1
|
Illanes-González J, Flores-Muñoz C, Vitureira N, Ardiles ÁO. Pannexin 1 channels: A bridge between synaptic plasticity and learning and memory processes. Neurosci Biobehav Rev 2025; 174:106173. [PMID: 40274202 DOI: 10.1016/j.neubiorev.2025.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
The Pannexin 1 channel is a membrane protein widely expressed in various vertebrate cell types, including microglia, astrocytes, and neurons within the central nervous system. Growing research has demonstrated the significant involvement of Panx1 in synaptic physiology, such as its contribution to long-term synaptic plasticity, with a particular focus on the hippocampus, an essential structure for learning and memory. Investigations studying the role of Panx1 in synaptic plasticity have utilized knockout animal models and channel inhibition techniques, revealing that the absence or blockade of Panx1 channels in this region promotes synaptic potentiation, dendritic arborization, and spine formation. Despite substantial progress, the precise mechanism by which Panx1 regulates synaptic plasticity remains to be determined. Nevertheless, evidence suggests that Panx1 may exert its influence by releasing signaling molecules, such as adenosine triphosphate (ATP), or through the clearance of endocannabinoids (eCBs). This review aims to comprehensively explore the current literature on the role of Panx1 in synapses. By examining relevant articles, we seek to enhance our understanding of Panx1's contribution to synaptic fundamental processes and the potential implications for cognitive function.
Collapse
Affiliation(s)
- Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Nathalia Vitureira
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Najafi L, Moasses Z, Bahmanpour S. The marijuana, cannabinoids, and female reproductive system. J Appl Toxicol 2025; 45:47-60. [PMID: 38754862 DOI: 10.1002/jat.4630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The marijuana is considered as widely used recreational illicit drug that has become popular among women of reproductive age. It is believed that the marijuana use may have negative impacts on the female fertility. However, the exact mechanisms of its reproductive toxicity remain unclear. The studies suggest that the exogenous cannabinoids may interfere with endocannabinoid system and disrupt hypothalamic-pituitary-ovary axis. Consequently, it impacts the female fertility by disruption of normal secretion of ovarian sex hormones and menstrual cycles. However, other studies have shown that medical marijuana is useful analgesic agent for pain management. But, given that the wide range of cannabinoids side effects are reported, it seems that caution should be taken in the recreational use of these substances. In summary, this article aimed to review the possible impacts of marijuana and its derivatives on the main female reproductive organs and embryonic growth and development.
Collapse
Affiliation(s)
- Leila Najafi
- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zia Moasses
- Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Zarei I, Eloranta AM, Klåvus A, Väistö J, Lehtonen M, Mikkonen S, Koistinen VM, Sallinen T, Haapala EA, Lintu N, Soininen S, Haikonen R, Atalay M, Schwab U, Auriola S, Kolehmainen M, Hanhineva K, Lakka TA. Eight-year diet and physical activity intervention affects serum metabolites during childhood and adolescence: A nonrandomized controlled trial. iScience 2024; 27:110295. [PMID: 39055945 PMCID: PMC11269805 DOI: 10.1016/j.isci.2024.110295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term lifestyle interventions in childhood and adolescence can significantly improve cardiometabolic health, but the underlying molecular mechanisms remain poorly understood. To address this knowledge gap, we conducted an 8-year diet and physical activity intervention in a general population of children. The research revealed that the intervention influenced 80 serum metabolites over two years, with 17 metabolites continuing to be affected after eight years. The intervention primarily impacted fatty amides, including palmitic amide, linoleamide, oleamide, and others, as well as unsaturated fatty acids, acylcarnitines, phospholipids, sterols, gut microbiota-derived metabolites, amino acids, and purine metabolites. Particularly noteworthy were the pronounced changes in serum fatty amides. These serum metabolite alterations could represent molecular mechanisms responsible for the observed benefits of long-term lifestyle interventions on cardiometabolic and overall health since childhood. Understanding these metabolic changes may provide valuable insights into the prevention of cardiometabolic and other non-communicable diseases since childhood.
Collapse
Affiliation(s)
- Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Aino-Maija Eloranta
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juuso Väistö
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville M. Koistinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Turku, Finland
| | - Taisa Sallinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eero A. Haapala
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Niina Lintu
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sonja Soininen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Physician and Nursing Services, Health and Social Services Centre, Wellbeing Services County of North Savo, Varkaus, Finland
| | - Retu Haikonen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Turku, Finland
| | - Timo A. Lakka
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
4
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
5
|
Gupta S, Bharatha A, Cohall D, Rahman S, Haque M, Azim Majumder MA. Aerobic Exercise and Endocannabinoids: A Narrative Review of Stress Regulation and Brain Reward Systems. Cureus 2024; 16:e55468. [PMID: 38440201 PMCID: PMC10910469 DOI: 10.7759/cureus.55468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/06/2024] Open
Abstract
Aerobic exercise is a widely adopted practice, not solely for enhancing fitness and reducing the risk of various diseases but also for its ability to uplift mood and aid in addressing depression and anxiety disorders. Within the scope of this narrative review, we seek to consolidate current insights into the endocannabinoid-mediated regulation of stress and the brain's reward mechanism resulting from engaging in aerobic exercise. A comprehensive search was conducted across Medline, SPORTDiscus, Pubmed, and Scopus, encompassing data available until November 30, 2023. This review indicates that a bout of aerobic exercise, particularly of moderate intensity, markedly augments circulating levels of endocannabinoids - N-arachidonoyl-ethanolamine (AEA) and 2-acylglycerol (2-AG), that significantly contributes to mood elevation and reducing stress in healthy individuals. The current understanding of how aerobic exercise impacts mental health and mood improvement is still unclear. Moderate and high-intensity aerobic exercise modulates stress through a negative feedback mechanism targeting both the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system, thereby facilitating stress regulation crucial role in endocannabinoid synthesis, ultimately culminating in the orchestration of negative feedback across multiple tiers of the HPA axis, coupled with its influence over cortical and subcortical brain structures. The endocannabinoid has been observed to govern the release of neurotransmitters from diverse neuronal populations, implying a universal mechanism that fine-tunes neuronal activity and consequently modulates both emotional and stress-related responses. Endocannabinoids further assume a pivotal function within brain reward mechanisms, primarily mediated by CB1 receptors distributed across diverse cerebral centers. Notably, these endocannabinoids partake in natural reward processes, as exemplified in aerobic exercise, by synergizing with the dopaminergic reward system. The genesis of this reward pathway can be traced to the ventral tegmental area, with dopamine neurons predominantly projecting to the nucleus accumbens, thereby inciting dopamine release in response to rewarding stimuli.
Collapse
Affiliation(s)
- Subir Gupta
- Physiology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Ambadasu Bharatha
- Pharmacology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Damian Cohall
- Pharmacology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Sayeeda Rahman
- Pharmacology, School of Medicine, American University of Integrative Sciences, Bridgetown, BRB
| | - Mainul Haque
- Pharmacology and Therapeutics, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Md Anwarul Azim Majumder
- Medical Education, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| |
Collapse
|
6
|
Shi Y, Wu S, Zhang X, Cao Y, Zhang L. Lipid metabolism-derived FAAH is a sensitive marker for the prognosis and immunotherapy of osteosarcoma patients. Heliyon 2024; 10:e23499. [PMID: 38169921 PMCID: PMC10758879 DOI: 10.1016/j.heliyon.2023.e23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Lipid metabolism in cancer refers to the alterations in how cancer cells process and utilize lipids, a type of fat molecule. It was investigated how lipid metabolism relates to osteosarcoma. Genes relevant to lipid metabolism were gathered to create lipid metabolism-associated clusters and locate the dangerous marker. We investigated FAAH's prognostic significance, route annotation, immunotherapy response, and medication prediction. Besides, FAAH is proven to be a potent, dangerous marker that may promote growth and migration and inhibit the apoptosis of osteosarcoma. FAAH exhibits higher expression levels in tumor tissues as compared to normal tissues. In conclusion, FAAH is identified in this work as a potentially dangerous gene and immunotherapy determinant. This study requires more investigation to determine how FAAH influences the immune response in osteosarcoma.
Collapse
Affiliation(s)
- Yanbin Shi
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yangbo Cao
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lina Zhang
- Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
7
|
Haller J. Anxiety Modulation by Cannabinoids-The Role of Stress Responses and Coping. Int J Mol Sci 2023; 24:15777. [PMID: 37958761 PMCID: PMC10650718 DOI: 10.3390/ijms242115777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Endocannabinoids were implicated in a variety of pathological conditions including anxiety and are considered promising new targets for anxiolytic drug development. The optimism concerning the potentials of this system for anxiolysis is probably justified. However, the complexity of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various experimental approaches makes the interpretation of research results difficult. Here, we review the anxiety-related effects of the three main interventions used to study the endocannabinoid system: pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands provide inconsistent findings probably because they activate a multitude of mechanisms concomitantly. More robust findings were obtained with genetic manipulations and particularly with function enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved by promoting active coping styles in critical situations. These findings suggest that the functional enhancement of endocannabinoid signaling is a promising drug development target for stress-related anxiety disorders.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, University of Public Service, 1082 Budapest, Hungary
| |
Collapse
|
8
|
Rong S, Neil CR, Welch A, Duan C, Maguire S, Meremikwu IC, Meyerson M, Evans BJ, Fairbrother WG. Large-scale functional screen identifies genetic variants with splicing effects in modern and archaic humans. Proc Natl Acad Sci U S A 2023; 120:e2218308120. [PMID: 37192163 PMCID: PMC10214146 DOI: 10.1073/pnas.2218308120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Humans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations. Of the 5,169 alleles tested in this massively parallel splicing reporter assay (MaPSy), we report 962 exonic splicing mutations that correspond to differences in exon recognition between extant and extinct hominins. Using MaPSy splicing variants, predicted splicing variants, and splicing quantitative trait loci, we show that splice-disrupting variants experienced greater purifying selection in anatomically modern humans than that in Neanderthals. Adaptively introgressed variants were enriched for moderate-effect splicing variants, consistent with positive selection for alternative spliced alleles following introgression. As particularly compelling examples, we characterized a unique tissue-specific alternative splicing variant at the adaptively introgressed innate immunity gene TLR1, as well as a unique Neanderthal introgressed alternative splicing variant in the gene HSPG2 that encodes perlecan. We further identified potentially pathogenic splicing variants found only in Neanderthals and Denisovans in genes related to sperm maturation and immunity. Finally, we found splicing variants that may contribute to variation among modern humans in total bilirubin, balding, hemoglobin levels, and lung capacity. Our findings provide unique insights into natural selection acting on splicing in human evolution and demonstrate how functional assays can be used to identify candidate causal variants underlying differences in gene regulation and phenotype.
