1
|
Lee S, Clémentine C, Kim H. Exploring the genetic factors behind the discrepancy in resistance to bovine tuberculosis between African zebu cattle and European taurine cattle. Sci Rep 2024; 14:2370. [PMID: 38287127 PMCID: PMC10824790 DOI: 10.1038/s41598-024-52606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
Caused by the pathogenic agent Mycobacterium bovis, bovine tuberculosis (bTB) is a major concern in cattle breeding due to both its zoonotic potential and economic impact. Greater resistance to this disease has been reported in certain African zebu breeds compared to European taurine breeds. However the genetic basis for the lower susceptibility to bTB infection observed in zebu cattle remains poorly explored. This study was conducted on whole genome sequencing data of three bTB infection-resistant African zebu breeds and two bTB infection-susceptible taurine breeds to decipher the genetic background. A set of four selection signature statistics based on linkage disequilibrium, site frequency spectrum, and population differentiation were used on SNPs whereas between population variance based VST and t-test were used on CNVs. As a complement, genes from previous literature reported as candidate genes for bTB resistance were also inspected to identify genetic variations. Interestingly, the resulting nine candidate genes had deleterious missense variants (SHC3, IFNGR1, TLR2, TLR6, IL1A, LRRK2, EP300 and IRAK4) or a CNV difference (CD48) segregating between the groups. The genes found in the study play a role in immune pathways activated during Mycobacterium infection, contributing to the proliferation of immune cells and the granuloma formation, ultimately modulating the outcome of the infectious event. In particular, a deleterious variant in the LRRK2 gene, whose deficiency has been linked to improved prognosis upon tuberculosis infection, was found in the bTB infection-resistant zebu breeds. Therefore, these genes constitute credible candidates in explaining the discrepancy in Mycobacterium bovis infection susceptibility among different breed.
Collapse
Affiliation(s)
- SangJung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Charton Clémentine
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
High Dimensionality Reduction and Immune Phenotyping of Natural Killer and Invariant Natural Killer Cells in Latent Tuberculosis-Diabetes Comorbidity. J Immunol Res 2022; 2022:2422790. [PMID: 35242883 PMCID: PMC8886750 DOI: 10.1155/2022/2422790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK) and invariant NKT (iNKT) cells are unique innate lymphocytes that coordinate diverse immune responses and display antimycobacterial potential. However, the role of NK and iNKT cells expressing cytokines, cytotoxic, and immune markers in latent tuberculosis (LTB), diabetes mellitus (DM), or preDM (PDM) and nonDM (NDM) comorbidities is not known. Thus, we have studied the unstimulated (UNS), Mycobacterium tuberculosis (Mtb [PPD, WCL]), and mitogen (P/I)-stimulated NK and iNKT cells expressing Type 1 (IFNγ, TNFα, and IL-2), Type 17 (IL-17A, IL-17F, and IL-22) cytokines, cytotoxic (perforin, granzyme B, and granulysin) and immune (GMCSF, PD-1, and CD69) markers in LTB comorbidities by dimensionality reduction and flow cytometry. Our results suggest that LTB DM and PDM individuals express diverse NK and iNKT cell immune clusters compared to LTB NDM individuals. In UNS condition, frequencies of NK and iNKT cells expressing markers are not significantly different. After Mtb antigen stimulation, NK cell expressing [Type 1 (IFNγ, TNFα, and IL-2), GMCSF in PPD and IFNγ in WCL), Type 17 [(IL-17A), PD-1 in PPD), (IL-17A, IL-17F, and IL-22), PD-1 in WCL], and cytotoxic (perforin, granzyme B in PPD, and WCL)] marker frequencies were significantly reduced in LTB DM and/or PDM individuals compared to LTB NDM individuals. Similarly, iNKT cells expressing [Type 1 (IFNγ, IL-2), GMCSF in PPD), TNFα, GMCSF in WCL), Type 17 (IL-17A), PD-1 in PPD, IL-17F in WCL) cytokines were increased and cytotoxic or immune (perforin, granzyme B, granulysin), CD69 in PPD, perforin and CD69 in WCL] marker frequencies were significantly diminished in LTB DM and/or PDM compared to LTB NDM individuals. Finally, NK and iNKT cell frequencies did not exhibit significant differences upon positive control antigen stimulation between the study population. Therefore, altered NK cell and iNKT cells expressing cytokines, cytotoxic, and immune markers are characteristic features in LTB PDM/DM comorbidities.
Collapse
|
3
|
Muruganandah V, Kupz A. Immune responses to bacterial lung infections and their implications for vaccination. Int Immunol 2021; 34:231-248. [PMID: 34850883 DOI: 10.1093/intimm/dxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 11/14/2022] Open
Abstract
The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. Whilst some aspects are well characterised, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
4
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
6
|
Pan J, Ye Z, Zhang N, Lou T, Cao Z. MicroRNA-217 regulates interstitial pneumonia via IL-6. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1519379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jiongwei Pan
- Department of Respiratory Medicine, Sixth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhaiting Ye
- Department of Radiology, Sixth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ning Zhang
- Intense Care Unit, First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| | - Tianzheng Lou
- Intense Care Unit, First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| | - Zhuo Cao
- Department of Respiratory Medicine, Sixth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Respiratory Medicine, First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| |
Collapse
|
7
|
Trottein F, Paget C. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front Immunol 2018; 9:1750. [PMID: 30116242 PMCID: PMC6082944 DOI: 10.3389/fimmu.2018.01750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system has been traditionally divided into two arms called innate and adaptive immunity. Typically, innate immunity refers to rapid defense mechanisms that set in motion within minutes to hours following an insult. Conversely, the adaptive immune response emerges after several days and relies on the innate immune response for its initiation and subsequent outcome. However, the recent discovery of immune cells displaying merged properties indicates that this distinction is not mutually exclusive. These populations that span the innate-adaptive border of immunity comprise, among others, CD1d-restricted natural killer T cells and MR1-restricted mucosal-associated invariant T cells. These cells have the unique ability to swiftly activate in response to non-peptidic antigens through their T cell receptor and/or to activating cytokines in order to modulate many aspects of the immune response. Despite they recirculate all through the body via the bloodstream, these cells mainly establish residency at barrier sites including lungs. Here, we discuss the current knowledge into the biology of these cells during lung (viral and bacterial) infections including activation mechanisms and functions. We also discuss future strategies targeting these cell types to optimize immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- François Trottein
- Univ. Lille, U1019 – UMR 8204 – CIIL – Centre d’Infection et d’Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- Institut National de la Santé et de la Recherche Médicale U1100, Centre d’Etude des Pathologies Respiratoires (CEPR), Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
8
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|
9
|
Chancellor A, White A, Tocheva AS, Fenn JR, Dennis M, Tezera L, Singhania A, Elliott T, Tebruegge M, Elkington P, Gadola S, Sharpe S, Mansour S. Quantitative and qualitative iNKT repertoire associations with disease susceptibility and outcome in macaque tuberculosis infection. Tuberculosis (Edinb) 2017; 105:86-95. [PMID: 28610792 PMCID: PMC6168056 DOI: 10.1016/j.tube.2017.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
Correlates of immune protection that reliably predict vaccine efficacy against Mycobacterium tuberculosis (Mtb) infection are urgently needed. Invariant NKT cells (iNKTs) are CD1d-dependent innate T cells that augment host antimicrobial immunity through production of cytokines, including interferon (IFN)-γ and tumour necrosis factor (TNF)-α. We determined peripheral blood iNKT numbers, their proliferative responses and iNKT subset proportions after in vitro antigen expansion by α-galactosylceramide (αGC) in a large cohort of mycobacteria-naïve non-human primates, and macaques from Bacillus Calmette-Guerin (BCG) vaccine and Mtb challenge studies. Animals studied included four genetically distinct groups of macaques within cynomolgus and rhesus species that differ in their susceptibility to Mtb infection. We demonstrate significant differences in ex vivo iNKT frequency between groups, which trends towards an association with susceptibility to Mtb, but no significant difference in overall iNKT proliferative responses. Susceptible animals exhibited a skewed CD4+/CD8+ iNKT subset ratio in comparison to more Mtb-resistant groups. Correlation of iNKT subsets post BCG vaccination with clinical disease manifestations following Mtb challenge in the Chinese cynomolgus and Indian rhesus macaques identified a consistent trend linking increased CD8+ iNKTs with favourable disease outcome. Finally, a similar iNKT profile was conferred by BCG vaccination in rhesus macaques. Our study provides the first detailed characterisation of iNKT cells in macaque tuberculosis infection, suggesting that iNKT repertoire differences may impact on disease outcome, which warrants further investigation.
