1
|
Lin Z, Li W, Xu Y, Liu H, Zhang Y, Li R, Zhao W, Guan Y, Zhang X. Identification of regulatory cell death-related genes during MASH progression using bioinformatics analysis and machine learning strategies. Front Immunol 2025; 16:1542524. [PMID: 40406118 PMCID: PMC12094957 DOI: 10.3389/fimmu.2025.1542524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Background Metabolic dysfunction-associated steatohepatitis (MASH) is becoming increasingly prevalent. Regulated cell death (RCD) has emerged as a significant disease phenotype and may act as a marker for liver fibrosis. The present study aimed to investigate the regulation of RCD-related genes in MASH to elucidate the role of RCD in the progression of MASH. Methods The gene expression profiles from the GSE130970 and GSE49541 datasets were retrieved from the Gene Expression Omnibus (GEO) database for analysis. A total of 101 combinations of 10 machine learning algorithms were employed to screen for characteristic RCD-related differentially expressed genes (DEGs) that reflect the progression of MASH. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the enrichment pathways and functions of the feature genes. we performed cell classification analysis to investigate immune cell infiltration. Consensus cluster analysis was performed to identify MASH subtypes associated with RCD. The GSE89632 dataset was utilized to analyze the correlation of characteristic genes with clinical features of MASH. The DGIdb database was employed to screen for potential therapeutic drugs and compounds targeting the feature genes. In addition, we established mouse liver fibrosis models induced by methionine-choline-deficient (MCD) diet or CCl4 treatment, and further validated the expression of characteristic genes through quantitative real-time PCR (q-PCR). Lastly, we knocked down EPHA3 in LX2 cells to explore its effect on TGFb-induced activation of LX2 cells. Results This study discovered a total of 11 RCD-associated DEGs, which predicted the progression of MASH. Advanced MASH has higher levels of immune cell infiltration and is significantly correlated with the RCD-related DEGs expression. MASH can be classified into two subtypes, cluster 1 and cluster 2, based on these feature genes. Compared with cluster 1, cluster 2 has highly expressed RCD-related DEGs, shows an increase in the degree of fibrosis. Furthermore, We discovered that the expression levels of feature genes were positively correlated with AST and ALT levels. Subsequently, We also evaluated the expression of these 11 feature genes in the liver tissues of mice with fibrosis induced by MCD or CCl4, and the results suggested that these genes may be involved in the development of fibrosis. WB results showed that the protein level of EPHA3 significantly increased in both mouse models of liver fibrosis. In vitro, we observed that knocking down EPHA3 in LX2 cells significantly inhibited the activation of the TGF-β/Smad3 signaling pathway. Conclusion Our study sheds light on the fact that RCD contribute to the progression of MASH, high lighting potential therapeutic targets for treating this disease.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Health Science Center, East China Normal University, Shanghai, China
| | - Weiyi Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yuan Xu
- Health Science Center, East China Normal University, Shanghai, China
| | - Hangchi Liu
- Health Science Center, East China Normal University, Shanghai, China
| | - Yufei Zhang
- Health Science Center, East China Normal University, Shanghai, China
| | - Ruifen Li
- Health Science Center, East China Normal University, Shanghai, China
| | - Wenqian Zhao
- Health Science Center, East China Normal University, Shanghai, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Zhou X, Luo X, Huang Q, Ru Y, Liu D, Linghu M, Huang Y. GNF-5837 attenuates acute liver injury by inhibiting oxidative stress. Mol Biol Rep 2025; 52:407. [PMID: 40257700 DOI: 10.1007/s11033-025-10522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Acute liver injury is caused by various reasons and results in abnormal liver function, serving as the basis for various liver diseases. However, there has not been much progress in research on the prevention and treatment of acute liver injury, and drugs directly or specifically used for acute liver injury are still lacking. Recent studies have shown that several types of cell death are closely associated with the onset, progression, and prognosis of liver injury. METHODS AND RESULTS In this study, we identified a small molecule compound, GNF-5837, which attenuates the severity of acute liver injury by inhibiting apoptosis, pyroptosis, and ferroptosis. Mechanically, we found that GNF-5837 reduces the generation of reactive oxygen species (ROS) and alleviates oxidative stress by capturing excessive oxidative free radicals generated during cell death, which effectively inhibits apoptosis, pyroptosis, and ferroptosis. The results of animal experiments showed that GNF-5837 can effectively alleviate Con A-induced acute liver injury in vivo by blocking multiple modes of cell death. CONCLUSIONS Therefore, our research indicates that the small molecule compound GNF-5837 is an oxygen radical scavenger with significant peroxide removal effects, which offer a potential therapeutic approach for cell death caused by imbalances in intracellular oxidative stress levels and provides new insights into the study of acute liver injury.
Collapse
Affiliation(s)
- Xinru Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xianyu Luo
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Ru
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Didi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Maoyuan Linghu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| |
Collapse
|
3
|
Xia F, Wei W, Wang J, Wang Y, Wang K, Zhang C, Zhu Q. Ultrasound radiomics-based logistic regression model for fibrotic NASH. BMC Gastroenterol 2025; 25:66. [PMID: 39920586 PMCID: PMC11806536 DOI: 10.1186/s12876-025-03605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Those who have severe fibrosis (F2 ≥ 2 stage) are at the greatest risk for the advancement of the illness among non-alcoholic fatty liver patients. To forecast the non-alcoholic steatohepatitis (NASH) probability accompanied by significant fibrosis, we propose to develop and validate a nomogram liver imaging reporting and data system, providing robust evidence for preventing and treating clinical liver diseases. METHODS The study used SD rats to create a model of hepatic steatosis and fibrosis by feeding them a high-fat diet and injecting Ccl4 subcutaneously. Radiomics characteristics were derived from two-dimensional liver ultrasound images of the rats, and a radiomics model was constructed, with rad-scores calculated accordingly. Univariate and multivariate logistic regression was employed to ascertain the clinical characteristics of rats and liver elasticity values, aiming to establish a clinical model. Ultimately, a clinical radiomics model was created by integrating the rad-score from the radiomics model with independent clinical characteristics from the clinical model. A forest plot was generated to depict this integration. The forest plot's performance was assessed by the use of the area under the receiver operating characteristic (ROC) curve (AUC), decision curve analysis, and calibration curve. RESULTS The areas under the receiver operating characteristic curve (AUC) for the training set and validation set of the clinical radiomics model were 0.986 and 0.971, respectively. Decision curve analysis showed that the clinical radiomics model had the highest net benefit across most threshold probability ranges. CONCLUSION The nomogram and clinical radiomics model, which consists of clinical characteristics, real-time shear wave elastography, and radiomics, provide excellent predictive capability in assessing the likelihood of fibrotic NASH.
