripheral afferent terminal can be initiated by antidromic activity arising from five anatomically distinct points of origin: (i) afferent collaterals at the peripheral-target organ level, (ii) afferent collaterals arising proximal to the target organ, (iii) from mid-axon where afferents lacking myelin sheaths (C fibers and others following demyelinating injuries) may display crosstalk and respond to local irritation, (iv) the dorsal root ganglion itself, and (v) the central terminals of the afferent in the dorsal horn where local circuits and bulbospinal projections can initiate the so-called dorsal root reflexes, i.e., antidromic traffic in the sensory afferent.
Collapse
Affiliation(s)
- Linda S Sorkin
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA.
| | - Kelly A Eddinger
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Sarah A Woller
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Govea RM, Barbe MF, Bove GM. Group IV nociceptors develop axonal chemical sensitivity during neuritis and following treatment of the sciatic nerve with vinblastine. J Neurophysiol 2017; 118:2103-2109. [PMID: 28701542 DOI: 10.1152/jn.00395.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/21/2023] Open
Abstract
We have previously shown that nerve inflammation (neuritis) and transient vinblastine application lead to axonal mechanical sensitivity in nociceptors innervating deep structures. We also have shown that these treatments reduce axonal transport and have proposed that this leads to functional accumulation of mechanically sensitive channels in the affected part of the axons. Though informing the etiology of mechanically induced pain, axonal mechanical sensitivity does not address the common report of ongoing radiating pain during neuritis, which could be secondary to the provocation of axonal chemical sensitivity. We proposed that neuritis and vinblastine application would induce sensitivities to noxious chemicals and that the number of chemo-sensitive channels would be increased at the affected site. In adult female rats, nerves were either untreated or treated with complete Freund's adjuvant (to induce neuritis) or vinblastine. After 3-7 days, dorsal root teased fiber recordings were taken from group IV neurons with axons within the sciatic nerve. Sciatic nerves were injected intraneurally with a combination of noxious inflammatory chemicals. Whereas no normal sciatic axons responded to this stimulus, 80% and 38% of axons responded in the neuritis and vinblastine groups, respectively. In separate experiments, sciatic nerves were partially ligated and treated with complete Freund's adjuvant or vinblastine (with controls), and after 3-5 days were immunolabeled for the histamine H3 receptor. The results support that both neuritis and vinblastine treatment reduce transport of the histamine H3 receptor. The finding that nociceptor axons can develop ectopic chemical sensitivity is consistent with ongoing radiating pain due to nerve inflammation.NEW & NOTEWORTHY Many patients suffer ongoing pain with no local pathology or apparent nerve injury. We show that nerve inflammation and transient application of vinblastine induce sensitivity of group IV nociceptor axons to a mixture of endogenous inflammatory chemicals. We also show that the same conditions reduce the axonal transport of the histamine H3 receptor. The results provide a mechanism for ongoing nociception from focal nerve inflammation or pressure without overt nerve damage.
Collapse
Affiliation(s)
- Rosann M Govea
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, Maine; and
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Geoffrey M Bove
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, Maine; and
| |
Collapse
|
6
|
Bove GM. A model for radiating leg pain of endometriosis. J Bodyw Mov Ther 2016; 20:931-936. [PMID: 27814877 DOI: 10.1016/j.jbmt.2016.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 01/03/2023]
Abstract
Endometriosis is a prevalent female health disorder that often leads to back pain and radiating leg pain. Patients with such pain often seek care from multiple health care professionals, including manual therapists. We hypothesized that endometrioma can induce nerve inflammation thus the radiating leg pain that often accompanies endometriosis. To model sciatic endometriosis in female Wistar rats, a section of uterine horn was autotransplanted to the sciatic nerve. Uterus sections with the endometrium removed and autotransplanted to the sciatic nerve served as controls. After 1, 3, and 15 months the nerves were harvested and processed for immune cell presence and for neural elements. Control nerves were harvested after 4 months. All autotransplants survived, resulting in a fusion of the uterus sections to the nerves. Macroscopically, turgid cysts apposed to the nerves characterized the complexes. Microscopically, the complexes contained recruited macrophages, indicating persistent inflammation, and were innervated by small diameter axons. Only 1 of 8 control rats developed a small cyst, presumably due to residual endometrium. The persistent immune response and innervation suggest the nerve-uterus complexes as sources of inflammation and persistent neural discharge, and thus pain. This model could shed light upon the radiating leg pain that often accompanies endometriosis. Manual therapists should be aware of the possibility of endometriosis causing symptoms and examination findings that mimic musculoskeletal etiologies.