Collapse
Affiliation(s)
- Andrew Chancellor
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Andrew White
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Anna S Tocheva
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Joe R Fenn
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Mike Dennis
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Liku Tezera
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Akul Singhania
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Tim Elliott
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marc Tebruegge
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Paul Elkington
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Stephan Gadola
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sally Sharpe
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Salah Mansour
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
10
|
Bhavanam S, Rayat GR, Keelan M, Kunimoto D, Drews SJ. Understanding the pathophysiology of the human TB lung granuloma using in vitro granuloma models. Future Microbiol 2016; 11:1073-89. [PMID: 27501829 DOI: 10.2217/fmb-2016-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis remains a major human health threat that infects one in three individuals worldwide. Infection with Mycobacterium tuberculosis is a standoff between host and bacteria in the formation of a granuloma. This review will introduce a variety of bacterial and host factors that impact individual granuloma fates. The authors describe advances in the development of in vitro granuloma models, current evidence surrounding infection and granuloma development, and the applicability of existing in vitro models in the study of human disease. In vitro models of infection help improve our understanding of pathophysiology and allow for the discovery of other potential models of study.
Collapse
Affiliation(s)
- Sudha Bhavanam
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R Rayat
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Monika Keelan
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Kunimoto
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J Drews
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Abstract
Through thousands of years of reciprocal coevolution, Mycobacterium tuberculosis has become one of humanity's most successful pathogens, acquiring the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies that interfere with both innate and adaptive immunity. These include the manipulation of their phagosomal environment within host macrophages, the selective avoidance or engagement of pattern recognition receptors, modulation of host cytokine production, and the manipulation of antigen presentation to prevent or alter the quality of T-cell responses. In this article we review an extensive array of published studies that have begun to unravel the sophisticated program of specific mechanisms that enable M. tuberculosis and other pathogenic mycobacteria to persist and replicate in the face of considerable immunological pressure from their hosts. Unraveling the mechanisms by which M. tuberculosis evades or modulates host immune function is likely to be of major importance for the development of more effective new vaccines and targeted immunotherapy against tuberculosis.
Collapse
|
12
|
Siddiqui S, Visvabharathy L, Wang CR. Role of Group 1 CD1-Restricted T Cells in Infectious Disease. Front Immunol 2015; 6:337. [PMID: 26175733 PMCID: PMC4484338 DOI: 10.3389/fimmu.2015.00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved CD1 family of antigen-presenting molecules presents lipid antigens rather than peptide antigens to T cells. CD1 molecules, unlike classical MHC molecules, display limited polymorphism, making CD1-restricted lipid antigens attractive vaccine targets that could be recognized in a genetically diverse human population. Group 1 CD1 (CD1a, CD1b, and CD1c)-restricted T cells have been implicated to play critical roles in a variety of autoimmune and infectious diseases. In this review, we summarize current knowledge and recent discoveries on the development of group 1 CD1-restricted T cells and their function in different infection models. In particular, we focus on (1) newly identified microbial and self-lipid antigens, (2) kinetics, phenotype, and unique properties of group 1 CD1-restricted T cells during infection, and (3) the similarities of group 1 CD1-restricted T cells to the closely related group 2 CD1-restricted T cells.
Collapse
Affiliation(s)
- Sarah Siddiqui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
13
|
Pathogen-expanded CD11b+ invariant NKT cells feedback inhibit T cell proliferation via membrane-bound TGF-β1. J Autoimmun 2015; 58:21-35. [DOI: 10.1016/j.jaut.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/13/2014] [Accepted: 12/21/2014] [Indexed: 12/23/2022]
|
14
|
De Libero G, Singhal A, Lepore M, Mori L. Nonclassical T cells and their antigens in tuberculosis. Cold Spring Harb Perspect Med 2014; 4:a018473. [PMID: 25059739 DOI: 10.1101/cshperspect.a018473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I-related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response.
Collapse
Affiliation(s)
- Gennaro De Libero
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Amit Singhal
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore
| | - Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Lucia Mori
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
15
|
Shekhar S, Joyee AG, Yang X. Invariant natural killer T cells: boon or bane in immunity to intracellular bacterial infections? J Innate Immun 2014; 6:575-84. [PMID: 24903638 DOI: 10.1159/000361048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a specialized subset of innate lymphocytes that recognize lipid and glycolipid antigens presented to them by nonclassical MHC-I CD1d molecules and are able to rapidly secrete copious amounts of a variety of cytokines. iNKT cells possess the ability to modulate innate as well as adaptive immune responses against various pathogens. Intracellular bacteria are one of the most clinically significant human pathogens that effectively evade the immune system and cause a myriad of diseases of public health concern globally. Emerging evidence suggests that iNKT cells can confer immunity to intracellular bacteria but also inflict pathology in certain cases. We summarize the current knowledge on the contribution of iNKT cells in the host defense against intracellular bacterial infections, with a focus on the underlying mechanisms by which these cells induce protective or pathogenic reactions including the pathways of direct action (acting on infected cells) and indirect action (modulating dendritic, NK and T cells). The rational exploitation of iNKT cells for prophylactic and therapeutic purposes awaits a profound understanding of their functional biology.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Man., Canada
| | | | | |
Collapse
|
16
|
Verrall AJ, Netea MG, Alisjahbana B, Hill PC, van Crevel R. Early clearance of Mycobacterium tuberculosis: a new frontier in prevention. Immunology 2014; 141:506-13. [PMID: 24754048 DOI: 10.1111/imm.12223] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Early clearance (EC) is the successful eradication of inhaled Mycobacterium tuberculosis before an adaptive immune response develops. Evidence for EC comes from case contact studies that consistently show that a proportion of heavily exposed individuals do not develop M. tuberculosis infection. Further support for the existence of this phenotype comes from genetic loci associated with tuberculin reactivity. In this review we discuss aspects of the innate response that may underpin EC and hypotheses that can be tested through field laboratory link studies in M. tuberculosis case contacts. Specifically, we consider mechanisms whereby alveolar macrophages recognize and kill intracellular M. tuberculosis, and how other cell types, such as neutrophils, natural killer T cells, mucosa-associated invariant T cells and cd T cells may assist. How EC may be impaired by HIV infection or vitamin D deficiency is also explored. As EC is a form of protective immunity, further study may advance the development of vaccines and immunotherapies to prevent M. tuberculosis infection.
Collapse
|
17
|
Abstract
Clinical trials of vaccines against Mycobacterium tuberculosis are well under way and results are starting to come in. Some of these results are not so encouraging, as exemplified by the latest Aeras-422 and MVA85A trials. Other than empirically determining whether a vaccine reduces the number of cases of active tuberculosis, which is a daunting prospect given the chronic nature of the disease, we have no way of assessing vaccine efficacy. Therefore, investigators seek to identify biomarkers that predict vaccine efficacy. Historically, focus has been on the production of interferon-γ by CD4(+) T cells, but this has not been a useful correlate of vaccine-induced protection. In this Opinion article, we discuss recent advances in our understanding of the immune control of M. tuberculosis and how this knowledge could be used for vaccine design and evaluation.