Collapse
Affiliation(s)
- Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, RI02912
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Christopher R. Neil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Chaorui Duan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Samantha Maguire
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Ijeoma C. Meremikwu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Malcolm Meyerson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Ben J. Evans
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - William G. Fairbrother
- Center for Computational Molecular Biology, Brown University, Providence, RI02912
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
- Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI02912
| |
Collapse
|
9
|
Bari M, Feole M, Fava M, Maccarrone M. Radiometric Assay of FAAH Activity. Methods Mol Biol 2023; 2576:241-247. [PMID: 36152192 DOI: 10.1007/978-1-0716-2728-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an intracellular enzyme responsible for the hydrolysis of endogenous anandamide (AEA), a reaction that terminates the biological effects of this lipid mediator. The final products of AEA cleavage are arachidonic acid and ethanolamine. In the method described herein, FAAH activity is measured through the use of the radioactive substrate [14C-ethanolamine]-AEA and subsequent quantification of the reaction product [14C]-ethanolamine.
Collapse
Affiliation(s)
- Monica Bari
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy.
| | - Monica Feole
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Marina Fava
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
10
|
Angelucci CB, Giacominelli-Stuffler R, Maccarrone M. Fluorimetric Assay of FAAH Activity. Methods Mol Biol 2023; 2576:249-260. [PMID: 36152193 DOI: 10.1007/978-1-0716-2728-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is the enzyme responsible for the degradation of anandamide (N-arachidonoylethanolamine, AEA) to arachidonic acid (AA) and ethanolamine. The method described here measures FAAH activity through the fluorometric arachidonoyl-7-amino-4-methyl-coumarin amide (AAMCA) substrate, which allows a simple and sensitive assay suitable for high-throughput screening tests. FAAH catalyzes the hydrolysis of AAMCA producing AA and the highly fluorescent compound 7-amino-4-methylcoumarin (AMC).
Collapse
Affiliation(s)
| | | | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
11
|
Hosseinzadeh Anvar L, Ahmadalipour A. Fatty acid amide hydrolase C385A polymorphism affects susceptibility to various diseases. Biofactors 2023; 49:62-78. [PMID: 36300805 DOI: 10.1002/biof.1911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/24/2022] [Indexed: 11/08/2022]
Abstract
The endocannabinoid (eCB) system is an important neuromodulatory system with its extensive network of receptors throughout the human body that has complex actions in the nervous system, immune system, and all of the body's other organs. Fatty acid amide hydrolase (FAAH) is an important membrane-bound homodimeric degrading enzyme that controls the biological activity of N-arachidonoylethanolamide (AEA) in the eCB system and other relevant bioactive lipids. It has been shown that several single nucleotide polymorphisms (SNPs) of FAAH are associated with various phenotypes and diseases including cardiovascular, endocrine, drug abuse, and neuropsychiatric disorders. A common functional and most studied polymorphism of this gene is C385A (rs324420), which results in the replacement of a conserved proline to threonine in the FAAH enzyme structure, leads to a reduction of the activity and expression of FAAH, compromises the inactivation of AEA and causes higher synaptic concentrations of AEA that can be associated with several various phenotypes. The focus of this review is on evidence-based studies on the associations of the FAAH C385A polymorphism and the various diseases or traits. Although there was variability in the results of these reports, the overall consensus is that the FAAH C385A genotype can affect susceptibility to some multifactorial disorders and can be considered a potential therapeutic target.
Collapse
Affiliation(s)
- Leila Hosseinzadeh Anvar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Fulp A, Bingham S, Fisler B, Kho F, Kim J, Kim SJ, Martin T, Mims B, Reji Thomas K, Roe G, Spiotta J, Young J, Lazenka M. Design and synthesis of endocannabinoid enzyme inhibitors for ocular indications. Bioorg Med Chem Lett 2022; 68:128763. [PMID: 35500728 DOI: 10.1016/j.bmcl.2022.128763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Abstract
A small library of FAAH and dual FAAH/MAGL inhibitors designed for peripheral selectivity were targeted. Of these compounds, three were identified to have desirable FAAH inhibition and reduced permeability in a PAMPA assay. Those three compounds were advanced into a MAGL inhibitor assay and one was found to be a relative selective FAAH inhibitor, FAAH to MAGL IC50 ratio of 1:27, and one was found to be more characteristic of a true dual enzyme inhibitor, FAAH to MAGL IC50 ratio of 1:4. Both compounds showed activity in an ABPP assay, blockage of TAMRA-FP labeling of FAAH and MAGL in rat eye homogenate.
Collapse
Affiliation(s)
- Alan Fulp
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA.
| | - Sarah Bingham
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Bethany Fisler
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Felice Kho
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Joshua Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - So Jung Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Tabitha Martin
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Bailey Mims
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Kezia Reji Thomas
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Grace Roe
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Julia Spiotta
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Julianna Young
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Matthew Lazenka
- Kentucky College of Osteopathic Medicine and Kentucky College of Optometry, University of Pikeville, 147 Sycamore Street, Pikeville, KY 41501, USA
| |
Collapse
|
13
|
Cifelli P, Ruffolo G, Ceccanti M, Cambieri C, Libonati L, Palma E, Inghilleri M. Classical and Unexpected Effects of Ultra-Micronized PEA in Neuromuscular Function. Biomolecules 2022; 12:biom12060758. [PMID: 35740883 PMCID: PMC9221058 DOI: 10.3390/biom12060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the endocannabinoid system has attracted growing attention from the scientific community for its involvement in homeostatic and pathological processes as they pertains to human physiology. Among the constituents of the endocannabinoid system, the molecule palmitoyl ethanolamide has particularly been studied for its ability to reduce several inflammatory processes involving the central nervous system. Here, we reviewed published literature and summarized the main targets of the palmitoyl ethanolamide, along with its unique possible mechanisms for restoring correct functioning of the central nervous system. Moreover, we have highlighted a less-known characteristic of palmitoyl ethanolamide, namely its ability to modulate the function of the neuromuscular junction by binding to acetylcholine receptors in different experimental conditions. Indeed, there are several studies that have highlighted how ultra-micronized palmitoyl ethanolamide is an interesting nutraceutical support for the treatment of pathological neuromuscular conditions, specifically when the normal activity of the acetylcholine receptor is altered. Although further multicentric clinical trials are needed to confirm the efficacy of ultra-micronized palmitoyl ethanolamide in improving symptoms of neuromuscular diseases, all the literature reviewed here strongly supports the ability of this endocannabinoid-like molecule to modulate the acetylcholine receptors thus resulting as a valid support for the treatment of human neuromuscular diseases.
Collapse
Affiliation(s)
- Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (P.C.); (M.I.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Marco Ceccanti
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Chiara Cambieri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Laura Libonati
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Maurizio Inghilleri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
- Correspondence: (P.C.); (M.I.)
| |
Collapse
|
14
|
Jain S, Bisht A, Verma K, Negi S, Paliwal S, Sharma S. The role of fatty acid amide hydrolase enzyme inhibitors in Alzheimer's disease. Cell Biochem Funct 2021; 40:106-117. [PMID: 34931308 DOI: 10.1002/cbf.3680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is a prominent enzyme of the endocannabinoid system that degrades endogenous cannabinoid anandamide and oleamide. These lipid amides are involved in reducing neuroinflammation, pain and regulation of other neurological-related activities including feeding behaviours, sleep patterns, body temperature, memory processes and locomotory activity. Many of these activities are affected in most neurological disorders. Increased levels of brain FAAH expressions are speculated to correlate with decreased levels of lipid amides and increased AD-related symptoms. Thus, inhibition of FAAH shows promising potential in amelioration of symptoms associated with Alzheimer's disease (AD). The review aims at establishing the detrimental role of increased FAAH expression in AD and highlights the translational potential and therapeutic application of FAAH inhibitors in AD.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Swarnima Negi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
15
|
Bariani MV, Correa F, Rubio APD, Wolfson ML, Schander JA, Cella M, Aisemberg J, Franchi AM. Maternal obesity reverses the resistance to LPS-induced adverse pregnancy outcome and increases female offspring metabolic alterations in cannabinoid receptor 1 knockout mice. J Nutr Biochem 2021; 96:108805. [PMID: 34147601 DOI: 10.1016/j.jnutbio.2021.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Maternal overnutrition negatively impacts the offspring's health leading to an increased risk of developing chronic diseases or metabolic syndrome in adulthood. What we eat affects the endocannabinoid system (eCS) activity, which in turn modulates lipogenesis and fatty acids utilization in hepatic, muscle, and adipose tissues. This study aimed to evaluate the transgenerational effect of maternal obesity on cannabinoid receptor 1 knock-out (CB1 KO) animals in combination with a postnatal obesogenic diet on the development of metabolic disturbances on their offspring. CB1 KO mice were fed a control diet (CD) or a high-fat diet (HFD; 33% more energy from fat) for 3 months. Offspring born to control and obese mothers were also fed with CD or HFD. We observed that pups born to an HFD-fed mother presented higher postnatal weight, lower hepatic fatty acid amide hydrolase activity, and increased blood cholesterol levels when compared to the offspring born to CD-fed mothers. When female mice born to HFD-fed CB1 KO mothers were exposed to an HFD, they gained more weight, presented elevated blood cholesterol levels, and more abdominal adipose tissue accumulation than control-fed adult offspring. The eCS is involved in several reproductive physiological processes. Interestingly, we showed that CB1 KO mice in gestational day 15 presented resistance to LPS-induced deleterious effects on pregnancy outcome, which was overcome when these mice were obese. Our results suggest that an HFD in CB1 receptor-deficient mice contributes to a "nutritional programming" of the offspring resulting in increased susceptibility to metabolic challenges both perinatally and during adulthood.
