1
|
Ahmad GV, Nouri S, Mohammad Gholian A, Abdollahi E, Ghorbaninezhad F, Tahmasebi S, Eterafi M, Askari MR, Safarzadeh E. Breaking barriers: CAR-NK cell therapy breakthroughs in female-related cancers. Biomed Pharmacother 2025; 187:118071. [PMID: 40253831 DOI: 10.1016/j.biopha.2025.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Cancer stands as a leading cause of mortality globally. The main female-related malignancies are breast cancer, with 2.3 million new cases annually, and ovarian cancer, with 300,000 new cases per year worldwide. The current treatments like surgery, chemotherapy, and radiation therapy have presumably had deficiencies in sustaining long-term anti-tumor responses. Cellular immunotherapy, also referred to as adoptive cell therapy, has shown encouraging advances by employing genetically modified immune cells in fighting cancer by engineering chimeric antigen receptors (CARs) mainly on T cells and natural killer (NK) cells. Studies in NK cell therapies involve unmodified NK cells and CAR-NK cell therapies, targeting cancer cells while limiting the destruction of normal cells. CAR-NK cells represent the next generation of therapeutic immune cells that have been shown to eliminate malignancies through CAR-dependent and CAR-independent mechanisms. They also represent possible candidates for "off-the-shelf" therapies due to their advantages, including the ability to target cancer cells independently of the major histocompatibility complex, reduced risk of alloreactivity, and fewer severe toxicities compared to CAR-T cells. To date, there have been no comprehensive review studies examining the therapeutic potential of CAR-NK cell therapy specifically for female-related malignancies, such as breast and ovarian cancers. This review offers a thorough exploration of CAR-NK cell therapy in relation to these cancers and their responses to treatment.
Collapse
Affiliation(s)
- Ghorbani Vanan Ahmad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Samaneh Nouri
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Eileen Abdollahi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farid Ghorbaninezhad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Tahmasebi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Askari
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Akgul Obeidin SV, Senol MS, Dogru Koseoglu Z, Bayramoglu F, Disli S, Yigitbasi T, Emekli N. Antibiotic-derived approaches in cancer therapy: effectiveness of ikarugamycin in hexokinase-2 inhibition, tissue factor modulation, and metabolic regulation in breast cancer. Anticancer Drugs 2025; 36:328-337. [PMID: 39879102 DOI: 10.1097/cad.0000000000001689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
We aimed to explore the role of ikarugamycin (IKA) in breast cancer, its connection with hexokinase-2 (HK-2) repression, and tissue factor (TF). This study sought to extend the role of HK-2 as a TF activator in a comprehensive analysis of these interactions from the enzyme, gene, and protein levels. The investigation was performed with MDA-MB-231 and MCF-7 breast cancer lines. The oxidative stress index (OSI), lactate production, and HK activity were assessed using colorimetric assays. Western blot and quantitative PCR analyses were performed to determine HK-2 and TF expressions. Prothrombin time Tests additionally assessed the effect of IKA therapy on TF activation. Three over four significantly downregulated genes were identified after a specific analysis of the IKA's effect on HK-2 and TF in breast cancer cell lines. In the IKA treatment group, lactate production was markedly reduced ( P < 0.05) and hexokinase activity was found to be reduced in all groups ( P < 0.05, <0.01). Paclitaxel cytotoxicity independently causes lower OSI in all IKA-treated groups as compared to controls even though OSI is elevated in IKA groups compared to control. Molecular analysis results demonstrated significantly downregulated HK-2 and TF expressions at the protein level ( P < 0.05, P < 0.01). Partial thromboplastin time results also showed that IKA-treated cells had longer TF activation duration. A potential indirect association of HK-2 inhibition and TF regulation in breast cancer cells is put forward in this study by presenting IKA's bioactivation of breast cancer in all gene, protein, and enzyme levels.