Collapse
Affiliation(s)
- Geoffrey M Bove
- University of New England College of Osteopathic Medicine, Biddeford, ME, USA.
| |
Collapse
|
7
|
Barbe MF, Gallagher S, Massicotte VS, Tytell M, Popoff SN, Barr-Gillespie AE. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet Disord 2013; 14:303. [PMID: 24156755 PMCID: PMC3924406 DOI: 10.1186/1471-2474-14-303] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/22/2013] [Indexed: 12/01/2022] Open
Abstract
Background We examined the relationship of musculoskeletal risk factors underlying force and repetition on tissue responses in an operant rat model of repetitive reaching and pulling, and if force x repetition interactions were present, indicative of a fatigue failure process. We examined exposure-dependent changes in biochemical, morphological and sensorimotor responses occurring with repeated performance of a handle-pulling task for 12 weeks at one of four repetition and force levels: 1) low repetition with low force, 2) high repetition with low force, 3) low repetition with high force, and 4) high repetition with high force (HRHF). Methods Rats underwent initial training for 4–6 weeks, and then performed one of the tasks for 12 weeks, 2 hours/day, 3 days/week. Reflexive grip strength and sensitivity to touch were assayed as functional outcomes. Flexor digitorum muscles and tendons, forelimb bones, and serum were assayed using ELISA for indicators of inflammation, tissue stress and repair, and bone turnover. Histomorphometry was used to assay macrophage infiltration of tissues, spinal cord substance P changes, and tissue adaptative or degradative changes. MicroCT was used to assay bones for changes in bone quality. Results Several force x repetition interactions were observed for: muscle IL-1alpha and bone IL-1beta; serum TNFalpha, IL-1alpha, and IL-1beta; muscle HSP72, a tissue stress and repair protein; histomorphological evidence of tendon and cartilage degradation; serum biomarkers of bone degradation (CTXI) and bone formation (osteocalcin); and morphological evidence of bone adaptation versus resorption. In most cases, performance of the HRHF task induced the greatest tissue degenerative changes, while performance of moderate level tasks induced bone adaptation and a suggestion of muscle adaptation. Both high force tasks induced median nerve macrophage infiltration, spinal cord sensitization (increased substance P), grip strength declines and forepaw mechanical allodynia by task week 12. Conclusions Although not consistent in all tissues, we found several significant interactions between the critical musculoskeletal risk factors of force and repetition, consistent with a fatigue failure process in musculoskeletal tissues. Prolonged performance of HRHF tasks exhibited significantly increased risk for musculoskeletal disorders, while performance of moderate level tasks exhibited adaptation to task demands.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500 North Broad St, Philadelphia 19140, PA, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Chronic pain affects as many as one in five people. A proportion of patients with symptoms of neuropathic -pain do not have clinical signs of any obvious tissue or nerve injury. Such patients include those with diffuse limb pain, back pain, and complex regional pain syndrome type 1. These patients remain a clinical enigma. However, through the development of the neuritis model, it has become apparent that local nerve inflammation in the absence of gross pathology (i.e., axonal degeneration and demyelination) may underlie part of the mechanisms of pain. In this chapter, we describe a method to induce the neuritis model. We also describe in detail a reliable method to test for mechanical allodynia and heat hyperalgesia. Data that demonstrates the potential benefits of the neuroprotective agent ARA290 in reducing pain behavior in the neuritis model are presented.
Collapse
|
9
|
Dauch JR, Bender DE, Luna-Wong LA, Hsieh W, Yanik BM, Kelly ZA, Cheng HT. Neurogenic factor-induced Langerhans cell activation in diabetic mice with mechanical allodynia. J Neuroinflammation 2013; 10:64. [PMID: 23672639 PMCID: PMC3685572 DOI: 10.1186/1742-2094-10-64] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/25/2013] [Indexed: 01/09/2023] Open
Abstract
Background Langerhans cells (LCs) are antigen-presenting dendritic cells located in the skin. It has been reported that LC activation is associated with painful diabetic neuropathy (PDN); however, the mechanism of LC activation is still unclear. Methods The db/db mouse, a rodent model of PDN, was used to study the roles of LCs in the development of PDN in type 2 diabetes. Hind foot pads from db/db and control db/+ mice from 5 to 24 weeks of age (encompassing the period of mechanical allodynia development and its abatement) were collected and processed for immunohistochemistry studies. LCs were identified with immunohistochemistry using an antibody against CD207 (Langerin). The intraepidermal nerve fibers and subepidermal nerve plexus were identified by immunohistochemistry of protein gene product 9.5 (PGP 9.5) and tropomyosin-receptor kinase (Trk) A, the high affinity nerve growth factor receptor. Results CD207-positive LCs increased in the db/db mouse during the period of mechanical allodynia, from 8 to 10 weeks of age, in both the epidermis and subepidermal plexus. At 16 weeks of age, when mechanical allodynia diminishes, LC populations were reduced in the epidermis and subepidermal plexus. Epidermal LCs (ELCs) were positive for Trk A. Subepidermal LCs (SLCs) were positive for CD68, suggesting that they are immature LCs. Additionally, these SLCs were positive for the receptor of advanced glycation end products (RAGE) and were in direct contact with TNF-α-positive nerve fibers in the subepidermal nerve plexus during the period of mechanical allodynia. Intrathecal administration of SB203580, a p38 kinase inhibitor, significantly reduced mechanical allodynia, TNF-α expression in the subepidermal plexus, and increased both ELC and SLC populations during the period of mechanical allodynia. Conclusions Our data support the hypothesis that increased LC populations in PDN are activated by p38-dependent neurogenic factors and may be involved in the pathogenesis of PDN.