Collapse
Affiliation(s)
- María Victoria Bariani
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Cella
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ana María Franchi
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
16
|
Glodosky NC, Cuttler C, McLaughlin RJ. A review of the effects of acute and chronic cannabinoid exposure on the stress response. Front Neuroendocrinol 2021; 63:100945. [PMID: 34461155 PMCID: PMC8605997 DOI: 10.1016/j.yfrne.2021.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
While cannabis has been used for centuries for its stress-alleviating properties, the effects of acute and chronic cannabinoid exposure on responses to stress remain poorly understood. This review provides an overview of studies that measured stress-related endpoints following acute or chronic cannabinoid exposure in humans and animals. Acute cannabinoid exposure increases basal concentrations of stress hormones in rodents and humans and has dose-dependent effects on stress reactivity in humans and anxiety-like behavior in rodents. Chronic cannabis exposure is associated with dampened stress reactivity, a blunted cortisol awakening response (CAR), and flattened diurnal cortisol slope in humans. Sex differences in these effects remain underexamined, with limited evidence for sex differences in effects of cannabinoids on stress reactivity in rodents. Future research is needed to better understand sex differences in the effects of cannabis on the stress response, as well as downstream impacts on mental health and stress-related disorders.
Collapse
Affiliation(s)
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, WA, USA.
| | - Ryan J McLaughlin
- Department of Psychology, Washington State University, Pullman, WA, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| |
Collapse
|
17
|
Tsuboi K, Tai T, Yamashita R, Ali H, Watanabe T, Uyama T, Okamoto Y, Kitakaze K, Takenouchi Y, Go S, Rahman IAS, Houchi H, Tanaka T, Okamoto Y, Tokumura A, Matsuda J, Ueda N. Involvement of acid ceramidase in the degradation of bioactive N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158972. [PMID: 34033896 DOI: 10.1016/j.bbalip.2021.158972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/01/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022]
Abstract
Bioactive N-acylethanolamines (NAEs) include palmitoylethanolamide, oleoylethanolamide, and anandamide, which exert anti-inflammatory, anorexic, and cannabimimetic actions, respectively. The degradation of NAEs has been attributed to two hydrolases, fatty acid amide hydrolase and NAE acid amidase (NAAA). Acid ceramidase (AC) is a lysosomal enzyme that hydrolyzes ceramide (N-acylsphingosine), which resembles NAAA in structure and function. In the present study, we examined the role of AC in the degradation of NAEs. First, we demonstrated that purified recombinant human AC can hydrolyze various NAEs with lauroylethanolamide (C12:0-NAE) as the most reactive NAE substrate. We then used HEK293 cells metabolically labeled with [14C]ethanolamine, and revealed that overexpressed AC lowered the levels of 14C-labeled NAE. As analyzed with liquid chromatography-tandem mass spectrometry, AC overexpression decreased the amounts of different NAE species. Furthermore, suppression of endogenous AC in LNCaP prostate cells by siRNA increased the levels of various NAEs. Lastly, tissue homogenates from mice genetically lacking saposin D, a presumable activator protein of AC, showed much lower hydrolyzing activity for NAE as well as ceramide than the homogenates from wild-type mice. These results demonstrate the ability of AC to hydrolyze NAEs and suggest its physiological role as a third NAE hydrolase.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Tatsuya Tai
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan; Department of Pharmacy, Kagawa University Hospital, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Ryouhei Yamashita
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hanif Ali
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Takashi Watanabe
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Yoko Okamoto
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Keisuke Kitakaze
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Shinji Go
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Iffat Ara Sonia Rahman
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Hitoshi Houchi
- Department of Pharmacy, Kagawa University Hospital, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan; Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Tamotsu Tanaka
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan; Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Yasuo Okamoto
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Akira Tokumura
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan; Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| |
Collapse
|
18
|
Spatiotemporal Regulation and Functional Analysis of Circular RNAs in Skeletal Muscle and Subcutaneous Fat during Pig Growth. BIOLOGY 2021; 10:biology10090841. [PMID: 34571718 PMCID: PMC8465536 DOI: 10.3390/biology10090841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Recently, thousands of circular RNAs have been reported in different pig breeds. However, researches on the temporal and spatial expression patterns of circRNA over the period of animal growth are limited. Here, we systematically analyzed circRNAs in skeletal muscle and subcutaneous fat in four growth time points (30 days, 90 days, 150 days and 210 days after birth) of a Chinese native pig breed, Ningxiang pigs. A total of 1171 differentially expressed (DE) circRNAs between muscle and fat were identified, including 562 upregulated and 609 downregulated circRNAs. KEGG pathway enrichment analysis of these DE circRNAs revealed that host genes were mainly involved in glycogen metabolism signaling pathways, muscle development signaling pathways such as ErbB pathway and adipocytokine signaling pathways and AMPK signaling pathways and fatty acid biosynthesis. The circRNAs have striking spatiotemporal specificity in the form of dynamic expression at 90 d. Short Time-Series Expression Miner analysis showed multiple model spectra that are significantly enriched with time changes in muscle and fat. Our findings provide new ideas and perspectives about the role of circular RNAs and their targeting relations with mRNA and miRNA in skeletal muscle and fat tissue during pig growth.
Collapse
|
19
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
20
|
Demir Çaltekin M, Özkut MM, Çaltekin İ, Kaymak E, Çakır M, Kara M, Yalvaç ES. The protective effect of JZL184 on ovarian ischemia reperfusion injury and ovarian reserve in rats. J Obstet Gynaecol Res 2021; 47:2692-2704. [PMID: 34008304 DOI: 10.1111/jog.14859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 11/28/2022]
Abstract
AIM Ovarian torsion is a gynecopathology that requires emergency surgery in women. However, ischemia reperfusion injury (IRI) occurs after treatment with detorsion. This study aimed to evaluate the effects of monoacylglycerol lipase inhibitor JZL184 on ovarian IRI and ovarian reserve. METHODS Forty-eight female Wistar albino rats were divided into six groups. Group 1: Sham, Group 2: Ischemia, Group 3: ischemia/reperfusion (IR), Group 4: IR + JZL184 4 mg/kg, Group 5: IR + JZL184 16 mg/kg, Group 6: IR + vehicle (dimethyl sulfoxide). Three hours of ischemia followed by 3 h of reperfusion. Two different doses of JZL184 (4 and 16 mg/kg) were administered intraperitoneally in Group 4 and 5, 30 min before reperfusion. Ovarian IRI and ovarian reserve were evaluated in serum and tissue by using histopathological and biochemical parameters. RESULTS Treatment with JZL184 was associated with a significant increase in ovarian 2-arachidonoylglycerol and improved serum anti-Mullerian hormone, İnhibin B, primordial follicle count, and ovarian histopathological damage score (p < 0.05). JZL184 treatment significantly decreased the level of malondialdehyde, and increased superoxide dismutase enzyme activity and glutathione (GSH) levels (p < 0.05). The increased phosphorile nuclear factor-κB (Phospho-NF-κB-p65), tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), transforming growth factor beta 1 (TGF-β1), and TUNEL assay immunopositivity scores in ovarian I/R injury were decreased after treatment with JZL184 (p < 0.05). CONCLUSIONS JZL184 showed significant ameliorative effects on ovarian IRI and ovarian reserve caused by IR through acting as an antioxidant, anti-inflammatory, and antiapoptotic agent. Thus, JZL184 may be a novel therapeutic agent for ovarian IRI.