Collapse
Affiliation(s)
| | - Masite Sehadet Senol
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
| | - Zeynep Dogru Koseoglu
- Department of Biochemistry, Institute of Health Science
- Istanbul Medipol University Genetic Disorders Assessment Center (MEDIGEN), Istanbul Medipol University, Istanbul, Türkiye
| | - Feyza Bayramoglu
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
| | - Sevgi Disli
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
| | - Turkan Yigitbasi
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
- Istanbul Medipol University Genetic Disorders Assessment Center (MEDIGEN), Istanbul Medipol University, Istanbul, Türkiye
| | - Neslin Emekli
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
| |
Collapse
|
3
|
Xue Y, Wang Y, Ren Z, Yu K. Tissue factor promotes TREX1 protein stability to evade cGAS-STING innate immune response in pancreatic ductal adenocarcinoma. Oncogene 2025; 44:739-752. [PMID: 39658648 PMCID: PMC11888988 DOI: 10.1038/s41388-024-03248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains the most challenging human malignancy that urgently needs effective therapy. Tissue factor (TF) is expressed in ~80% of PDAC and represents a potential therapeutic target. While a novel TF-ADC (MRG004A) demonstrated efficacy for PDAC and TNBC in a Phase I/II trial [Ref. 18], the functional role of TF in PDAC remains incompletely understood. We investigated the relationship between TF and the innate STING pathway. We found that patients with TF-overexpression had poor survival, very low levels of P-STING/P-TBK1, reduced amounts of ISGs and chemokines as well as low numbers of cytotoxic immunocytes in their tumor. In experimental models of mouse and human PDAC, tumor cell-intrinsic TF expression played a major role in silencing the cytosolic micronuclei sensing and cGAS-STING activation. This process involved a TREX1 exonuclease-dependent clearance of micronucleus-DNA accumulated in tumor cells. Treatment of tumors with TF-KO/shRNA or anti-TF antibody HuSC1-39 (parent antibody of MRG004A) triggered a rapid and proteasome-dependent degradation of TREX1 thereby restoring the STING/TBK1 cascade phosphorylation. TF-inhibition therapy promoted a robust STING/IRF3-dependent IFN/CCL5/CXCL9-11 production, immune effector cell infiltration and antitumor efficacy. Moreover, in the PBMC and cancer cell co-culture, TF-inhibition synergized with a STING agonist compound. A covalently conjugated TF antibody-STING agonist ADC strongly increased the efficacy of tumor-targeted STING agonism on chemokine secretion and tumor inhibition in vitro and in vivo. Thus, TF-inhibition reshapes an "immune hot" tumor environment. TF-targeted therapy warrants clinical investigation as a single agent or in combination with immunotherapy for treating TF-positive PDAC and TNBC.
Collapse
Affiliation(s)
- Yinyin Xue
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Yue Wang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Zhiqiang Ren
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China.
| |
Collapse
|
4
|
Featherby SJ, Faulkner EC, Ettelaie C. Tissue factor signalling modifies the expression and regulation of G1/S checkpoint regulators: Implications during injury and prolonged inflammation. Mol Med Rep 2025; 31:39. [PMID: 39611476 PMCID: PMC11626423 DOI: 10.3892/mmr.2024.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Tissue factor (TF) possesses additional physiological functions beyond initiating the coagulation cascade. Cellular signals initiated by cellular TF or on contact with TF‑containing microvesicles, contribute to wound healing through regulating a number of cellular properties and functions. TF regulates the cell cycle checkpoints, however the underlying signalling mechanisms have not been determined. Endothelial (human dermal blood endothelial cells and human umbilical vein endothelial cells) and epithelial [human telomerase reverse transcriptase‑human pancreatic nestin‑expressing ductal cells (hTERT‑HPNE) and AsPC‑1] cells were exposed to different concentrations of recombinant TF, and the influence on G1/S checkpoint regulators examined. Short‑term exposure to a lower concentration of TF promoted increased p16INKa and decreased p21CIP1/WAF1 expression, together with higher early region 2 binding factor (E2F) transcriptional activity and increased phosphorylation of Thr821/826 within retinoblastoma protein, leading to cell proliferation. The increase in p16INKa expression was prevented following inhibition of β1‑integrin, or blocking the exosite within TF with AIIB2 and 10H10 antibodies, respectively. Exposure of cells to higher concentrations of TF induced disproportionate increases in p16INKa and p21CIP1/WAF1 expression, reduced retinoblastoma protein phosphorylation and E2F activity. Prolonged treatment of the immortalised hTERT‑HPNE cells with recombinant TF, resulted in significant downregulation of p16INKa protein, which was partially due to reduced mRNA expression, together with increased E2F activity, and cyclin E mRNA expression. Although an increase in the methylation of the p16INKa promoter was detected, the reduction in p16INKa protein was concurrent with, and partly attributed to increased p14ARF expression. TF appears early at the site of trauma, and its concentration is an ideal gauge for determining the extent of cellular damage, initiating clearance and repair. It is hypothesised that the balance of this signal is also dependent on the ability of cells to moderate the TF, and therefore on the level of damage. However, prolonged exposure of cells for example due to inflammation, leads to the dysregulation of the G1/S checkpoint by the tumour suppressors, leading to aberrant growth.
