1
|
Li W, Lv J, Li H, Song L, Zhang R, Zhao X, Xuan F, Sun T, Long K, Zhao Y, Nie L. Quantification of Vascular Remodeling and Sinusoidal Capillarization to Assess Liver Fibrosis with Photoacoustic Imaging. Radiology 2025; 314:e241275. [PMID: 39873599 DOI: 10.1148/radiol.241275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Background Photoacoustic microscopy (PAM) can be used to detect strong absorption from endogenous and exogenous contrast material, making it promising for detailed structural and functional imaging of hepatic sinusoids, including dynamic visualization of permeability. Purpose To evaluate whether PAM-based quantitative parameters of liver function and integrity (lacunarity, blood oxygen saturation [Sao2], and Evans blue [EB] permeability) are associated with histopathologic indexes of fibrosis in a mouse model. Materials and Methods Between October 2022 and July 2023, a total of 35 male C57BL/6 mice were included in this study and received intraperitoneal injection of carbon tetrachloride to establish mouse models of progressive liver fibrosis, with seven mice in each group. PAM was performed to visualize vascular structure, Sao2 distribution, and EB penetration within the hepatic lobule. Histologic findings were used as the reference standard. Associations between the PAM parameters and the pathologic results were evaluated with Spearman rank correlation. Results Mean lacunarity, a PAM parameter, gradually increased with liver fibrosis stage (control: 0.018 arbitrary units [au] ± 0.004 [SD]; fibrosis: 1 week, 0.024 au ± 0.002; 2 weeks, 0.028 au ± 0.003; 4 weeks, 0.034 au ± 0.002; 10 weeks, 0.040 au ± 0.005; P < .001) and was positively correlated with collagen-positive area (Spearman r = 0.88-0.90; P < .001). PAM revealed that Sao2 decreased with disease progression (control, 0.921 au ± 0.017; 1 week, 0.875 au ± 0.019; 2 weeks, 0.846 au ± 0.020; 4 weeks, 0.802 au ± 0.025; 10 weeks, 0.732 au ± 0.036; P < .001) and was inversely related to hypoxia-inducible factor 1α expression (Spearman r = -0.83; P < .001). EB permeability, indicative of hepatic sinusoid capillarization, was reduced at advanced stages of fibrosis (control: 11.6% [IQR, 11.2%-11.8%]; fibrosis: 1 week, 24.8% [IQR, 23.3%-25.8%]; 2 weeks, 18.4% [IQR, 18.4%-20.0%]; 4 weeks, 5.1% [IQR, 4.9%-6.2%]; 10 weeks, 3.7% [IQR, 3.4%-4.5%]; P < .001). Conclusion PAM-based structural and functional parameters were associated with liver fibrosis severity, and PAM imaging of EB dynamics helped detect sinusoidal capillarization. © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Li and Yao in this issue.
Collapse
Affiliation(s)
- Wenya Li
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Jing Lv
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Honghui Li
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Liwen Song
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Rui Zhang
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Xingyang Zhao
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Feichao Xuan
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Tong Sun
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Kai Long
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Yinghua Zhao
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| | - Liming Nie
- From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.)
| |
Collapse
|
2
|
Xue X, Li Y, Zhang S, Yao Y, Peng C, Li Y. Hydroxysafflor yellow A exerts anti-fibrotic and anti-angiogenic effects through miR-29a-3p/PDGFRB axis in liver fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155830. [PMID: 38959553 DOI: 10.1016/j.phymed.2024.155830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Liver fibrosis is a prevalent pathological process in chronic liver diseases characterized by excessive extracellular matrix (ECM) deposition and abnormal angiogenesis. Notably, hepatic stellate cells (HSCs) are the primary source of ECM. Activated HSCs not only secrete numerous pro-fibrotic cytokines but also are endowed with a pro-angiogenic phenotype to promote pathological angiogenesis. Therefore, targeted modulation of HSCs has emerged as a pivotal strategy for addressing liver fibrosis. Hydroxysafflor yellow A (HSYA) is a homology of medicine and food colourant with good pharmacological activity. However, the precise mechanisms of HSYA against liver fibrosis remain unclear. PURPOSE The objective of this study was to elucidate the impact of HSYA on liver fibrosis and pathological angiogenesis, as well as the underlying mechanisms in vitro and in vivo studies. METHODS The efficacy and mechanisms of HSYA on TGF-β1-induced HSCs and VEGFA-induced endothelial cells were investigated by MTT assay, EdU cell proliferation assay, cell scratch assay, Elisa assay, immunofluorescence assay, molecular docking, cell transfection assay, western blot analysis and RT-qPCR analysis. In CCl4-induced liver fibrosis mice model, H&E, Masson, and Sirius red staining were used to observe histopathology. Serum transaminase activity and liver biochemical indexes were tested by biochemical kit. Immunohistochemical, fluorescence in situ hybridization (FISH), western blot analysis and RT-qPCR analysis were implemented to determine the mechanism of HSYA in vivo. RESULTS Herein, our findings confirmed that HSYA inhibited the proliferation, migration and activation of HSCs, as evidenced by a reduction in cell viability, relative migration rate, EdU staining intensity, and pro-fibrotic mRNAs and proteins expression in vitro. Mechanistically, HSYA played an anti-fibrotic and anti-angiogenic role by partially silencing PDGFRB in activated HSCs, thereby disrupting PDGFRB/MEK/ERK signal transduction and inhibiting the expression of HIF-1α, VEGFA and VEGFR2 proteins. Importantly, PDGFRB was a target gene of miR-29a-3p. Treatment with HSYA reversed the down-regulation of miR-29a-3p and antagonized PDGFRB signaling pathway in TGF-β1-induced HSCs transfected with miR-29a-3p inhibitor. Consistent with our in vitro study, HSYA exhibited a good hepatoprotective effect in CCl4-induced liver fibrosis mice by reducing serum ALT and AST levels, decreasing the contents of four fibrosis indicators (HA, PIIIP, ColIV and LN) and hydroxyproline, and inhibiting the TGF-β1/TGFBR signaling pathway. In terms of mechanisms, HSYA alleviated pathological angiogenesis in fibrotic liver by deactivating PDGFRB signaling pathway and impairing the positive expression of CD31. Subsequently, FISH results further corroborated HSYA affected the activation of HSCs and angiogenesis achieved by the concurrent upregulation of miR-29a-3p and downregulation of α-SMA and VEGFA. Additionally, treatment with HSYA also forged a link between HSCs and endothelial cells, as supported by inhibiting the aberrant proliferation of endothelial cells. CONCLUSION Fundamentally, the current study has illustrated that HSYA ameliorates liver fibrosis by repressing HSCs-mediated pro-fibrotic and pro-angiogenic processes, which is contingent upon the regulatory effect of HSYA on the miR-29a-3p/PDGFRB axis. These findings provide compelling evidence bolstering the potential of HSYA as a therapeutic agent in liver fibrosis.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 PMCID: PMC12057067 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Zhou X, Fu Y, Chen J, Liu P. Progress in clinical and basic research of fuzheng Huayu formula for the treatment of liver fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118018. [PMID: 38453100 DOI: 10.1016/j.jep.2024.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has great potential and advantages in the treatment of liver fibrosis, with Fuzheng Huayu formula (FZHY) serving as a prime example due to its remarkable efficacy in delaying and reversing liver fibrosis while simultaneously improving clinical symptoms for patients. AIM OF THE REVIEW In this paper, we present a comprehensive review of recent studies on the therapeutic potential of FZHY and its components/ingredients in the treatment of liver fibrosis and cirrhosis, with the aim of providing insights for future research endeavors. MATERIALS AND METHODS A comprehensive literature search was conducted on FZHY, TCM319, traditional Chinese medicine 319, liver fibrosis and cirrhosis using multiple internationally recognized databases including PubMed, Embase, Springer, Web of science, SciVerse ScienceDirect, Clinical Trails. Gov, CNKI, Wanfang, and VIP. RESULTS FZHY is widely used clinically for liver fibrosis and cirrhosis caused by various chronic liver diseases, with the effects of improving serum liver function, liver pathological histology, serological indices related to liver fibrosis, decreasing liver stiffness values and portal hypertension, as well as reducing the incidence of hepatocellular carcinoma and morbidity/mortality in patients with cirrhosis. Numerous in vivo and in vitro experiments have demonstrated that FZHY possesses anti-fibrotic effects by inhibiting hepatic stellate cell activation, reducing inflammation, protecting hepatocytes, inhibiting hepatic sinusoidal capillarization and angiogenesis, promoting extracellular matrix degradation, and facilitating liver regeneration. In recent years, there has been a growing focus on investigating the primary active components/ingredients of FZHY, and significant strides have been made in comprehending their synergistic mechanisms that enhance efficacy. CONCLUSION FZHY is a safe and effective drug for treating liver fibrosis. Future research on FZHY should focus on its active components/ingredients and their synergistic effects, as well as the development of modern cocktail drugs based on its components/ingredients. This will facilitate a more comprehensive understanding of the molecular mechanisms and targets of FZHY in treating liver fibrosis, thereby further guide clinical applications and drug development.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadong Fu
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular and Cellular Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiamei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Du N, Jia G, Zhang W, Tong Q, Qu X, Liu R, Li D, Yan Z, Zuo C, Li X, Li R, Zhang W. One-day examination of triple nuclear medicine imaging and application in evaluating transarterial embolization. Heliyon 2024; 10:e29597. [PMID: 38707399 PMCID: PMC11068529 DOI: 10.1016/j.heliyon.2024.e29597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
A diagnosis based on multiple nuclear medicine imaging (NMI) was more comprehensive in approaching the nature of pathological changes. In this research, a method to realize triple NMIs within one day was developed based on the reasonable arrangements of 68Ga-RGD PET/CT specialized on neovascularization, 99mTc-HL-91 SPECT/CT specialized on hypoxia and 18F-FDG PET/CT specialized on tumor metabolism. Feasibility was verified in evaluating the therapeutic effects of transarterial embolization (TAE) performed on rabbit models with VX2 tumor. Radiation dosimetry was carried out to record the radiation exposure from multiple injections of radiopharmaceuticals. In results, the one-day examination of triple NMIs manifested the diversity of the postoperative histological changes, including the local neovascularization induced by embolization, hypoxic state of embolized tissues, and suppression of tumor metabolism. More importantly, radiation dosage from radiopharmaceuticals was limited below 5.70 ± 0.90 mSv. In conclusion, the strong timeliness and complementarity of one-day examination of triple nuclear medicine imaging made it clinically operative and worthy of popularizing. There was flexibility in combining distinct NMIs according to the clinical demands, so as to provide comprehensive information for diagnosis.