Collapse
Affiliation(s)
- Melike Demir Çaltekin
- Department of Obstetrics and Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Mahmud Mustafa Özkut
- Department of Histology and Embryology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - İbrahim Çaltekin
- Department of Emergency Medicine, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Emin Kaymak
- Department of Histology and Embryology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Murat Çakır
- Department of Physiology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Mustafa Kara
- Department of Obstetrics and Gynecology, Kırşehir Ahi Evran University Faculty of Medicine, Kırşehir, Turkey
| | - Ethem Serdar Yalvaç
- Department of Obstetrics and Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| |
Collapse
|
21
|
Jaiswal S, Ayyannan SR. Anticancer Potential of Small-Molecule Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase. ChemMedChem 2021; 16:2172-2187. [PMID: 33834617 DOI: 10.1002/cmdc.202100120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/08/2021] [Indexed: 12/18/2022]
Abstract
Recently fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) inhibitors have been in the limelight due to their anticancer potential. Both FAAH and MAGL are the endocannabinoid degrading enzymes that hydrolyze several endogenous ligands, mainly anandamide (AEA) and 2-arachidonic glycerol (2-AG), which regulate various pathophysiological conditions in the body such as emotion, cognition, energy balance, pain sensation, neuroinflammation, and cancer cell proliferation. FAAH and MAGL inhibitors block the metabolism of AEA and 2-AG, increase endogenous levels of fatty acid amides, and exert various therapeutic effects including chronic pain, metabolic disorders, psychoses, nausea and vomiting, depression, and anxiety disorders. FAAH and MAGL are primarily neurotherapeutic targets, but their contribution to various types of carcinomas are significant. Inhibitors of these enzymes either alone or as multitarget agents, or with supra-additive effects show the potential effect in ovarian, breast, prostate, and colorectal cancers. Besides highlighting the role of FAAH and MAGL in cancer progression, this review provides an update on the anticancer capabilities of known and newly discovered FAAH and MAGL inhibitors and also provides further directions to develop FAAH and MAGL inhibitors as new candidates for cancer therapy.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
22
|
Sagheddu C, Torres LH, Marcourakis T, Pistis M. Endocannabinoid-Like Lipid Neuromodulators in the Regulation of Dopamine Signaling: Relevance for Drug Addiction. Front Synaptic Neurosci 2021; 12:588660. [PMID: 33424577 PMCID: PMC7786397 DOI: 10.3389/fnsyn.2020.588660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023] Open
Abstract
The family of lipid neuromodulators has been rapidly growing, as the use of different -omics techniques led to the discovery of a large number of naturally occurring N-acylethanolamines (NAEs) and N-acyl amino acids belonging to the complex lipid signaling system termed endocannabinoidome. These molecules exert a variety of biological activities in the central nervous system, as they modulate physiological processes in neurons and glial cells and are involved in the pathophysiology of neurological and psychiatric disorders. Their effects on dopamine cells have attracted attention, as dysfunctions of dopamine systems characterize a range of psychiatric disorders, i.e., schizophrenia and substance use disorders (SUD). While canonical endocannabinoids are known to regulate excitatory and inhibitory synaptic inputs impinging on dopamine cells and modulate several dopamine-mediated behaviors, such as reward and addiction, the effects of other lipid neuromodulators are far less clear. Here, we review the emerging role of endocannabinoid-like neuromodulators in dopamine signaling, with a focus on non-cannabinoid N-acylethanolamines and their receptors. Mounting evidence suggests that these neuromodulators contribute to modulate synaptic transmission in dopamine regions and might represent a target for novel medications in alcohol and nicotine use disorder.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Larissa Helena Torres
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Neuroscience Institute, National Research Council of Italy (CNR), Section of Cagliari, Cagliari, Italy
| |
Collapse
|
23
|
Singh N, Barnych B, Morisseau C, Wagner KM, Wan D, Takeshita A, Pham H, Xu T, Dandekar A, Liu JY, Hammock BD. N-Benzyl-linoleamide, a Constituent of Lepidium meyenii (Maca), Is an Orally Bioavailable Soluble Epoxide Hydrolase Inhibitor That Alleviates Inflammatory Pain. JOURNAL OF NATURAL PRODUCTS 2020; 83:3689-3697. [PMID: 33320645 PMCID: PMC7888481 DOI: 10.1021/acs.jnatprod.0c00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lepidium meyenii (maca), a plant indigenous to the Peruvian Andes, recently has been utilized globally for claimed health or recreational benefits. The search for natural products that inhibit soluble epoxide hydrolase (sEH), with therapeutically relevant potencies and concentrations, led to the present study on bioactive amide secondary metabolites found in L. meyenii, the macamides. Based on known and suspected macamides, 19 possible macamides were synthesized and characterized. The majority of these amides displayed excellent inhibitory potency (IC50 ≈ 20-300 nM) toward the recombinant mouse, rat, and human sEH. Quantitative analysis of commercial maca products revealed that certain products contain known macamides (1-5, 8-12) at therapeutically relevant total concentrations (≥3.29 mg/g of root), while the inhibitory potency of L. meyenii extracts directly correlates with the sum of concentration/IC50 ratios of macamides present. Considering both its in vitro efficacy and high abundance in commercial products, N-benzyl-linoleamide (4) was identified as a particularly relevant macamide that can be utilized for in vivo studies. Following oral administration in the rat, compound 4 not only displayed acceptable pharmacokinetic characteristics but effectively reduced lipopolysaccharide-induced inflammatory pain. Inhibition of sEH by macamides provides a plausible biological mechanism of action to account for several beneficial effects previously observed with L. meyenii treatments.
Collapse
Affiliation(s)
- Nalin Singh
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Karen M. Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Debin Wan
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Ashley Takeshita
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Hoang Pham
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Ting Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, United States
| | - Jun-Yan Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
24
|
Zhang X, Zhang Y, Chen Z, Shao T, Van R, Kumata K, Deng X, Fu H, Yamasaki T, Rong J, Hu K, Hatori A, Xie L, Yu Q, Ye W, Xu H, Sheffler DJ, Cosford NDP, Shao Y, Tang P, Wang L, Zhang MR, Liang SH. Synthesis and preliminary studies of 11C-labeled tetrahydro-1,7-naphthyridine-2-carboxamides for PET imaging of metabotropic glutamate receptor 2. Theranostics 2020; 10:11178-11196. [PMID: 33042277 PMCID: PMC7532674 DOI: 10.7150/thno.42587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Selective modulation of metabotropic glutamate receptor 2 (mGlu2) represents a novel therapeutic approach for treating brain disorders, including schizophrenia, depression, Parkinson's disease (PD), Alzheimer's disease (AD), drug abuse and addiction. Imaging mGlu2 using positron emission tomography (PET) would allow for in vivo quantification under physiological and pathological conditions and facilitate drug discovery by enabling target engagement studies. In this paper, we aimed to develop a novel specific radioligand derived from negative allosteric modulators (NAMs) for PET imaging of mGlu2. Methods. A focused small molecule library of mGlu2 NAMs with tetrahydro naphthyridine scaffold was synthesized for pharmacology and physicochemical evaluation. GIRK dose-response assays and CNS panel binding selectivity assays were performed to study the affinity and selectivity of mGlu2 NAMs, among which compounds 14a and 14b were selected as PET ligand candidates. Autoradiography in SD rat brain sections was used to confirm the in vitro binding specificity and selectivity of [11C]14a and [11C]14b towards mGlu2. In vivo binding specificity was then studied by PET imaging. Whole body biodistribution study and radiometabolite analysis were conducted to demonstrate the pharmacokinetic properties of [11C]14b as most promising PET mGlu2 PET ligand. Results. mGlu2 NAMs 14a-14g were synthesized in 14%-20% yields in five steps. NAMs 14a and 14b were selected to be the most promising ligands due to their high affinity in GIRK dose-response assays. [11C]14a and [11C]14b displayed similar heterogeneous distribution by autoradiography, consistent with mGlu2 expression in the brain. While PET imaging study showed good brain permeability for both tracers, compound [11C]14b demonstrated superior binding specificity compared to [11C]14a. Further radiometabolite analysis of [11C]14b showed excellent stability in the brain. Conclusions. Compound 14b exhibited high affinity and excellent subtype selectivity, which was then evaluated by in vitro autoradiography and in vivo PET imaging study after labeling with carbon-11. Ligand [11C]14b, which we named [11C]MG2-1904, demonstrated high brain uptake and excellent in vitro/in vivo specific binding towards mGlu2 with high metabolic stability in the brain. As proof-of-concept, our preliminary work demonstrated a successful example of visualizing mGlu2in vivo derived from NAMs, which represents a promising chemotype for further development and optimization aimed for clinical translation.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kuan Hu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Weijian Ye
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Douglas J. Sheffler
- Cancer Metabolism and Signaling Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Nicholas D. P. Cosford
- Cancer Metabolism and Signaling Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
25
|
Christie S, O'Rielly R, Li H, Wittert GA, Page AJ. High fat diet induced obesity alters endocannabinoid and ghrelin mediated regulation of components of the endocannabinoid system in nodose ganglia. Peptides 2020; 131:170371. [PMID: 32659299 DOI: 10.1016/j.peptides.2020.170371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ghrelin and anandamide (AEA) can regulate the sensitivity of gastric vagal afferents to stretch, an effect mediated via the transient receptor potential vanilloid 1 (TPRV1) channel. High fat diet (HFD)-induced obesity alters the modulatory effects of ghrelin and AEA on gastric vagal afferent sensitivity. This may be a result of altered gastric levels of these hormones and subsequent changes in the expression of their receptors. Therefore, the current study aimed to determine the effects of ghrelin and AEA on vagal afferent cell body mRNA content of cannabinoid 1 receptor (CB1), ghrelin receptor (GHSR), TRPV1, and the enzyme responsible for the breakdown of AEA, fatty acid amide hydrolase (FAAH). METHODS Mice were fed a standard laboratory diet (SLD) or HFD for 12wks. Nodose ganglia were removed and cultured for 14 h in the absence or presence of ghrelin or methAEA (mAEA; stable analogue of AEA). Relative mRNA content of CB1, GHSR, TRPV1, and FAAH were measured. RESULTS In nodose cells from SLD-mice, mAEA increased TRPV1 and FAAH mRNA content, and decreased CB1 and GHSR mRNA content. Ghrelin decreased TRPV1, CB1, and GHSR mRNA content. In nodose cells from HFD-mice, mAEA had no effect on TRPV1 mRNA content, and increased CB1, GHSR, and FAAH mRNA content. Ghrelin decreased TRPV1 mRNA content and increased CB1 and GHSR mRNA content. CONCLUSIONS AEA and ghrelin modulate receptors and breakdown enzymes involved in the mAEA-vagal afferent satiety signalling pathways. This was disrupted in HFD-mice, which may contribute to the altered vagal afferent signalling in obesity.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca O'Rielly
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Gary A Wittert
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia.
| |
Collapse
|
26
|
van Egmond N, Straub VM, van der Stelt M. Targeting Endocannabinoid Signaling: FAAH and MAG Lipase Inhibitors. Annu Rev Pharmacol Toxicol 2020; 61:441-463. [PMID: 32867595 DOI: 10.1146/annurev-pharmtox-030220-112741] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inspired by the medicinal properties of the plant Cannabis sativa and its principal component (-)-trans-Δ9-tetrahydrocannabinol (THC), researchers have developed a variety of compounds to modulate the endocannabinoid system in the human brain. Inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which are the enzymes responsible for the inactivation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, respectively, may exert therapeutic effects without inducing the adverse side effects associated with direct cannabinoid CB1 receptor stimulation by THC. Here we review the FAAH and MAGL inhibitors that have reached clinical trials, discuss potential caveats, and provide an outlook on where the field is headed.