Collapse
Affiliation(s)
- Fei Xia
- Department of Ultrasound, WuHu Hospital, East China Normal University, (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Shushan District, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Wei Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College(Yijishan Hospital), NO.2 Zheshan West Road, Wuhu, 241000, China
| | - Junli Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University, (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Yuhe Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University, (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Kun Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University, (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Shushan District, No.218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Qiwei Zhu
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Shushan District, No.218 Jixi Road, Hefei, 230022, Anhui, China
| |
Collapse
|
4
|
Yang B, Lu L, Xiong T, Fan W, Wang J, Barbier-Torres L, Chhimwal J, Sinha S, Tsuchiya T, Mavila N, Tomasi ML, Cao D, Zhang J, Peng H, Mato JM, Liu T, Yang X, Kalinichenko VV, Ramani K, Han J, Seki E, Yang H, Lu SC. The role of forkhead box M1-methionine adenosyltransferase 2 A/2B axis in liver inflammation and fibrosis. Nat Commun 2024; 15:8388. [PMID: 39333125 PMCID: PMC11436801 DOI: 10.1038/s41467-024-52527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Methionine adenosyltransferase 2 A (MAT2A) and MAT2B are essential for hepatic stellate cells (HSCs) activation. Forkhead box M1 (FOXM1) transgenic mice develop liver inflammation and fibrosis. Here we examine if they crosstalk in male mice. We found FOXM1/MAT2A/2B are upregulated after bile duct ligation (BDL) and carbon tetrachloride (CCl4) treatment in hepatocytes, HSCs and Kupffer cells (KCs). FDI-6, a FOXM1 inhibitor, attenuates the development and reverses the progression of CCl4-induced fibrosis while lowering the expression of FOXM1/MAT2A/2B, which exert reciprocal positive regulation on each other transcriptionally. Knocking down any of them lowers HSCs and KCs activation. Deletion of FOXM1 in hepatocytes, HSCs, and KCs protects from BDL-mediated inflammation and fibrosis comparably. Interestingly, HSCs from Foxm1Hep-/-, hepatocytes from Foxm1HSC-/-, and HSCs and hepatocytes from Foxm1KC-/- have lower FOXM1/MAT2A/2B after BDL. This may be partly due to transfer of extracellular vesicles between different cell types. Altogether, FOXM1/MAT2A/MAT2B axis drives liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Bing Yang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liqing Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ting Xiong
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, 410015, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jyoti Chhimwal
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Sonal Sinha
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Takashi Tsuchiya
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, CSMC LA, Los Angeles, CA, 90048, USA
| | - Jing Zhang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Peng
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48120, Derio, Bizkaia, Spain
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Key Laboratory of Cancer proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jenny Han
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Society and Genetics, UCLA LA, Los Angeles, CA, 92620, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Heping Yang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA.
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA.
| |
Collapse
|
5
|
Zhou X, Fu Y, Chen J, Liu P. Progress in clinical and basic research of fuzheng Huayu formula for the treatment of liver fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118018. [PMID: 38453100 DOI: 10.1016/j.jep.2024.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has great potential and advantages in the treatment of liver fibrosis, with Fuzheng Huayu formula (FZHY) serving as a prime example due to its remarkable efficacy in delaying and reversing liver fibrosis while simultaneously improving clinical symptoms for patients. AIM OF THE REVIEW In this paper, we present a comprehensive review of recent studies on the therapeutic potential of FZHY and its components/ingredients in the treatment of liver fibrosis and cirrhosis, with the aim of providing insights for future research endeavors. MATERIALS AND METHODS A comprehensive literature search was conducted on FZHY, TCM319, traditional Chinese medicine 319, liver fibrosis and cirrhosis using multiple internationally recognized databases including PubMed, Embase, Springer, Web of science, SciVerse ScienceDirect, Clinical Trails. Gov, CNKI, Wanfang, and VIP. RESULTS FZHY is widely used clinically for liver fibrosis and cirrhosis caused by various chronic liver diseases, with the effects of improving serum liver function, liver pathological histology, serological indices related to liver fibrosis, decreasing liver stiffness values and portal hypertension, as well as reducing the incidence of hepatocellular carcinoma and morbidity/mortality in patients with cirrhosis. Numerous in vivo and in vitro experiments have demonstrated that FZHY possesses anti-fibrotic effects by inhibiting hepatic stellate cell activation, reducing inflammation, protecting hepatocytes, inhibiting hepatic sinusoidal capillarization and angiogenesis, promoting extracellular matrix degradation, and facilitating liver regeneration. In recent years, there has been a growing focus on investigating the primary active components/ingredients of FZHY, and significant strides have been made in comprehending their synergistic mechanisms that enhance efficacy. CONCLUSION FZHY is a safe and effective drug for treating liver fibrosis. Future research on FZHY should focus on its active components/ingredients and their synergistic effects, as well as the development of modern cocktail drugs based on its components/ingredients. This will facilitate a more comprehensive understanding of the molecular mechanisms and targets of FZHY in treating liver fibrosis, thereby further guide clinical applications and drug development.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadong Fu
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular and Cellular Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiamei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Jin Y, Song Q, He R, Diao H, Gaoyang H, Wang L, Fan L, Wang D. Nod-like receptor protein 3 inflammasome-mediated pyroptosis contributes to chronic NaAsO 2 exposure-induced fibrotic changes and dysfunction in the liver of SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116282. [PMID: 38564859 DOI: 10.1016/j.ecoenv.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.