Collapse
Affiliation(s)
- Sophie J. Featherby
- Biomedical Section, Hull-York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Eamon C. Faulkner
- Biomedical Section, Hull-York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Camille Ettelaie
- Biomedical Section, Hull-York Medical School, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
5
|
Lami V, Nieri D, Pagnini M, Gattini M, Donati C, De Santis M, Cipriano A, Bazzan E, Sbrana A, Celi A, Neri T. Circulating, Extracellular Vesicle-Associated Tissue Factor in Cancer Patients with and without Venous Thromboembolism. Biomolecules 2025; 15:83. [PMID: 39858477 PMCID: PMC11762650 DOI: 10.3390/biom15010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer is characterized by chronic inflammation and hypercoagulability, with an excess of venous thromboembolism (VTE). Tissue factor, the initiator of blood coagulation, circulates associated with extracellular vesicles (EV-TF). Studies investigating EV-TF between cancer-associated and non-cancer-associated VTE are lacking. We therefore compared EV-TF in unprovoked VTE (U-VTE), cancer-associated VTE (C-VTE), and cancer without VTE (C-w/o VTE). We also investigated interleukin-6 (IL-6) levels between the same groups. The final population included 68 patients (U-VTE: n = 15; C-VTE: n = 24; C-w/o VTE: n = 29). All patients with VTE were enrolled within 48 h of diagnosis; non-VTE patients were recruited in the oncologic outpatient services. EV were isolated by differential centrifugation from 4 mL of peripheral blood; the final EV pellet (16,000× g for 45 min) was resuspended in 100 μL saline and tested for TF using a one-step clotting assay. There was a statistically significant difference for higher EV-TF in C-VTE and C-w/o VTE compared to U-VTE (p = 0.024; Kruskal-Wallis test). There was no significant difference between C-VTE and C-w/o VTE. Moreover, we did not find any difference in IL-6 levels. These preliminary data suggest that cancer represents, per se, a strong driver of EV-TF generation.
Collapse
Affiliation(s)
- Valentina Lami
- UO Medicina d’Urgenza e Pronto Soccorso, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (V.L.)
| | - Dario Nieri
- UO Pneumologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (D.N.); (A.C.)
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
| | - Marta Pagnini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, University of Pisa, 56126 Pisa, Italy
| | - Mario Gattini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
| | - Claudia Donati
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
| | - Mariella De Santis
- Dipartimento Cardio Toraco Vascolare, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Alessandro Cipriano
- UO Medicina d’Urgenza e Pronto Soccorso, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (V.L.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy;
| | - Andrea Sbrana
- Dipartimento di Oncologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy;
| | - Alessandro Celi
- UO Pneumologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (D.N.); (A.C.)
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, University of Pisa, 56126 Pisa, Italy
| | - Tommaso Neri
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
6
|
Takao S, Fukushima H, Furusawa A, Kato T, Okuyama S, Kano M, Yamamoto H, Suzuki M, Kano M, Choyke PL, Kobayashi H. Tissue factor targeted near-infrared photoimmunotherapy: a versatile therapeutic approach for malignancies. Cancer Immunol Immunother 2025; 74:48. [PMID: 39751657 PMCID: PMC11699179 DOI: 10.1007/s00262-024-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer. Herein, we developed and tested a TF-targeted near-infrared photoimmunotherapy (NIR-PIT) as a potential treatment for several types of cancer. Tisotumab, a TF antibody, was conjugated to IR700. The efficacy of TF-targeted NIR-PIT was investigated using multiple cancer cell lines (A431; epidermoid carcinoma, HPAF-II; pancreatic adenocarcinoma, HSC-2; oral carcinoma, HT1376-luc; bladder carcinoma, MDAMB231; breast adenocarcinoma, and SKOV3-luc; ovarian serous cystadenocarcinoma) in vitro. In vivo, the efficacy of TF-targeted NIR-PIT was evaluated in HPAF-II and A431 xenograft mouse models. Pathologic changes in these tumors after NIR-PIT were evaluated in these tumor models. All cancer lines demonstrated TF expression in vitro and in vivo. Additionally, TF expression was documented to localize to cancer cells in tumors. In vitro, TF-targeted NIR-PIT caused cell death in a light dose-dependent manner. In vivo, TF-targeted NIR-PIT suppressed tumor growth and improved survival rates compared to controls. Furthermore, in vivo NIR-PIT showed histological signs of cancer cell damage, such as cytoplasmic vacuolation, nuclear dysmorphism, and extracellular leakage of LDHA consistent with cell death. In conclusion, TF-targeted NIR-PIT holds promise as a treatment for multiple cancer models expressing TF, spanning multiple cancer types.