Collapse
Affiliation(s)
- Noëlle van Egmond
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Verena M Straub
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
27
|
D’Amico R, Impellizzeri D, Cuzzocrea S, Di Paola R. ALIAmides Update: Palmitoylethanolamide and Its Formulations on Management of Peripheral Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21155330. [PMID: 32727084 PMCID: PMC7432736 DOI: 10.3390/ijms21155330] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain results from lesions or diseases of the somatosensory nervous system and it remains largely difficult to treat. Peripheral neuropathic pain originates from injury to the peripheral nervous system (PNS) and manifests as a series of symptoms and complications, including allodynia and hyperalgesia. The aim of this review is to discuss a novel approach on neuropathic pain management, which is based on the knowledge of processes that underlie the development of peripheral neuropathic pain; in particular highlights the role of glia and mast cells in pain and neuroinflammation. ALIAmides (autacoid local injury antagonist amides) represent a group of endogenous bioactive lipids, including palmitoylethanolamide (PEA), which play a central role in numerous biological processes, including pain, inflammation, and lipid metabolism. These compounds are emerging thanks to their anti-inflammatory and anti-hyperalgesic effects, due to the down-regulation of activation of mast cells. Collectively, preclinical and clinical studies support the idea that ALIAmides merit further consideration as therapeutic approach for controlling inflammatory responses, pain, and related peripheral neuropathic pain.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-90-6765208
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| |
Collapse
|
28
|
Ferreira C, Almeida C, Tenreiro S, Quintas A. Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson's Disease. Life (Basel) 2020; 10:life10060086. [PMID: 32545328 PMCID: PMC7344445 DOI: 10.3390/life10060086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's Disease (PD) is currently the most rapid growing neurodegenerative disease and over the past generation, its global burden has more than doubled. The onset of PD can arise due to environmental, sporadic or genetic factors. Nevertheless, most PD cases have an unknown etiology. Chemicals, such as the anthropogenic pollutant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amphetamine-type stimulants, have been associated with the onset of PD. Conversely, cannabinoids have been associated with the treatment of the symptoms'. PD and medical cannabis is currently under the spotlight, and research to find its benefits on PD is on-going worldwide. However, the described clinical applications and safety of pharmacotherapy with cannabis products are yet to be fully supported by scientific evidence. Furthermore, the novel psychoactive substances are currently a popular alternative to classical drugs of abuse, representing an unknown health hazard for young adults who may develop PD later in their lifetime. This review addresses the neurotoxic and neuroprotective impact of illicit substance consumption in PD, presenting clinical evidence and molecular and cellular mechanisms of this association. This research area is utterly important for contemporary society since illicit drugs' legalization is under discussion which may have consequences both for the onset of PD and for the treatment of its symptoms.
Collapse
Affiliation(s)
- Carla Ferreira
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Al. Prof. Hernâni Monteiro, P-4200–319 Porto, Portugal
| | - Catarina Almeida
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
| | - Sandra Tenreiro
- CEDOC–Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, P-1150-082 Lisboa, Portugal;
| | - Alexandre Quintas
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
29
|
Christie S, O'Rielly R, Li H, Nunez-Salces M, Wittert GA, Page AJ. Modulatory effect of methanandamide on gastric vagal afferent satiety signals depends on nutritional status. J Physiol 2020; 598:2169-2182. [PMID: 32237243 DOI: 10.1113/jp279449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
SIGNIFICANCE STATEMENT Gastric vagal afferent responses to tension are dampened in high fat diet-induced obesity. Endocannabinoids are known to dose-dependently inhibit and excite gastric vagal afferents but their effect on gastric vagal afferents in diet-induced obesity are unknown. In individual gastric vagal afferent neurons of diet-induced obese mice the co-expression of components of the endocannabinoid system, including CB1, GHSR, TRPV1 and FAAH, was increased compared with lean mice. In high fat diet-induced obese mice, methanandamide only inhibited gastric vagal afferent responses to tension, possibly due to the observed change in the balance of receptors, hormones and breakdown enzymes in this system. Collectively, these data suggest that endocannabinoid signalling, by gastric vagal afferents, is altered in diet-induced obesity which may impact satiety and gastrointestinal function. ABSTRACT Gastric vagal afferents (GVAs) play a role in appetite regulation. The endocannabinoid anandamide (AEA) dose-dependently inhibits and excites tension-sensitive GVAs. However, it is also known that high fat diet (HFD) feeding alters GVA responses to stretch. The aim of this study was to determine the role of AEA in GVA signalling in lean and HFD-induced obese mice. Male C57BL/6 mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Protein and mRNA expression of components of the cannabinoid system was determined in individual GVA cell bodies and the gastric mucosa. An in vitro GVA preparation was used to assess the effect of methanandamide (mAEA) on tension-sensitive GVAs and the second messenger pathways involved. In individual GVA cell bodies, cannabinoid 1 (CB1) and ghrelin (GHSR) receptor mRNA was higher in HFD mice than SLD mice. Conversely, gastric mucosal AEA and ghrelin protein levels were lower in HFD mice than SLD mice. In SLD mice, mAEA exerted dose-dependent inhibitory and excitatory effects on tension-sensitive GVAs. Only an inhibitory effect of mAEA was observed in HFD mice. The excitatory effect of mAEA was dependent on CB1, transient receptor potential vanilloid 1 (TRPV1) and the protein kinase C. Conversely, the inhibitory effect was dependent on CB1, growth hormone secretagogue receptor, TRPV1 and the protein kinase A. Endocannabinoids, acting through CB1 and TRPV1, have a pivotal role in modulating GVA satiety signals depending on the second messenger pathway utilised. In HFD mice only an inhibitory effect was observed. These changes may contribute to the development and/or maintenance of obesity.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rebecca O'Rielly
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Maria Nunez-Salces
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Gary A Wittert
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
30
|
Murillo-Rodríguez E, Budde H, Veras AB, Rocha NB, Telles-Correia D, Monteiro D, Cid L, Yamamoto T, Machado S, Torterolo P. The Endocannabinoid System May Modulate Sleep Disorders in Aging. Curr Neuropharmacol 2020; 18:97-108. [PMID: 31368874 PMCID: PMC7324886 DOI: 10.2174/1570159x17666190801155922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is an inevitable process that involves changes across life in multiple neurochemical, neuroanatomical, hormonal systems, and many others. In addition, these biological modifications lead to an increase in age-related sickness such as cardiovascular diseases, osteoporosis, neurodegenerative disorders, and sleep disturbances, among others that affect activities of daily life. Demographic projections have demonstrated that aging will increase its worldwide rate in the coming years. The research on chronic diseases of the elderly is important to gain insights into this growing global burden. Novel therapeutic approaches aimed for treatment of age-related pathologies have included the endocannabinoid system as an effective tool since this biological system shows beneficial effects in preclinical models. However, and despite these advances, little has been addressed in the arena of the endocannabinoid system as an option for treating sleep disorders in aging since experimental evidence suggests that some elements of the endocannabinoid system modulate the sleep-wake cycle. This article addresses this less-studied field, focusing on the likely perspective of the implication of the endocannabinoid system in the regulation of sleep problems reported in the aged. We conclude that beneficial effects regarding the putative efficacy of the endocannabinoid system as therapeutic tools in aging is either inconclusive or still missing.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, México
- Intercontinental Neuroscience Research Group
| | - Henning Budde
- Intercontinental Neuroscience Research Group
- Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group
- Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group
- School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Diogo Telles-Correia
- Intercontinental Neuroscience Research Group
- University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Diogo Monteiro
- Intercontinental Neuroscience Research Group
- Sport Science School of Rio Maior-Polytechnic Institute of Santarém, Rio Maior, Portugal
- Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Luis Cid
- Intercontinental Neuroscience Research Group
- Sport Science School of Rio Maior-Polytechnic Institute of Santarém, Rio Maior, Portugal
- Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group
- Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Pablo Torterolo
- Intercontinental Neuroscience Research Group
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Zhang W, Liu H, Deng XD, Ma Y, Liu Y. FAAH levels and its genetic polymorphism association with susceptibility to methamphetamine dependence. Ann Hum Genet 2019; 84:259-270. [PMID: 31789429 DOI: 10.1111/ahg.12368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022]
Abstract
The fatty acid amide hydrolase (FAAH) gene was involved in the modulation of reward and addiction pathophysiology of illicit drugs abuse, and its polymorphisms might be associated with risk of methamphetamine (METH) dependence. This study aimed to investigate the FAAH mRNA levels in peripheral blood mononuclear cells and plasma protein levels and to analyze the 385C/A polymorphism (rs324420) between METH-dependent patients and controls. The levels of FAAH mRNA in METH dependence were significantly lower than in controls (P < 0.001), however, its plasma protein underwent a significant ∼2-fold increase (P < 0.001). The A allele of the 385C/A polymorphism significantly increased the METH dependence risk (P < 0.001, odds ratio [OR] = 1.646, 95% confidence interval [CI] = 1.332-2.034). The carried A genotypes (AA, AC, and AA/AC) of 385C/A polymorphism also increased METH-dependence risks under a different genetic model (AA vs. CC: P = 0.017, OR = 2.454, 95%CI = 1.171-2.143; AC vs. CC: P < 0.001, OR = 1.818, 95%CI = 1.404-2.353; AC/AA vs. CC: P < 0.001, OR = 1.858, 95%CI = 1.444-2.319). The similar results were obtained after adjusting for age and sex. Unfortunately, we failed to find that any genotype of 385C/A polymorphism affected the mRNA or plasma protein levels in controls, respectively (P > 0.05). These data indicate that the FAAH may play an important role in the pathophysiological process of METH dependence, and the 385C/A polymorphism may be associated with METH dependence susceptibility in a Chinese Han population.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Huan Liu
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.,Department of Preventive Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Dong Deng
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ying Ma