Collapse
Affiliation(s)
- Nan Du
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institution of Medical Imaging, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Guorong Jia
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wen Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institution of Medical Imaging, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Qianqian Tong
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xudong Qu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institution of Medical Imaging, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institution of Medical Imaging, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Danni Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institution of Medical Imaging, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiao Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Rou Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institution of Medical Imaging, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
6
|
Mücke MM, El Bali N, Schwarzkopf KM, Uschner FE, Kraus N, Eberle L, Mücke VT, Bein J, Beyer S, Wild PJ, Schierwagen R, Klein S, Zeuzem S, Welsch C, Trebicka J, Brieger A. The Role of Hypoxia-Inducible Factor 1 Alpha in Acute-on-Chronic Liver Failure. Int J Mol Sci 2024; 25:1542. [PMID: 38338821 PMCID: PMC10855542 DOI: 10.3390/ijms25031542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Acute-on-chronic liver failure (ACLF) is associated with increased mortality. Specific therapy options are limited. Hypoxia-inducible factor 1 alpha (HIF-1α) has been linked to the pathogenesis of chronic liver disease (CLD), but the role of HIF-1α in ACLF is poorly understood. In the current study, different etiologies of CLD and precipitating events triggering ACLF were used in four rodent models. HIF-1α expression and the intracellular pathway of HIF-1α induction were investigated using real-time quantitative PCR. The results were verified by Western blotting and immunohistochemistry for extrahepatic HIF-1α expression using transcriptome analysis. Exploratory immunohistochemical staining was performed to assess HIF-1α in human liver tissue. Intrahepatic HIF-1α expression was significantly increased in all animals with ACLF, regardless of the underlying etiology of CLD or the precipitating event. The induction of HIF-1α was accompanied by the increased mRNA expression of NFkB1 and STAT3 and resulted in a marked elevation of mRNA levels of its downstream genes. Extrahepatic HIF-1α expression was not elevated. In human liver tissue samples, HIF-1α expression was elevated in CLD and ACLF. Increased intrahepatic HIF-1α expression seems to play an important role in the pathogenesis of ACLF, and future studies are pending to investigate the role of therapeutic HIF inhibitors in ACLF.
Collapse
Affiliation(s)
- Marcus M. Mücke
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| | - Nihad El Bali
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| | - Katharina M. Schwarzkopf
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| | - Frank Erhard Uschner
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
- Department of Internal Medicine B, University of Münster, 48149 Münster, Germany
| | - Nico Kraus
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| | - Larissa Eberle
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| | - Victoria Therese Mücke
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| | - Julia Bein
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Sandra Beyer
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| | - Peter J. Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Robert Schierwagen
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
- Department of Internal Medicine B, University of Münster, 48149 Münster, Germany
| | - Sabine Klein
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
- Department of Internal Medicine B, University of Münster, 48149 Münster, Germany
| | - Stefan Zeuzem
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| | - Christoph Welsch
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| | - Jonel Trebicka
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
- Department of Internal Medicine B, University of Münster, 48149 Münster, Germany
| | - Angela Brieger
- Medical Clinic 1, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (K.M.S.); (A.B.)
| |
Collapse
|
7
|
Alamoudi JA, El-Masry TA, Nasr M, Ibrahim IT, Ibrahim HA, Saad HM, El-Nagar MMF, Alshawwa SZ, Alrashidi A, El Zahaby EI. Fabrication of Nanocrystals for Enhanced Distribution of a Fatty Acid Synthase Inhibitor (Orlistat) as a Promising Method to Relieve Solid Ehrlich Carcinoma-Induced Hepatic Damage in Mice. Pharmaceuticals (Basel) 2024; 17:96. [PMID: 38256929 PMCID: PMC10820129 DOI: 10.3390/ph17010096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Orlistat (ORL) is an effective irreversible inhibitor of the lipase enzyme, and it possesses anticancer effects and limited aqueous solubility. This study was designed to improve the aqueous solubility, oral absorption, and tissue distribution of ORL via the formulation of nanocrystals (NCs). METHODS ORL-NC was prepared using the liquid antisolvent precipitation method (bottom-up technology), and it demonstrated significantly improved solubility compared with that of the blank crystals (ORL-BCs) and untreated ORL powder. The biodistribution and relative bioavailability of ORL-NC were investigated via the radiolabeling technique using Technetium-99m (99mTc). Female Swiss albino mice were used to examine the antitumor activity of ORL-NC against solid Ehrlich carcinoma (SEC)-induced hepatic damage in mice. RESULTS The prepared NCs improved ORL's solubility, bioavailability, and tissue distribution, with evidence of 258.70% relative bioavailability. In the in vivo study, the ORL-NC treatment caused a reduction in all tested liver functions (total and direct bilirubin, AST, ALT, and ALP) and improved modifications in liver sections that were marked using hematoxylin and eosin staining (H&E) and immunohistochemical staining (Ki-67 and ER-α) compared with untreated SEC mice. CONCLUSIONS The developed ORL-NC could be considered a promising formulation approach to enhance the oral absorption tissue distribution of ORL and suppress the liver damage caused by SEC.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (J.A.A.); (S.Z.A.); (A.A.)
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Mohamed Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (M.N.); (E.I.E.Z.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt
| | - Ismail T. Ibrahim
- Labeled Compounds Department, Hot Laboratory Centre, Egyptian Atomic Energy Authority, Cairo 13759, Egypt;
- Department of Pharmacy, Al-Huda University College, Anbar 31001, Iraq
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Cairo 51511, Egypt;
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (J.A.A.); (S.Z.A.); (A.A.)
| | - Amal Alrashidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (J.A.A.); (S.Z.A.); (A.A.)
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (M.N.); (E.I.E.Z.)
| |
Collapse
|
8
|
Li Z, Zhu J, Ouyang H. Research progress of traditional Chinese medicine in improving hepatic fibrosis based on inhibiting pathological angiogenesis. Front Pharmacol 2023; 14:1303012. [PMID: 38155904 PMCID: PMC10754536 DOI: 10.3389/fphar.2023.1303012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Hepatic fibrosis is the formation of scar tissue in the liver. This scar tissue replaces healthy liver tissue and can lead to liver dysfunction and failure if left untreated. It is usually caused by chronic liver disease, such as hepatitis B or C, alcohol abuse, or non-alcoholic fatty liver disease. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of hepatic stellate cells (HSCs). HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of HSCs. HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Traditional Chinese medicine (TCM) has been found to target pathological angiogenesis, thereby providing a potential treatment option for hepatic fibrosis. Several studies have demonstrated that TCM exhibits anti-angiogenic effects by inhibiting the production of pro-angiogenic factors, such as vascular endothelial growth factor and angiopoietin-2, and by reducing the proliferation of endothelial cells. Reviewing and highlighting the unique TCM recognition of treating hepatic fibrosis by targeting pathological angiogenesis may shed light on future hepatic fibrosis research.
Collapse
|
9
|
Cao R, Cao C, Hu X, Du K, Zhang J, Li M, Li B, Lin H, Zhang A, Li Y, Wu L, Huang Y. Kaempferol attenuates carbon tetrachloride (CCl 4)-induced hepatic fibrosis by promoting ASIC1a degradation and suppression of the ASIC1a-mediated ERS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155125. [PMID: 37820466 DOI: 10.1016/j.phymed.2023.155125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Kaempferol is a flavonoid derived from the herb, Kaempferia galanga L., in addition to exhibiting a wide range of pharmacological properties, kaempferol is also an anti-inflammatory, anti-lipid metabolizing, and anti-oxidative stress agent. The underlying molecular mechanisms of its effects on vascular endothelial growth factor (VEGF) secretion and activation of hepatic stellate cells (HSCs) are yet unknown. Activated HSCs induces VEGF release and extracellular matrix (ECM) accumulation which are important factors in hepatic fibrosis. PURPOSE Our aim is to explore how kaempferol may affect hepatic fibrosis and the mechanisms behind its effects. METHODS The in vivo model was Sprague-Dawley rats induced with carbon tetrachloride (CCl4). Histological staining was used to observe histological features of the liver. The levels of (alanine aminotransferase) ALT and (aspartate aminotransferase) AST were detected by the corresponding kits. Platelet-derived growth factor (PDGF) was used to stimulate the HSC-T6 rat hepatic stellate cells. The mechanisms underlying this process were investigated using a variety of molecular approaches, including immunofluorescence, RT-qPCR, and western blotting. Moreover, intracellular Ca2+ were observed by laser confocal microscope. RESULTS It was found that kaempferol significantly reduced the expression of ASIC1a, VEGF, α-SMA and Collagen-I proteins in a model of CCl4-induced hepatic fibrosis in rats. In HSC-T6, kaempferol inhibits activation of HSCs by decreasing expression of ASIC1a, eIF2α, p-eIF2α and ATF-4. Laser confocal fluorescence showed that kaempferol inhibited Ca2+ influx and reduced Ca2+ concentration around the endoplasmic reticulum. Molecular docking and cellular thermal shift assay (CETSA) results further indicated that kaempferol interacted with ASIC1a. We found that kaempferol may promote the degradation of ASIC1a and inhibited ASIC1a- mediated upregulation of ERS. CONCLUSION The data from our in vivo experiments demonstrate that kaempferol effectively attenuates hepatic fibrosis. In vitro studies we further propose a novel mechanism of kaempferol against hepatic fibrosis which can interact with ASIC1a and promote ASIC1a degradation while inhibiting the activation and VEGF release of HSCs by suppressing the ASIC1a-eIF2α-ATF-4 signaling pathway.
Collapse
Affiliation(s)
- Rui Cao
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Chun Cao
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xiaojie Hu
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Kang Du
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Jingrong Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Mengxue Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Bowen Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Huimin Lin
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Anqi Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yangyang Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Li Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Jing H, Ren Y, Zhou Y, Xu M, Krizkova S, Heger Z, Lu Q, Wang S, Liang X, Adam V, Li N. Remodeling of the liver fibrosis microenvironment based on nilotinib-loaded multicatalytic nanozymes with boosted antifibrogenic activity. Acta Pharm Sin B 2023; 13:5030-5047. [PMID: 38045041 PMCID: PMC10692490 DOI: 10.1016/j.apsb.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 12/05/2023] Open
Abstract
Liver fibrosis is a reversible pathological process caused by chronic liver damage and a major risk factor for hepatocellular carcinoma (HCC). Hepatic stellate cell (HSC) activation is considered the main target for liver fibrosis therapy. However, the efficiency of this strategy is limited due to the complex microenvironment of liver fibrosis, including excessive extracellular matrix (ECM) deposition and hypoxia-induced imbalanced ECM metabolism. Herein, nilotinib (NIL)-loaded hyaluronic acid (HA)-coated Ag@Pt nanotriangular nanozymes (APNH NTs) were developed to inhibit HSCs activation and remodel the microenvironment of liver fibrosis. APNH NTs efficiently eliminated intrahepatic reactive oxygen species (ROS) due to their inherent superoxide dismutase (SOD) and catalase (CAT) activities, thereby downregulating the expression of NADPH oxidase-4 (NOX-4) and inhibiting HSCs activation. Simultaneously, the oxygen produced by the APNH NTs further alleviated the hypoxic microenvironment. Importantly, the released NIL promoted collagen depletion by suppressing the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), thus synergistically remodeling the microenvironment of liver fibrosis. Notably, an in vivo study in CCl4-induced mice revealed that APNH NTs exhibited significant antifibrogenic effects without obvious long-term toxicity. Taken together, the data from this work suggest that treatment with the synthesized APNH NTs provides an enlightening strategy for remodeling the microenvironment of liver fibrosis with boosted antifibrogenic activity.