Collapse
Affiliation(s)
- Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Motofumi Suzuki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Miyu Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Ito T, Miyamoto M, Kishimoto N, Suminokura J, Hada T, Kakimoto S, Kato K, Takano M. Survival and biomarker analysis for cancer‑associated thromboembolism in ovarian clear cell carcinoma. Mol Clin Oncol 2025; 22:9. [PMID: 39583927 PMCID: PMC11582522 DOI: 10.3892/mco.2024.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 11/26/2024] Open
Abstract
The present study aimed to investigate the impact of cancer-associated thromboembolism (CAT) on the survival and biomarkers of ovarian clear cell carcinoma (OCCC). Patients with OCCC who underwent surgery at the National Defense Medical College Hospital (Tokorozawa, Japan) between January 2000 and December 2019 were included in the current study. Associations among CAT, clinicopathological features and prognosis were retrospectively compared. Furthermore, immunohistochemical staining was conducted in all patients to compare differences between patients with and without CAT. Among 111 patients with OCCC, 20 patients (18.0%) had CAT complications. CAT was detected in 12 patients (10.8%) before primary treatment and in 8 patients (7.2%) after primary surgery. Patients with CAT experienced more tumor recurrence (P=0.048) and platinum resistance (P=0.025), had worse progression-free survival (PFS; P<0.01) and overall survival (OS; P<0.01), and multivariate analysis showed that CAT was a prognostic factor for worse PFS [hazard ratio (HR)=2.10, P=0.039] and OS (HR=4.26, P<0.01). Moreover, immunohistochemical analysis revealed that more OCCC cases with CAT were positive for tissue factor (TF; P=0.030) and phosphorylated-Janus kinase 2 (JAK2; P=0.034) expression than those without CAT. In conclusion, CAT may be associated with platinum resistance and poor prognosis in patients with OCCC. Furthermore, TF and JAK2 could be considered potential novel therapeutic targets for OCCC complicated by CAT.
Collapse
Affiliation(s)
- Tsubasa Ito
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Morikazu Miyamoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Naohisa Kishimoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Jin Suminokura
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Taira Hada
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Soichiro Kakimoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Kento Kato
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Masashi Takano
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
8
|
Azam A, Klisic A, Mercantepe F, Faseeh H, Mercantepe T, Rafaqat S. Role of Coagulation Factors in Hepatocellular Carcinoma: A Literature Review. Life (Basel) 2024; 15:34. [PMID: 39859975 PMCID: PMC11766868 DOI: 10.3390/life15010034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Hepatocyte carcinoma (HCC) is a globally prevalent neoplasm with profound effects on morbidity and mortality rates. This review summarizes the complex interactions between coagulation abnormalities and the pathophysiological mechanisms underlying HCC. Essential coagulation biomarkers, such as P-selectin, thrombomodulin, d-dimer, prothrombin, and von Willebrand factor, are reviewed for their diagnostic, prognostic, and therapeutic significance. The contribution of these biomarkers to tumor progression, metastatic spread, and patient prognosis is highlighted through a synthesis of contemporary research findings. In addition, this review highlights the underlying mechanisms linking coagulation pathways to HCC pathogenesis and explores potential therapeutic targets. An integrative perspective on the role of coagulation markers in HCC may improve clinical management strategies for patients affected by this malignancy.
Collapse
Affiliation(s)
- Azeem Azam
- Institute of Zoology, University of the Punjab, Lahore 54590, Pakistan;
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53200, Türkiye;
| | - Hamza Faseeh
- Department of Zoology, Govt. Islamia Graduate College Civil Lines, Lahore 54000, Pakistan;
| | - Tolga Mercantepe
- Department of Histology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53200, Türkiye
| | - Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore 44444, Pakistan;
| |
Collapse
|
9
|
Mihaylova R, Momekova D, Elincheva V, Momekov G. Immunoconjugates as an Efficient Platform for Drug Delivery: A Resurgence of Natural Products in Targeted Antitumor Therapy. Pharmaceuticals (Basel) 2024; 17:1701. [PMID: 39770542 PMCID: PMC11677665 DOI: 10.3390/ph17121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The present review provides a detailed and comprehensive discussion on antibody-drug conjugates (ADCs) as an evolving new modality in the current therapeutic landscape of malignant diseases. The principle concepts of targeted delivery of highly toxic agents forsaken as stand-alone drugs are examined in detail, along with the biochemical and technological tools for their successful implementation. An extensive analysis of ADCs' major components is conducted in parallel with their function and impact on the stability, efficacy, safety, and resistance profiles of the immunoconjugates. The scope of the article covers the major classes of currently validated natural compounds used as payloads, with an emphasis on their structural and mechanistic features, natural origin, and distribution. Future perspectives in ADCs' design are thoroughly explored, addressing their inherent or emerging challenges and limitations. The survey also provides a comprehensive overview of the molecular rationale for active tumor targeting of ADC-based platforms, exploring the cellular biology and clinical relevance of validated tumor markers used as a "homing" mechanism in both hematological and solid tumor malignancies.