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yun Liu
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
32
|
Cordaro M, Siracusa R, Impellizzeri D, D' Amico R, Peritore AF, Crupi R, Gugliandolo E, Fusco R, Di Paola R, Schievano C, Cuzzocrea S. Safety and efficacy of a new micronized formulation of the ALIAmide palmitoylglucosamine in preclinical models of inflammation and osteoarthritis pain. Arthritis Res Ther 2019; 21:254. [PMID: 31779692 PMCID: PMC6883534 DOI: 10.1186/s13075-019-2048-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background Osteoarthritis is increasingly recognized as the result of a complex interplay between inflammation, chrondrodegeneration, and pain. Joint mast cells are considered to play a key role in orchestrating this detrimental triad. ALIAmides down-modulate mast cells and more generally hyperactive cells. Here we investigated the safety and effectiveness of the ALIAmide N-palmitoyl-d-glucosamine (PGA) in inflammation and osteoarthritis pain. Methods Acute toxicity of micronized PGA (m-PGA) was assessed in rats following OECD Guideline No.425. PGA and m-PGA (30 mg/kg and 100 mg/kg) were orally administered to carrageenan (CAR)-injected rats. Dexamethasone 0.1 mg/kg was used as reference. Paw edema and thermal hyperalgesia were measured up to 6 h post-injection, when also myeloperoxidase activity and histological inflammation score were assessed. Rats subjected to intra-articular injection of sodium monoiodoacetate (MIA) were treated three times per week for 21 days with PGA or m-PGA (30 mg/kg). Mechanical allodynia and motor function were evaluated at different post-injection time points. Joint histological and radiographic damage was scored, articular mast cells were counted, and macrophages were immunohistochemically investigated. Levels of TNF-α, IL-1β, NGF, and MMP-1, MMP-3, and MMP-9 were measured in serum using commercial colorimetric ELISA kits. One- or two-way ANOVA followed by a Bonferroni post hoc test for multiple comparisons was used. Results Acute oral toxicity of m-PGA resulted in LD50 values in excess of 2000 mg/kg. A single oral administration of PGA and m-PGA significantly reduced CAR-induced inflammatory signs (edema, inflammatory infiltrate, and hyperalgesia), and m-PGA also reduced the histological score. Micronized PGA resulted in a superior activity to PGA on MIA-induced mechanical allodynia, locomotor disability, and histologic and radiographic damage. The MIA-induced increase in mast cell count and serum level of the investigated markers was also counteracted by PGA and to a significantly greater extent by m-PGA. Conclusions The results of the present study showed that PGA is endorsed with anti-inflammatory, pain-relieving, and joint-protective effects. Moreover, it proved that particle size reduction greatly enhances the activity of PGA, particularly on joint pain and disability. Given these results, m-PGA could be considered a valuable option in the management of osteoarthritis.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Ramona D' Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Carlo Schievano
- Innovative Statistical Research srl, Prato Della Valle 24, I-35123, Padova, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy. .,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
33
|
Endocannabinoids and Fear-Related Behavior in Mice Selectively Bred for High or Low Alcohol Preference. Brain Sci 2019; 9:brainsci9100254. [PMID: 31561480 PMCID: PMC6827354 DOI: 10.3390/brainsci9100254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/14/2023] Open
Abstract
Alcohol use disorders (AUDs) have a high incidence of co-morbidity with stress-related psychopathologies, such as post-traumatic stress disorder (PTSD). Genetic and pharmacological studies support a prominent role for the endocannabinoid system (ECS) in modulating stress-related behaviors relevant to AUDs and PTSD. Mouse lines selectively bred for high (HAP) and low (LAP) alcohol preference show reproducible differences in fear-potentiated startle (FPS), a model for PTSD-related behavior. The first experiment in this study assessed levels of the endocannabinoids, anandamide (AEA) and sn-2 arachidonylglycerol (2-AG), in the prefrontal cortex (PFC), amygdala (AMG), and hippocampus (HIP) of male and female HAP1 and LAP1 mice following the expression of FPS to determine whether ECS responses to conditioned-fear stress (FPS) were correlated with genetic propensity toward high or low alcohol preference. The second experiment examined effects of a cannabinoid receptor type 1 agonist (CP55940) and antagonist (rimonabant) on the expression of FPS in HAP1 and LAP1 male and female mice. The estrous cycle of females was monitored throughout the experiments to determine if the expression of FPS differed by stage of the cycle. FPS was greater in male and female HAP1 than LAP1 mice, as previously reported. In both experiments, LAP1 females in diestrus displayed greater FPS than LAP1 females in metestrus and estrus. In the AMG and HIP, AEA levels were greater in male fear-conditioned HAP1 mice than LAP1 mice. There were no line or sex differences in effects of CP55940 or rimonabant on the expression of FPS. However, surprisingly, evidence for anxiogenic effects of prior treatment with CP55940 were seen in all mice during the third drug-free FPS test. These findings suggest that genetic differences in ECS function in response to fear-conditioning stress may underlie differences in FPS expression in HAP1 and LAP1 selected lines.
Collapse
|
34
|
Abstract
Healthy aging includes freedom from disease, ability to engage in physical activity, and maintenance of cognitive skills for which diet is a major lifestyle factor. Aging, diet, and health are at the forefront of well-being for the growing population of older adults with the caveat of reducing and controlling pain. Obesity and diabetes risk increase in frequency in adults, and exercise is encouraged to control weight, reduce risk of type II diabetes, and maintain muscle mass and mobility. One area of research that appears to integrate many aspects of healthy aging is focused on understanding the endocannabinoid system (ECS) because of its role in systemic energy metabolism, inflammation, pain, and brain biology. Physical activity is important for maintaining health throughout the life cycle. The benefits of exercise facilitate macronutrient use, promote organ health, and augment the maintenance of metabolic activity and physiological functions. One outcome of routine exercise is a generalized well-being, and perhaps, this is linked to the ECS. The purpose of this review is to briefly present the current knowledge of key components of the ECS that contribute to appetite and influence systemic energy metabolism, and dietary factors that alter the responses of ligand binding and activation of cannabinoid receptors and its role in the brain. Herein, the objectives are to (1) explain the role of the ECS in the body, (2) describe the relationship between dietary polyunsaturated fatty acids and macronutrient intake and systemic metabolism, and (3) present areas of promising research where exercise induces endocannabinoid production in the brain to benefit well-being. There are many gaps in the knowledge of how the ECS participates in controlling pain through exercise; however, emerging research will reveal key relationships to understand this system in the brain and body.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California, Davis, CA, USA.
| |
Collapse
|
35
|
Biernacki M, Ambrożewicz E, Gęgotek A, Toczek M, Skrzydlewska E. Long-term administration of fatty acid amide hydrolase inhibitor (URB597) to rats with spontaneous hypertension disturbs liver redox balance and phospholipid metabolism. Adv Med Sci 2019; 64:15-23. [PMID: 30243113 DOI: 10.1016/j.advms.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE The effect of chronic administration of [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (URB597), inhibitor of fatty acid amide hydrolase (FAAH) that hydrolyzes anandamide, on cross-talk between endocannabinoid system, oxidative status and pro-inflammatory factors in the liver of spontaneously hypertensive rats (SHRs) was investigated. MATERIALS/METHODS Experiments were conducted using SHRs and normotensive control Wistar-Kyoto rats treated by intraperitoneal injection with URB597 for 14 days. The biochemical parameters were assayed in the rat's livers. RESULTS In the liver of SHRs an increase in endocannabinoids level, the activity of enzymes degrading them and expression of the cannabinoid receptor type 2 (CB2) receptor as well as a decrease in the expression of the CB1 and vanilloid 1 receptor (TRPV1) were shown. These changes were related to inflammatory conditions as well as oxidative stress resulting from increased reactive oxygen species (ROS) generation due to enhanced activity of enzymes generating ROS accompanied by decrease in the effectiveness of transcription activity of nuclear factor erythroid 2 and the activity of antioxidant enzymes, as well as level of glutathione and vitamins. Chronic administration of URB597 to SHRs caused a decrease in FAAH activity and an increase in anandamide and N-arachidonoyl-dopamine level as well as a decrease in CB2 and an increase in TRPV1 receptor expression. The levels/activities of pro- and antioxidant and inflammatory factors tended to normalize, but phospholipid peroxidation and DNA modifications were increased. CONCLUSION In conclusion, long-term chronic administration of URB597 to SHRs by altering interactions between endocannabinoid and redox systems enhances some liver metabolic disturbances observed in hypertension.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Ambrożewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
36
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
37
|
Garzinsky D, Zahov S, Ekodo Voundi M, Hanekamp W, Lehr M. Tetrazolylpropan-2-ones as inhibitors of fatty acid amide hydrolase: Studies on structure-activity relationships and metabolic stability. Eur J Med Chem 2018; 160:183-192. [DOI: 10.1016/j.ejmech.2018.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022]
|
38
|
McIntosh AL, Huang H, Landrock D, Martin GG, Li S, Kier AB, Schroeder F. Impact of Fabp1 Gene Ablation on Uptake and Degradation of Endocannabinoids in Mouse Hepatocytes. Lipids 2018; 53:561-580. [PMID: 30203570 DOI: 10.1002/lipd.12071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022]
Abstract
Liver fatty-acid-binding protein (FABP1, L-FABP) is the major cytosolic binding/chaperone protein for both precursor arachidonic acid (ARA) and the endocannabinoid (EC) products N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Although FABP1 regulates hepatic uptake and metabolism of ARA, almost nothing is known regarding FABP1's impact on AEA and 2-AG uptake, intracellular distribution, and targeting of AEA and 2-AG to degradative hepatic enzymes. In vitro assays revealed that FABP1 considerably enhanced monoacylglycerol lipase hydrolysis of 2-AG but only modestly enhanced AEA hydrolysis by fatty-acid amide hydrolase. Conversely, liquid chromatography-mass spectrometry of lipids from Fabp1 gene-ablated (LKO) hepatocytes confirmed that loss of FABP1 markedly diminished hydrolysis of 2-AG. Furthermore, the real-time imaging of novel fluorescent NBD-labeled probes (NBD-AEA, NBD-2-AG, and NBD-ARA) resolved FABP1's impact on uptake vs intracellular targeting/hydrolysis. FABP1 bound NBD-ARA with 2:1 stoichiometry analogous to ARA, but bound NBD-2-AG and NBD-AEA with 1:1 stoichiometry-apparently at different sites in FABP1's binding cavity. All three probes were taken up, but NBD-2-AG and NBD-AEA were targeted to lipid droplets. LKO reduced the uptake of NBD-ARA as expected, significantly enhanced that of NBD-AEA, but had little effect on NBD-2-AG. These data indicated that FABP1 impacts hepatocyte EC levels by binding EC and differentially impacts their intracellular hydrolysis (2-AG) and uptake (AEA).