Collapse
Affiliation(s)
- Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yingzi Ren
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Xu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 61300, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 61300, Czech Republic
| | - Qiang Lu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 61300, Czech Republic
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Liu R, Qian MP, Cui YY. Protein kinases: The key contributors in pathogenesis and treatment of nonalcoholic fatty liver disease-derived hepatocellular carcinoma. Metabolism 2023; 147:155665. [PMID: 37517794 DOI: 10.1016/j.metabol.2023.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Protein kinases (PKs), one of the largest protein families, can be further divided into different groups based on their substrate or structure and function. PKs are important signaling messengers in numerous life activities, including cell metabolism, proliferation, division, differentiation, senescence, death, and disease. Among PK-related diseases, nonalcoholic fatty liver disease (NAFLD) has been recognized as a major contributor to hepatocellular carcinoma (HCC) and liver transplantation. Unfortunately, NAFLD-derived HCC (NAFLD-HCC) has poor prognosis because it is typically accompanied by older age, multiple metabolic syndromes, obstacles in early-stage diagnosis, and limited licensed drugs for treatment. Accumulating evidence suggests that PKs are implicated in the pathogenic process of NAFLD-HCC, via aberrant metabolism, hypoxia, autophagy, hypoxia, gut microbiota dysbiosis, and/or immune cell rearrangement. The present review aims to summarize the latest research advances and emphasize the feasibility and effectiveness of therapeutic strategies that regulate the expression and activities of PKs. This might yield clinically significant effects and lead to the design of novel PK-targeting therapies. Furthermore, we discuss emerging PK-based strategies for the treatment of other malignant diseases similar to NAFLD-HCC.
Collapse
Affiliation(s)
- Rong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ming-Ping Qian
- Department of General Surgery, Suzhou First People's Hospital, Anhui 234099, China; Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ying-Yu Cui
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200331, China; Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200331, China; Key Laboratory of Arrhythmias of the Ministry of Education of China (Tongji University), Tongji University School of Medicine, Shanghai 200331, China.
| |
Collapse
|
12
|
Banerjee P, Gaddam N, Chandler V, Chakraborty S. Oxidative Stress-Induced Liver Damage and Remodeling of the Liver Vasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1400-1414. [PMID: 37355037 DOI: 10.1016/j.ajpath.2023.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
As an organ critically important for targeting and clearing viruses, bacteria, and other foreign material, the liver operates via immune-tolerant, anti-inflammatory mechanisms indispensable to the immune response. Stress and stress-induced factors disrupt the homeostatic balance in the liver, inflicting tissue damage, injury, and remodeling. These factors include oxidative stress (OS) induced by viral infections, environmental toxins, drugs, alcohol, and diet. A recurrent theme seen among stressors common to multiple liver diseases is the induction of mitochondrial dysfunction, increased reactive oxygen species expression, and depletion of ATP. Inflammatory signaling additionally exacerbates the condition, generating a proinflammatory, immunosuppressive microenvironment and activation of apoptotic and necrotic mechanisms that disrupt the integrity of liver morphology. These pathways initiate signaling pathways that significantly contribute to the development of liver steatosis, inflammation, fibrosis, cirrhosis, and liver cancers. In addition, hypoxia and OS directly enhance angiogenesis and lymphangiogenesis in chronic liver diseases. Late-stage consequences of these conditions often narrow the outcomes for liver transplantation or result in death. This review provides a detailed perspective on various stress-induced factors and the specific focus on role of OS in different liver diseases with special emphasis on different molecular mechanisms. It also highlights how resultant changes in the liver vasculature correlate with pathogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Vanessa Chandler
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|
13
|
Yang H, Tan M, Gao Z, Wang S, Lyu L, Ding H. Role of Hydrogen Sulfide and Hypoxia in Hepatic Angiogenesis of Portal Hypertension. J Clin Transl Hepatol 2023; 11:675-681. [PMID: 36969894 PMCID: PMC10037502 DOI: 10.14218/jcth.2022.00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 01/05/2023] Open
Abstract
The pathogenesis of portal hypertension remains unclear, and is believed to involve dysfunction of liver sinusoidal endothelial cells (LSEC), activation of hepatic stellate cells (HSC), dysregulation of endogenous hydrogen sulfide (H2S) synthesis, and hypoxia-induced angiogenic responses. H2S, a novel gas transmitter, plays an important role in various pathophysiological processes, especially in hepatic angiogenesis. Inhibition of endogenous H2S synthase by pharmaceutical agents or gene silencing may enhance the angiogenic response of endothelial cells. Hypoxia-inducible factor-1 (HIF-1) is the main transcription factor of hypoxia, which induces hepatic angiogenesis through up-regulation of vascular endothelial growth factor (VEGF) in HSC and LSEC. H2S has also been shown to be involved in the regulation of VEGF-mediated angiogenesis. Therefore, H2S and HIF-1 may be potential therapeutic targets for portal hypertension. The effects of H2S donors or prodrugs on the hemodynamics of portal hypertension and the mechanism of H2S-induced angiogenesis are promising areas for future research.
Collapse
Affiliation(s)
- Huaxiang Yang
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Mingjie Tan
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhuqing Gao
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shanshan Wang
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
- Cell Biology Laboratory, Beijing Institute of Hepatology, Beijing, China
| | - Lingna Lyu
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Melaibari M, Alkreathy HM, Esmat A, Rajeh NA, Shaik RA, Alghamdi AA, Ahmad A. Anti-Fibrotic Efficacy of Apigenin in a Mice Model of Carbon Tetrachloride-Induced Hepatic Fibrosis by Modulation of Oxidative Stress, Inflammation, and Fibrogenesis: A Preclinical Study. Biomedicines 2023; 11:biomedicines11051342. [PMID: 37239014 DOI: 10.3390/biomedicines11051342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is a major health problem all over the world, and there is no effective treatment to cure it. Hence, the current study sought to assess the anti-fibrotic efficacy of apigenin against CCl4-induced hepatic fibrosis in mice. METHODS Forty-eight mice were put into six groups. G1: Normal Control, G2: CCl4 Control, G3: Silymarin (100 mg/kg), G4 and G5: Apigenin (2 &20 mg/Kg), G6: Apigenin alone (20 mg/Kg). Groups 2, 3, 4, and 5 were given CCl4 (0.5 mL/kg. i.p.) twice/week for six weeks. The level of AST, ALT, TC, TG, and TB in serum and IL-1β, IL-6, and TNF-α in tissue homogenates were assessed. Histological studies by H&E staining and Immunostaining of liver tissues were also performed. RESULTS The CCl4-challenged group showed increased serum AST (4-fold), ALT (6-fold), and TB (5-fold). Both silymarin and apigenin treatments significantly improved these hepatic biomarkers. The CCl4-challenged group showed reduced levels of CAT (89%), GSH (53%), and increased MDA (3-fold). Both silymarin and apigenin treatments significantly altered these oxidative markers in tissue homogenates. The CCl4-treated group showed a two-fold increase in IL-1β, IL-6, and TNF-α levels. Silymarin and apigenin treatment considerably decreased the IL-1β, IL-6, and TNF-α levels. Apigenin treatment inhibited angiogenic activity, as evidenced by a decrease in VEGF (vascular endothelial growth factor) expression in liver tissues, and a decline in vascular endothelial cell antigen expression (CD34). CONCLUSIONS Finally, these data collectively imply that apigenin may have antifibrotic properties, which may be explained by its anti-inflammatory, antioxidant, and antiangiogenic activities.
Collapse
Affiliation(s)
- Maryam Melaibari
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda M Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Nisreen A Rajeh
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anwar A Alghamdi
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
A novel mechanistic approach for the anti-fibrotic potential of rupatadine in rat liver via amendment of PAF/NF-ĸB p65/TGF-β1 and hedgehog/HIF-1α/VEGF trajectories. Inflammopharmacology 2023; 31:845-858. [PMID: 36811777 PMCID: PMC10140091 DOI: 10.1007/s10787-023-01147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023]
Abstract
Hepatic fibrosis is one of the major worldwide health concerns which requires tremendous research due to the limited outcomes of the current therapies. The present study was designed to assess, for the first time, the potential therapeutic effect of rupatadine (RUP) in diethylnitrosamine (DEN)-induced liver fibrosis and to explore its possible mechanistic actions. For the induction of hepatic fibrosis, rats were treated with DEN (100 mg/kg, i.p.) once weekly for 6 consecutive weeks, and on the 6th week, RUP (4 mg/kg/day, p.o.) was administered for 4 weeks. Treatment with RUP ameliorated changes in body weights, liver indices, liver function enzymes, and histopathological alterations induced by DEN. Besides, RUP amended oxidative stress, which led to the inhibition of PAF/NF-κB p65-induced inflammation, and, subsequently, prevention of TGF-β1 elevation and HSCs activation as indicated by reduced α-SMA expression and collagen deposition. Moreover, RUP exerted significant anti-fibrotic and anti-angiogenic effects by suppressing Hh and HIF-1α/VEGF signaling pathways. Our results highlight, for the first time, a promising anti-fibrotic potential of RUP in rat liver. The molecular mechanisms underlying this effect involve the attenuation of PAF/NF-κB p65/TGF-β1 and Hh pathways and, subsequently, the pathological angiogenesis (HIF-1α/VEGF).
Collapse
|
16
|
Xue X, Zhao X, Wang J, Wang C, Ma C, Zhang Y, Li Y, Peng C. Carthami flos extract against carbon tetrachloride-induced liver fibrosis via alleviating angiogenesis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154517. [PMID: 36332390 DOI: 10.1016/j.phymed.2022.154517] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Angiogenesis is a pathological phenomenon contribute to the development of chronic liver diseases, and anti-angiogenic therapy is an effective strategy to alleviate liver fibrosis. Carthami flos, a medicinal and edible herb, has the effects of improving blood circulation and regulating angiogenesis. However, the anti-angiogenic effect of Carthami flos in liver fibrosis remains unknown. METHODS We investigated the protective effect and therapeutic mechanism of Carthami flos extract (CFE) on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. The liver injury and collagen deposition were observed and evaluated by conducting HE, Masson, and Sirius red staining, testing the serum biochemical indexes (ALT, AST, ALP, γ-GT), and measuring the contents of HYP and four indexes of liver fiber (Col-IV, LN, HA, PC-III). Simultaneously, the expressions of α-SMA and Collagen-I were detected to determine the activation of hepatic stellate cells (HSCs). Subsequently, we measured the expressions of angiogenesis-related proteins such as PDGFRB, ERK1/2, p-ERK1/2, MEK, p-MEK, HIF-1α, VEGFA, VEGFR2, AKT and eNOS, and the mRNA levels of PDGFRB and VEGFA. Additionally, immunofluorescence staining and RT-qPCR assays were carried out to ascertain the expressions of continuous endothelial markers CD31, CD34 and vWF, and scanning electron microscope analysis was performed to observe the number of sinusoidal endothelial fenestrations. RESULTS Herein, we found that CFE could significantly reduce liver injury and collagen deposition, like the same effect of colchicine. CFE significantly alleviated CCl4-induced liver injury and fibrosis, mainly manifested by reducing the levels of ALT, AST, ALP and γ-GT and decreasing the contents of HYP, Col-IV, LN, HA and PC-III. Additionally, CCl4 promoted the activation of HSCs by increasing the expressions of α-SMA and Collagen-I, while CFE could rectify the condition. Moreover, CFE treatment prevented the CCl4-induced the up-regulation of PDGFRB, p-MEK, p-ERK1/2, HIF-1α, VEGFA, VEGFR2, AKT and eNOS, suggesting that CFE might provide the protection against abnormal angiogenesis. In the meantime, the gradual disappearance of sinusoidal capillarization after CFE treatment was supported by the decreased the contents of CD31, CD34 and vWF, as well as the increased number of sinusoidal endothelial fenestrae. CONCLUSION In this study, the reduction of collagen deposition, the obstruction of HSCs activation, the inactivation of angiogenic signaling pathways and the weakening of hepatic sinusoidal capillarization jointly confirmed that CFE might be promising to resist angiogenesis in liver fibrosis via the PDGFRB/ERK/HIF-1α and VEGFA/AKT/eNOS signaling pathways. Nevertheless, as a potential therapeutic drug, the deeper mechanism of Carthami flos still needs to be further elucidated.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
17
|
Sun H, Zheng J, Xiao J, Yue J, Shi Z, Xuan Z, Chen C, Zhao Y, Tang W, Ye S, Li J, Deng Q, Zhang L, Zhu F, Shao C. TOPK/PBK is phosphorylated by ERK2 at serine 32, promotes tumorigenesis and is involved in sorafenib resistance in RCC. Cell Death Dis 2022; 13:450. [PMID: 35546143 PMCID: PMC9095598 DOI: 10.1038/s41419-022-04909-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
TOPK/PBK (T-LAK Cell-Originated Protein Kinase) is a serine/threonine kinase that is highly expressed in a variety of human tumors and is associated with poor prognosis in many types of human malignancies. Its activation mechanism is not yet fully understood. A bidirectional signal transduced between TOPK and ERK2 (extracellular signal-regulated kinase 2) has been reported, with ERK2 able to phosphorylate TOPK at the Thr9 residue. However, mutated TOPK at Thr9 cannot repress cellular transformation. In the present study, Ser32 was revealed to be a novel phosphorylated site on TOPK that could be activated by ERK2. Phospho-TOPK (S32) was found to be involved in the resistance of renal cell carcinoma (RCC) to sorafenib. Herein, combined a TOPK inhibitor with sorafenib could promoted the apoptosis of sorafenib-resistant RCC. High expression of HGF/c-met contributes to activation of p-TOPK (S32) during the development of sorafenib resistance in RCC. The current research presents a possible mechanism of sorafenib resistance in RCC and identifies a potential diagnostic marker for predicting sorafenib resistance in RCC, providing a valuable supplement for the clinically targeted treatment of advanced RCC.