Collapse
|
18
|
Rothchild AC, Jayaraman P, Nunes-Alves C, Behar SM. iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLoS Pathog 2014; 10:e1003805. [PMID: 24391492 PMCID: PMC3879349 DOI: 10.1371/journal.ppat.1003805] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/15/2013] [Indexed: 02/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are activated during infection, but how they limit microbial growth is unknown in most cases. We investigated how iNKT cells suppress intracellular Mycobacterium tuberculosis (Mtb) replication. When co-cultured with infected macrophages, iNKT cell activation, as measured by CD25 upregulation and IFNγ production, was primarily driven by IL-12 and IL-18. In contrast, iNKT cell control of Mtb growth was CD1d-dependent, and did not require IL-12, IL-18, or IFNγ. This demonstrated that conventional activation markers did not correlate with iNKT cell effector function during Mtb infection. iNKT cell control of Mtb replication was also independent of TNF and cell-mediated cytotoxicity. By dissociating cytokine-driven activation and CD1d-restricted effector function, we uncovered a novel mediator of iNKT cell antimicrobial activity: GM-CSF. iNKT cells produced GM-CSF in vitro and in vivo in a CD1d-dependent manner during Mtb infection, and GM-CSF was both necessary and sufficient to control Mtb growth. Here, we have identified GM-CSF production as a novel iNKT cell antimicrobial effector function and uncovered a potential role for GM-CSF in T cell immunity against Mtb. Mycobacterium tuberculosis (Mtb) is the cause of tuberculosis, a leading cause of sickness and death worldwide. Although much is known about CD4+ and CD8+ T cell responses to Mtb, the role of other T cell subsets is poorly understood. Invariant natural killer T (iNKT) cells are innate lymphocytes that express a semi-invariant T cell receptor and recognize lipid antigens presented by CD1d. Although iNKT cells participate in the immune response to many different pathogens, little is known about how iNKT cells directly kill microbes. We previously showed that when co-cultured with Mtb-infected macrophages, iNKT cells inhibit intracellular Mtb replication. Now, we used this model to dissociate the signals that induce iNKT cell activation markers including IFNγ production, from the signals that activate iNKT cell antimicrobial activity. This allowed us to uncover a novel antimicrobial effector function produced by iNKT cells: GM-CSF. GM-CSF is essential for immunity to Mtb, but its role has never been defined. This study is the first report to demonstrate a protective function of GM-CSF production by any T cell subset during Mtb infection. T cell production of GM-CSF should be considered as a potential mechanism of antimicrobial immunity.
Collapse
Affiliation(s)
- Alissa C. Rothchild
- Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Pushpa Jayaraman
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
MyD88 is an adaptor protein that plays a major role in TLR/IL-1 receptor family signaling. To understand the role of MyD88 in the development of murine tuberculosis in vivo, MyD88 knockout (KO) mice aerially were infected with Mycobacterium tuberculosis. Infected MyD88 mice were not highly susceptible to M. tuberculosis infection, but they developed granulomatous pulmonary lesions with neutrophil infiltration which were larger than those in wild-type (WT) mice (P < 0.01). The pulmonary tissue levels of mRNA for iNOS and IL-18 were slightly lower, but levels of mRNA for IL-1 beta, IL-2, IL-4, IL-6, IL-10, IFN-gamma, and TGF-beta were higher in MyD88 KO mice. IFN-gamma, TNF-alpha, IL-1 beta, and IL-12 also were high in the sera of MyD88 KO mice. There were no statistically significant differences in the expression of TNF-alpha, IL-12, and ICAM-1 mRNA between MyD88 KO and WT mice. Thus, MyD88 deficiency did not influence the development of murine tuberculosis. NF-kappa B activity was similar in the alveolar macrophages from the lung tissues of MyD88 KO and WT mice. Also, there may be a TLR2-specific, MyD88-independent IL-1 receptor/TLR-mediated pathway to activate NF-kappa B in the host defense against mycobacterial infection.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mycobacterium Infections/immunology
- Mycobacterium Infections/pathology
- Mycobacterium Infections/physiopathology
- Mycobacterium tuberculosis/physiology
- Myeloid Differentiation Factor 88
- NF-kappa B/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Spleen/microbiology
- Toll-Like Receptor 2
- Toll-Like Receptors
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/physiopathology
Collapse
Affiliation(s)
- Isamu Sugawara
- Mycobacterial Reference Center, The Research Institute of Tuberculosis, Kiyose, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
20
|
CD1d and natural killer T cells in immunity to Mycobacterium tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:199-223. [PMID: 23468111 DOI: 10.1007/978-1-4614-6111-1_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The critical role of peptide antigen-specific T cells in controlling mycobacterial infections is well documented in natural resistance and vaccine-induced immunity against Mycobacterium tuberculosis. However, many other populations of leukocytes contribute to innate and adaptive immunity against mycobacteria. Among these, non-conventional T cells recognizing lipid antigens presented by the CD1 antigen presentation system have attracted particular interest. In this chapter, we review the basic immunobiology and potential antimycobacterial properties of a subset of CD1-restricted T cells that have come to be known as Natural Killer T cells. This group of lipid reactive T cells is notable for its high level of conservation between humans and mice, thus enabling a wide range of highly informative studies in mouse models. As reviewed below, NKT cells appear to have subtle but potentially significant activities in the host response to mycobacteria. Importantly, they also provide a framework for investigations into other types of lipid antigen-specific T cells that may be more abundant in larger mammals such as humans.
Collapse
|
21
|
Early control of Mycobacterium tuberculosis infection requires il12rb1 expression by rag1-dependent lineages. Infect Immun 2012; 80:3828-41. [PMID: 22907814 DOI: 10.1128/iai.00426-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
IL12RB1 is essential for human resistance to Mycobacterium tuberculosis infection. In the absence of a functional IL12RB1 allele, individuals exhibit susceptibility to disseminated, recurrent mycobacterial infections that are associated with defects in both RAG1-dependent and RAG1-independent hematopoietic lineages. Despite this well-established association, a causal relationship between M. tuberculosis susceptibility and IL12RB1 deficiency in either RAG1-dependent or RAG1-independent lineages has never been formally tested. Here, we use the low-dose aerosol model of experimental tuberculosis (TB) to both establish that infected il12rb1(-/-) mice recapitulate important aspects of TB in IL12RB1 null individuals and, more importantly, use radiation bone marrow chimeras to demonstrate that restriction of il12rb1 deficiency solely to rag1-dependent lineages (i.e., T and B cells) allows for the full transfer of the il12rb1(-/-) phenotype. We further demonstrate that the protection afforded by adaptive lymphocyte il12rb1 expression is mediated partially through ifng and that, within the same infection, il12rb1-sufficient T cells exhibit dominance over il12rb1-deficient T cells by enhancing ifng expression in the latter population. Collectively, our data establish a basic framework in which to understand how IL12RB1 promotes control of this significant human disease.