Collapse
Affiliation(s)
- Rositsa Mihaylova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| | - Denitsa Momekova
- Department “Pharmaceutical Technology and Biopharmaceutics”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Viktoria Elincheva
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| | - Georgi Momekov
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| |
Collapse
|
10
|
Tsumura R, Anzai T, Koga Y, Takashima H, Matsumura Y, Yasunaga M. Anti-tissue factor antibody conjugated with monomethyl auristatin E or deruxtecan in pancreatic cancer models. Cancer Sci 2024; 115:3986-3996. [PMID: 39322584 PMCID: PMC11611767 DOI: 10.1111/cas.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have been recognized as a promising class of cancer therapeutics. Tissue factor (TF), an initiator of the blood coagulation pathway, has been investigated regarding its relationship with cancer, and several preclinical and clinical studies have presented data on anti-TF ADCs, including tisotumab vedotin, which was approved in 2021. However, the feasibility of other payloads in the design of anti-TF ADCs is still unclear because no reports have compared payloads with different cytotoxic mechanisms. For ADCs targeting other antigens, such as Her2, optimizing the payload is also an important issue in order to improve in vivo efficacy. In this study, we prepared humanized anti-TF Ab (clone.1084) conjugated with monomethyl auristatin E (MMAE) or deruxtecan (DXd), and evaluated the efficacy in several cell line- and patient-derived xenograft models of pancreatic cancer. As a result, optimizing the drug / Ab ratio was necessary for each payload in order to prevent pharmacokinetic deterioration and maximize delivery efficiency. In addition, MMAE-conjugated anti-TF ADC showed higher antitumor effects in tumors with strong and homogeneous TF expression, while DXd-conjugated anti-TF ADC was more effective in tumors with weak and heterogeneous TF expression. Analysis of a pancreatic cancer tissue array showed weak and heterogeneous TF expression in most TF-positive specimens, indicating that the response rate to pancreatic cancer might be higher for DXd- than MMAE-conjugated anti-TF ADC. Nevertheless, our findings indicated that optimizing the ADC payloads individually in each patient could maximize the potential of ADC therapeutics.
Collapse
Affiliation(s)
- Ryo Tsumura
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| | - Takahiro Anzai
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
- Department of Chemistry and Materials ScienceNational Institute of Technology (KOSEN), Gunma CollegeMaebashiJapan
| | - Yoshikatsu Koga
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| | - Hiroki Takashima
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| | - Yasuhiro Matsumura
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
- Research DivisionRIN Institute Inc.TokyoJapan
| | - Masahiro Yasunaga
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| |
Collapse
|
11
|
Zhang B, Wang P, Chen Q, Yang Y, Xiong F, Bao G, Yang J, Wang Z, Zhou H, Song S, Zou S, Kim DH, Yu B, Zhu X. Preclinical evaluation of radiolabeled tissue factor-targeted peptide for theranostics of hepatocellular carcinoma post percutaneous ethanol injection. Theranostics 2024; 14:7370-7382. [PMID: 39659572 PMCID: PMC11626952 DOI: 10.7150/thno.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Tissue factor (TF) initiates local blood clotting and infiltration of tumor-associated macrophages, leading to tumor recurrence post-local ablation. Our study addressed inefficient cancer cell killing and immunosuppressive macrophage infiltration after percutaneous ethanol injection (PEI) in hepatocellular carcinoma (HCC). We evaluated the feasibility of 18F-radiolabeled polypeptide TF-targeted radioligand (tTF) as a PET tracer for assessing tumor response. We also explored the efficacy and safety of 177Lu-radiolabeled tTF to eradicate residual tumors and tumor-associated macrophages. Methods: TF expression in the locally treated human HCC was assessed. Biodistribution, pharmacokinetics, and TF-targeted specificity of Al18F-NOTA-tTF were investigated in Kunming (KM) and/or Hepa1-6 mice. Evaluation of FDG/tTF PET imaging, histopathological characteristics, and tumor ablation response was conducted using two incomplete PEI ablation models, with ethanol volumes equivalent to 50% (high-dose (HD) PEI group) or 25% (low-dose (LD) PEI group) of the tumor volume administered. Following PEI, a single dose of 177Lu-DOTA-tTF was administered on day 1 to assess its efficacy in eradicating residual tumors and immunosuppressive macrophages. Systemic toxicity was evaluated through blood analysis and histological examination of healthy organs. Results: Immunohistochemistry analysis demonstrated elevated TF expression around the ablation margin of residual tissue in human HCC. Radiolabeled tTF exhibited excellent TF-specificity, water solubility, and stability. FDG PET imaging and histological analysis showed tumor recurrence, upregulation of immunosuppressive macrophages, and TF around tumor foci post-treatment in the HD PEI-treated group. Meanwhile, the uptake of 18F-FDG exhibited a decline, while the uptake of Al18F-NOTA-tTF showed an increase in both the HD and LD PEI groups, as observed on day 1 and day 6 post-PEI. These results indicated that increased tTF uptake offers a specific and durable avenue for targeted theranostic applications. Following PEI, 177Lu-DOTA-tTF therapy demonstrated significant tumor suppression and eradication of immunosuppressive macrophages compared to control groups. Safety assessments indicated no significant toxicity in the main organs of tested animals. Conclusions: Al18F-NOTA-tTF is a promising PET tracer for assessing ablated HCC, while 177Lu-DOTA-tTF provides an effective tool for inhibiting residual tumor growth and immunosuppressive macrophages post-PEI. Significantly, TF-targeting theranostics may help overcome incomplete cancer cell killing and formation of tumor immunosuppressive microenvironment, offering a promising strategy for effective HCC ablation in future clinical practice.