Collapse
Affiliation(s)
- Huimin Sun
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
- The Key Laboratory for Endocrine-Related Cancer precision Medicine of Xiamen, Xiamen, 361102, Fujian, China
| | - Jianzhong Zheng
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Juanjuan Xiao
- Cancer Research Institute, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Novel Onco-Kinases in Target Therapy, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Juntao Yue
- Department of Urology, 985th hospital of PLA, Taiyuan, 030002, Shanxi, China
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Zuodong Xuan
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Chen Chen
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Yue Zhao
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Wenbin Tang
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Shaopei Ye
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Jinxin Li
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiumin Deng
- The Key Laboratory for Endocrine-Related Cancer precision Medicine of Xiamen, Xiamen, 361102, Fujian, China
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lei Zhang
- Department of Public healthy, Xiamen University, Xiamen, 361102, Fujian, China
| | - Feng Zhu
- Cancer Research Institute, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Novel Onco-Kinases in Target Therapy, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
18
|
Gkotinakou IM, Mylonis I, Tsakalof A. Vitamin D and Hypoxia: Points of Interplay in Cancer. Cancers (Basel) 2022; 14:cancers14071791. [PMID: 35406562 PMCID: PMC8997790 DOI: 10.3390/cancers14071791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is a hormone that, through its action, elicits a broad spectrum of physiological responses ranging from classic to nonclassical actions such as bone morphogenesis and immune function. In parallel, many studies describe the antiproliferative, proapoptotic, antiangiogenic effects of calcitriol (the active hormonal form) that contribute to its anticancer activity. Additionally, epidemiological data signify the inverse correlation between vitamin D levels and cancer risk. On the contrary, tumors possess several adaptive mechanisms that enable them to evade the anticancer effects of calcitriol. Such maladaptive processes are often a characteristic of the cancer microenvironment, which in solid tumors is frequently hypoxic and elicits the overexpression of Hypoxia-Inducible Factors (HIFs). HIF-mediated signaling not only contributes to cancer cell survival and proliferation but also confers resistance to anticancer agents. Taking into consideration that calcitriol intertwines with signaling events elicited by the hypoxic status cells, this review examines their interplay in cellular signaling to give the opportunity to better understand their relationship in cancer development and their prospect for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ilias Mylonis
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| | - Andreas Tsakalof
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| |
Collapse
|
19
|
Aoki T, Nishida N, Kudo M. Current Perspectives on the Immunosuppressive Niche and Role of Fibrosis in Hepatocellular Carcinoma and the Development of Antitumor Immunity. J Histochem Cytochem 2022; 70:53-81. [PMID: 34751050 PMCID: PMC8721576 DOI: 10.1369/00221554211056853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Immune checkpoint inhibitors have become the mainstay of treatment for hepatocellular carcinoma (HCC). However, they are ineffective in some cases. Previous studies have reported that genetic alterations in oncogenic pathways such as Wnt/β-catenin are the important triggers in HCC for primary refractoriness. T-cell exhaustion has been reported in various tumors and is likely to play a prominent role in the emergence of HCC due to chronic inflammation and cirrhosis-associated immune dysfunction. Immunosuppressive cells including regulatory T-cells and tumor-associated macrophages infiltrating the tumor are associated with hyperprogressive disease in the early stages of immune checkpoint inhibitor treatment. In addition, stellate cells and tumor-associated fibroblasts create an abundant desmoplastic environment by producing extracellular matrix. This strongly contributes to epithelial to mesenchymal transition via signaling activities including transforming growth factor beta, Wnt/β-catenin, and Hippo pathway. The abundant desmoplastic environment has been demonstrated in pancreatic ductal adenocarcinoma and cholangiocarcinoma to suppress cytotoxic T-cell infiltration, PD-L1 expression, and neoantigen expression, resulting in a highly immunosuppressive niche. It is possible that a similar immunosuppressive environment is created in HCC with advanced fibrosis in the background liver. Although sufficient understanding is required for the establishment of immune therapies of HCC, further investigations are still required in this field.
Collapse
Affiliation(s)
- Tomoko Aoki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Naoshi Nishida
- Naoshi Nishida, Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-higashi, Osaka-Sayama 589-8511, Japan. E-mail:
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
20
|
Bioinformatic Evidence Reveals that Cell Cycle Correlated Genes Drive the Communication between Tumor Cells and the Tumor Microenvironment and Impact the Outcomes of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4092635. [PMID: 34746301 PMCID: PMC8564189 DOI: 10.1155/2021/4092635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/04/2021] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive cancer type with poor prognosis; thus, there is especially necessary and urgent to screen potential prognostic biomarkers for early diagnosis and novel therapeutic targets. In this study, we downloaded target data sets from the GEO database, and obtained codifferentially expressed genes using the limma R package and identified key genes through the protein–protein interaction network and molecular modules, and performed GO and KEGG pathway analyses for key genes via the clusterProfiler package and further determined their correlations with clinicopathological features using the Oncomine database. Survival analysis was completed in the GEPIA and the Kaplan–Meier plotter database. Finally, correlations between key genes, cell types infiltrated in the tumor microenvironment (TME), and hypoxic signatures were explored based on the TIMER database. From the results, 11 key genes related to the cell cycle were determined, and high levels of these key genes' expression were focused on advanced and higher grade status HCC patients, as well as in samples of TP53 mutation and vascular invasion. Besides, the 11 key genes were significantly associated with poor prognosis of HCC and also were positively related to the infiltration level of MDSCs in the TME and the HIF1A and VEGFA of hypoxic signatures, but a negative correlation was found with endothelial cells (ECs) and hematopoietic stem cells. The result determined that 11 key genes (RRM2, NDC80, ECT2, CCNB1, ASPM, CDK1, PRC1, KIF20A, DTL, TOP2A, and PBK) could play a vital role in the pathogenesis of HCC, drive the communication between tumor cells and the TME, and act as probably promising diagnostic, therapeutic, and prognostic biomarkers in HCC patients.
Collapse
|
21
|
Fatty acid-binding protein 5 activates cyclooxygenase-2 and promotes hypoxic injury in LO2 cells. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Heo YJ, Choi SE, Lee N, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Visfatin exacerbates hepatic inflammation and fibrosis in a methionine-choline-deficient diet mouse model. J Gastroenterol Hepatol 2021; 36:2592-2600. [PMID: 33600604 DOI: 10.1111/jgh.15465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) ranges from simple steatosis to non-alcoholic steatohepatitis, which is characterized by hepatic inflammation that can progress to fibrosis, cirrhosis, and hepatocellular carcinoma. Visfatin, an adipocytokine, was reported to induce pro-inflammatory cytokines and can be associated with liver fibrosis. We investigated the role of visfatin on hepatic inflammation and fibrosis in a methionine-choline-deficient (MCD)-diet-induced steatohepatitis mouse model. METHODS Eight-week-old male C57BL/6 J mice were randomly assigned into one of three groups: (1) saline-injected control diet group; (2) saline-injected MCD diet group; and (3) visfatin-injected MCD diet group (n = 8 per group). Mice were administered intravenous saline or 10 μg/kg of recombinant murine visfatin for 2 weeks. Histologic assessment of liver and biochemical and molecular measurements of endoplasmic reticulum (ER) stress, reactive oxidative stress (ROS), inflammation, and fibrosis were performed in livers from these animals. RESULTS Visfatin injection aggravated hepatic steatosis and increased plasma alanine aminotransferase and aspartate aminotransferase concentrations. Visfatin increased inflammatory cell infiltration (as indicated by F4/80, CD68, ly6G, and CD3 mRNA expression) and expression of chemokines in the liver. Visfatin also increased the expression of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) and activated fibrosis markers (CTGF, TIMP1, collagen 1α2, collagen 3α2, αSMA, fibronectin, and vimentin) in liver. Livers of visfatin-injected mice showed upregulation of ER stress and ROS and activation of JNK signaling. CONCLUSIONS These results suggest that visfatin aggravates hepatic inflammation together with induction of ER and oxidative stress and exacerbates fibrosis in an MCD-diet-fed mouse model of NAFLD.
Collapse
Affiliation(s)
- Yu Jung Heo
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
23
|
Garcia-Ruiz C, Conde de la Rosa L, Ribas V, Fernandez-Checa JC. MITOCHONDRIAL CHOLESTEROL AND CANCER. Semin Cancer Biol 2021; 73:76-85. [PMID: 32805396 PMCID: PMC7882000 DOI: 10.1016/j.semcancer.2020.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Cholesterol is a crucial component of membrane bilayers that determines their physical and functional properties. Cells largely satisfy their need for cholesterol through the novo synthesis from acetyl-CoA and this demand is particularly critical for cancer cells to sustain dysregulated cell proliferation. However, the association between serum or tissue cholesterol levels and cancer development is not well established as epidemiologic data do not consistently support this link. While most preclinical studies focused on the role of total celular cholesterol, the specific contribution of the mitochondrial cholesterol pool to alterations in cancer cell biology has been less explored. Although low compared to other bilayers, the mitochondrial cholesterol content plays an important physiological function in the synthesis of steroid hormones in steroidogenic tissues or bile acids in the liver and controls mitochondrial function. In addition, mitochondrial cholesterol metabolism generates oxysterols, which in turn, regulate multiple pathways, including cholesterol and lipid metabolism as well as cell proliferation. In the present review, we summarize the regulation of mitochondrial cholesterol, including its role in mitochondrial routine performance, cell death and chemotherapy resistance, highlighting its potential contribution to cancer. Of particular relevance is hepatocellular carcinoma, whose incidence in Western countries had tripled in the past decades due to the obesity and type II diabetes epidemic. A better understanding of the role of mitochondrial cholesterol in cancer development may open up novel opportunities for cancer therapy.