Collapse
Affiliation(s)
- Jacqueline R Dauch
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Pulman KGT, Smith M, Mengozzi M, Ghezzi P, Dilley A. The erythropoietin-derived peptide ARA290 reverses mechanical allodynia in the neuritis model. Neuroscience 2012; 233:174-83. [PMID: 23262243 DOI: 10.1016/j.neuroscience.2012.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/14/2012] [Accepted: 12/11/2012] [Indexed: 01/28/2023]
Abstract
Studies on the neuritis model suggest that in many patients with neuropathic pain, symptoms may be due to nerve inflammation rather than frank nerve injury. Treatments for these patients are often ineffective. The neuroprotective and hematopoietic agent erythropoietin (EPO) has been shown to reverse pain behaviors in nerve injury models and therefore may be of therapeutic benefit. However, EPO can cause thrombosis. ARA290 is an analog of EPO that has the neuroprotective activities of EPO without stimulating hematopoiesis. The present study has examined the effects of ARA290 on pain behavior in the neuritis model. Following neuritis induction, 30 or 120 μg/kg ARA290 or saline vehicle was injected intraperitoneally into rats daily from day 1 post surgery. Animals were assessed for mechanical allodynia and heat hyperalgesia. Levels of the cytokine tumor necrosis factor-α (TNF-α) and chemokine (CC motif) ligand 2 (CCL2) mRNA were also assessed using polymerase chain reaction. Vehicle-treated neuritis animals (n=20) developed signs of mechanical allodynia and heat hyperalgesia that reached a maximum on day 4 and 3 of testing, respectively. Treatment with either 30 (n=11) or 120 μg/kg ARA290 (n=9) prevented the development of mechanical allodynia. However, ARA290 did not significantly affect heat hyperalgesia. There was no significant difference between the effects of each drug dose (p<0.05, unpaired t test comparing area under the curve for mechanical allodynia). The levels of CCL2 and TNF-α mRNA in the nerve and Gelfoam were not significantly different following 120 μg/kg ARA290 treatment (n=3-7) compared to vehicle-treated animals (n=3-7; p=0.24; unpaired t tests). In summary, ARA290 may be beneficial in the treatment of neuropathic pain symptoms where signs of nerve injury are absent on clinical assessment. The mechanisms of action do not appear to involve the inhibition of TNF-α or CCL2 production.
Collapse
Affiliation(s)
- K G T Pulman
- Division of Clinical and Laboratory Investigation, Brighton and Sussex Medical School, Medical Research Building, University of Sussex, Falmer, Brighton BN1 9PS, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Endogenous Mechanisms Underlying the Activation and Sensitization of Meningeal Nociceptors: The Role of Immuno-Vascular Interactions and Cortical Spreading Depression. Curr Pain Headache Rep 2012; 16:270-7. [PMID: 22328144 DOI: 10.1007/s11916-012-0255-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Richards N, Batty T, Dilley A. CCL2 has similar excitatory effects to TNF-α in a subgroup of inflamed C-fiber axons. J Neurophysiol 2011; 106:2838-48. [PMID: 21865436 PMCID: PMC3234089 DOI: 10.1152/jn.00183.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve inflammation can cause neuronal excitability changes that have been implicated in the pathogenesis of chronic pain. Although the neuroimmune interactions that lead to such physiological changes are unclear, in vitro studies suggest that the chemokine CCL2 may be involved. This in vivo study examines the effects of CCL2 on untreated and inflamed neurons and compares its effects with those of TNF-α. Extracellular recordings were performed in the anesthetized rat on isolated neurons with C-fiber axons. On untreated neurons, CCL2, as well as TNF-α, had negligible effects. Following neuritis, both cytokines transiently caused the firing of action potentials in 27–30% of neurons, which were either silent or had background (ongoing) activity. The neurons with ongoing activity, which responded to either cytokine, had significantly slower baseline firing rates {median = 3.0 spikes/min [interquartile range (IQR) 3.0]} compared with the nonresponders [median = 24.4 spikes/min (IQR 24.6); P < 0.001]. In an additional group, 26–27% of neurons, which were sensitized due to repeated noxious mechanical stimulation of the periphery, also responded to the effects of both cytokines. Neither cytokine caused axons to become mechanically sensitive. Immunohistochemistry confirmed that the cognate CCL2 receptor, CCR2, is mainly expressed on glia and is therefore not likely to be an axonal target for CCL2 following inflammation. In contrast, the cognate TNF-α receptor (TNFR), TNFR1, was present on untreated and inflamed neurons. In summary, CCL2 can excite inflamed C-fiber neurons with similar effects to TNF-α, although the underlying mechanisms may be different. The modulatory effects of both cytokines are limited to a subgroup of neurons, which may be subtly inflamed.