Collapse
Affiliation(s)
- Buchuan Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaorong Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Yang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xiong
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingfei Yang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Song
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijuan Zou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Cheng X, Li P, Jiang R, Meng E, Wu H. ADC: a deadly killer of platinum resistant ovarian cancer. J Ovarian Res 2024; 17:196. [PMID: 39367438 PMCID: PMC11451100 DOI: 10.1186/s13048-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Platinum is a key component of ovarian cancer systemic therapy. However, most patients will eventually face a recurrence, leading to chemotherapy resistance, especially against platinum. For individuals with platinum-resistant ovarian cancer (PROC), treatment options are limited, and their survival prospects are grim. The emergence of antibody-drug conjugates (ADCs) shows promises as a future treatment for PROC. This review synthesizes current research on the effectiveness of ADCs in treating PROC. It encapsulates the advancements and clinical trials of novel ADCs that target specific antigens such as Folate Receptor alpha (FRα), MUC16, NaPi2b, Mesothelin, Dipeptidase 3(DPEP3), and human epidermal growth factor receptor 2 (HER2), as well as tissue factor, highlighting their potential anti-tumor efficacy and used in combination with other therapies. The ADCs landscape in ovarian cancer therapeutics is swiftly evolving, promising more potent and efficacious treatment avenues.
Collapse
Affiliation(s)
- Xu Cheng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Ping Li
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Rongqi Jiang
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Enqing Meng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Hao Wu
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
13
|
Bonifay A, Cointe S, Plantureux L, Lacroix R, Dignat-George F. Update on Tissue Factor Detection in Blood in 2024: A Narrative Review. Hamostaseologie 2024; 44:368-376. [PMID: 39442509 DOI: 10.1055/a-2381-6854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Tissue factor (TF) is a transmembrane protein essential for hemostasis. Different forms of active TF circulate in the blood, either as a component of blood cells and extracellular vesicles (EVs) or as a soluble plasma protein. Accumulating experimental and clinical evidence suggests that TF plays an important role in thrombosis. Many in-house and commercially available assays have been developed to measure TF-dependent procoagulant activity or antigen in blood and have shown promising results for the prediction of disease outcomes or the occurrence of thrombosis events in diseases such as cancer or infectious coagulopathies. This review addresses the different assays that have been published for measuring circulating TF antigen and/or activity in whole blood, cell-free plasma, and EVs and discusses the main preanalytical and analytical parameters that impact results and their interpretation, highlighting their strengths and limitations. In the recent decade, EVTF assays have been significantly developed. Among them, functional assays that use a blocking anti-TF antibody or immunocapture to measure EVTF activity have higher specificity and sensitivity than antigen assays. However, there is still a high variability between assays. Standardization and automatization are prerequisites for the measurement of EVTF in clinical laboratories.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Sylvie Cointe
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Léa Plantureux
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
| | - Romaric Lacroix
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Françoise Dignat-George
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| |
Collapse
|
14
|
Park JC, Shin D. Current Landscape of Antibody-Drug Conjugate Development in Head and Neck Cancer. JCO Precis Oncol 2024; 8:e2400179. [PMID: 39151109 DOI: 10.1200/po.24.00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are fusions of therapeutic drugs and antibodies conjugated by a linker, designed to deliver a therapeutic payload to cells expressing the target antigen. By delivering the highly cytotoxic agent directly to cancer cells, ADCs are designed to enhance safety and broaden the therapeutic window. Recently, ADCs have demonstrated promising efficacy in various solid tumors and are rapidly expanding their indications. The prognosis of patients with advanced head and neck squamous cell carcinoma (HNSCC) remains poor, with no new therapeutics since the advent of anti-PD-1 antibodies in 2016, highlighting a critical need for innovative therapies. Recent preliminary results suggest that ADCs could be promising treatment options for HNSCC as they explore a variety of target antigens, payloads, and linkers. However, for successful adaptation of ADCs in the treatment of HNSCC, addressing key challenges such as payload toxicities, antigen heterogeneity, and adaptive resistance will be essential. Current research focused on new ADC structures, including multispecific antibodies and noncytotoxic payloads, and diverse combination approaches, show promise for future advancements.