Collapse
|
22
|
The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol 2012; 2012:139127. [PMID: 22811737 PMCID: PMC3395138 DOI: 10.1155/2012/139127] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/16/2012] [Accepted: 04/30/2012] [Indexed: 12/16/2022]
Abstract
One of the main features of the immune response to M. Tuberculosis is the formation of an organized structure called granuloma. It consists mainly in the recruitment at the infectious stage of macrophages, highly differentiated cells such as multinucleated giant cells, epithelioid cells and Foamy cells, all these cells being surrounded by a rim of lymphocytes. Although in the first instance the granuloma acts to constrain the infection, some bacilli can actually survive inside these structures for a long time in a dormant state. For some reasons, which are still unclear, the bacilli will reactivate in 10% of the latently infected individuals, escape the granuloma and spread throughout the body, thus giving rise to clinical disease, and are finally disseminated throughout the environment. In this review we examine the process leading to the formation of the granulomatous structures and the different cell types that have been shown to be part of this inflammatory reaction. We also discuss the different in vivo and in vitro models available to study this fascinating immune structure.
Collapse
|
23
|
Zhang Q, Xiao HP, Cui HY, Sugawara I. Significant increase in natural-killer T cells in patients with tuberculosis complicated by type 2 diabetes mellitus. J Int Med Res 2011; 39:105-11. [PMID: 21672313 DOI: 10.1177/147323001103900113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study examined the frequency of Vα24(+)/Vβ11(+) natural-killer T (NKT) cells from peripheral blood and bronchoalveolar lavage fluid in pulmonary tuberculosis (TB) patients with or without diabetes mellitus (DM). The clinical grade of TB was significantly higher among diabetic patients. NKT cells from both peripheral blood and bronchoalveolar lavage were significantly increased in diabetic TB patients compared with non-diabetic TB patients. This may be due to the generally higher bacillary burden in diabetic TB patients. NKT cells from peripheral blood mononuclear cells in TB patients with or without DM were significantly increased, compared with levels in non-TB diabetic patients and healthy controls. The measurement of NKT cells from peripheral blood has the potential to be a reliable, non-invasive, practical diagnostic marker for active TB.
Collapse
Affiliation(s)
- Q Zhang
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
24
|
Kinjo Y, Ueno K. iNKT cells in microbial immunity: recognition of microbial glycolipids. Microbiol Immunol 2011; 55:472-82. [DOI: 10.1111/j.1348-0421.2011.00338.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Abstract
When Mycobacterium tuberculosis infects humans, about 20% of those infected actually develop tuberculosis (TB). In Japan, the incidence of TB in 2008 was 24,760 cases (19.4/100,000 persons) and the rate has been decreasing gradually, but is still higher than in the USA, Holland, and Belgium, for example. Histologically, tuberculosis displays exudative inflammation, proliferative inflammation and productive inflammation depending on the time course. In productive inflammation, granulomatous lesions with necrotic centers are formed. The typical granulomas consist of epithelioid macrophages, Langhans' multinucleated giant cells, lymphocytes and fibroblasts, and the process of their formation involves many cytokines, chemokines and transcription factors. These findings have been derived primarily from animal experiments utilizing an airborne infection apparatus. The conditions for airborne infection have been described in detail elsewhere. This mini-review focuses on what has been found through animal experiments, and also indicates areas for which data are not currently available.
Collapse
Affiliation(s)
- Isamu Sugawara
- The Research Institute of Tuberculosis, Kiyose, Tokyo, Japan.
| |
Collapse
|
26
|
Ndhlovu LC, Snyder-Cappione JE, Carvalho KI, Leal FE, Loo CP, Bruno FR, Jha AR, Devita D, Hasenkrug AM, Barbosa HMR, Segurado AC, Nixon DF, Murphy EL, Kallas EG. Lower numbers of circulating Natural Killer T (NK T) cells in individuals with human T lymphotropic virus type 1 (HTLV-1) associated neurological disease. Clin Exp Immunol 2009; 158:294-9. [PMID: 19778295 DOI: 10.1111/j.1365-2249.2009.04019.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human T lymphotropic virus type 1 (HTLV-1) infects 10-20 million people worldwide. The majority of infected individuals are asymptomatic; however, approximately 3% develop the debilitating neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is also currently no cure, vaccine or effective therapy for HTLV-1 infection, and the mechanisms for progression to HAM/TSP remain unclear. NK T cells are an immunoregulatory T cell subset whose frequencies and effector functions are associated critically with immunity against infectious diseases. We hypothesized that NK T cells are associated with HAM/TSP progression. We measured NK T cell frequencies and absolute numbers in individuals with HAM/TSP infection from two cohorts on two continents: São Paulo, Brazil and San Francisco, CA, USA, and found significantly lower levels when compared with healthy subjects and/or asymptomatic carriers. Also, the circulating NK T cell compartment in HAM/TSP subjects is comprised of significantly more CD4(+) and fewer CD8(+) cells than healthy controls. These findings suggest that lower numbers of circulating NK T cells and enrichment of the CD4(+) NK T subset are associated with HTLV-1 disease progression.
Collapse
Affiliation(s)
- L C Ndhlovu
- Division of Experimental Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Mycobacterium tuberculosis is one of the most successful of human pathogens and has acquired the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies, including some that interfere with antigen presentation to prevent or alter the quality of T-cell responses. Here, we review an extensive array of published studies supporting the view that antigen presentation pathways are targeted at many points by pathogenic mycobacteria. These studies show the multiple potential mechanisms by which M. tuberculosis may actively inhibit, subvert or otherwise modulate antigen presentation by major histocompatibility complex class I, class II and CD1 molecules. Unraveling the mechanisms by which M. tuberculosis evades or modulates antigen presentation is of critical importance for the development of more effective new vaccines based on live attenuated mycobacterial strains.
Collapse
Affiliation(s)
- Andres Baena
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
28
|
Venkataswamy MM, Baena A, Goldberg MF, Bricard G, Im JS, Chan J, Reddington F, Besra GS, Jacobs WR, Porcelli SA. Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1644-56. [PMID: 19620317 PMCID: PMC2719834 DOI: 10.4049/jimmunol.0900858] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The attenuated strain of Mycobacterium bovis known as bacille Calmette-Guérin (BCG) has been widely used as a vaccine for prevention of disease by Mycobacterium tuberculosis, but with relatively little evidence of success. Recent studies suggest that the failure of BCG may be due to its retention of immune evasion mechanisms that delay or prevent the priming of robust protective cell-mediated immunity. In this study, we describe an approach to enhance the immunogenicity of BCG by incorporating glycolipid activators of CD1d-restricted NKT cells, a conserved T cell subset with the potential to augment many types of immune responses. A method was developed for stably incorporating two forms of the NKT cell activator alpha-galactosylceramide into live BCG organisms, and the impact of this on stimulation of T cell responses and protective antimycobacterial immunity was evaluated. We found that live BCG containing relatively small amounts of incorporated alpha-galactosylceramide retained the ability to robustly activate NKT cells. Compared with immunization with unmodified BCG, the glycolipid-modified BCG stimulated increased maturation of dendritic cells and markedly augmented the priming of Ag-specific CD8(+) T cells responses. These effects were correlated with improved protective effects of vaccination in mice challenged with virulent M. tuberculosis. These results support the view that mycobacteria possess mechanisms to avoid stimulation of CD8(+) T cell responses and that such responses contribute significantly to protective immunity against these pathogens. Our findings raise the possibility of a simple modification of BCG that could yield a more effective vaccine for control of tuberculosis.
Collapse
Affiliation(s)
| | - Andres Baena
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael F. Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriel Bricard
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jin S. Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Faye Reddington
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gurdyal S. Besra
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
29
|
Dietrich J, Doherty TM. Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development. APMIS 2009; 117:440-57. [PMID: 19400867 DOI: 10.1111/j.1600-0463.2009.02458.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a major worldwide health problem that causes more than 2 million deaths annually. In addition, an estimated 2 billion people are latently infected with M. tuberculosis. The bacterium is one of the oldest human pathogens and has evolved complex strategies for survival. Therefore, to be successful in the high endemic regions, any future TB vaccine strategy will have to be tailored in accordance with the resulting complexity of the TB infection and anti-mycobacterial immune response. In this review, we will discuss what is presently known about the interaction of M. tuberculosis with the immune system, and how this knowledge is used in new and more advanced vaccine strategies.