Collapse
Affiliation(s)
- Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Huijie Gaoyang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lei Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
7
|
Ran S, Song L, Yang H, Yu J, Zhen Y, Liu Q. Piperine alleviates nonalcoholic steatohepatitis by inhibiting NF-κB-mediated hepatocyte pyroptosis. PLoS One 2024; 19:e0301133. [PMID: 38547097 PMCID: PMC10977780 DOI: 10.1371/journal.pone.0301133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
PURPOSE Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), which has a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Piperine (Pip) is an extract of plants with powerful anti-inflammatory effects, however, the function of Pip in NASH remains elusive. Here, we aim to explore the role of Pip in NASH and to find the possible mechanisms. METHODS Methionine and choline-deficient (MCD) diets were used to induce steatohepatitis, methionine- and choline-sufficient (MCS) diets were used as the control. After Pip treatment, H&E staining, Oil Red O staining, hepatic triglyceride (TG) content and F4/80 expression were performed to analysis liver steatosis and inflammation; Masson's staining, COL1A1 and α-SMA were detected liver fibrosis. Lipopolysaccharide (LPS) -treated AML12 cells were used to as the cell model to induce pyroptosis. Then, pyroptosis-related proteins, IL-1β and LDH release were detected in vivo and in vitro. Finally, NF-κB inhibitor, BAY11-7082, was used to further demonstrate the mechanism of Pip in NASH. RESULTS The study found that Pip alleviated liver steatosis, inflammation, hepatocyte injury, and fibrosis in mice fed with MCD diets. Moreover, the pyroptosis markers (NLRP3, ASC, caspase-1 p20, and GSDMD), IL-1β and LDH release were decreased by Pip treatment. NF-κB activation was suppressed by Pip treatment and pyroptosis-related proteins were down regulated by BAY11-7082. CONCLUSION Pip ameliorates NASH progression, and the therapeutical effect was associated with inhibition of hepatocyte pyroptosis induced by NF-κB.
Collapse
Affiliation(s)
- Suye Ran
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Lingyu Song
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Hong Yang
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Jiangnan Yu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qi Liu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Liang Y, Fang J, Zhou X, Zhang Z, Liu W, Hu Y, Yu X, Mu Y, Zhang H, Liu P, Chen J. Schisantherin A protects hepatocyte via upregulating DDAH1 to ameliorate liver fibrosis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155330. [PMID: 38185067 DOI: 10.1016/j.phymed.2023.155330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Hepatic fibrosis is the pivotal determinant in the progression of chronic liver diseases towards cirrhosis or advanced stages. Studies have shown that Schisantherin A (Sin A), the primary active compound from Schizandra chinensis (Turcz.) Baill., exhibits anti-hepatic fibrosis effects. However, the mechanism of Sin A in liver fibrosis remain unclear. PURPOSE To examine the effects and underlying mechanism of Sin A on hepatic fibrosis. STUDY DESIGN AND METHODS The effects and mechanism of Sin A were investigated using liver fibrosis mouse models induced by carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN), as well as H2O2-induced hepatocyte injury in vitro. RESULTS Sin A treatment ameliorated hepatocyte injury, inflammation, hepatic sinusoidal capillarization, and hepatic fibrosis in both CCl4-induced and DMN-induced mice. Sin A effectively reversed the reduction of DDAH1 expression, the p-eNOS/eNOS ratio and NO generation and attenuated the elevation of hepatic ADMA level induced by CCl4 and DMN. Knockdown of DDAH1 in hepatocytes not only triggered hepatocyte damage, but it also counteracted the effect of Sin A on protecting hepatocytes in vitro. CONCLUSION Our findings indicate that Sin A ameliorates liver fibrosis by upregulating DDAH1 to protect against hepatocyte injury. These results provide compelling evidence for Sin A treatment in liver fibrosis.
Collapse
Affiliation(s)
- Yue Liang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Jing Fang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Xiaoxi Zhou
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Zheng Zhang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Wei Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yonghong Hu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Xiaohan Yu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yongping Mu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Hua Zhang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China; Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiamei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
Shi H, Moore MP, Wang X, Tabas I. Efferocytosis in liver disease. JHEP Rep 2024; 6:100960. [PMID: 38234410 PMCID: PMC10792655 DOI: 10.1016/j.jhepr.2023.100960] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 01/19/2024] Open
Abstract
The process of dead cell clearance by phagocytic cells, called efferocytosis, prevents inflammatory cell necrosis and promotes resolution and repair. Defective efferocytosis contributes to the progression of numerous diseases in which cell death is prominent, including liver disease. Many gaps remain in our understanding of how hepatic macrophages carry out efferocytosis and how this process goes awry in various types of liver diseases. Thus far, studies have suggested that, upon liver injury, liver-resident Kupffer cells and infiltrating monocyte-derived macrophages clear dead cells, limit inflammation, and, through macrophage reprogramming, repair liver damage. However, in unusual settings, efferocytosis can promote liver disease. In this review, we will focus on efferocytosis in various types of acute and chronic liver diseases, including metabolic dysfunction-associated steatohepatitis. Understanding the mechanisms and consequences of efferocytosis by hepatic macrophages has the potential to shed new light on liver disease pathophysiology and to guide new treatment strategies to prevent disease progression.
Collapse
Affiliation(s)
- Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mary P. Moore
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
10
|
Wang Y, Shi C, Guo J, Zhang Y, Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J Clin Transl Hepatol 2023; 11:1413-1424. [PMID: 37719956 PMCID: PMC10500292 DOI: 10.14218/jcth.2023.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Cell death is associated with a variety of liver diseases, and hepatocyte death is a core factor in the occurrence and progression of liver diseases. In recent years, new cell death modes have been identified, and certain biomarkers have been detected in the circulation during various cell death modes that mediate liver injury. In this review, cell death modes associated with liver diseases are summarized, including some cell death modes that have emerged in recent years. We described the mechanisms associated with liver diseases and summarized recent applications of targeting cell death in liver diseases. It provides new ideas for the diagnosis and treatment of liver diseases. In addition, multiple cell death modes can contribute to the same liver disease. Different cell death modes are not isolated, and they interact with each other in liver diseases. Future studies may focus on exploring the regulation between various cell death response pathways in liver diseases.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Zhang L, Dong Y, Zhang L, Wang M, Zhou Y, Jia K, Wang S, Wang M, Li Y, Luo S, Lu S, Fan Y, Zhang D, Yang Y, Li N, Yu Y, Cao X, Hou J. Mitochondrial IRG1 traps MCL-1 to induce hepatocyte apoptosis and promote carcinogenesis. Cell Death Dis 2023; 14:625. [PMID: 37737207 PMCID: PMC10517141 DOI: 10.1038/s41419-023-06155-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Hepatocarcinogenesis is initiated by repeated hepatocyte death and liver damage, and the underlying mechanisms mediating cell death and the subsequent carcinogenesis remain to be fully investigated. Immunoresponsive gene 1 (IRG1) and its enzymatic metabolite itaconate are known to suppress inflammation in myeloid cells, and its expression in liver parenchymal hepatocytes is currently determined. However, the potential roles of IRG1 in hepatocarcinogenesis are still unknown. Here, using the diethylnitrosamine (DEN)-induced hepatocarcinogenesis mouse model, we found that IRG1 expression in hepatocytes was markedly induced upon DEN administration. The DEN-induced IRG1 was then determined to promote the intrinsic mitochondrial apoptosis of hepatocytes and liver damage, thus enhancing the subsequent hepatocarcinogenesis. Mechanistically, the mitochondrial IRG1 could associate and trap anti-apoptotic MCL-1 to inhibit the interaction between MCL-1 and pro-apoptotic Bim, thus promoting Bim activation and downstream Bax mitochondrial translocation, and then releasing cytochrome c and initiating apoptosis. Thus, the inducible mitochondrial IRG1 promotes hepatocyte apoptosis and the following hepatocarcinogenesis, which provides mechanistic insight and a potential target for preventing liver injury and HCC.