Collapse
Affiliation(s)
- Jong Chul Park
- Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Donghoon Shin
- MetroWest Medical Center, Tufts University School of Medicine, Framingham, MA
| |
Collapse
|
15
|
Tan MCB, Isom CA, Liu Y, Trégouët DA, Wu L, Zhou D, Gamazon ER. Transcriptome-wide association study and Mendelian randomization in pancreatic cancer identifies susceptibility genes and causal relationships with type 2 diabetes and venous thromboembolism. EBioMedicine 2024; 106:105233. [PMID: 39002386 PMCID: PMC11284564 DOI: 10.1016/j.ebiom.2024.105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Two important questions regarding the genetics of pancreatic adenocarcinoma (PDAC) are 1. Which germline genetic variants influence the incidence of this cancer; and 2. Whether PDAC causally predisposes to associated non-malignant phenotypes, such as type 2 diabetes (T2D) and venous thromboembolism (VTE). METHODS In this study of 8803 patients with PDAC and 67,523 controls, we first performed a large-scale transcriptome-wide association study to investigate the association between genetically determined gene expression in normal pancreas tissue and PDAC risk. Secondly, we used Mendelian Randomization (MR) to analyse the causal relationships among PDAC, T2D (74,124 cases and 824,006 controls) and VTE (30,234 cases and 172,122 controls). FINDINGS Sixteen genes showed an association with PDAC risk (FDR <0.10), including six genes not yet reported for PDAC risk (PPIP5K2, TFR2, HNF4G, LRRC10B, PRC1 and FBXL20) and ten previously reported genes (INHBA, SMC2, ABO, PDX1, MTMR6, ACOT2, PGAP3, STARD3, GSDMB, ADAM33). MR provided support for a causal effect of PDAC on T2D using genetic instruments in the HNF4G and PDX1 loci, and unidirectional causality of VTE on PDAC involving the ABO locus (OR 2.12, P < 1e-7). No evidence of a causal effect of PDAC on VTE was found. INTERPRETATION These analyses identified candidate susceptibility genes and disease relationships for PDAC that warrant further investigation. HNF4G and PDX1 may induce PDAC-associated diabetes, whereas ABO may induce the causative effect of VTE on PDAC. FUNDING National Institutes of Health (USA).
Collapse
Affiliation(s)
- Marcus C B Tan
- Division of Surgical Oncology and Endocrine Surgery, Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Chelsea A Isom
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California, San Diego, San Diego, CA, USA
| | - Yangzi Liu
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Clare Hall, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
16
|
Zhu T, Ye Z, Song J, Zhang J, Zhao Y, Xu F, Wang J, Huang X, Gao B, Li F. Effect of extracellular matrix stiffness on efficacy of Dapagliflozin for diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:273. [PMID: 39049086 PMCID: PMC11270890 DOI: 10.1186/s12933-024-02369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin β1, but without significant impact on piezo 1. CONCLUSIONS Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.
Collapse
Affiliation(s)
- Tong Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Department of Cardiovasology, Xidian Group Hospital, Xi'an, 710077, P.R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jingjing Song
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jun Wang
- Department of Health Evaluation and Promotion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xin Huang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, P.R. China.