Collapse
Affiliation(s)
- Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark.
| | | |
Collapse
|
30
|
Kinjo Y, Kronenberg M. V alpha14 i NKT cells are innate lymphocytes that participate in the immune response to diverse microbes. J Clin Immunol 2009; 25:522-33. [PMID: 16380816 DOI: 10.1007/s10875-005-8064-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 08/17/2005] [Indexed: 01/12/2023]
Abstract
Natural Killer T (NKT) cells constitute a conserved T lymphocyte sublineage that has been implicated in the regulation of various immune responses, including the responses to viruses, bacteria, and parasites. NKT cells recognize self and foreign glycolipids presented by CD1d, a non-classical antigen-presenting molecule, and they rapidly produce various cytokines. Many studies have shown that NKT cells have protective roles following microbial infection through the amplification of innate and adaptive immunity, although NKT cells have detrimental roles in some cases. Recent studies have shed light on the natural antigens recognized by NKT cells and the mechanisms whereby they contribute to host defense, and they suggest that these unique T cells have evolved to jump start the immune response to microbes.
Collapse
Affiliation(s)
- Yuki Kinjo
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
31
|
Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM. Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog 2008; 4:e1000239. [PMID: 19079582 PMCID: PMC2588496 DOI: 10.1371/journal.ppat.1000239] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 11/12/2008] [Indexed: 12/22/2022] Open
Abstract
Cellular immunity to Mycobacterium tuberculosis (Mtb) requires a coordinated response between the innate and adaptive arms of the immune system, resulting in a type 1 cytokine response, which is associated with control of infection. The contribution of innate lymphocytes to immunity against Mtb remains controversial. We established an in vitro system to study this question. Interferon-γ is produced when splenocytes from uninfected mice are cultured with Mtb-infected macrophages, and, under these conditions, bacterial replication is suppressed. This innate control of bacterial replication is dependent on CD1d-restricted invariant NKT (iNKT) cells, and their activation requires CD1d expression by infected macrophages as well as IL-12 and IL-18. We show that iNKT cells, even in limiting quantities, are sufficient to restrict Mtb replication. To determine whether iNKT cells contribute to host defense against tuberculosis in vivo, we adoptively transferred iNKT cells into mice. Primary splenic iNKT cells obtained from uninfected mice significantly reduce the bacterial burden in the lungs of mice infected with virulent Mtb by the aerosol route. Thus, iNKT cells have a direct bactericidal effect, even in the absence of synthetic ligands such as α-galactosylceramide. Our finding that iNKT cells protect mice against aerosol Mtb infection is the first evidence that CD1d-restricted NKT cells mediate protection against Mtb in vivo. Host resistance to Mycobacterium tuberculosis (Mtb) requires a coordinated response by the different components of the immune system. We established an in vitro model to study the contribution of innate lymphocytes to immunity against Mtb. When co-cultured with Mtb-infected macrophages, splenocytes from uninfected mice become activated and suppress bacterial replication. By fractionating the different splenocyte cell populations, we discovered that the invariant NKT (iNKT) cell is essential for suppressing intracellular bacterial replication. iNKT cells, which are conserved in rodents and humans, recognize lipids presented by the antigen-presenting molecule CD1d. While we had previously shown that iNKT cell-deficient mice are not more susceptible to tuberculosis, a potential contribution of iNKT cells during the early phase of immunity may have been masked. To address this issue, we showed that highly purified iNKT cells were sufficient to reduce the lung bacterial burden of mice infected with virulent Mtb. This is the first evidence that CD1d-restricted iNKT cells play a physiological role in mediating protection against aerosol Mtb infection in vivo. Thus, by being an early producer of interferon-g and suppressing intracellular bacterial growth, iNKT cells function as an important part of the early immune response against Mtb.
Collapse
Affiliation(s)
- Isabel Sada-Ovalle
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Immunochemistry Department, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Asako Chiba
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adaena Gonzales
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael B. Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samuel M. Behar
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Small CL, McCormick S, Gill N, Kugathasan K, Santosuosso M, Donaldson N, Heinrichs DE, Ashkar A, Xing Z. NK cells play a critical protective role in host defense against acute extracellular Staphylococcus aureus bacterial infection in the lung. THE JOURNAL OF IMMUNOLOGY 2008; 180:5558-68. [PMID: 18390740 DOI: 10.4049/jimmunol.180.8.5558] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus remains a common cause of nosocomial bacterial infections and are often antibiotic resistant. The role of NK cells and IL-15 and their relationship in host defense against extracellular bacterial pathogens including S. aureus remain unclear. We have undertaken several approaches to address this issue using wild type (WT), IL-15 gene knock-out (KO), and NK cell-depleted mouse models. Upon pulmonary staphylococcal infection WT mice had markedly increased activated NK cells, but not NKT or gammadelta T cells, in the airway lumen that correlated with IL-15 production in the airway and with alveolar macrophages. In vitro exposure to staphylococcal products and/or coculture with lung macrophages directly activated NK cells. In contrast, lung macrophages better phagocytosed S. aureus in the presence of NK cells. In sharp contrast to WT controls, IL-15 KO mice deficient in NK cells were found to be highly susceptible to pulmonary staphylococcal infection despite markedly increased neutrophils and macrophages in the lung. In further support of these findings, WT mice depleted of NK cells were similarly susceptible to staphylococcal infection while they remained fully capable of IL-15 production in the lung at levels similar to those of NK-competent WT hosts. Our study thus identifies a critical role for NK cells in host defense against pulmonary extracellular bacterial infection and suggests that IL-15 is involved in this process via its indispensable effect on NK cells, but not other innate cells. These findings hold implication for the development of therapeutics in treating antibiotic-resistant S. aureus infection.
Collapse
Affiliation(s)
- Cherrie-Lee Small
- Department of Pathology and Molecular Medicine, Division of Infectious Diseases, Center for Gene Therapeutics, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Im JS, Kang TJ, Lee SB, Kim CH, Lee SH, Venkataswamy MM, Serfass ER, Chen B, Illarionov PA, Besra GS, Jacobs WR, Chae GT, Porcelli SA. Alteration of the relative levels of iNKT cell subsets is associated with chronic mycobacterial infections. Clin Immunol 2008; 127:214-24. [PMID: 18308638 PMCID: PMC2413133 DOI: 10.1016/j.clim.2007.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/06/2007] [Accepted: 12/18/2007] [Indexed: 01/13/2023]
Abstract
CD1d-restricted invariant natural killer T cells (iNKT cells) have been identified as an important type of effector and regulatory T cell, but their roles in the chronic infectious diseases caused by Mycobacterium tuberculosis and Mycobacterium leprae remain poorly defined. Here, we studied circulating human iNKT cells in blood samples from tuberculosis (TB) and leprosy patients. We found that the percentages of iNKT cells among total circulating T cells in TB and leprosy patients were not significantly different from those in normal controls. However, both TB and leprosy patients showed a selective reduction of the proinflammatory CD4(-)CD8beta(-) (DN) iNKT cells with a proportionate increase in the CD4(+) iNKT cells. Similar phenotypic alterations in circulating iNKT cells were observed in a mouse model of M. tuberculosis infection. Taken together, these findings indicate that the selective reduction of circulating DN iNKT cells is associated with chronic infections caused by M. tuberculosis and M. leprae.