Collapse
Affiliation(s)
- Liyuan Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Yue Dong
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Luxin Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Minjun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Ye Zhou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Kaiwei Jia
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Suyuan Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Mu Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Yunhui Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Shudan Luo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Shan Lu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Yiwen Fan
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Dingji Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Yingyun Yang
- Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China.
- Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Jin Hou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Han H, Li J, Tian L, Pei L, Zheng M. Through regulation of the SIRT1 pathway plant sterol ester of α-linolenic acid inhibits pyroptosis thereby attenuating the development of NASH in mice. J Nutr Biochem 2023:109408. [PMID: 37336331 DOI: 10.1016/j.jnutbio.2023.109408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Increasing evidence demonstrated that pyroptosis and subsequent inflammation played an important role in the pathological process of non-alcoholic steatohepatitis (NASH). Plant sterol ester of α-linolenic acid (PS-ALA) was beneficial for non-alcoholic fatty liver disease, but the underlying mechanisms are still not fully understood. This study aims to investigate whether PS-ALA can protect against proptosis via regulating SIRT1. Thirty male C57BL/6J mice were fed a normal diet, a high-fat and high-cholesterol diet (HFCD), or a HFCD supplemented with either 1.3%ALA, 2%PS, or 3.3% PS-ALA for 24 weeks. Hepatocytes were treated with oleic acid and cholesterol (OA/Cho) with or without PS-ALA. We found that PS-ALA ameliorated NASH in HFCD-fed mice. In addition, PS-ALA decreased the expression of NLRP3 and ASC and reduced the co-localization of NLRP3 and cleave-Caspase-1. Also, PS-ALA protected against pyroptosis as evidenced by decreased co-localization of GSDMD and propidium iodide (PI) positive cells. Mechanistically, we revealed that the inhibitory action of PS-ALA on the pyroptosis was mediated by SIRT1. This was demonstrated by the fact that silencing SIRT1 with small interfering RNA or inhibition of SIRT1 with its inhibitor abolished the inhibition effect of PS-ALA on the expression of NLRP3 and GSDMD cleavage. Collectively, the data from the present study reveals a novel mechanism that PS-ALA inhibits pyroptosis and it triggered inflammation via stimulating SIRT1, which provides new insights into the beneficial effect of PS-ALA on NASH.
Collapse
Affiliation(s)
- Hao Han
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi 030001, PR CHINA..
| | - Jie Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi 030001, PR CHINA
| | - Lei Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi 030001, PR CHINA
| | - Liyuan Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi 030001, PR CHINA
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, PR CHINA..
| |
Collapse
|
13
|
Jamshed F, Dashti F, Ouyang X, Mehal WZ, Banini BA. New uses for an old remedy: Digoxin as a potential treatment for steatohepatitis and other disorders. World J Gastroenterol 2023; 29:1824-1837. [PMID: 37032732 PMCID: PMC10080697 DOI: 10.3748/wjg.v29.i12.1824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Repurposing of the widely available and relatively cheap generic cardiac gly-coside digoxin for non-cardiac indications could have a wide-ranging impact on the global burden of several diseases. Over the past several years, there have been significant advances in the study of digoxin pharmacology and its potential non-cardiac clinical applications, including anti-inflammatory, antineoplastic, metabolic, and antimicrobial use. Digoxin holds promise in the treatment of gastrointestinal disease, including nonalcoholic steatohepatitis and alcohol-associated steatohepatitis as well as in obesity, cancer, and treatment of viral infections, among other conditions. In this review, we provide a summary of the clinical uses of digoxin to date and discuss recent research on its emerging applications.
Collapse
Affiliation(s)
- Fatima Jamshed
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
- Griffin Hospital-Yale University, Derby, CT 06418, United States
| | - Farzaneh Dashti
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
| | - Xinshou Ouyang
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
- West Haven Veterans Medical Center, West Haven, CT 06516, United States
| | - Bubu A Banini
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
14
|
Hepatic HRC induces hepatocyte pyroptosis and HSCs activation via NLRP3/caspase-1 pathway. J Mol Med (Berl) 2022; 100:1787-1799. [PMID: 36371595 DOI: 10.1007/s00109-022-02270-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
The histidine-rich calcium-binding protein (HRC) is a regulator of Ca2 + homeostasis and it plays a significant role in liver fibrosis. Pyroptosis, a specific inflammatory cell death, can lead to hepatic stellate cells (HSCs) activation and liver fibrosis. However, the role of HRC in pyroptosis has not been explored. In this study, we demonstrated that HRC, mainly located in the hepatocyte, was over expressed in fibrotic liver tissues. We further found that enforced expression of HRC in hepatocytes induced pyroptosis and HMGB1 release, and subsequently led to HSCs activation by NLRP3/caspase-1 pathway. In addition, the proliferation and migration of HSCs were also enhanced by HRC overexpression in hepatocytes. Furthermore, NLRP3 inhibitor MCC950 and caspase-1 inhibitor VX-765 alleviated hepatic HRC-mediated hepatocytes pyroptosis and HSCs activation. This study demonstrated that hepatic HRC promoted HSCs activation by inducing hepatocyte pyroptosis, which suggests that HRC may be a promising therapeutic target to prevent liver fibrosis.