Collapse
Affiliation(s)
- Avery L McIntosh
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Huan Huang
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Danilo Landrock
- Departments of Pathobiology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4467 TAMU, College Station, TX 77843-4467, USA
| | - Gregory G Martin
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Drive, Alabaster, AL 35007-9105, USA
| | - Ann B Kier
- Departments of Pathobiology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4467 TAMU, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Departments of Physiology and Pharmacology, Texas A&M University, 664 Raymond Stotzer Pkwy, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
39
|
Cheng R, Mori W, Ma L, Alhouayek M, Hatori A, Zhang Y, Ogasawara D, Yuan G, Chen Z, Zhang X, Shi H, Yamasaki T, Xie L, Kumata K, Fujinaga M, Nagai Y, Minamimoto T, Svensson M, Wang L, Du Y, Ondrechen MJ, Vasdev N, Cravatt BF, Fowler C, Zhang MR, Liang SH. In Vitro and in Vivo Evaluation of 11C-Labeled Azetidinecarboxylates for Imaging Monoacylglycerol Lipase by PET Imaging Studies. J Med Chem 2018; 61:2278-2291. [PMID: 29481079 PMCID: PMC5966020 DOI: 10.1021/acs.jmedchem.7b01400] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Monoacylglycerol lipase (MAGL) is the principle enzyme for metabolizing endogenous cannabinoid ligand 2-arachidonoyglycerol (2-AG). Blockade of MAGL increases 2-AG levels, resulting in subsequent activation of the endocannabinoid system, and has emerged as a novel therapeutic strategy to treat drug addiction, inflammation, and neurodegenerative diseases. Herein we report a new series of MAGL inhibitors, which were radiolabeled by site-specific labeling technologies, including 11C-carbonylation and spirocyclic iodonium ylide (SCIDY) radiofluorination. The lead compound [11C]10 (MAGL-0519) demonstrated high specific binding and selectivity in vitro and in vivo. We also observed unexpected washout kinetics with these irreversible radiotracers, in which in vivo evidence for turnover of the covalent residue was unveiled between MAGL and azetidine carboxylates. This work may lead to new directions for drug discovery and PET tracer development based on azetidine carboxylate inhibitor scaffold.
Collapse
Affiliation(s)
- Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Longle Ma
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gengyang Yuan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Hang Shi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Mona Svensson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
40
|
Rivera P, Pastor A, Arrabal S, Decara J, Vargas A, Sánchez-Marín L, Pavón FJ, Serrano A, Bautista D, Boronat A, de la Torre R, Baixeras E, Lucena MI, de Fonseca FR, Suárez J. Acetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver. Front Pharmacol 2017; 8:705. [PMID: 29056914 PMCID: PMC5635604 DOI: 10.3389/fphar.2017.00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Protective mechanisms against drug-induced liver injury are actively being searched to identify new therapeutic targets. Among them, the anti-inflammatory N-acyl ethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system has gained much interest after the identification of its protective role in steatohepatitis and liver fibrosis. An overdose of paracetamol (APAP), a commonly used analgesic/antipyretic drug, causes hepatotoxicity, and it is being used as a liver model. In the present study, we have analyzed the impact of APAP on the liver NAE-PPARα system. A dose-response (0.5-5-10-20 mM) and time-course (2-6-24 h) study in human HepG2 cells showed a biphasic response, with a decreased PPARα expression after 6-h APAP incubation followed by a generalized increase of NAE-PPARα system-related components (PPARα, NAPE-PLD, and FAAH), including the NAEs oleoyl ethanolamide (OEA) and docosahexaenoyl ethanolamide, after a 24-h exposure to APAP. These results were partially confirmed in a time-course study of mice exposed to an acute dose of APAP (750 mg/kg). The gene expression levels of Pparα and Faah were decreased after 6 h of treatment and, after 24 h, the gene expression levels of Nape-pld and Faah, as well as the liver levels of OEA and palmitoyl ethanolamide, were increased. Repeated APAP administration (750 mg/kg/day) up to 4 days also decreased the expression levels of PPARα and FAAH, and increased the liver levels of NAEs. A resting period of 15 days completely restored these impairments. Liver immunohistochemistry in a well-characterized human case of APAP hepatotoxicity confirmed PPARα and FAAH decrements. Histopathological and hepatic damage (Cyp2e1, Caspase3, αSma, Tnfα, and Mcp1)-related alterations observed after repeated APAP administration were aggravated in the liver of Pparα-deficient mice. Our results demonstrate that the anti-inflammatory NAE-PPARα signaling system is implicated in liver toxicity after exposure to APAP overdose, and may contribute to its recovery through a long-term time-dependent response.
Collapse
Affiliation(s)
- Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antoni Pastor
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Sergio Arrabal
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonio Vargas
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Sánchez-Marín
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Dolores Bautista
- Unidad de Gestión Clínica de Anatomía Patológica, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Anna Boronat
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Rafael de la Torre
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Elena Baixeras
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - M Isabel Lucena
- Servicio de Farmacología Clínica, Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto Salud Carlos III, Madrid, Spain
| | - Fernando R de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
41
|
Zaccaro C, Saracino IM, Fiorini G, Figura N, Holton J, Castelli V, Pesci V, Gatta L, Vaira D. Power of screening tests for colorectal cancer enhanced by high levels of M2-PK in addition to FOBT. Intern Emerg Med 2017; 12:333-339. [PMID: 28155016 DOI: 10.1007/s11739-017-1610-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/18/2017] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) is a multistep process that involves adenoma-carcinoma sequence. CRC can be prevented by routine screening, which can detect precancerous lesions. The aim of this study is to clarify whether faecal occult blood test (i-FOBT), tumor M2 pyruvate kinase (t-M2-PK), and endocannabinoid system molecules (cannabinoid receptors type 1-CB1, type 2-CB2, and fatty acid amide hydrolase-FAAH) might represent better diagnostic tools, alone or in combination, for an early diagnosis of CRC. An immunochemical FOB test (i-FOBT) and quantitative ELISA stool test for t-M2-PK were performed in 127 consecutive patients during a 12 month period. Endocannabinoid system molecules and t-M2-PK expression were detected by immunostaining in healthy tissues and normal mucosa surrounding adenomatous and cancerous colon lesions. i-FOBT and t-M2-PK combination leads to a better diagnostic accuracy for pre-neoplastic and neoplastic colon lesions. T-M2-PK quantification in stool samples and in biopsy samples (immunostaining) correlates with tumourigenesis stages. CB1 and CB2 are well expressed in healthy tissues, and their expression decreases in the presence of advanced stages of carcinogenesis and disappears in CRC. FAAH signal is well expressed in normal mucosa and low-risk adenoma, and increased in high-risk adenoma and carcinoma adjacent tissues. This study shows that high levels of t-M2-PK in addition to FOBT enhance the power of a CRC screening test. Endocannabinoid system molecule expression correlates with colon carcinogenesis stages. Developing future faecal tests for their quantification must be undertaken to obtain a more accurate early non-invasive diagnosis for CRC.
Collapse
Affiliation(s)
- Cristina Zaccaro
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola Hospital via Massarenti, 9, 40138, Bologna, Italy
| | - Ilaria Maria Saracino
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola Hospital via Massarenti, 9, 40138, Bologna, Italy
| | - Giulia Fiorini
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola Hospital via Massarenti, 9, 40138, Bologna, Italy.
| | - Natale Figura
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | | | - Valentina Castelli
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola Hospital via Massarenti, 9, 40138, Bologna, Italy
| | - Valeria Pesci
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola Hospital via Massarenti, 9, 40138, Bologna, Italy
| | - Luigi Gatta
- Gastroenterology and Endoscopy Unit, Versilia Hospital, Lido di Camaiore, Italy
| | - Dino Vaira
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola Hospital via Massarenti, 9, 40138, Bologna, Italy
| |
Collapse
|
42
|
Grabner GF, Zimmermann R, Schicho R, Taschler U. Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol Ther 2017; 175:35-46. [PMID: 28213089 DOI: 10.1016/j.pharmthera.2017.02.033] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoyl glycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL's role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
43
|
A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis. Sci Rep 2017; 7:41121. [PMID: 28112243 PMCID: PMC5253734 DOI: 10.1038/srep41121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022] Open
Abstract
N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. Fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH have been used for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, in part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Collectively, our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants.