Collapse
Affiliation(s)
- Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Kuwano A, Tanaka M, Suzuki H, Kurokawa M, Imoto K, Tashiro S, Goya T, Kohjima M, Kato M, Ogawa Y. Upregulated expression of hypoxia reactive genes in peripheral blood mononuclear cells from chronic liver disease patients. Biochem Biophys Rep 2021; 27:101068. [PMID: 34307908 PMCID: PMC8283323 DOI: 10.1016/j.bbrep.2021.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Liver fibrosis induces intrahepatic microcirculation disorder and hypoxic stress. Hypoxic stress has the potential for an increase in the possibility of more liver fibrosis and carcinogenesis. Liver biopsy is a standard method that evaluates of intrahepatic hypoxia, however, is invasive and has a risk of bleeding as a complication. Here, we investigated the hypoxia reactive gene expressions in peripheral blood mononuclear cells (PBMC) from chronic liver disease patients to evaluate intrahepatic hypoxia in a non-invasive manner. The subjects enrolled for this study were composed of 20 healthy volunteers (HV) and 48 patients with chronic liver disease (CLD). CLD patients contained 24 patients with chronic hepatitis(CH)and 24 patients with liver cirrhosis (LC). PBMC were isolated from heparinized peripheral blood samples. We measured the transcriptional expression of hypoxia reactive genes and inflammatory cytokines by quantitative RT-PCR. mRNA expression of adrenomedullin (AM), vascular endothelial growth factor A (VEGFA) superoxide dismutase (SOD), glutathione peroxidase (GPx) (p < 0.05), Interleukin-6 (IL-6), transforming growth factor-beta (TGF-β) and heme oxygenase-1 (HO-1) in CLD group were significantly higher than HV. AM mRNA expression is correlated with serum lactate dehydrogenase (LDH), serum albumin (Alb), IL6, and SOD mRNA expression. The hypoxia reactive gene expression in PBMCs from CLD patients was more upregulated than HV. Especially, angiogenic genes were notably upregulated and correlated with liver fibrosis. Here, we suggest that mRNA expression of AM in PBMCs could be the biomarker of intrahepatic hypoxia. The hypoxia reactive genes in PBMC were elevated in patients with chronic liver disease. •Angiogenic genes were upregulated and correlated with liver fibrosis in patients with chronic liver disease. •Adrenomedullin mRNA expression in PBMC was correlated with liver function. •mRNA expression of adrenomedullin in PBMC could be the biomarker of intrahepatic hypoxia.
Collapse
Key Words
- AM, Adrenomedullin
- ANGPTL4, Angiopoietin-like 4
- Adrenomedullin
- CH, chronic hepatitis
- CLD, chronic liver disease
- Chronic liver disease
- GPx, glutathione peroxidase
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HIF, hypoxia inducible factor
- HO-1, heme oxygenase -1
- HV, healthy volunteers
- IL-6, Interleukin-6
- Intrahepatic hypoxia
- LC, liver cirrhosis
- LDH, lactate dehydrogenase
- MCP-1, Monocyte chemoattractant protein-1
- PBMC, Peripheral blood mononuclear cells
- PT, prothrombin time
- Peripheral blood mononuclear cells
- ROS, reactive oxygen species
- SOD, Superoxide dismutase
- TGF-β, transforming growth factor-beta
- TNF-α, Tumor Necrosis Factor-α
- VEGF, vascular endothelial growth factor
- VEGFA, vascular endothelial growth factor A
- VEGFR2, vascular endothelial growth factor receptor 2
Collapse
Affiliation(s)
- Akifumi Kuwano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Hepatology, Iizuka Hospital, 3-83 Yoshio-machi, Iizuka, Fukuoka, 820-8505, Japan
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideo Suzuki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Miho Kurokawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Imoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shigeki Tashiro
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
25
|
Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells 2021; 10:cells10071764. [PMID: 34359934 PMCID: PMC8305108 DOI: 10.3390/cells10071764] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a potentially reversible pathophysiological event, leading to excess deposition of extracellular matrix (ECM) components and taking place as the net result of liver fibrogenesis, a dynamic and highly integrated process occurring during chronic liver injury of any etiology. Liver fibrogenesis and fibrosis, together with chronic inflammatory response, are primarily involved in the progression of chronic liver diseases (CLD). As is well known, a major role in fibrogenesis and fibrosis is played by activated myofibroblasts (MFs), as well as by macrophages and other hepatic cell populations involved in CLD progression. In the present review, we will focus the attention on the emerging pathogenic role of hypoxia, hypoxia-inducible factors (HIFs) and related mediators in the fibrogenic progression of CLD.
Collapse
|
26
|
Cheng WH, Chen CL, Chen JY, Lin CH, Chen BC. Hypoxia-induced preadipocyte factor 1 expression in human lung fibroblasts through ERK/PEA3/c-Jun pathway. Mol Med 2021; 27:69. [PMID: 34229599 PMCID: PMC8259210 DOI: 10.1186/s10020-021-00336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Several studies have reported that hypoxia plays a pathological role in severe asthma and tissue fibrosis. Our previous study showed that hypoxia induces A disintegrin and metalloproteinase 17 (ADAM17) expression in human lung fibroblasts. Moreover, preadipocyte factor 1 (Pref-1) is cleaved by ADAM17, which participates in adipocyte differentiation. Furthermore, Pref1 overexpression is involved in tissue fibrosis including liver and heart. Extracellular signal-regulated kinase (ERK) could active downstram gene expression through polyoma enhancer activator 3 (PEA3) phosphorylation. Studies have demonstrated that PEA3 and activator protein 1 (AP-1) play crucial roles in lung fibrosis, and the Pref-1 promoter region contains PEA3 and AP-1 binding sites as predicted. However, the roles of ERK, PEA3, and AP-1 in hypoxia-stimulated Pref-1 expression in human lung fibroblasts remain unknown. Methods The protein expression in ovalbumin (OVA)-induced asthmatic mice was performed by immunohistochemistry and immunofluorescence. The protein expression or the mRNA level in human lung fibroblasts (WI-38) was detected by western blot or quantitative PCR. Small interfering (si) RNA was used to knockdown gene expression. The collaboration with PEA3 and c-Jun were determined by coimmunoprecipitation. Translocation of PEA3 from the cytosol to the nucleus was observed by immunocytochemistry. The binding ability of PEA3 and AP-1 to Pref-1 promoter was assessed by chromatin immunoprecipitation. Results Pref-1 and hypoxia-inducible factor 1α (HIF-1α) were expressed in the lung sections of OVA-treated mice. Colocalization of PEA3 and Fibronectin was detected in lung sections from OVA-treated mice. Futhermore, Hypoxia induced Pref1 protein upregulation and mRNA expression in human lung fibroblasts (WI38 cells). In 60 confluent WI-38 cells, hypoxia up-regulated HIF-1α and Pref-1 protein expression. Moreover, PEA3 small interfering (si) RNA decreased the expression of hypoxia-induced Pref1 in WI38 cells. Hypoxia induced PEA3 phosphorylation, translocation of PEA3 from the cytosol to the nucleus, PEA3 recruitment and AP-1 binding to the Pref1 promoter region, and PEA3-luciferase activity. Additionally, hypoxia induced c-Jun-PEA3 complex formation. U0126 (an ERK inhibitor), curcumin (an AP1 inhibitor) or c-Jun siRNA downregulated hypoxia-induced Pref-1 expression. Conclusions These results implied that ERK, PEA3, and AP1 participate in hypoxiainduced Pref1 expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Wun-Hao Cheng
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Respiratory Therapy, Wan Fang Hospital, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chia-Ling Chen
- Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Yun Chen
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chien-Huang Lin
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| | - Bing-Chang Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Respiratory Therapy, Wan Fang Hospital, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Lv S, Yu H, Liu X, Gao X. The Study on the Mechanism of Hugan Tablets in Treating Drug-Induced Liver Injury Induced by Atorvastatin. Front Pharmacol 2021; 12:683707. [PMID: 34262454 PMCID: PMC8275032 DOI: 10.3389/fphar.2021.683707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023] Open
Abstract
Atorvastatin is a widely used lipid-lowering drug in the clinic. Research shows that taking long-term atorvastatin has the risk of drug-induced liver injury (DILI) in most patients. Hugan tablets, a commonly used drug for liver disease, can effectively lower transaminase and protect the liver. However, the underlying mechanism of Hugan tablets alleviating atorvastatin-induced DILI remains unclear. To address this problem, comprehensive chemical profiling and network pharmacology methods were used in the study. First, the strategy of "compound-single herb-TCM prescription" was applied to characterize the ingredients of Hugan tablets. Then, active ingredients and potential targets of Hugan tablets in DILI treatment were screened using network pharmacology, molecular docking, and literature research. In the end, the mechanism of Hugan tablets in treating atorvastatin-induced DILI was elucidated. The results showed that Hugan tablets can effectively alleviate DILI induced by atorvastatin in model rats, and 71 compounds were characterized from Hugan tablets. Based on these compounds, 271 potential targets for the treatment of DILI were predicted, and 10 key targets were chosen by characterizing protein-protein interactions. Then, 30 potential active ingredients were screened through the molecular docking with these 10 key targets, and their biological activity was explained based on literature research. Finally, the major 19 active ingredients of Hugan tablets were discovered. In addition, further enrichment analysis of 271 targets indicated that the PI3K-Akt, TNF, HIF-1, Rap1, and FoxO signaling pathways may be the primary pathways regulated by Hugan tablets in treating DILI. This study proved that Hugan tablets could alleviate atorvastatin-induced DILI through multiple components, targets, and pathways.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
The association between obstructive sleep apnea and non-alcoholic steatohepatitis: a retrospective nationwide inpatient sample analysis. Clin Exp Hepatol 2021; 7:25-29. [PMID: 34027112 PMCID: PMC8122103 DOI: 10.5114/ceh.2021.104488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Abstract
Aim of the study The primary purpose of this study was to assess the association of obstructive sleep apnea (OSA) and non-alcoholic steatohepatitis (NASH) from a large national inpatient sample database. Material and methods We conducted a retrospective analysis using the Healthcare Cost and Utilization Project-Nationwide Inpatient Sample. OSA and NASH patients were identified using the ICD-10-CM code G47.33 and K75.81. Non-NASH patients (control) were randomly selected and matched by age and gender to each NASH patient in a 4 : 1 ratio. Weighted logistic regression models were used to calculate the association between OSA and NASH in addition to different comorbidities. Results A total of 54,169 participants were included in our analysis; 10,740 cases of NASH were matched to 43,429 controls (non-NASH). NASH was significantly higher in the white population (82.12% vs. 76.64%, p < 0.001). The prevalence of OSA among NASH patients was significantly higher compared to the control group (15.8% vs. 8.9%, adjusted OR: 1.34, 95% CI: 1.14-1.56, p = 0.0003). The prevalence of celiac disease and Crohn’s disease was significantly higher in patients with NASH (0.7% vs. 0.2%, p < 0.0002 and 1.28% vs. 0.76%, p < 0.0001). Multiple comorbidities were significantly elevated in the NASH group compared to the non-NASH group, including diabetes mellitus (DM; 36% vs. 17.6%, p < 0.0001), obesity (36.4% vs. 18.2%, p < 0.0001) and metabolic syndrome (0.86% vs. 0.06%, p < 0.0001). The mortality rate was significantly higher in the NASH group (3.8% vs. 2%, p < 0.0001). Conclusions This is the first study using the ICD-10-CM code with a specific search code for NASH. Our large population database results emphasize that there is a significant association between OSA and NASH.