Collapse
Affiliation(s)
- Jin S Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
NKT cells are a relatively newly recognized member of the immune community, with profound effects on the rest of the immune system despite their small numbers. They are true T cells with a T cell receptor (TCR), but unlike conventional T cells that detect peptide antigens presented by conventional major histocompatibility (MHC) molecules, NKT cells recognize lipid antigens presented by CD1d, a nonclassical MHC molecule. As members of both the innate and adaptive immune systems, they bridge the gap between these, and respond rapidly to set the tone for subsequent immune responses. They fill a unique niche in providing the immune system a cellular arm to recognize lipid antigens. They play both effector and regulatory roles in infectious and autoimmune diseases. Furthermore, subsets of NKT cells can play distinct and sometimes opposing roles. In cancer, type I NKT cells, defined by their invariant TCR using Valpha14Jalpha18 in mice and Valpha24Jalpha18 in humans, are mostly protective, by producing interferon-gamma to activate NK and CD8(+) T cells and by activating dendritic cells to make IL-12. In contrast, type II NKT cells, characterized by more diverse TCRs recognizing lipids presented by CD1d, primarily inhibit tumor immunity. Moreover, type I and type II NKT cells counter-regulate each other, forming a new immunoregulatory axis. Because NKT cells respond rapidly, the balance along this axis can greatly influence other immune responses that follow. Therefore, learning to manipulate the balance along the NKT regulatory axis may be critical to devising successful immunotherapies for cancer.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
35
|
Behar SM, Porcelli SA. CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol 2007; 314:215-50. [PMID: 17593663 DOI: 10.1007/978-3-540-69511-0_9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CD1 has been clearly shown to function as a microbial recognition system for activation of T cell responses, but its importance for mammalian protective responses against infections is still uncertain. The function of the group 1 CD1 isoforms, including human CD1a, CDlb, and CDLc, seems closely linked to adaptive immunity. These CD1 molecules control the responses of T cells that are highly specific for particular lipid antigens, the best known of which are abundantly expressed by pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium leprae. Studies done mainly on human circulating T cells ex vivo support a significant role for group I CD1-restricted T cells in protective immunity to mycobacteria and potentially other pathogens, although supportive data from animal models is currently limited. In contrast, group 2 CD1 molecules, which include human CD1d and its orthologs, have been predominantly associated with the activation of CD1d-restricted NKT cells, which appear to be more appropriately viewed as a facet of the innate immune system. Whereas the recognition of certain self-lipid ligands by CD d-restricted NKT cells is well accepted, the importance of these T cells in mediating adaptive immune recognition of specific microbial lipid antigens remains controversial. Despite continuing uncertainty about the role of CD 1d-restricted NKT cells in natural infections, studies in mouse models demonstrate the potential of these T cells to exert various effects on a wide spectrum of infectious diseases, most likely by serving as a bridge between innate and adaptive immune responses.
Collapse
Affiliation(s)
- S M Behar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith Building Room 518, One Jimmy Fund Way, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Sugawara I, Yamada H, Mizuno S. BCG vaccination enhances resistance to M. tuberculosis infection in guinea pigs fed a low casein diet. TOHOKU J EXP MED 2007; 211:259-68. [PMID: 17347551 DOI: 10.1620/tjem.211.259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to examine the relationship between malnutrition and tuberculosis development in vivo, a malnourished guinea pig model fed with a low casein (5%) diet was developed. After being fed with the low casein diet, the guinea pigs were infected with Mycobacterium (M.) tuberculosis Kurono strain by aerosol infection, and seven weeks later were subjected to histopathologic examination, colony-forming unit (CFU) assay, fluorescence-activated cell sorter (FACS) analysis and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, interleukin (IL)-12 and inducible nitric oxide synthase (iNOS) mRNA. Another group of guinea pigs were vaccinated subcutaneously with 10(6) CFU BCG Tokyo for three weeks and then similarly infected by aerosol. Eighty-eight% (7/8) of the malnourished guinea pigs succumbed to mycobacterial infection within 85 days after infection, while the malnourished guinea pigs vaccinated with BCG Tokyo survived. CFU assay showed that lung and splenic CFUs were higher in the low casein diet-fed groups than in the control diet (20% casein)-fed groups, although both groups had significantly lower CFUs after vaccination with BCG Tokyo (p<0.01). Examination of lung histopathology revealed that pulmonary granulomas were large and disorganized in the groups fed the low casein diet. The number of visible lesions on the surfaces of the fixed lungs in guinea pigs fed control diet+BCG and low casein diet+BCG was low significantly. Pan T-, CD4-, CD8- and Mac antigen-positive cells were also recognized in the infected lung tissues of low casein-fed guinea pigs and Pan T-, CD4- and Mac antigen-positive cells increased after vaccination with BCG Tokyo. Expression of IFN-gamma, TNF-alpha, IL-12 and iNOS mRNA was also recognized in the infected lung tissues of low casein-fed guinea pigs and IFN-gamma and TNF-alpha mRNA expression was enhanced with BCG vaccination. These results indicate that malnutrition exacerbates mycobacterial infection and that malnourished infected hosts may be protected by BCG vaccination.
Collapse
Affiliation(s)
- Isamu Sugawara
- Mycobacterial Reference Center, The Research Institute of Tuberculosis, Tokyo, Japan.
| | | | | |
Collapse
|
37
|
Tupin E, Kinjo Y, Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 2007; 5:405-17. [PMID: 17487145 DOI: 10.1038/nrmicro1657] [Citation(s) in RCA: 360] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural killer T (NKT) cells combine features of the innate and adaptive immune systems. Recently, it has become evident that these T cells have crucial roles in the response to infectious agents. The antigen receptor expressed by NKT cells directly recognizes unusual glycolipids that are part of the membrane of certain Gram-negative bacteria and spirochetes. Moreover, even in the absence of microbial glycolipid antigens, these T cells respond to innate cytokines produced by dendritic cells that have been activated by microbes. This indirect sensing of infection, by responding to cytokines from activated dendritic cells, allows NKT cells to react to a broad range of infectious agents.
Collapse
Affiliation(s)
- Emmanuel Tupin
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | | | | |
Collapse
|
38
|
Shi MQ, Wang CR, Wei GJ, Pan WL, Appleyard G, Tabel H. Experimental African trypanosomiasis: lack of effective CD1d-restricted antigen presentation. Parasite Immunol 2006; 28:643-7. [PMID: 17096643 DOI: 10.1111/j.1365-3024.2006.00898.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BALB/c mice are highly susceptible to African trypanosomiasis, whereas C57BL/6 mice are relatively resistant. Other investigators have reported that the synthesis of IgG antibodies to purified membrane form of variant surface glycoprotein (mfVSG) of Trypanosoma brucei is CD1 restricted. In this study, we examine the role of the CD1d/NKT cell pathway in susceptibility and resistance of mice to infection by African trypanosomes. Administration of anti-CD1d antibodies to Trypanosoma congolense-infected BALB/c mice neither affects the parasitemia nor the survival time. Correspondingly, CD1d(-/-) and CD1d(+/+) BALB/c mice infected with T. congolense or T. brucei show no differences in either parasitaemia or survival time. The course of disease in relative resistant C57BL/6 mice infected with T. congolense is also not affected by the absence of CD1d. Parasitaemia, survival time, and plasma levels of IgG2a and IgG3 parasite-specific antibodies in infected CD1d(-/-) C57BL/6 are not different from those of infected CD1d(+/+) C57BL/6 mice. We conclude that CD1d-restricted immune responses do not play an important role in susceptibility/resistance of mice infected with virulent African trypanosomes. We speculate that virulent trypanosomes have an evasion mechanism that prevents the induction of a parasite-specific, CD1d-restricted immune response by the host.