Collapse
|
15
|
Albadawy R, Hasanin AH, Agwa SHA, Hamady S, Aboul-Ela YM, Raafat MH, Kamar SS, Othman M, Yahia YA, Matboli M. Rosavin Ameliorates Hepatic Inflammation and Fibrosis in the NASH Rat Model via Targeting Hepatic Cell Death. Int J Mol Sci 2022; 23:10148. [PMID: 36077546 PMCID: PMC9456245 DOI: 10.3390/ijms231710148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease that urgently needs effective therapy. Rosavin, a major constituent of the Rhodiola Rosea plant of the family Crassulaceae, is believed to exhibit multiple pharmacological effects on diverse diseases. However, its effect on non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD, and the underlying mechanisms are not fully illustrated. AIM Investigate the pharmacological activity and potential mechanism of rosavin treatment on NASH management via targeting hepatic cell death-related (HSPD1/TNF/MMP14/ITGB1) mRNAs and their upstream noncoding RNA regulators (miRNA-6881-5P and lnc-SPARCL1-1:2) in NASH rats. RESULTS High sucrose high fat (HSHF) diet-induced NASH rats were treated with different concentrations of rosavin (10, 20, and 30 mg/kg/day) for the last four weeks of dietary manipulation. The data revealed that rosavin had the ability to modulate the expression of the hepatic cell death-related RNA panel through the upregulation of both (HSPD1/TNF/MMP14/ITGB1) mRNAs and their epigenetic regulators (miRNA-6881-5P and lnc-SPARCL1-1:2). Moreover, rosavin ameliorated the deterioration in both liver functions and lipid profile, and thereby improved the hepatic inflammation, fibrosis, and apoptosis, as evidenced by the decreased protein levels of IL6, TNF-α, and caspase-3 in liver sections of treated animals compared to the untreated NASH rats. CONCLUSION Rosavin has demonstrated a potential ability to attenuate disease progression and inhibit hepatic cell death in the NASH animal model. The produced effect was correlated with upregulation of the hepatic cell death-related (HSPD1, TNF, MMP14, and ITGB1) mRNAs-(miRNA-6881-5P-(lnc-SPARCL1-1:2) RNA panel.
Collapse
Affiliation(s)
- Reda Albadawy
- Department of Gastroenterology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Sara H. A. Agwa
- Clinical Pathology and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yasmin M. Aboul-Ela
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mona Hussien Raafat
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Samaa Samir Kamar
- Histology and Cell Biology Department, Kasralainy Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Mohamed Othman
- Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yahia A. Yahia
- Biochemistry Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12566, Egypt or
- Chemistry Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
16
|
FOSL2 deficiency delays nonalcoholic steatohepatitis progression by regulating LY6D-mediated NLRP3 activation. Hum Cell 2022; 35:1752-1765. [PMID: 35930135 DOI: 10.1007/s13577-022-00760-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/24/2022] [Indexed: 12/27/2022]
Abstract
Lymphocyte antigen 6 family member D (LY6D) was enhanced specifically in senescent cells, while its effects on pyroptosis, a programmed cell death, remains unknown. The goal of this study was to assess the role of LY6D in the mediation of pyroptosis during nonalcoholic steatohepatitis (NASH). After screening out LY6D as a specific liver fibrosis-associated gene using the GSE55747 dataset from the GEO database, we established a NASH mouse model using methionine and choline deficient-diet feeding and an in vitro model using lipopolysaccharide (LPS)-treated hepatocytes. LY6D was overexpressed in NASH livers as well as in LPS-treated hepatocytes. Silencing of LY6D inhibited NASH-associated hepatocyte pyroptosis. With the aid of bioinformatics analysis, promoter-luciferase reporter and ChIP-qPCR assays, we identified FOSL2 as an upstream transcription factor of LY6D. FOSL2, which was highly expressed in NASH, promoted LY6D transcription by binding to the promoter of LY6D. Depletion of FOSL2 significantly inhibited NASH-associated hepatocyte pyroptosis, which was significantly reversed after overexpression of LY6D. Moreover, the promotion of hepatocyte pyroptosis by the FOSL2/LY6D axis was significantly attenuated by specific inhibition of NLRP3. These findings suggesting that FOSL2/LY6D axis may be a key molecular axis and a potential target for NASH therapeutics.
Collapse
|
17
|
Yang H, Wang J, Liu ZG. Multi-faceted role of pyroptosis mediated by inflammasome in liver fibrosis. J Cell Mol Med 2022; 26:2757-2765. [PMID: 35415891 PMCID: PMC9097829 DOI: 10.1111/jcmm.17277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a reversible pathological overreaction during the self-repair of liver injuries, and it is the common period of chronic liver diseases induced by different pathogenesis progress into cirrhosis and even hepatocellular carcinoma. Pyroptosis, a novel form of programmed cell death, is reported to take part in the pathogenesis and progression of acute or chronic liver diseases and liver fibrosis. Caspase-1 dependent canonical pathway and caspase-4/-5/-11 mediated noncanonical pathway are the two signalling pathways to induce pyroptosis. The activation of inflammasomes under the stimulation of pathogenic microorganisms and danger signals can initiate the pyroptotic pathway and release large amounts of proinflammatory and profibrotic cytokines. This article comprehensively summarizes recent researches focused on the mechanism of pyroptosis and its role in major hepatic cells, which can provide potential therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Hui Yang
- Department of Infectious Disease, The Third Xiangya hospital, Central South University, Changsha, China
| | - Juan Wang
- Department of Infectious Disease, The Third Xiangya hospital, Central South University, Changsha, China
| | - Zhen-Guo Liu
- Department of Infectious Disease, The Third Xiangya hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiyang Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Zhu Y, Zhao H, Lu J, Lin K, Ni J, Wu G, Tang H. Caspase-11-Mediated Hepatocytic Pyroptosis Promotes the Progression of Nonalcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2021; 12:653-664. [PMID: 33894425 PMCID: PMC8261017 DOI: 10.1016/j.jcmgh.2021.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is an inflammatory disease with severe outcomes. Hepatocyte death, including apoptosis, necrosis, and pyroptosis, has been implicated in pathophysiology of NASH. Pyroptosis is mediated by inflammasome activation pathways including caspase-1-mediated canonical signaling pathway and caspase-11-mediated noncanonical signaling pathway. Until now, the precise role of caspase-11 in NASH remains unknown. In the present study, the potential roles of caspase-11 in NASH were explored. METHODS We established methionine- and choline-deficient diet (MCD)-induced NASH mice model using wild-type caspase-11-deficient mice. The expression of caspase-11, liver injury, fibrosis, inflammation, and activation of gasdermin D and interleukin-1β were evaluated. RESULTS Upregulated caspase-11 was detected in liver of mice with NASH. MCD-treated caspase-11-deficient mice had significantly decreased liver injury, fibrosis, and inflammation. The activation of gasdermin D and interleukin-1β was inhibited in caspase-11-deficient mice after MCD treatment. Overexpression of caspase-11 promoted steatohepatitis. CONCLUSIONS Caspase-11-mediated hepatocytic pyroptosis promotes the progression of NASH.