Collapse
Affiliation(s)
- Natalie Richards
- Division of Clinical and Laboratory Investigation, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | | | | |
Collapse
|
13
|
Gupta SC, Kim JH, Kannappan R, Reuter S, Dougherty PM, Aggarwal BB. Role of nuclear factor κB-mediated inflammatory pathways in cancer-related symptoms and their regulation by nutritional agents. Exp Biol Med (Maywood) 2011; 236:658-71. [PMID: 21565893 DOI: 10.1258/ebm.2011.011028] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a disease characterized by dysregulation of multiple genes and is associated with symptoms such as cachexia, anorexia, fatigue, depression, neuropathic pain, anxiety, cognitive impairment, sleep disorders and delirium (acute confusion state) in medically ill patients. These symptoms are caused by either the cancer itself or the cancer treatment. During the past decade, increasing evidence has shown that the dysregulation of inflammatory pathways contributes to the expression of these symptoms. Cancer patients have been found to have higher levels of proinflammatory cytokines such as interleukin-6. The nuclear factor (NF)-κB is a major mediator of inflammatory pathways. Therefore, anti-inflammatory agents that can modulate the NF-κB activation and inflammatory pathways may have potential in improving cancer-related symptoms in patients. Because of their multitargeting properties, low cost, low toxicity and immediate availability, natural agents have gained considerable attention for prevention and treatment of cancer-related symptoms. How NF-κB and inflammatory pathways contribute to cancer-related symptoms is the focus of this review. We will also discuss how nutritional agents such as curcumin, genistein, resveratrol, epigallocatechin gallate and lycopene can modulate inflammatory pathways and thereby reduce cancer-related symptoms in patients.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
14
|
Nociceptors, Pain, and Spinal Manipulation. Pain Manag 2011. [DOI: 10.1016/b978-1-4377-0721-2.00137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Zhang XC, Kainz V, Burstein R, Levy D. Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions. Pain 2010; 152:140-149. [PMID: 21036476 DOI: 10.1016/j.pain.2010.10.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 09/24/2010] [Accepted: 10/04/2010] [Indexed: 11/18/2022]
Abstract
The proinflammatory cytokine TNF-α has been shown to promote activation and sensitization of primary afferent nociceptors. The downstream signaling processes that play a role in promoting this neuronal response remain however controversial. Increased TNF-α plasma levels during migraine attacks suggest that local interaction between this cytokine and intracranial meningeal nociceptors plays a role in promoting the headache. Here, using in vivo single unit recording in the trigeminal ganglia of anesthetized rats, we show that meningeal TNF-α action promotes a delayed mechanical sensitization of meningeal nociceptors. Using immunohistochemistry, we provide evidence for non-neuronal localization of the TNF receptors TNFR1 to dural endothelial vascular cells and TNFR2 to dural resident macrophages as well as to some CGRP-expressing dural nerve fibers. We also demonstrate that meningeal vascular TNFR1 is co-localized with COX-1 while the perivascular TNFR2 is co-expressed with COX-2. We further report here for the first time that TNF-α evoked sensitization of meningeal nociceptors is dependent upon local action of cyclooxygenase (COX). Finally, we show that local application of TNF-α to the meninges evokes activation of the p38 MAP kinase in dural blood vessels that also express TNFR1 and that pharmacological blockade of p38 activation inhibits TNF-α evoked sensitization of meningeal nociceptors. Our study suggests that meningeal action of TNF-α could play an important role in the genesis of intracranial throbbing headaches such as migraine through a mechanism that involves at least part activation of non-neuronal TNFR1 and TNFR2 and downstream activation of meningeal non-neuronal COX and the p38 MAP kinase.