Collapse
Affiliation(s)
- M Q Shi
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The MHC class I-like CD1d glycoprotein is a member of the CD1 family of Ag-presenting molecules and is responsible for the selection of NKT cells. A number of ligands that can be presented by CD1d to NKT or other CD1d-restricted T cells have been identified. These include glycolipids from a marine sponge, bacterial glycolipids, normal endogenous glycolipids, tumor-derived phospholipids and glycolipids, and nonlipidic molecules. The presentation of many of these molecules can have immunopotentiating effects, such as serving as an adjuvant against malaria or resulting in a more rapid clearance of certain virus infections. They can also be protective in autoimmune diseases or cancer or can be deleterious. This review will highlight these ligands in a discussion of their potential use against (and role in the pathogenesis of) these diseases.
Collapse
Affiliation(s)
- Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
40
|
Ellison CA, Taniguchi M, Fischer JMM, Hayglass KT, Gartner JG. Graft-versus-host disease in recipients of grafts from natural killer T cell-deficient (Jalpha281(-/-)) donors. Immunology 2006; 119:338-47. [PMID: 16879624 PMCID: PMC1819576 DOI: 10.1111/j.1365-2567.2006.02437.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Valpha14i natural killer T cells (NKT cells) are a CD1-restricted subset of NKT cells that express an invariable Valpha14+ Jalpha281+ alphabeta T-cell receptor. To determine whether the absence of Valpha14i NKT cells from the graft affects the development of acute GVHD, we induced GVH reactions using Jalpha281(-/-) mice as donors in the C57BL/6-->(C57BL/6 x DBA/2)F1-hybrid strain combination. Recipients of grafts from Jalpha281(-/-) donors were not protected from either the morbidity or the severe wasting syndrome associated with the development of acute GVHD, but the concentrations of some T helper 1 (Th1) and Th2 cytokines were different from those seen in recipients of grafts from wild-type donors. Interferon-gamma was seen earlier (day 4) in recipients of grafts from Jalpha281(-/-) donors but did not reach the concentrations seen in recipients of grafts from wild-type donors on day 8 (P < 0.02). On day 8, the amount of tumour necrosis factor-alpha released into the serum following the injection of a small amount of lipopolysaccharide was lower in recipients of grafts from Jalpha281(-/-) donors (P < 0.02). The amount of interleukin (IL)-5 was also lower in recipients of grafts from Jalpha281(-/-) donors, when compared to the concentration seen in recipients of grafts from wild-type donors (P < 0.002). IL-13 was seen in recipients of grafts from Jalpha281(-/-) donors but not in recipients of grafts from wild-type donors. Our findings show that the absence of donor Valpha14i NKT cells is associated with lower concentrations of some Th1 cytokines. We also observed higher IL-13 concentrations and lower IL-5 concentrations in recipients of grafts from Jalpha281(-/-) donors indicating a variable effect on Th2 cytokine production.
Collapse
Affiliation(s)
- Cynthia A Ellison
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | |
Collapse
|
41
|
Miguez-Burbano MJ, Ashkin D, Rodriguez A, Duncan R, Flores M, Acosta B, Quintero N, Pitchenik A. Cellular immune response to pulmonary infections in HIV-infected individuals hospitalized with diverse grades of immunosuppression. Epidemiol Infect 2006; 134:271-8. [PMID: 16490130 PMCID: PMC2870395 DOI: 10.1017/s0950268805005030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2005] [Indexed: 01/15/2023] Open
Abstract
The lymphocyte profile of 521 HIV-infected subjects hospitalized at Jackson Memorial (2001-2002) was compared across main respiratory diseases. Study data included medical history and all laboratory evaluations performed during hospitalization. Community-acquired pneumonias (CAP, 52%), Pneumocystis jiroveci pneumonia (PCP, 24%), tuberculosis (TB, 9%) and non-tuberculous mycobacterial diseases (NTM, 12%) were the most frequent causes of admission. Patients hospitalized with PCP and NTM exhibited the lowest CD4 counts (P=0.003). PCP patients had the highest B-cell percentages (P=0.04). CAP patients had the highest CD8 and CD4 percentages and the lowest percentage of Natural Killer (NK) cells and viral burdens. TB patients exhibited the lowest NK-cell (11.4+/-6.3) and B-cell percentages (13.6+/-12) and the highest CD8 (59+/-14) percentage. NTM patients, in contrast, had the highest NK-cell percentages of the groups (19.1+/-11.6, P=0.01). Additionally, immune responses associated with respiratory pathogens differed in HIV-infected patients with CD4(+) cells above and below 200 counts.
Collapse
Affiliation(s)
- M J Miguez-Burbano
- Division of Disease Prevention, Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yu KOA, Porcelli SA. The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immunol Lett 2005; 100:42-55. [PMID: 16083968 DOI: 10.1016/j.imlet.2005.06.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 06/07/2005] [Accepted: 06/24/2005] [Indexed: 01/12/2023]
Abstract
CD1d-restricted NKT cells have been identified as an important component of the immune system that have the capacity both to augment beneficial host immunity and to prevent harmful autoimmunity. These cells have the ability to produce a wide variety of cytokines, including both proinflammatory and antiinflammatory cytokines that can have multiple different effects on the outcome of immune reactions. The discovery that these T cells are activated by specific recognition of glycolipids in the glycosylceramide family has led to new approaches to manipulate the pleiotropic functions of these cells. Here, we review the multiple activities that have been attributed to NKT cells in a variety of different disease models, and the current state of our understanding of the mechanisms that control the functional outcome of NKT cell activation.
Collapse
Affiliation(s)
- Karl O A Yu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
43
|
Yamada H, Udagawa T, Mizuno S, Hiramatsu K, Sugawara I. Newly designed primer sets available for evaluating various cytokines and iNOS mRNA expression in guinea pig lung tissues by RT-PCR. Exp Anim 2005; 54:163-72. [PMID: 15897626 DOI: 10.1538/expanim.54.163] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Guinea pigs are often used as an animal model of human tuberculosis (TB). However, there are few methods available for pursuing the immunological processes involved in guinea pig TB. In this study, we developed for the first time systematic reverse transcription (RT)-PCR for evaluation of guinea pig mRNA expression. RT-PCR primer sets were newly designed for detection of cytokines and inducible nitric oxide synthase (iNOS) mRNA in guinea pig TB. Interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta, interleukin (IL)-1beta, IL-2, IL-10, IL-12p40, granulocyte-macrophage-colony stimulating factor (GM-CSF) and iNOS mRNA expression were detected significantly and reproducibly when these primer sets were used. The data by real-time PCR were comparable with those of RT-PCR. We showed that these RT-PCR primer sets could be used to examine mRNA expression semi-quantitatively in guinea pig tissues, and conclude that these newly designed primer sets for conventional RT-PCR will be useful for studying the immunological processes in guinea pig tuberculosis experiments to investigate and evaluate efficacy of new vaccines or anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Pathology Division, Mycobacterium Reference Center, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo
| | | | | | | | | |
Collapse
|
44
|
Sugawara I, Yamada H, Mizuno S. Pulmonary tuberculosis in spontaneously diabetic goto kakizaki rats. TOHOKU J EXP MED 2005; 204:135-45. [PMID: 15383694 DOI: 10.1620/tjem.204.135] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As a clinical association is thought to exist between diabetes and tuberculosis, this study was set up to examine whether GK/Jcl diabetic rats are more susceptible to Mycobacterium tuberculosis infection than non-diabetic rats. GK/Jcl diabetic rats were infected aerially with M. tuberculosis and their capacity to control mycobacterial growth, granuloma formation, cytokine secretion by alveolar macrophages and nitric oxide (NO) production was examined. The rats developed large granulomas but not necrotic lesions in their lungs, liver or spleen. This is consistent with a significant increase in number of colony-forming units of M. tuberculosis in the lungs (p<0.01). Expression levels of interferon-gamma, tumor necrosis factor (TNF)-alpha and interleukin (IL)-12 mRNA were lower in GK/Jcl diabetic rats than those in control Wistar rats. Alveolar macrophages from GK/Jcl rats secreted less TNF-alpha and IL-12, and produced less NO compared with those from Wistar rats. No significant difference was observed between phagocytosis of tubercle bacilli by alveolar macrophages from GK/Jcl or Wistar rats. These data show that there is a close association between experimental tuberculosis and diabetes in animals, and that alveolar macrophages from GK/Jcl diabetic rats are not fully activated by M. tuberculosis infection.