Collapse
|
29
|
Peng Z, Gong Y, Liang X. Role of FAT1 in health and disease. Oncol Lett 2021; 21:398. [PMID: 33777221 PMCID: PMC7988705 DOI: 10.3892/ol.2021.12659] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1), which encodes a protocadherin, is one of the most frequently mutated genes in human cancer. Over the past 20 years, the role of FAT1 in tissue growth and in the development of diseases has been extensively studied. There is definitive evidence that FAT1 serves a substantial role in the maintenance of organs and development, and its expression appears to be tissue-specific. FAT1 activates a variety of signaling pathways through protein-protein interactions, including the Wnt/β-catenin, Hippo and MAPK/ERK signaling pathways, which affect cell proliferation, migration and invasion. Abnormal FAT1 expression may lead to the development of tumors and may affect prognosis. Therefore, FAT1 may have potential in tumor therapy. The structural and functional changes mediated by FAT1, its tissue distribution and changes in FAT1 expression in human diseases are described in the present review, which provides further insight for understanding the role of FAT1 in development and disease.
Collapse
Affiliation(s)
- Zizhen Peng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanyu Gong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
30
|
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:217-233. [PMID: 33131349 DOI: 10.1080/17474124.2021.1842732] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Persistent inflammation and hypoxia are strong stimulus for pathological angiogenesis and vascular remodeling, and are also the most important elements resulting in liver fibrosis. Sustained inflammatory process stimulates fibrosis to the end-point of cirrhosis and sinusoidal portal hypertension is an important feature of cirrhosis. Neovascularization plays a pivotal role in collateral circulation formation of portal vein, mesenteric congestion, and high perfusion. Imbalance of hepatic artery and portal vein blood flow leads to the increase of hepatic artery inflow, which is beneficial to the formation of nodules. Angiogenesis contributes to progression from liver fibrosis to cirrhosis and hepatocellular carcinoma (HCC) and anti-angiogenesis therapy can improve liver fibrosis, reduce portal pressure, and prolong overall survival of patients with HCC. Areas covers: This paper will try to address the difference of the morphological characteristics and mechanisms of neovascularization in the process from liver fibrosis to cirrhosis and HCC and further compare the different efficacy of anti-angiogenesis therapy in these three stages. Expert opinion: More in-depth understanding of the role of angiogenesis factors and the relationship between angiogenesis and other aspects of the pathogenesis and transformation may be the key to enabling future progress in the treatment of patients with liver fibrosis, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
31
|
Mariotti V, Fiorotto R, Cadamuro M, Fabris L, Strazzabosco M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep 2021; 3:100251. [PMID: 34151244 PMCID: PMC8189933 DOI: 10.1016/j.jhepr.2021.100251] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
The family of vascular endothelial growth factors (VEGFs) includes 5 members (VEGF-A to -D, and placenta growth factor), which regulate several critical biological processes. VEGF-A exerts a variety of biological effects through high-affinity binding to tyrosine kinase receptors (VEGFR-1, -2 and -3), co-receptors and accessory proteins. In addition to its fundamental function in angiogenesis and endothelial cell biology, VEGF/VEGFR signalling also plays a role in other cell types including epithelial cells. This review provides an overview of VEGF signalling in biliary epithelial cell biology in both normal and pathologic conditions. VEGF/VEGFR-2 signalling stimulates bile duct proliferation in an autocrine and paracrine fashion. VEGF/VEGFR-1/VEGFR-2 and angiopoietins are involved at different stages of biliary development. In certain conditions, cholangiocytes maintain the ability to secrete VEGF-A, and to express a functional VEGFR-2 receptor. For example, in polycystic liver disease, VEGF secreted by cystic cells stimulates cyst growth and vascular remodelling through a PKA/RAS/ERK/HIF1α-dependent mechanism, unveiling a new level of complexity in VEFG/VEGFR-2 regulation in epithelial cells. VEGF/VEGFR-2 signalling is also reactivated during the liver repair process. In this context, pro-angiogenic factors mediate the interactions between epithelial, mesenchymal and inflammatory cells. This process takes place during the wound healing response, however, in chronic biliary diseases, it may lead to pathological neo-angiogenesis, a condition strictly linked with fibrosis progression, the development of cirrhosis and related complications, and cholangiocarcinoma. Novel observations indicate that in cholangiocarcinoma, VEGF is a determinant of lymphangiogenesis and of the immune response to the tumour. Better insights into the role of VEGF signalling in biliary pathophysiology might help in the search for effective therapeutic strategies.
Collapse
Key Words
- ADPKD, adult dominant polycystic kidney disease
- Anti-Angiogenic therapy
- BA, biliary atresia
- BDL, bile duct ligation
- CCA, cholangiocarcinoma
- CCl4, carbon tetrachloride
- CLDs, chronic liver diseases
- Cholangiocytes
- Cholangiopathies
- DP, ductal plate
- DPM, ductal plate malformation
- DRCs, ductular reactive cells
- Development
- HIF-1α, hypoxia-inducible factor type 1α
- HSCs, hepatic stellate cells
- IHBD, intrahepatic bile ducts
- IL-, interleukin-
- LECs, lymphatic endothelial cells
- LSECs, liver sinusoidal endothelial cells
- Liver repair
- MMPs, matrix metalloproteinases
- PBP, peribiliary plexus
- PC, polycystin
- PDGF, platelet-derived growth factor
- PIGF, placental growth factor
- PLD, polycystic liver diseases
- Polycystic liver diseases
- SASP, senescence-associated secretory phenotype
- TGF, transforming growth factor
- VEGF, vascular endothelial growth factors
- VEGF-A
- VEGF/VEGFR-2 signalling
- VEGFR-1/2, vascular endothelial growth factor receptor 1/2
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Valeria Mariotti
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| | - Romina Fiorotto
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| | - Massimiliano Cadamuro
- Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Luca Fabris
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA.,Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Mario Strazzabosco
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Elnfarawy AA, Nashy AE, Abozaid AM, Komber IF, Elweshahy RH, Abdelrahman RS. Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum Exp Toxicol 2021; 40:355-368. [PMID: 32840391 DOI: 10.1177/0960327120947453] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Liver fibrosis is associated with increased mortality and morbidity. However, there is not effective treatment so far. Vinpocetine (Vinpo) is a synthetic derivative of vinca alkaloid vincamine. Limited previous reports have shown some beneficial effects of Vinpo in different organ fibrosis, but the ability of Vinpo to inhibit liver fibrosis induced by thioacetamide (TAA) has not been reported, that is why we investigate the potential ability of this vinca alkaloid derivative to attenuate liver fibrosis. Hepatic fibrosis was induced in male Sprague Dawley rats by TAA (200 mg/kg; ip; 3 times/week) for 6 weeks. Daily treatments with Vinpo (10-20 mg/kg/day; orally) ameliorated TAA-induced hepatic oxidative stress and histopathological damage as indicated by a decrease in liver injury markers, LDH, hepatic MDA, and NOx levels, as well as increase anti-oxidative parameters. Besides, the anti-fibrotic efficacy of Vinpo was confirmed by decreasing hydroxyproline, and α-SMA. Also, the anti-inflammatory effect of Vinpo was explored by decreasing IL-6 and TNF-α levels. Our novel findings were that Vinpo decreased VEGF/Ki-67 expression in the liver confirming its effect on angiogenesis and proliferation. These findings reveal the anti-fibrotic effect of Vinpo against TAA-induced liver fibrosis in rats, and suggest the modulation of oxidative stress, inflammation, angiogenesis and proliferation as mechanistic cassette underlines this effect.
Collapse
Affiliation(s)
| | - Asmaa E Nashy
- 158395Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Alaa M Abozaid
- 158395Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, Saudi Arabia
- Department of Pharmacology and Toxicology, 158395Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
33
|
Lin ZH, Jiang JR, Ma XK, Chen J, Li HP, Li X, Wu XY, Huang MS, Lin Q. Prognostic value of serum HIF-1α change following transarterial chemoembolization in hepatocellular carcinoma. Clin Exp Med 2021; 21:109-120. [PMID: 33037574 DOI: 10.1007/s10238-020-00667-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/22/2020] [Indexed: 02/02/2023]
Abstract
Transarterial chemoembolization (TACE) induces a change in serum HIF-1α level in patients with hepatocellular carcinoma (HCC). This study investigated the prognostic value of change in serum HIF-1α following TACE treatment in HCC patients. A total of 61 hepatocellular carcinoma patients treated with TACE were included. Peripheral blood samples were collected within 1 week before and after TACE to determine the serum levels of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) by enzyme-linked immunosorbent assay (ELISA). Serum HIF-1α change was calculated as follows: ∆HIF-1α = (HIF-1α (pre-TACE) - HIF-1α (post-TACE))/HIF-1α (pre-TACE). Likewise, serum VEG-F change was calculated as follows: ∆VEG-F = (VEG-F (pre-TACE) - VEG-F(post-TACE))/VEG-F (pre-TACE). Based on the cutoffs (0.25) determined by the maximum Youden's index in receiver operating characteristic analysis, the patients were grouped into the low ∆HIF-1α group (< 0.25) and the high ∆HIF-1α group (> 0.25). After TACE treatment, HIF-1α was significantly decreased (pre-TACE 1901.62 vs. post-TACE 621.82 pg/ml, P < 0.01) but VEGF-A was significantly increased (pre-TACE 60.80 vs. post-TACE 143.81 pg/ml, P < 0.01). Multivariate logistic regression analysis demonstrated that ∆HIF-1α was a prognostic factor (OR = 58.09, 95% CI: 1.59-2127.32, P = 0.027) for the TACE treatment response. Furthermore, multivariate Cox regression analysis revealed that ∆HIF-1α was a prognostic factor for progression-free survival (PFS) (HR = 0.30, 95% CI: 0.14-0.66, P = 0.003) and overall survival (OS) (estimated HR = 0.38, 95% CI: 0.16-0.93, P = 0.034). Kaplan-Meier survival analysis showed that the high ∆HIF-1α group was more likely to have longer PFS (log-rank test, P = 0.004) and OS (log-rank test, P = 0.002) than the low ∆HIF-1α group. The change in serum HIF-1α level following TACE is a prognostic factor associated with the TACE treatment response, PFS, and OS in HCC patients following TACE.
Collapse
Affiliation(s)
- Zhi-Huan Lin
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
- Department of Medical Oncology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jun-Rong Jiang
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Xiao-Kun Ma
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jie Chen
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - He-Ping Li
- Department of Medical Oncology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xing Li
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Xiang-Yuan Wu
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Ming-Sheng Huang
- Department of Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Qu Lin
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
34
|
Identification of the Different Gene Expression Characteristics from Liver Cirrhosis to Hepatocellular Carcinoma Using Single-Cell Sequencing Analyses. J Immunol Res 2021; 2021:6619302. [PMID: 33532508 PMCID: PMC7834792 DOI: 10.1155/2021/6619302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
The occurrence of hepatocellular carcinoma (HCC) is closely related to the chronic inflammation which caused liver fibrosis and cirrhosis, and the interaction between HCC and its microenvironment further drives tumorigenesis. However, the single-cell resolution in vivo study is lacking, which limits our molecular understanding of tumour biology in the liver. Here, using published single-cell sequencing technology (scRNA-seq) database, we analyzed the liver microenvironment at high resolution in an unbiased manner and demonstrated the transcriptomic comparison between various cell populations and subpopulations in HCC and cirrhosis tissues. We found that eight genes that are specifically expressed in the endothelial cell and stellate cell of the HCC patients and correlated them with their survival rate, which may provide novel diagnosis and treatment targets for the clinical application.