Collapse
Affiliation(s)
- Xi-Chun Zhang
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess, Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
16
|
Hagenacker T, Czeschik JC, Schäfers M, Büsselberg D. Sensitization of voltage activated calcium channel currents for capsaicin in nociceptive neurons by tumor-necrosis-factor-alpha. Brain Res Bull 2010; 81:157-63. [PMID: 19818386 DOI: 10.1016/j.brainresbull.2009.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/16/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
Abstract
It is known that application of tumor-necrosis-factor-alpha (TNF-alpha) sensitizes neuronal calcium channels for heat stimuli in rat models of neuropathic pain. This study examines whether TNF-alpha modulates the capsaicin-induced effects after transient receptor potential vanilloid (TRPV)-1 receptor activation on voltage activated calcium channel currents (I(Ca(V))). TRPV-1 receptors are activated by heat and play an important role in the pathogenesis of thermal hyperalgesia in neuropathic pain syndromes, while voltage activated channels are essential for transmission of neuronal signals. Eliciting I(Ca(V)) in DRG neurons of rats by a depolarization from the resting potential to 0 mV, TNF-alpha (100 ng/ml) reduces I(Ca(V)) by 16.9+/-2.2%, while capsaicin (0.1 microM) decreases currents by 27+/-4.3%. Pre-application of TNF-alpha (100 ng/ml) for 24h results in a sensitization of I(Ca(V)) to capsaicin (0.1 microM) with a reduction of 42.8+/-4.4% mediated by TRPV-1. While L-type (36.6+/-5.2%) and P/Q-type currents (35.6+/-4.1%) are also sensitized by TRPV-1 activation, N-type channel currents are most sensitive (74.5+/-7.3%). The capsaicin-induced shift towards the hyperpolarizing voltage range does not occur when TNF-alpha is applied. Summarizing, TNF-alpha sensitizes nociceptive neurons for capsaicin.
Collapse
Affiliation(s)
- T Hagenacker
- Universitätsklinikum Essen, Klinik für Neurologie, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
17
|
Jang J, Lee B, Nam T, Kim J, Kim D, Leem J. Peripheral contributions to the mechanical hyperalgesia following a lumbar 5 spinal nerve lesion in rats. Neuroscience 2010; 165:221-32. [DOI: 10.1016/j.neuroscience.2009.09.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/22/2009] [Accepted: 09/30/2009] [Indexed: 02/04/2023]
|
18
|
Bove GM, Weissner W, Barbe MF. Long lasting recruitment of immune cells and altered epi-perineurial thickness in focal nerve inflammation induced by complete Freund's adjuvant. J Neuroimmunol 2009; 213:26-30. [PMID: 19564053 DOI: 10.1016/j.jneuroim.2009.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 05/27/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Immune-mediated nerve inflammation is involved in many painful states in humans, and causes axonal and behavioral changes in rats. While models of nerve inflammation have been characterized using electrophysiological and behavioral methods, the presence of immune cells has not been fully assessed. We inflamed rat sciatic nerves using complete Freund's adjuvant and quantified the presence of ED-1 macrophages and TCR-alphabeta T-cells for up to 12 weeks. We report that these immune cells are prominent extraneurally up to 12 weeks following the induction of inflammation. This observation does not easily correlate with inflammation-induced axonal mechanical sensitivity, which peaks within 1 week and is resolved after 8 weeks.
Collapse
Affiliation(s)
- Geoffrey M Bove
- Dept. of Research Administration, University of Southern Maine, 178 Science Building, P.O. Box 9300, Portland, ME 04104-9300, USA.
| | | | | |
Collapse
|
19
|
Niu YL, Guo Z, Zhou RH. Up-regulation of TNF-alpha in neurons of dorsal root ganglia and spinal cord during coronary artery occlusion in rats. Cytokine 2009; 47:23-9. [PMID: 19398208 DOI: 10.1016/j.cyto.2009.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/22/2009] [Accepted: 04/01/2009] [Indexed: 11/16/2022]
Abstract
Knowledge about the physiologic and pathophysiologic roles of tumor necrosis factor-alpha (TNF-alpha) in acute myocardial ischemia/infarction is still very limited. Evidence implies that TNF-alpha is involved in neural activity including nociception in peripheral and central nervous system. Current study was designed to examine the association of change in TNF-alpha and its mRNA in upper thoracic dorsal root ganglia and spinal cord (T1-T5) during acute myocardial ischemia/infarction induced by coronary artery occlusion (CAO) in rats. The experiment was performed using immunohistochemistry, enzyme immunoassay, in situ hybridization and real time reverse transcription-polymerase chain reaction techniques. At 0.5h, 1h, 3h and 6h of acute myocardial ischemia/infarction, TNF-alpha was mainly up-regulated in a sub-population of small and medium neurons and satellite cells in the dorsal root ganglia (DRG) and spinal neurons, mainly in laminae I, II and V, VI of the spinal dorsal horn of upper thoracic segments. The up-regulation of TNF-alpha mRNA was observed at 30min of CAO, which was statistically significant, compared with the control and the sham surgery groups (P<0.01). The TNF-alpha mRNA was located in the satellite cells and afferent neurons of the DRG and spinal neurons, located mainly in laminae II-VI. The findings indicate an association of up-regulation of TNF-alpha in DRG and spinal cord with acute myocardial ischemia/infarction, suggesting that TNF-alpha may be associated with the nociception initiated by acute myocardial ischemia/infarction, while the pathophysiological role needs to be studied.