Collapse
|
44
|
Polyunsaturated Fatty Acids Differentially Modulate Cell Proliferation and Endocannabinoid System in Two Human Cancer Lines. Arch Med Res 2017; 48:46-54. [DOI: 10.1016/j.arcmed.2017.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
|
45
|
Rodriguez-Sanchez IP, Guindon J, Ruiz M, Tejero ME, Hubbard G, Martinez-de-Villarreal LE, Barrera-Saldaña HA, Dick EJ, Comuzzie AG, Schlabritz-Loutsevitch NE. The endocannabinoid system in the baboon (Papio spp.) as a complex framework for developmental pharmacology. Neurotoxicol Teratol 2016; 58:23-30. [PMID: 27327781 PMCID: PMC5897907 DOI: 10.1016/j.ntt.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 05/19/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The consumption of marijuana (exogenous cannabinoid) almost doubled in adults during last decade. Consumption of exogenous cannabinoids interferes with the endogenous cannabinoid (or "endocannabinoid" (eCB)) system (ECS), which comprises N-arachidonylethanolamide (anandamide, AEA), 2-arachidonoyl glycerol (2-AG), endocannabinoid receptors (cannabinoid receptors 1 and 2 (CB1R and CB2R), encoded by CNR1 and CNR2, respectively), and synthesizing/degrading enzymes (FAAH, fatty-acid amide hydrolase; MAGL, monoacylglycerol lipase; DAGL-α, diacylglycerol lipase-alpha). Reports regarding the toxic and therapeutic effects of pharmacological compounds targeting the ECS are sometimes contradictory. This may be caused by the fact that structure of the eCBs varies in the species studied. OBJECTIVES First: to clone and characterize the cDNAs of selected members of ECS in a non-human primate (baboon, Papio spp.), and second: to compare those cDNA sequences to known human structural variants (single nucleotide polymorphisms and haplotypes). MATERIALS AND METHODS Polymerase chain reaction-amplified gene products from baboon tissues were transformed into Escherichia coli. Amplicon-positive clones were sequenced, and the obtained sequences were conceptually translated into amino-acid sequences using the genetic code. RESULTS Among the ECS members, CNR1 was the best conserved gene between humans and baboons. The phenotypes associated with mutations in the untranslated regions of this gene in humans have not been described in baboons. One difference in the structure of CNR2 between humans and baboons was detected in the region with the only known clinically relevant polymorphism in a human receptor. All of the differences in the amino-acid structure of DAGL-α between humans and baboons were located in the hydroxylase domain, close to phosphorylation sites. None of the differences in the amino-acid structure of MAGL observed between baboons and humans were located in the area critical for enzyme function. CONCLUSION The evaluation of the data, obtained in non-human primate model of cannabis-related developmental exposure should take into consideration possible evolutionary-determined species-specific differences in the CB1R expression, CB2R transduction pathway, and FAAH and DAGLα substrate-enzyme interactions.
Collapse
Affiliation(s)
- Iram P Rodriguez-Sanchez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Genética, Monterrey, Nuevo León, Mexico
| | - Josee Guindon
- Department of Pharmacology and Neurobiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marco Ruiz
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA
| | - M Elizabeth Tejero
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., Mexico
| | - Gene Hubbard
- Department of Pathology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Hugo A Barrera-Saldaña
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular, Monterrey, Nuevo León, Mexico
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | |
Collapse
|
46
|
Spagnolo PA, Ramchandani VA, Schwandt ML, Kwako LE, George DT, Mayo LM, Hillard CJ, Heilig M. FAAH Gene Variation Moderates Stress Response and Symptom Severity in Patients with Posttraumatic Stress Disorder and Comorbid Alcohol Dependence. Alcohol Clin Exp Res 2016; 40:2426-2434. [PMID: 27716956 DOI: 10.1111/acer.13210] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/30/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND A common single nucleotide polymorphism (C385A) in the human fatty acid amide hydrolase (FAAH) gene has been associated with decreased distress responses in healthy volunteers, but its role in psychiatric disorders remains unknown. Here, we obtained genotypes and carried out a secondary analysis of subjects from a trial of comorbid posttraumatic stress disorder (PTSD) and alcohol dependence (AD). We evaluated the effects of C385A variation on behavioral and biochemical biomarkers of distress responses. METHODS Forty-nine patients with PTSD and AD were admitted for 4 weeks to an experimental medicine unit at the National Institutes of Health Clinical Center. Following detoxification, stress reactivity and peripheral endocannabinoid (eCB) levels were assessed in response to a challenge session using personalized auditory guided imagery. Over the course of the study, subjects were also evaluated for changes in PTSD symptom severity. RESULTS FAAH C385A allele carriers showed a marked increase in serum anandamide levels at baseline and throughout the stress challenge procedure compared with C allele homozygotes, while levels of eCBs primarily metabolized through other enzymatic activity, such as 2-arachidonoylglycerol, did not differ between genotype groups. FAAH C385A carriers also had decreased subjective anxiety responses to the stress challenge. Similar effects of FAAH C385A genotype were found at the level of clinical PTSD symptom severity, in particular in the arousal domain. CONCLUSIONS This is to our knowledge the first study showing that FAAH C385A variation modulates stress responses in subjects with disorders characterized by increased stress reactivity. These findings point to the eCB pathway as a promising target for future antistress therapeutics.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biomedical Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Laura E Kwako
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - David T George
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
47
|
Sharkey KA, Wiley JW. The Role of the Endocannabinoid System in the Brain-Gut Axis. Gastroenterology 2016; 151:252-66. [PMID: 27133395 PMCID: PMC4961581 DOI: 10.1053/j.gastro.2016.04.015] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.
Collapse
Affiliation(s)
- Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada,Corresponding author: Dr. Keith Sharkey, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada, , Tel: 403-220-4601
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
48
|
Yuan Y, Wang F, Tang W, Ding Z, Wang L, Liang L, Zheng Z, Zhang H, Liang G. Intracellular Self-Assembly of Cyclic d-Luciferin Nanoparticles for Persistent Bioluminescence Imaging of Fatty Acid Amide Hydrolase. ACS NANO 2016; 10:7147-7153. [PMID: 27348334 DOI: 10.1021/acsnano.6b03412] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fatty acid amide hydrolase (FAAH) overexpression induces several disorder symptoms in nerve systems, and therefore long-term tracing of FAAH activity in vivo is of high importance but remains challenging. Current bioluminescence (BL) methods are limited in detecting FAAH activity within 5 h. Herein, by rational design of a latent BL probe (d-Cys-Lys-CBT)2 (1), we developed a "smart" method of intracellular reduction-controlled self-assembly and FAAH-directed disassembly of its cyclic d-luciferin-based nanoparticles (i.e., 1-NPs) for persistent BL imaging of FAAH activity in vitro, in cells, and in vivo. Using aminoluciferin methyl amide (AMA), Lys-amino-d-luciferin (Lys-Luc), and amino-d-luciferin (NH2-Luc) as control BL probes, we validated that the persistent BL of 1 from luciferase-expressing cells or tumors was controlled by the activity of intracellular FAAH. With the property of long-term tracing of FAAH activity in vivo of 1, we envision that our BL precursor 1 could probably be applied for in vivo screening of FAAH inhibitors and the diagnosis of their related diseases (or disorders) in the future.
Collapse
Affiliation(s)
- Yue Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei Science Center CAS, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Fuqiang Wang
- State Key Laboratory of Reproductive Medicine, Analysis Center, Nanjing Medical University , Nanjing, Jiangsu 210093, China
| | - Wei Tang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei Science Center CAS, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhanling Ding
- CAS Key Laboratory of Soft Matter Chemistry, Hefei Science Center CAS, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lin Wang
- School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Lili Liang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei Science Center CAS, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhen Zheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei Science Center CAS, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Huafeng Zhang
- School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei Science Center CAS, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
49
|
Agirregoitia E, Totorikaguena L, Expósito A, Mendoza R, Matorras R, Agirregoitia N. Dynamic of expression and localization of cannabinoid-degrading enzymes FAAH and MGLL in relation to CB1 during meiotic maturation of human oocytes. Cell Tissue Res 2016; 365:393-401. [PMID: 26948343 DOI: 10.1007/s00441-016-2381-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/19/2016] [Indexed: 12/11/2022]
Abstract
The endogenous cannabinoid system has been characterized in some female reproductive organs but little is known about the expression and localization pattern of cannabinoid-degrading enzymes in relation to the CB1 cannabinoid receptor in human oocytes. In this study, we focus on the investigation of the presence and differential distribution of fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in relation to CB1 during the maturation of human oocytes. We used a total of 290 human oocytes not suitable for in vitro fertilization/intracytoplasmic sperm injection (ICSI): germinal-vesicle (GV) and metaphase-I (MI) stages and metaphase-II (MII) oocytes that had not developed into an embryo after ICSI. Cannabinoid-degrading enzymes and the cannabinoid CB1 receptor were present in human oocytes. Specifically, FAAH was detected in the periphery of the oocyte from the GV to MI stage and co-localized with CB1. Later, by the MII stage, FAAH was spread within the oocyte, whereas MGLL immunostaining was homogeneous across the oocyte at all stages of maturation and only overlapped with CB1 at the GV stage. This coordinated redistribution of cannabinoid system proteins suggests a role for this system in the maturation of the female gamete.
Collapse
Affiliation(s)
- Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain.
| | - Lide Totorikaguena
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Antonia Expósito
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo, 48903, Bizkaia, Spain
| | - Rosario Mendoza
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo, 48903, Bizkaia, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo, 48903, Bizkaia, Spain
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| |
Collapse
|
50
|
Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, Everard A. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 2016; 12:133-43. [PMID: 26678807 DOI: 10.1038/nrendo.2015.211] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various metabolic disorders are associated with changes in inflammatory tone. Among the latest advances in the metabolism field, the discovery that gut microorganisms have a major role in host metabolism has revealed the possibility of a plethora of associations between gut bacteria and numerous diseases. However, to date, few mechanisms have been clearly established. Accumulating evidence indicates that the endocannabinoid system and related bioactive lipids strongly contribute to several physiological processes and are a characteristic of obesity, type 2 diabetes mellitus and inflammation. In this Review, we briefly define the gut microbiota as well as the endocannabinoid system and associated bioactive lipids. We discuss existing literature regarding interactions between gut microorganisms and the endocannabinoid system, focusing specifically on the triad of adipose tissue, gut bacteria and the endocannabinoid system in the context of obesity and the development of fat mass. We highlight gut-barrier function by discussing the role of specific factors considered to be putative 'gate keepers' or 'gate openers', and their role in the gut microbiota-endocannabinoid system axis. Finally, we briefly discuss data related to the different pharmacological strategies currently used to target the endocannabinoid system, in the context of cardiometabolic disorders and intestinal inflammation.
Collapse
Affiliation(s)
- Patrice D Cani
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Hubert Plovier
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Matthias Van Hul
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Lucie Geurts
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Céline Druart
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Amandine Everard
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| |
Collapse
|