Collapse
|
35
|
Rim YA, Ju JH. The Role of Fibrosis in Osteoarthritis Progression. Life (Basel) 2020; 11:life11010003. [PMID: 33374529 PMCID: PMC7822172 DOI: 10.3390/life11010003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease where the main characteristics include cartilage degeneration and synovial membrane inflammation. These changes in the knee joint eventually dampen the function of the joint and restrict joint movement, which eventually leads to a stage where total joint replacement is the only treatment option. While much is still unknown about the pathogenesis and progression mechanism of OA, joint fibrosis can be a critical issue for better understanding this disease. Synovial fibrosis and the generation of fibrocartilage are the two main fibrosis-related characteristics that can be found in OA. However, these two processes remain mostly misunderstood. In this review, we focus on the fibrosis process in OA, especially in the cartilage and the synovium tissue, which are the main tissues involved in OA.
Collapse
Affiliation(s)
- Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6895
| |
Collapse
|
36
|
Barili V, Boni C, Rossi M, Vecchi A, Zecca A, Penna A, Missale G, Ferrari C, Fisicaro P. Metabolic regulation of the HBV-specific T cell function. Antiviral Res 2020; 185:104989. [PMID: 33248194 DOI: 10.1016/j.antiviral.2020.104989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Chronically HBV infected subjects are more than 260 million worldwide; cirrhosis and liver cancer represent possible outcomes which affect around 700,000 patients per year. Both innate and adaptive immune responses are necessary for viral control and both have been shown to be defective in chronic patients. Metabolic remodeling is an essential process in T cell biology, particularly for T cell activation, differentiation and survival. Cellular metabolism relies on the conversion of nutrients into energy to support intracellular processes, and to generate fundamental intermediate components for cell proliferation and growth. Adaptive immune responses are the central mechanisms for the resolution of primary human infections leading to the activation of pathogen-specific B and T cell functions. In chronic HBV infection the anti-viral immune response fails to contain the virus and leads to persistent hepatic tissue damage which may finally result in liver cirrhosis and cancer. This T cell failure is associated with metabolic alterations suggesting that control of nutrient uptake and intracellular utilization as well as correct regulation of intracellular metabolic pathways are strategic for T cell differentiation during persistent chronic infections. This review will discuss some of the main features of the T cell metabolic processes which are relevant to the generation of an efficient antiviral response, with specific focus on their clinical relevance in chronic HBV infection in the perspective of possible strategies to correct deregulated metabolic pathways underlying T cell dysfunction of chronic HBV patients.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
37
|
Gkotinakou IM, Kechagia E, Pazaitou-Panayiotou K, Mylonis I, Liakos P, Tsakalof A. Calcitriol Suppresses HIF-1 and HIF-2 Transcriptional Activity by Reducing HIF-1/2α Protein Levels via a VDR-Independent Mechanism. Cells 2020; 9:E2440. [PMID: 33182300 PMCID: PMC7695316 DOI: 10.3390/cells9112440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Hypoxia-inducible transcription factors 1 and 2 (HIFs) are major mediators of cancer development and progression and validated targets for cancer therapy. Although calcitriol, the biologically active metabolite of vitamin D, was attributed with anticancer properties, there is little information on the effect of calcitriol on HIFs and the mechanism underling this activity. Here, we demonstrate the negative effect of calcitriol on HIF-1/2α protein levels and HIF-1/2 transcriptional activity and elucidate the molecular mechanism of calcitriol action. We also reveal that the suppression of vitamin D receptor (VDR) expression by siRNA does not abrogate the negative regulation of HIF-1α and HIF-2α protein levels and HIF-1/2 transcriptional activity by calcitriol, thus testifying that the mechanism of these actions is VDR independent. At the same time, calcitriol significantly reduces the phosphorylation of Akt protein kinase and its downstream targets and suppresses HIF-1/2α protein synthesis by inhibiting HIF1A and EPAS1 (Endothelial PAS domain-containing protein 1) mRNA translation, without affecting their mRNA levels. On the basis of the acquired data, it can be proposed that calcitriol reduces HIF-1α and HIF-2α protein levels and inhibits HIF-1 and HIF-2 transcriptional activity by a VDR-independent, nongenomic mechanism that involves inhibition of PI3K/Akt signaling pathway and suppression of HIF1A and EPAS1 mRNA translation.
Collapse
Affiliation(s)
- Ioanna-Maria Gkotinakou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Eleni Kechagia
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | | | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Andreas Tsakalof
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| |
Collapse
|
38
|
Roife D, Sarcar B, Fleming JB. Stellate Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:67-84. [PMID: 32588324 DOI: 10.1007/978-3-030-44518-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As tumor microenvironments share many of the same qualities as chronic wounds, attention is turning to the wound-repair cells that support the growth of cancerous cells. Stellate cells are star-shaped cells that were first discovered in the perisinusoidal spaces in the liver and have been found to support wound healing by the secretion of growth factors and extracellular matrix. They have since been also found to serve a similar function in the pancreas. In both organs, the wound-healing process may become dysregulated and lead to pathological fibrosis (also known as cirrhosis in the liver). In recent years there has been increasing attention paid to the role of these cells in tumor formation and progression. They may be a factor in initiating the first steps of carcinogenesis such as with liver cirrhosis and hepatocellular carcinoma and also contribute to continued tumor growth, invasion, metastasis, evasion of the immune system, and resistance to chemotherapy, in cancers of both the liver and pancreas. In this chapter we aim to review the structure and function of hepatic and pancreatic stellate cells and their contributions to the tumor microenvironment in their respective cancers and also discuss potential new targets for cancer therapy based on our new understanding of these vital components of the tumor stroma.
Collapse
Affiliation(s)
- David Roife
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
39
|
Roy S, Kumaravel S, Sharma A, Duran CL, Bayless KJ, Chakraborty S. Hypoxic tumor microenvironment: Implications for cancer therapy. Exp Biol Med (Maywood) 2020; 245:1073-1086. [PMID: 32594767 DOI: 10.1177/1535370220934038] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPACT STATEMENT Hypoxia contributes to tumor aggressiveness and promotes growth of many solid tumors that are often resistant to conventional therapies. In order to achieve successful therapeutic strategies targeting different cancer types, it is necessary to understand the molecular mechanisms and signaling pathways that are induced by hypoxia. Aberrant tumor vasculature and alterations in cellular metabolism and drug resistance due to hypoxia further confound this problem. This review focuses on the implications of hypoxia in an inflammatory TME and its impact on the signaling and metabolic pathways regulating growth and progression of cancer, along with changes in lymphangiogenic and angiogenic mechanisms. Finally, the overarching role of hypoxia in mediating therapeutic resistance in cancers is discussed.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Ankith Sharma
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Camille L Duran
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
40
|
Novo E, Bocca C, Foglia B, Protopapa F, Maggiora M, Parola M, Cannito S. Liver fibrogenesis: un update on established and emerging basic concepts. Arch Biochem Biophys 2020; 689:108445. [PMID: 32524998 DOI: 10.1016/j.abb.2020.108445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrogenesis is defined as a dynamic and highly integrated process occurring during chronic injury to liver parenchyma that can result in excess deposition of extracellular matrix (ECM) components (i.e., liver fibrosis). Liver fibrogenesis, together with chronic inflammatory response, is then primarily involved in the progression of chronic liver diseases (CLD) irrespective of the specific etiology. In the present review we will first offer a synthetic and updated overview of major basic concepts in relation to the role of myofibroblasts (MFs), macrophages and other hepatic cell populations involved in CLD to then offer an overview of established and emerging issues and mechanisms that have been proposed to favor and/or promote CLD progression. A special focus will be dedicated to selected issues that include emerging features in the field of cholangiopathies, the emerging role of genetic and epigenetic factors as well as of hypoxia, hypoxia-inducible factors (HIFs) and related mediators.
Collapse
Affiliation(s)
- Erica Novo
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Claudia Bocca
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Beatrice Foglia
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Francesca Protopapa
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Marina Maggiora
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Maurizio Parola
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy.
| | - Stefania Cannito
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| |
Collapse
|
41
|
Pu W, Zheng Y, Peng Y. Prolyl Isomerase Pin1 in Human Cancer: Function, Mechanism, and Significance. Front Cell Dev Biol 2020; 8:168. [PMID: 32296699 PMCID: PMC7136398 DOI: 10.3389/fcell.2020.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/29/2020] [Indexed: 02/05/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an evolutionally conserved and unique enzyme that specifically catalyzes the cis-trans isomerization of phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif and, subsequently, induces the conformational change of its substrates. Mounting evidence has demonstrated that Pin1 is widely overexpressed and/or overactivated in cancer, exerting a critical influence on tumor initiation and progression via regulation of the biological activity, protein degradation, or nucleus-cytoplasmic distribution of its substrates. Moreover, Pin1 participates in the cancer hallmarks through activating some oncogenes and growth enhancers, or inactivating some tumor suppressors and growth inhibitors, suggesting that Pin1 could be an attractive target for cancer therapy. In this review, we summarize the findings on the dysregulation, mechanisms, and biological functions of Pin1 in cancer cells, and also discuss the significance and potential applications of Pin1 dysregulation in human cancer.
Collapse
Affiliation(s)
- Wenchen Pu
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Zheng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
42
|
Méndez-Sánchez N, Valencia-Rodríguez A, Coronel-Castillo C, Vera-Barajas A, Contreras-Carmona J, Ponciano-Rodríguez G, Zamora-Valdés D. The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:400. [PMID: 32355844 PMCID: PMC7186641 DOI: 10.21037/atm.2020.02.184] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/29/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is considered the advanced stage of non-alcoholic fatty liver disease (NAFLD). It is characterized by liver steatosis, inflammation and different degrees of fibrosis. Although the exact mechanisms by which fatty liver progresses to NASH are still not well understood, innate and adaptive immune responses seem to be essential key regulators in the establishment, progression, and chronicity of these disease. Diet-induced lipid overload of parenchymal and non-parenchymal liver cells is considered the first step for the development of fatty liver with the consequent organelle dysfunction, cellular stress and liver injury. These will generate the production of pro-inflammatory cytokines, chemokines and damage-associated molecular patterns (DAMPs) that will upregulate the activation of Kupffer cells (KCs) and monocyte-derived macrophages (MMs) favoring the polarization of the tolerogenic environment of the liver to an immunogenic phenotype with the resulting transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts developing fibrosis. In the long run, dendritic cells (DCs) will activate CD4+ T cells polarizing into the pro-inflammatory lymphocytes Th1 and Th17 worsening the liver damage and inflammation. Therefore, the objective of this review is to discuss in a systematic way the mechanisms known so far of the immune and non-proper immune liver cells in the development and progression of NASH.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine. National Autonomous University of Mexico, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
43
|
Fuzhenghuayu Decoction ameliorates hepatic fibrosis by attenuating experimental sinusoidal capillarization and liver angiogenesis. Sci Rep 2019; 9:18719. [PMID: 31822697 PMCID: PMC6904731 DOI: 10.1038/s41598-019-54663-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Fuzhenghuayu (FZHY) is a compound extracted from natural plants. Its anti-fibrotic effect has been confirmed in experimental and clinical studies. However, precise effects and underlying mechanisms of FZHY in liver angiogenesis largely remain understood. In this study, we investigated the effects of FZHY on sinusoidal capillarization and angiogenesis with mice challenged for Carbon tetrachloride (CCl4) and dimethylnitrosamine (DMN), in vitro human hepatic sinusoidal endothelial cells (HHSEC) and Human Umbilical Vein Endothelial Cell (HUVEC) 3D fibrin gel model. Besides its anti-fibrotic effect, FZHY ameliorated CCl4 and DMN-induced sinusoidal capillarization, angiogenesis and expression of angiogenesis-associated factors, i.e. CD31, VEGF, VEGF receptor II, phosphor-ERK and HIF-1α. Consistent with the findings based on animal models, inhibitory effects of FZHY on capillarization and angiogenesis were further confirmed in HHSEC and the HUVEC 3D fibrin gel model, respectively. These data suggest that FZHY ameliorates not only liver fibrosis but also vessel remodeling in experimental models. Therefore, FZHY might be a potentially useful drug to treat liver cirrhosis in clinical practice.