Collapse
Affiliation(s)
- Yan-Lan Niu
- Department of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | | | | |
Collapse
|
20
|
Elliott MB, Barr AE, Clark BD, Amin M, Amin S, Barbe MF. High force reaching task induces widespread inflammation, increased spinal cord neurochemicals and neuropathic pain. Neuroscience 2008; 158:922-31. [PMID: 19032977 DOI: 10.1016/j.neuroscience.2008.10.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/27/2008] [Accepted: 10/29/2008] [Indexed: 01/30/2023]
Abstract
Repetitive strain injuries (RSI), which include several musculoskeletal disorders and nerve compression injuries, are associated with performance of repetitive and forceful tasks. In this study, we examined in young, adult Sprague-Dawley rats, the effects of performing a voluntary, moderate repetition, high force (MRHF; nine reaches/min; 60% maximum pulling force) task for 12 weeks on motor behavior and nerve function, inflammatory responses in forearm musculoskeletal and nerve tissues and serum, and neurochemical immunoexpression in cervical spinal cord dorsal horns. We observed no change in reach rate, but reduced voluntary participation and grip strength in week 12, and increased cutaneous sensitivity in weeks 6 and 12, the latter indicative of mechanical allodynia. Nerve conduction velocity (NCV) decreased 15% in the median nerve in week 12, indicative of low-grade nerve compression. ED-1 cells increased in distal radius and ulna in week 12, and in the median nerve and forearm muscles and tendons in weeks 6 and 12. Cytokines IL-1alpha, IL-1beta, TNF-alpha, and IL-10 increased in distal forearm bones in week 12, while IL-6 increased in tendon in week 12. However, serum analysis revealed only increased TNF-alpha in week 6 and macrophage inflammatory protein 3a (MIP3a) in weeks 6 and 12. Lastly, Substance P and neurokinin-1 were both increased in weeks 6 and 12 in the dorsal horns of cervical spinal cord segments. These results show that a high force, but moderate repetition task, induced declines in motor and nerve function as well as peripheral and systemic inflammatory responses (albeit the latter was mild). The peripheral inflammatory responses were associated with signs of central sensitization (mechanical allodynia and increased neurochemicals in spinal cord dorsal horns).
Collapse
Affiliation(s)
- M B Elliott
- Department of Physical Therapy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead to new strategies for the management of intractable chronic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan,
| |
Collapse
|
22
|
Bove GM, Swenson RS. Nociceptors and Peripheral Sources of Pain. Pain Manag 2007. [DOI: 10.1016/b978-0-7216-0334-6.50133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Davies AL, Hayes KC, Shi R. Recombinant human TNFalpha induces concentration-dependent and reversible alterations in the electrophysiological properties of axons in mammalian spinal cord. J Neurotrauma 2006; 23:1261-73. [PMID: 16928184 DOI: 10.1089/neu.2006.23.1261] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Increased expression of the proinflammatory cytokine tumor necrosis factor-alpha (TNFalpha) and its soluble receptors is evident within the central nervous system (CNS) following traumatic brain injury and spinal cord injury. TNFalpha is integral to the acute inflammatory cascade that follows neurotrauma and has been shown to have both beneficial and detrimental properties. We examined the effects of varying concentrations (1-5000 ng/mL) of recombinant human TNFalpha (rhTNFalpha) on select electrophysiological properties of excised guinea pig spinal cord tissue. Pulsed electrical stimuli (0.33 Hz) were delivered to strips of isolated ventral white matter in a double sucrose gap chamber. Recordings were made of the compound action potential (CAP) and membrane potential before, during, and after bathing the tissue with rhTNFalpha for 30 min. Increasing concentrations of rhTNFalpha yielded progressively greater reductions in amplitude of the CAP that were temporally associated with depolarization of the resting compound membrane potential. These effects were largely reversed on washout of rhTNFalpha and were not present when heat-denatured rhTNFalpha was introduced. The results provide evidence that elevated concentrations of TNFalpha induce reversible depolarization of the compound membrane potential and reduction in CAP amplitude, sometimes to the point of extinction of the CAP, suggestive of impaired axonal conduction. These observations point to a new mechanism of immune-mediated central conduction deficit. Cytokine-induced alterations in membrane properties and axonal conduction may contribute to neurological deficits following CNS injury by compounding trauma-induced myelinopathy and axonopathy.