Collapse
Affiliation(s)
- Yingwei Zhu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China; Department of Gastroenterology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Han Zhao
- Department of Gastroenterology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jian Lu
- Department of Gastroenterology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Kai Lin
- Department of Gastroenterology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jingbin Ni
- Department of Gastroenterology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Gaojue Wu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China; Department of Gastroenterology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China.
| | - Hong Tang
- Department of Pathology, Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
19
|
Albhaisi S, Noureddin M. Current and Potential Therapies Targeting Inflammation in NASH. Front Endocrinol (Lausanne) 2021; 12:767314. [PMID: 34925237 PMCID: PMC8678040 DOI: 10.3389/fendo.2021.767314] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the advanced form of nonalcoholic fatty liver disease (NAFLD). It is characterized by hepatic steatosis, inflammation, hepatocellular injury, and fibrosis. Inflammation plays a key role in the progression of NASH and can be provoked by intrahepatic (e.g., lipotoxicity, immune responses, oxidative stress and cell death) and extrahepatic sources (adipose tissue or gut). The identification of triggers of inflammation is central to understanding the mechanisms in NASH development and progression and in designing targeted therapies that can halt or reverse the disease. In this review, we summarize the current and potential therapies targeting inflammation in NASH.
Collapse
Affiliation(s)
- Somaya Albhaisi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Somaya Albhaisi,
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
20
|
Gaul S, Leszczynska A, Alegre F, Kaufmann B, Johnson CD, Adams LA, Wree A, Damm G, Seehofer D, Calvente CJ, Povero D, Kisseleva T, Eguchi A, McGeough MD, Hoffman HM, Pelegrin P, Laufs U, Feldstein AE. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Hepatol 2021; 74:156-167. [PMID: 32763266 PMCID: PMC7749849 DOI: 10.1016/j.jhep.2020.07.041] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Increased hepatocyte death contributes to the pathology of acute and chronic liver diseases. However, the role of hepatocyte pyroptosis and extracellular inflammasome release in liver disease is unknown. METHODS We used primary mouse and human hepatocytes, hepatocyte-specific leucine 351 to proline Nlrp3KICreA mice, and GsdmdKO mice to investigate pyroptotic cell death in hepatocytes and its impact on liver inflammation and damage. Extracellular NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes were isolated from mutant NLRP3-YFP HEK cells and internalisation was studied in LX2 and primary human hepatic stellate cells. We also examined a cohort of 154 adult patients with biopsy-proven non-alcoholic fatty liver disease (Sir Charles Gairdner Hospital, Nedlands, Western Australia). RESULTS We demonstrated that primary mouse and human hepatocytes can undergo pyroptosis upon NLRP3 inflammasome activation with subsequent release of NLRP3 inflammasome proteins that amplify and perpetuate inflammasome-driven fibrogenesis. Pyroptosis was inhibited by blocking caspase-1 and gasdermin D activation. The activated form of caspase-1 was detected in the livers and in serum from patients with non-alcoholic steatohepatitis and correlated with disease severity. Nlrp3KICreA mice showed spontaneous liver fibrosis under normal chow diet, and increased sensitivity to liver damage and inflammation after treatment with low dose lipopolysaccharide. Mechanistically, hepatic stellate cells engulfed extracellular NLRP3 inflammasome particles leading to increased IL-1β secretion and α-smooth muscle actin expression. This effect was abrogated when cells were pre-treated with the endocytosis inhibitor cytochalasin B. CONCLUSIONS These results identify hepatocyte pyroptosis and release of inflammasome components as a novel mechanism to propagate liver injury and liver fibrosis development. LAY SUMMARY Our findings identify a novel mechanism of inflammation in the liver. Experiments in cell cultures, mice, and human samples show that a specific form of cell death, called pyroptosis, leads to the release of complex inflammatory particles, the NLRP3 inflammasome, from inside hepatocytes into the extracellular space. From there they are taken up by other cells and thereby mediate inflammatory and pro-fibrogenic stress signals. The discovery of this mechanism may lead to novel treatments for chronic liver diseases in the future.
Collapse
Affiliation(s)
- Susanne Gaul
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Universität Leipzig, Klinik und Poliklinik für Kardiologie, Leipzig, Germany
| | | | - Fernando Alegre
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Benedikt Kaufmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Casey D Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; University of California Irvine, Irvine, CA, USA
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité, Campus Virchow Klinikum and Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Carolina J Calvente
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Akiko Eguchi
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Gastroenterology and Hepatology, Mie University, Tsu, Mie, Japan
| | - Matthew D McGeough
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Hal M Hoffman
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pablo Pelegrin
- Biomedical Research Institute of Murcia, Clinical University Hospital Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Ulrich Laufs
- Universität Leipzig, Klinik und Poliklinik für Kardiologie, Leipzig, Germany
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Mu LY, Li SQ, Tang LX, Li R. Efficacy and Safety of Emricasan in Liver Cirrhosis and/or Fibrosis. Clinics (Sao Paulo) 2021; 76:e2409. [PMID: 34133478 PMCID: PMC8183342 DOI: 10.6061/clinics/2021/e2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
This study aimed to perform a meta-analysis to determine the efficacy and safety of emricasan. Nine databases were searched for clinical trials investigating the efficacy of emricasan treatment in patients with liver cirrhosis or fibrosis. A manual search was conducted to identify the missing trials. The quality of the included studies was assessed using the revised Cochrane risk of bias tool. Efficacy of emricasan treatment was defined as a positive change in apoptosis-related parameters from baseline to the last follow-up visit. Overall, emricasan treatment is more effective in patients with liver cirrhosis or fibrosis than placebo (standardized mean difference [SMD] [95% confidence intervals (CI)]=0.28 [0.14; 0.41]). No significant change in model for end-stage liver disease (MELD) score between the emricasan and placebo groups was noted (SMD [95% CI]=0.18 [-0.01; 0.36]; p=0.058). A 50 mg dose of emricasan had the highest efficacy rate compared to placebo (SMD [95% CI]=0.28 [0.06; 0.50]; p=0.012), followed by the 5 mg dosing regimen (SMD [95% CI]=0.28 [0.06; 0.50]; p=0.012). Treatment with emricasan resulted in significant reductions in ALT (mean difference (MD) [95% CI]=-5.89 [-10.59; -1.20]; p=0.014) and caspase3/7 levels (MD [95%CI]=-1215.93 [-1238.53; -1193.33]; p<0.001), respectively. No significant increase in the rate of overall adverse events was noted (OR [95% CI]=1.52 [0.97; 2.37]; p=0.069). Treatment with emricasan is more effective in improving liver function and apoptosis parameters compared to placebo, with a well-tolerated safety profile. However, due to the poor quality of the analyzed studies, the small number of trials and patients, and the short follow-up periods, more robust trials are still warranted.