Collapse
Affiliation(s)
- Isamu Sugawara
- Mycobacterial Reference Center, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan.
| | | | | |
Collapse
|
45
|
Co DO, Hogan LH, Kim SI, Sandor M. Mycobacterial granulomas: keys to a long-lasting host-pathogen relationship. Clin Immunol 2004; 113:130-136. [PMID: 15451467 DOI: 10.1016/j.clim.2004.08.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 08/20/2004] [Indexed: 12/19/2022]
Abstract
Chronic infection with mycobacteria is controlled by the formation of granulomas. The failure of granuloma maintenance results in reactivation of disease. Macrophages are the dominant cell type in granulomas, but CD4+ T cells are the master organizers of granuloma structure and function. Recent work points to an unrecognized role for nonspecific T cells in maintaining granuloma function in the chronic phase of infection. In addition, it has become clear that mycobacteria and host T cells collaborate in formation of granulomas. Further understanding of how nonspecific T cells contribute to granuloma formation, as well as how bacteria and T cells maintain a harmonious relationship over the life of the host, will facilitate the development of new strategies to treat mycobacterial disease.
Collapse
Affiliation(s)
- Dominic O Co
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
46
|
Abstract
This review summarizes the major features of CD1 genes and proteins, the patterns of intracellular trafficking of CD1 molecules, and how they sample different intracellular compartments for self- and foreign lipids. We describe how lipid antigens bind to CD1 molecules with their alkyl chains buried in hydrophobic pockets and expose their polar lipid headgroup whose fine structure is recognized by the TCR of CD1-restricted T cells. CD1-restricted T cells carry out effector, helper, and adjuvant-like functions and interact with other cell types including macrophages, dendritic cells, NK cells, T cells, and B cells, thereby contributing to both innate and adaptive immune responses. Insights gained from mice and humans now delineate the extensive range of diseases in which CD1-restricted T cells play important roles and reveal differences in the role of CD1a, CD1b, and CD1c in contrast to CD1d. Invariant TCR alpha chains, self-lipid reactivity, and rapid effector responses empower a subset of CD1d-restricted T cells (NKT cells) to have unique effector functions without counterpart among MHC-restricted T cells. This review describes the function of CD1-restricted T cells in antimicrobial responses, antitumor immunity, and in regulating the balance between tolerance and autoimmunity.
Collapse
Affiliation(s)
- Manfred Brigl
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
47
|
Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SHE, Schaible UE. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 2004; 101:10685-90. [PMID: 15243159 PMCID: PMC489995 DOI: 10.1073/pnas.0403787101] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-gamma production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d.
Collapse
Affiliation(s)
- Karsten Fischer
- Department of Immunology, Max Planck Institute for Infection Biology, Schumannstrasse 21/22, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hansen DS, Schofield L. Regulation of immunity and pathogenesis in infectious diseases by CD1d-restricted NKT cells. Int J Parasitol 2004; 34:15-25. [PMID: 14711586 DOI: 10.1016/j.ijpara.2003.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CD1d-restricted NKT cells are emerging as an unusual lymphoid lineage with important immunoregulatory properties. To date, much of our understanding of the biology of the CD1/NKT system comes from studies that utilise non-natural glycolipid ligands. Recent evidence suggests that NKT cells play an important role in the response to pathogens, manifesting a range of functions including cytotoxicity, help for antibody formation and regulation of Th1/Th2 differentiation. Infectious disease models provide appropriate physiological and pathophysiological systems to explore the biological roles of this lineage in immunity and disease. Novel insights are emerging from infection models, particularly with respect to the nature of ligands recognised by the T cell receptor of NKT cells, and to the role of diverse non-T cell receptor NK activation and inhibitory receptors in regulation of the lineage. Such insights have the potential to add considerably to our understanding of the CD1/NKT cell system and to the immunology and pathogenesis of infectious diseases.
Collapse
Affiliation(s)
- Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | |
Collapse
|
49
|
Co DO, Hogan LH, Il-Kim S, Sandor M. T cell contributions to the different phases of granuloma formation. Immunol Lett 2004; 92:135-142. [PMID: 15081537 DOI: 10.1016/j.imlet.2003.11.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 11/06/2003] [Indexed: 11/25/2022]
Abstract
Granulomatous inflammation is a form of delayed type hypersensitivity reaction that is involved in protection against chronic infections. Granulomatous inflammation can also occur without any clear inciting stimulus such as in sarcoidosis. An in depth knowledge of granuloma formation is essential to our understanding of protection against chronic infection as well as the dysregulation which occurs in granulomatous diseases of unknown origin. Granuloma formation is a complex and dynamic process involving the recruitment and coordination of diverse cell types. This review is focused on the important roles that T cells play in initiating and building the granuloma as well as in mediating effector functions and eventually resolving granulomatous inflammation. CD4(+) T cells emerge as the central mediators of this process, with T cells from other subsets also participating in the later phases of granuloma formation.
Collapse
Affiliation(s)
- Dominic O Co
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
50
|
Junqueira-Kipnis AP, Kipnis A, Jamieson A, Juarrero MG, Diefenbach A, Raulet DH, Turner J, Orme IM. NK Cells Respond to Pulmonary Infection withMycobacterium tuberculosis, but Play a Minimal Role in Protection. THE JOURNAL OF IMMUNOLOGY 2003; 171:6039-45. [PMID: 14634116 DOI: 10.4049/jimmunol.171.11.6039] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both innate and adaptive immune systems contribute to host defense against infection with Mycobacterium tuberculosis. NK cells have been associated with early resistance against intracellular pathogens and are known to be potent producers of the cytokine IFN-gamma. In C57BL/6 mice infected by aerosol exposure with M. tuberculosis, NK cells increased in the lungs over the first 21 days of infection. Expansion of the NK cell subset was associated with increased expression of activation and maturation markers. In addition, NK cells isolated from the infected lungs were capable of producing IFN-gamma and became positive for perforin. In vivo depletion of NK cells using a lytic Ab had no influence on bacterial load within the lungs. These findings indicate that NK cells can become activated during the early response to pulmonary tuberculosis in the mouse model and are a source of IFN-gamma, but their removal does not substantially alter the expression of host resistance.
Collapse
MESH Headings
- Administration, Inhalation
- Aerosols
- Animals
- Antigens/biosynthesis
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Surface
- CD11b Antigen/biosynthesis
- Cell Movement/immunology
- Cells, Cultured
- Cytotoxicity, Immunologic/immunology
- Female
- Immunophenotyping
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Killer Cells, Natural/pathology
- Lectins, C-Type
- Lung/immunology
- Lung/microbiology
- Lung/pathology
- Lymphocyte Depletion
- Membrane Glycoproteins/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mycobacterium tuberculosis/immunology
- NK Cell Lectin-Like Receptor Subfamily B
- Nebulizers and Vaporizers
- Perforin
- Pore Forming Cytotoxic Proteins
- Protein Biosynthesis
- Proteins
- Receptors, Immunologic/biosynthesis
- Receptors, Natural Killer Cell
- Signaling Lymphocytic Activation Molecule Family
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/prevention & control
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|