Collapse
Affiliation(s)
- Andrew L Davies
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
24
|
Bennett DS, Brookoff D. Complex Regional Pain Syndromes (Reflex Sympathetic Dystrophy and Causalgia) and Spinal Cord Stimulation. PAIN MEDICINE 2006. [DOI: 10.1111/j.1526-4637.2006.00124.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Inoue K. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 2005; 109:210-26. [PMID: 16169595 DOI: 10.1016/j.pharmthera.2005.07.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 07/11/2005] [Indexed: 12/18/2022]
Abstract
Microglia play an important role as immune cells in the central nervous system (CNS). Microglia are activated in threatened physiological homeostasis, including CNS trauma, apoptosis, ischemia, inflammation, and infection. Activated microglia show a stereotypic, progressive series of changes in morphology, gene expression, function, and number and produce and release various chemical mediators, including proinflammatory cytokines that can produce immunological actions and can also act on neurons to alter their function. Recently, a great deal of attention is focusing on the relation between activated microglia through adenosine 5'-triphosphate (ATP) receptors and neuropathic pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes, or infection. This type of pain can be so severe that even light touching can be intensely painful and it is generally resistant to currently available treatments. There is abundant evidence that extracellular ATP and microglia have an important role in neuropathic pain. The expression of P2X4 receptor, a subtype of ATP receptors, is enhanced in spinal microglia after peripheral nerve injury model, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain. Several cytokines such as interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) in the dorsal horn are increased after nerve lesion and have been implicated in contributing to nerve-injury pain, presumably by altering synaptic transmission in the CNS, including the spinal cord. Nerve injury also leads to persistent activation of p38 mitogen-activated protein kinase (MAPK) in microglia. An inhibitor of this enzyme reverses mechanical allodynia following spinal nerve ligation (SNL). ATP is able to activate MAPK, leading to the release of bioactive substances, including cytokines, from microglia. Thus, diffusible factors released from activated microglia by the stimulation of purinergic receptors may have an important role in the development of neuropathic pain. Understanding the key roles of ATP receptors, including P2X4 receptors, in the microglia may lead to new strategies for the management of neuropathic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
26
|
|
27
|
Cata JP, Weng HR, Dougherty PM. Cyclooxygenase inhibitors and thalidomide ameliorate vincristine-induced hyperalgesia in rats. Cancer Chemother Pharmacol 2004; 54:391-7. [PMID: 15235822 DOI: 10.1007/s00280-004-0809-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
In this study ibuprofen (50.0 mg/kg, i.p.), rofecoxib (10.0 mg/kg, i.p.) and thalidomide (50.0 mg/kg, oral) were shown to prevent vincristine-induced mechanical hyperalgesia. Sprague-Dawley rats were injected every other day with vincristine (0.1 mg/kg) over 13 days. The animals were cotreated daily with vehicle (saline), ibuprofen, rofecoxib or thalidomide throughout the period of vincristine treatment. Mechanical withdrawal threshold to punctuate and radiant heat stimuli were determined prior to and then on alternate days throughout the treatment period. Vincristine vehicle-treated animals developed marked mechanical hyperalgesia from day 5 of chemotherapy and this lasted until the end of the experiment. Thermal thresholds were not altered by the administration of vincristine vehicle. Animals in the vincristine vehicle group neither gained nor lost weight during the treatment period. All three active drugs showed an antihyperalgesic effect on the responses to mechanical stimulation of the hind paw that was significant from day 5 for ibuprofen and thalidomide and from day 7 for rofecoxib. Thermal thresholds increased after the administration of both the NSAIDs and thalidomide. Rofecoxib was the only drug to show any beneficial effect in protecting the animals from failure to gain body weight.
Collapse
Affiliation(s)
- J P Cata
- Department of Symptom Research, The Division of Anesthesiology and Critical Care Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, PO Box 42, Houston 77030, USA
| | | | | |
Collapse
|
28
|
Abstract
The use of complementary and alternative medicine has dramatically increased in the United States. The effects of select dietary constituents in animal models and clinical pain states are reviewed. Specifically, the antinociceptive and analgesic properties of soybeans, sucrose, and tart cherries are discussed. The potential actions of dietary constituents as antiinflammatory and antioxidant agents are presented.