Collapse
Affiliation(s)
- Li-ya Mu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150030, China
| | - Shu-qin Li
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150030, China
| | - Li-xin Tang
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150030, China
| | - Rui Li
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150030, China
- Corresponding author. E-mail:
| |
Collapse
|
22
|
Chang Y, Li H. Hepatic Antifibrotic Pharmacotherapy: Are We Approaching Success? J Clin Transl Hepatol 2020; 8:222-229. [PMID: 32832403 PMCID: PMC7438353 DOI: 10.14218/jcth.2020.00026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/10/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence rate and mortality of liver fibrosis caused by various etiologies are high throughout the world. Liver fibrosis, the subsequent cirrhosis and other serious related complications threaten the health of patients and represent a serious medical burden; yet, there is still a lack of approved methods to prevent or reverse liver fibrosis. Therefore, effective hepatic antifibrotic drugs are urgently needed. The activation and proliferation of hepatic stellate cells are still the mechanisms of fibrosis that remain the focus of therapeutic research. In recent years, significant progress has been made in the development and applicability of antifibrosis drugs. In this review, we summarize the effectiveness and safety of available antifibrosis drugs utilizing different targets. In addition, some characteristics of antifibrosis drugs in phase II and III trials are introduced in detail.
Collapse
Affiliation(s)
- Yue Chang
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, Tianjin, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Hai Li
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, Tianjin, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| |
Collapse
|
23
|
Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020; 9:cells9040875. [PMID: 32260126 PMCID: PMC7226751 DOI: 10.3390/cells9040875] [Citation(s) in RCA: 710] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across the main liver disease etiologies. Scientific discoveries within the last decade have transformed the understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease progression and HCC development. However, while many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their impact for the development of urgently needed anti-fibrotic therapies.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-366853703
| |
Collapse
|
24
|
Huang S, Che J, Chu Q, Zhang P. The Role of NLRP3 Inflammasome in Radiation-Induced Cardiovascular Injury. Front Cell Dev Biol 2020; 8:140. [PMID: 32226786 PMCID: PMC7080656 DOI: 10.3389/fcell.2020.00140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing risk of long-term adverse effects from radiotherapy on the cardiovascular structure is receiving increasing attention. However, the mechanisms underlying this increased risk remain poorly understood. Recently, the nucleotide-binding domain and leucine-rich-repeat-containing family pyrin 3 (NLRP3) inflammasome was suggested to play a critical role in radiation-induced cardiovascular injury. However, the relationship between ionizing radiation and the NLRP3 inflammasome in acute and chronic inflammation is complex. We reviewed literature detailing pathological changes and molecular mechanisms associated with radiation-induced damage to the cardiovascular structure, with a specific focus on NLRP3 inflammasome-related cardiovascular diseases. We also summarized possible therapeutic strategies for the prevention of radiation-induced heart disease (RIHD).
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
|
26
|
Levada K, Omelyanchik A, Rodionova V, Weiskirchen R, Bartneck M. Magnetic-Assisted Treatment of Liver Fibrosis. Cells 2019; 8:E1279. [PMID: 31635053 PMCID: PMC6830324 DOI: 10.3390/cells8101279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury can be induced by viruses, toxins, cellular activation, and metabolic dysregulation and can lead to liver fibrosis. Hepatic fibrosis still remains a major burden on the global health systems. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are considered the main cause of liver fibrosis. Hepatic stellate cells are key targets in antifibrotic treatment, but selective engagement of these cells is an unresolved issue. Current strategies for antifibrotic drugs, which are at the critical stage 3 clinical trials, target metabolic regulation, immune cell activation, and cell death. Here, we report on the critical factors for liver fibrosis, and on prospective novel drugs, which might soon enter the market. Apart from the current clinical trials, novel perspectives for anti-fibrotic treatment may arise from magnetic particles and controlled magnetic forces in various different fields. Magnetic-assisted techniques can, for instance, enable cell engineering and cell therapy to fight cancer, might enable to control the shape or orientation of single cells or tissues mechanically. Furthermore, magnetic forces may improve localized drug delivery mediated by magnetism-induced conformational changes, and they may also enhance non-invasive imaging applications.
Collapse
Affiliation(s)
- Kateryna Levada
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Alexander Omelyanchik
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Valeria Rodionova
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
- National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen, D-52074 Aachen, Germany.
| |
Collapse
|
27
|
Guo H, Xie M, Zhou C, Zheng M. The relevance of pyroptosis in the pathogenesis of liver diseases. Life Sci 2019; 223:69-73. [PMID: 30831126 DOI: 10.1016/j.lfs.2019.02.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Pyroptosis is a novel programmed cell death form which is distinct from other types of cell death. As an inherently inflammatory process, it plays a vital role in cellular lysis and release of pro-inflammatory cytokines when hosts defend against infections. Recent studies have reported that pyroptosis was involved in liver diseases and had important functions in the progress and development of liver diseases. Here, we addressed the potential role of pyroptosis in liver diseases on the basis of brief introduction of the morphological characteristics, molecular and pathophysiological mechanisms of pyroptosis.
Collapse
Affiliation(s)
- Huiting Guo
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University. Hangzhou, 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China
| | - Mingjie Xie
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University. Hangzhou, 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China
| | - Cheng Zhou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University. Hangzhou, 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China.
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University. Hangzhou, 310000, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310000, China.
| |
Collapse
|
28
|
The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Lab Anim Res 2018; 34:133-139. [PMID: 30671098 PMCID: PMC6333604 DOI: 10.5625/lar.2018.34.4.133] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming common chronic liver disease because of the increasing global prevalence of obesity and consequently Nonalcoholic fatty liver disease (NAFLD). However, the mechanism for progression of NAFLD to NASH and then cirrhosis is not completely understood, yet. The triggering of these hepatic diseases is thought from hepatocyte injury caused by over-accumulated lipid toxicity. Injured hepatocytes release damage-associated molecular patterns (DAMPs), which can stimulate the Kupffer cells (KCs), liver-resident macrophages, to release pro-inflammatory cytokines and chemokines, and recruit monocyte-derived macrophages (MDMs). The increased activation of KCs and recruitment of MDMs accelerate the progression of NAFLD to NASH and cirrhosis. Therefore, characterization for activation of hepatic macrophages, both KCs and MDMs, is a baseline to figure out the progression of hepatic diseases. The purpose of this review is to discuss the current understanding of mechanisms of NAFLD and NASH, mainly focusing on characterization and function of hepatic macrophages and suggests the regulators of hepatic macrophages as the therapeutic target in hepatic diseases.