Collapse
|
44
|
Roles of the Hepatic Endocannabinoid and Apelin Systems in the Pathogenesis of Liver Fibrosis. Cells 2019; 8:cells8111311. [PMID: 31653030 PMCID: PMC6912778 DOI: 10.3390/cells8111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.
Collapse
|
45
|
Javan MR, Khosrojerdi A, Moazzeni SM. New Insights Into Implementation of Mesenchymal Stem Cells in Cancer Therapy: Prospects for Anti-angiogenesis Treatment. Front Oncol 2019; 9:840. [PMID: 31555593 PMCID: PMC6722482 DOI: 10.3389/fonc.2019.00840] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment interacts with tumor cells, establishing an atmosphere to contribute or suppress the tumor development. Among the cells which play a role in the tumor microenvironment, mesenchymal stem cells (MSCs) have been demonstrated to possess the ability to orchestrate the fate of tumor cells, drawing the attention to the field. MSCs have been considered as cells with double-bladed effects, implicating either tumorigenic or anti-tumor activity. On the other side, the promising potential of MSCs in treating human cancer cells has been observed from the clinical studies. Among the beneficial characteristics of MSCs is the natural tumor-trophic migration ability, providing facility for drug delivery and, therefore, targeted treatment to detach tumor and metastatic cells. Moreover, these cells have been the target of engineering approaches, due to their easily implemented traits, in order to obtain the desired expression of anti-angiogenic, anti-proliferative, and pro-apoptotic properties, according to the tumor type. Tumor angiogenesis is the key characteristic of tumor progression and metastasis. Manipulation of angiogenesis has become an attractive approach for cancer therapy since the introduction of the first angiogenesis inhibitor, namely bevacizumab, for metastatic colorectal cancer therapy. This review tries to conclude the approaches, with focus on anti-angiogenesis approach, in implementing the MSCs to combat against tumor cell progression.
Collapse
Affiliation(s)
- Mohammad Reza Javan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
46
|
Positive Effects of Ger-Gen-Chyn-Lian-Tang on Cholestatic Liver Fibrosis in Bile Duct Ligation-Challenged Mice. Int J Mol Sci 2019; 20:ijms20174181. [PMID: 31455001 PMCID: PMC6747316 DOI: 10.3390/ijms20174181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to investigate whether Ger-Gen-Chyn-Lian-Tang (GGCLT) suppresses oxidative stress, inflammation, and angiogenesis during experimental liver fibrosis through the hypoxia-inducible factor-1α (HIF-1α)-mediated pathway. Male C57BL/6 mice were randomly assigned to a sham-control or bile duct ligation (BDL) group with or without treatment with GGCLT at 30, 100, and 300 mg/kg. Plasma alanine aminotransferase (ALT) levels were analyzed using a diagnostic kit. Liver histopathology and hepatic status parameters were measured. Compared to control mice, the BDL mice exhibited an enlargement in liver HIF-1α levels, which was suppressed by 100 and 300 mg/kg GGCLT treatments (control: BDL: BDL + GGCLT-100: BDL + GGCLT-300 = 0.95 ± 0.07: 1.95 ± 0.12: 1.43 ± 0.05: 1.12 ± 0.10 fold; p < 0.05). GGCLT restrained the induction of hepatic hydroxyproline and malondialdehyde levels in the mice challenged with BDL, further increasing the hepatic glutathione levels. Furthermore, in response to increased hepatic inflammation and fibrogenesis, significant levels of ALT, nuclear factor kappa B, transforming growth factor-β, α-smooth muscle actin, matrix metalloproteinase-2 (MMP-2), MMP-9, and procollagen-III were found in BDL mice, which were attenuated with GGCLT. In addition, GGCLT reduced the induction of angiogenesis in the liver after BDL by inhibiting vascular endothelial growth factor (VEGF) and VEGF receptors 1 and 2. In conclusion, the anti-liver fibrosis effect of GGCLT, which suppresses hepatic oxidative stress and angiogenesis, may be dependent on an HIF-1α-mediated pathway.
Collapse
|
47
|
Integration of VEGF and α-SMA Expression Improves the Prediction Accuracy of Fibrosis in Chronic Hepatitis C Liver Biopsy. Appl Immunohistochem Mol Morphol 2019; 25:261-270. [PMID: 26990742 DOI: 10.1097/pai.0000000000000299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The progression of fibrosis in chronic hepatitis C (CHC) is a multifactorial process. The high adverse effects and the cost of standard health care increase the demand to discover new predictors for the progression of fibrosis in CHC patients. Our study aims to establish the relation between the angiogenic marker [vascular endothelial growth factor (VEGF)] and activated hepatic stellate cells (HSCs) represented by the expression of α-smooth muscle actin (α-SMA) and whether these 2 markers can be used as predictors for the progression of fibrosis in patients with CHC. MATERIALS AND METHODS Histopathologic and immunohistochemical analyses were used for examining the morphology and the expression of VEGF and α-SMA in 60 CHC biopsies procured from CHC patients. Multivariate analysis was used to correlate the protein expression with staging and grading of liver fibrosis. Cutoff values of α-SMA and VEGF were determined by the receiver operating characteristics curve. RESULTS There was a positive correlation between VEGF and HSCs expressing α-SMA (ρ=0.287, P=0.026) and both factors were correlated with the stage of fibrosis (P<0.001). Using the receiver operating characteristics curve, both VEGF (area under the curve=0.71, P<0.006) and α-SMA (area under the curve=0.82, P<0.001) were positive predictors for moderate and severe fibrosis. CONCLUSIONS This study demonstrates the relation between VEGF expression and the activated HSCs denoted by the expression of α-SMA in CHC biopsies and together can be used as a predictor for the progression of fibrosis.
Collapse
|
48
|
Zhang J, Chu M. Differential roles of VEGF: Relevance to tissue fibrosis. J Cell Biochem 2019; 120:10945-10951. [PMID: 30793361 DOI: 10.1002/jcb.28489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Excessive extracellular matrix deposition and pathological vascularization are characteristics of fibrosis, which compromises the normal functioning of organs. Although whether angiogenesis can be induced and can occur in parallel with the progression of fibrosis has not been definitely determined, angiogenesis undoubtedly plays a vital role in fibrosis. Since vascular endothelial growth factor (VEGF) is one of the most effective proangiogenic factors, VEGF-targeting interventions have been a focus for the development of therapeutic strategies against fibrosis. In this review, we will summarize the current knowledge of the role of VEGF and its relevant mechanisms in fibrotic biology. We especially expect to provide a comprehensive overview of the therapeutic potential of VEGF-targeted therapy strategies to restore vascular function in the organs affected by fibrosis.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, Nan Gang, China
| | - Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Nan Gang, China
| |
Collapse
|
49
|
Sayan M, Yegya-Raman N, Greco SH, Gui B, Zhang A, Chundury A, Grandhi MS, Hochster HS, Kennedy TJ, Langan RC, Malhotra U, Rustgi VK, Shah MM, Spencer KR, Carpizo DR, Nosher JL, Jabbour SK. Rethinking the Role of Radiation Therapy in the Treatment of Unresectable Hepatocellular Carcinoma: A Data Driven Treatment Algorithm for Optimizing Outcomes. Front Oncol 2019; 9:345. [PMID: 31275846 PMCID: PMC6591511 DOI: 10.3389/fonc.2019.00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer death worldwide, with a majority of HCC patients not suitable for curative therapies. Approximately 70% of initially diagnosed patients cannot undergo surgical resection or transplantation due to locally advanced disease, poor liver function/underlying cirrhosis, or additional comorbidities. Local therapeutic options for patients with unresectable HCC, who are not suitable for thermal ablation, include transarterial embolization (bland, chemoembolization, radioembolization) and/or external beam radiation therapy (EBRT). Regarding EBRT specifically, technological advancements provide a means for safe and effective radiotherapy delivery in a wide spectrum of HCC patients. In multiple prospective studies, EBRT delivery in a variety of different fractionation schemes or in combination with transcatheter arterial chemoembolization (TACE) demonstrate improved outcomes, particularly with combination therapy. The Barcelona Clinic Liver Cancer classification provides a framework for treatment selection; however, given the growing complexity of treatment strategies, this classification system tends to simplify decision-making. In this review, we discuss the current literature regarding unresectable HCC and propose a modified treatment algorithm that emphasizes the role of radiation therapy for Child-Pugh score A or B patients with ≤3 nodules measuring >3 cm, multinodular disease or portal venous thrombosis.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Nikhil Yegya-Raman
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Stephanie H. Greco
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Bin Gui
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Andrew Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Anupama Chundury
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Miral S. Grandhi
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Howard S. Hochster
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Timothy J. Kennedy
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Russell C. Langan
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Usha Malhotra
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Vinod K. Rustgi
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Mihir M. Shah
- Division of Surgical Oncology, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Kristen R. Spencer
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Darren R. Carpizo
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - John L. Nosher
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Salma K. Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
50
|
The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. Int J Mol Sci 2019. [PMID: 30959975 DOI: 10.3390/ijms20071723.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and lacks effective therapeutic approaches. Most HCC develops in the setting of chronic liver injury, hepatic inflammation, and fibrosis. Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) are key players in liver fibrogenesis and hepatocarcinogenesis, respectively. CAFs, which probably derive from HSCs, activate into extracellular matrix (ECM)-producing myofibroblasts and crosstalk with cancer cells to affect tumor growth and invasion. In this review, we describe the different components which form the HCC premalignant microenvironment (PME) and the tumor microenvironment (TME), focusing on the liver fibrosis process and the biology of CAFs. We will describe the CAF-dependent mechanisms which have been suggested to promote hepatocarcinogenesis, such as the alteration of ECM, CAF-dependent production of cytokines and angiogenic factors, CAF-dependent reduction of immuno-surveillance, and CAF-dependent promotion of epithelial-mesenchymal transition (EMT). New knowledge of the fibrosis process and the role of CAFs in HCC may pave the way for new therapeutic strategies for liver cancer.
Collapse
|