Collapse
Affiliation(s)
- Jill M Tall
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University Hospital, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
29
|
Bove GM, Ransil BJ, Lin HC, Leem JG. Inflammation induces ectopic mechanical sensitivity in axons of nociceptors innervating deep tissues. J Neurophysiol 2003; 90:1949-55. [PMID: 12724363 DOI: 10.1152/jn.00175.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A variety of seemingly diverse pain syndromes are characterized by movement-induced pain radiating in the distribution of a peripheral nerve or nerve root. This could be explained by the induction of ectopic mechanical sensitivity in intact sensory axons. Here we show that inflammation led to mechanical sensitivity of the axons of a subset of mechanically sensitive primary sensory neurons. Dorsal root recordings were made from 194 mechanically sensitive neurons that innervated deep and cutaneous structures and had C, Adelta, and Aalphabeta conduction velocities. No axons of any category were mechanically sensitive in control experiments. However, the axons of neurons innervating deep structures and having C- or Adelta-conduction velocities became mechanically sensitive during the neuritis, and also exhibited an increased incidence of spontaneous discharge. The incidence of mechanical sensitivity followed a distinct time course. In some cases, paw withdrawal thresholds were obtained after neuritis induction. The time course of the resultant hypersensitivity was not directly related to the time course of the axonal mechanical sensitivity. Ectopic axonal mechanical sensitivity could explain some types of radiating, nerve-related pain coexisting with diseases of seemingly diverse etiologies.
Collapse
Affiliation(s)
- Geoffrey M Bove
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
30
|
Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 2003. [PMID: 12684490 DOI: 10.1523/jneurosci.23-07-03028.2003] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF) is upregulated after nerve injury, causes pain on injection, and its blockade reduces pain behavior resulting from nerve injury; thus it is strongly implicated in neuropathic pain. We investigated responses of intact and nerve-injured dorsal root ganglia (DRG) neurons to locally applied TNF using parallel in vivo and in vitro paradigms. In vivo, TNF (0.1-10 pg/ml) or vehicle was injected into L5 DRG in naive rats and in rats that had received L5 and L6 spinal nerve ligation (SNL) immediately before injection. In naive rats, TNF, but not vehicle, elicited long-lasting allodynia. In SNL rats, subthreshold doses of TNF synergized with nerve injury to elicit faster onset of allodynia and spontaneous pain behavior. Tactile allodynia was present in both injured and adjacent uninjured (L4) dermatomes. Preemptive treatment with the TNF antagonist etanercept reduced SNL-induced allodynia by almost 50%. In vitro, the electrophysiological responses of naive, SNL-injured, or adjacent uninjured DRG to TNF (0.1-1000 pg/ml) were assessed by single-fiber recordings of teased dorsal root microfilaments. In vitro perfusion of TNF (100-1000 pg/ml) to naive DRG evoked short-lasting neuronal discharges. In injured DRG, TNF, at much lower concentrations, elicited earlier onset, markedly higher, and longer-lasting discharges. TNF concentrations that were subthreshold in naive DRG also elicited high-frequency discharges when applied to uninjured, adjacent DRG. We conclude that injured and adjacent uninjured DRG neurons are sensitized to TNF after SNL. Sensitization to endogenous TNF may be essential for the development and maintenance of neuropathic pain.
Collapse
|
31
|
Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 2002; 82:981-1011. [PMID: 12270950 DOI: 10.1152/physrev.00011.2002] [Citation(s) in RCA: 514] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic pain can occur after peripheral nerve injury, infection, or inflammation. Under such neuropathic pain conditions, sensory processing in the affected body region becomes grossly abnormal. Despite decades of research, currently available drugs largely fail to control such pain. This review explores the possibility that the reason for this failure lies in the fact that such drugs were designed to target neurons rather than immune or glial cells. It describes how immune cells are a natural and inextricable part of skin, peripheral nerves, dorsal root ganglia, and spinal cord. It then examines how immune and glial activation may participate in the etiology and symptomatology of diverse pathological pain states in both humans and laboratory animals. Of the variety of substances released by activated immune and glial cells, proinflammatory cytokines (tumor necrosis factor, interleukin-1, interleukin-6) appear to be of special importance in the creation of peripheral nerve and neuronal hyperexcitability. Although this review focuses on immune modulation of pain, the implications are pervasive. Indeed, all nerves and neurons regardless of modality or function are likely affected by immune and glial activation in the ways described for pain.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado.
| | | |
Collapse
|