Collapse
|
29
|
Abstract
Chronic injury to the liver, such as viral hepatitis, alcoholism, non-alcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH), promotes extracellular matrix deposition and organ scarring, termed hepatic fibrosis. Fibrosis might progress to cirrhosis and predisposes to hepatocellular carcinoma (HCC), but is also associated with extrahepatic morbidity and mortality in NAFLD/NASH. The improved understanding of pathogenic mechanisms underlying chronic inflammation and fibrogenesis in the liver prompted recent advances in antifibrotic therapies. Areas covered: We review recent advances in antifibrotic therapy, of which most are currently tested in clinical trials for NAFLD or NASH. This explains the manifold metabolic pathways as antifibrotic targets, including farnesoid X receptor (FXR) agonism (obeticholic acid, nonsteroidal FXR agonists), acetyl-CoA carboxylase inhibition, peroxisome proliferator-activator receptor agonism (elafibranor, lanifibranor, saroglitazar), and fibroblast growth factor (FGF)-21 or FGF-19 activation. Other antifibrotic drug candidates target cell death or inflammation, such as caspase (emricasan) or ASK1 inhibitors (selonsertib), galectin-3 inhibitors and reducing inflammatory macrophage recruitment by blocking chemokine receptors CCR2/CCR5 (cenicriviroc). Expert commentary: The tremendous advances in translational and clinical research fuels the hope for efficacious antifibrotic therapies within the next 5 years. Very likely, a combination of etiology-specific, metabolic, anti-inflammatory, and direct antifibrotic interventions will be most effective.
Collapse
Affiliation(s)
- Frank Tacke
- a Deptartment of Medicine III , RWTH University Hospital Aachen , Aachen , Germany
| | - Ralf Weiskirchen
- b Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry , RWTH University Hospital Aachen , Aachen , Germany
| |
Collapse
|
30
|
Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 2018; 15:349-364. [PMID: 29740166 DOI: 10.1038/s41575-018-0009-6] [Citation(s) in RCA: 642] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is considered the progressive form of nonalcoholic fatty liver disease (NAFLD) and is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis. A central issue in this field relates to the identification of those factors that trigger inflammation, thus fuelling the transition from nonalcoholic fatty liver to NASH. These triggers of liver inflammation might have their origins outside the liver (such as in adipose tissue or the gut) as well as inside the organ (for instance, lipotoxicity, innate immune responses, cell death pathways, mitochondrial dysfunction and endoplasmic reticulum stress), both of which contribute to NASH development. In this Review, we summarize the currently available information on the key upstream triggers of inflammation in NASH. We further delineate the mechanisms by which liver inflammation is resolved and the implications of a defective pro-resolution process. A better knowledge of these mechanisms should help to design targeted therapies able to halt or reverse disease progression.
Collapse
Affiliation(s)
- Susanne Schuster
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Daniel Cabrera
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centre for Aging and Regeneration (CARE), Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, CA, USA.
| |
Collapse
|
31
|
Guo L, Zhang P, Chen Z, Xia H, Li S, Zhang Y, Kobberup S, Zou W, Lin JD. Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. J Clin Invest 2017; 127:4449-4461. [PMID: 29106384 PMCID: PMC5707158 DOI: 10.1172/jci96324] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by progressive liver injury, inflammation, and fibrosis; however, the mechanisms that govern the transition from hepatic steatosis, which is relatively benign, to NASH remain poorly defined. Neuregulin 4 (Nrg4) is an adipose tissue-enriched endocrine factor that elicits beneficial metabolic effects in obesity. Here, we show that Nrg4 is a key component of an endocrine checkpoint that preserves hepatocyte health and counters diet-induced NASH in mice. Nrg4 deficiency accelerated liver injury, fibrosis, inflammation, and cell death in a mouse model of NASH. In contrast, transgenic expression of Nrg4 in adipose tissue alleviated diet-induced NASH. Nrg4 attenuated hepatocyte death in a cell-autonomous manner by blocking ubiquitination and proteasomal degradation of c-FLIPL, a negative regulator of cell death. Adeno-associated virus-mediated (AAV-mediated) rescue of hepatic c-FLIPL expression in Nrg4-deficent mice functionally restored the brake for steatosis to NASH transition. Thus, hepatic Nrg4 signaling serves as an endocrine checkpoint for steatosis-to-NASH progression by activating a cytoprotective pathway to counter stress-induced liver injury.
Collapse
Affiliation(s)
- Liang Guo
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sune Kobberup
- Metabolic Disease Research, Novo Nordisk, Maaloev, Denmark
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Mitochondrial form, function and signalling in aging. Biochem J 2017; 473:3421-3449. [PMID: 27729586 DOI: 10.1042/bcj20160451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes. However, mitochondria display a wide array of functions and signalling properties, and the roles of these different characteristics are still widely unexplored. Furthermore, differences in mitochondrial properties and responses between tissues and cell types, and how these affect whole body metabolism are also still poorly understood. This review uncovers aspects of mitochondrial biology that have an impact upon aging in model organisms and selected mammalian cells and tissues.
Collapse
|
33
|
Abstract
Non-alcoholic fatty liver disease has emerged a major challenge because of it prevalence, difficulties in diagnosis, complex pathogenesis, and lack of approved therapies. As the burden of hepatitis C abates over the next decade, non-alcoholic fatty liver disease will become the major form of chronic liver disease in adults and children and could become the leading indication for liver transplantation. This overview briefly summarizes the most recent data on the pathophysiology, diagnosis, and treatment of non-alcoholic fatty liver disease. Ongoing clinical trials are focused on an array of disease mechanisms and reviewed here are how these treatments fit into the current paradigm of substrate overload lipotoxic liver injury. Many of the approaches are directed at downstream events such as inflammation, injury and fibrogenesis. Addressing more proximal processes such as dysfunctional satiety mechanisms and inappropriately parsimonious energy dissipation are potential therapeutic opportunities that if successfully understood and exploited would not only address fatty liver disease but also the other components of the metabolic syndrome such as obesity, diabetes and dyslipidemia.
Collapse
|
34
|
|