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
17
|
Aebisher D, Serafin I, Batóg-Szczęch K, Dynarowicz K, Chodurek E, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy in the Treatment of Cancer-The Selection of Synthetic Photosensitizers. Pharmaceuticals (Basel) 2024; 17:932. [PMID: 39065781 PMCID: PMC11279632 DOI: 10.3390/ph17070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment method that uses photosensitizing (PS) compounds to selectively destroy tumor cells using laser light. This review discusses the main advantages of PDT, such as its low invasiveness, minimal systemic toxicity and low risk of complications. Special attention is paid to photosensitizers obtained by chemical synthesis. Three generations of photosensitizers are presented, starting with the first, based on porphyrins, through the second generation, including modified porphyrins, chlorins, 5-aminolevulinic acid (ALA) and its derivative hexyl aminolevulinate (HAL), to the third generation, which is based on the use of nanotechnology to increase the selectivity of therapy. In addition, current research trends are highlighted, including the search for new photosensitizers that can overcome the limitations of existing therapies, such as heavy-atom-free nonporphyrinoid photosensitizers, antibody-drug conjugates (ADCs) or photosensitizers with a near-infrared (NIR) absorption peak. Finally, the prospects for the development of PDTs are presented, taking into account advances in nanotechnology and biomedical engineering. The references include both older and newer works. In many cases, when writing about a given group of first- or second-generation photosensitizers, older publications are used because the properties of the compounds described therein have not changed over the years. Moreover, older articles provide information that serves as an introduction to a given group of drugs.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Iga Serafin
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | | | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8 Str., 41-200 Sosnowiec, Poland;
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
18
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Pantazi D, Alivertis D, Tselepis AD. Underlying Mechanisms of Thrombosis Associated with Cancer and Anticancer Therapies. Curr Treat Options Oncol 2024; 25:897-913. [PMID: 38862694 DOI: 10.1007/s11864-024-01210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/13/2024]
Abstract
Cancer-associated thrombosis (CAT) has been identified as the second most prevalent cause of death after cancer itself. Moreover, the risk of thrombotic events in cancer patients increases due to anticancer drugs, such as tyrosine kinase inhibitors (TKIs). Venous thromboembolism (VTE) as well as arterial thromboembolic (ATE) events are present in CAT. Although VTE occurs more frequently, ATE events are very significant and in some cases are more dangerous than VTE. Guidelines for preventing thrombosis refer mainly VTE as well as the contribution of ATE events. Several factors are involved in thrombosis related to cancer, but the whole pathomechanism of thrombosis is not clear and may differ between patients. The activation of the coagulation system and the interaction of cancer cells with other cells including platelets, endothelial cells, monocytes, and neutrophils are promoted by a hypercoagulable state caused by cancer. We present an update on the pathomechanisms of CAT and the effect of anticancer drugs, mainly targeted therapies with a focus on TKIs. Considering the risk of bleeding associated with anticoagulation in each cancer patient, the anticoagulation strategy may involve the use of FXIa inhibitors, direct oral anticoagulants, and low-molecular-weight heparin. Further research would be valuable in developing strategies for reducing CAT.
Collapse
Affiliation(s)
- Despoina Pantazi
- Laboratory of Biochemistry, Department of Chemistry/Atherothrombosis Research Centre, University of Ioannina, 451 10, Ioannina, Epirus, Greece.
| | - Dimitrios Alivertis
- Department of Biological Applications and Technology, University of Ioannina, 451 10, Ioannina, Epirus, Greece
| | - Alexandros D Tselepis
- Laboratory of Biochemistry, Department of Chemistry/Atherothrombosis Research Centre, University of Ioannina, 451 10, Ioannina, Epirus, Greece
| |
Collapse
|
20
|
Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Assis J, Pereira D, Medeiros R. Haemostatic Gene Expression in Cancer-Related Immunothrombosis: Contribution for Venous Thromboembolism and Ovarian Tumour Behaviour. Cancers (Basel) 2024; 16:2356. [PMID: 39001418 PMCID: PMC11240748 DOI: 10.3390/cancers16132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ovarian cancer (OC) is the deadliest gynaecological malignancy. Identifying new prognostic biomarkers is an important research field. Haemostatic components together with leukocytes can drive cancer progression while increasing the susceptibility to venous thromboembolism (VTE) through immunothrombosis. Unravelling the underlying complex interactions offers the prospect of uncovering relevant OC prognostic biomarkers, predictors of cancer-associated thrombosis (CAT), and even potential targets for cancer therapy. Thus, this study evaluated the expression of F3, F5, F8, F13A1, TFPI1, and THBD in peripheral blood cells (PBCs) of 52 OC patients. Those with VTE after tumour diagnosis had a worse overall survival (OS) compared to their counterparts (mean OS of 13.8 ± 4.1 months and 47.9 ± 5.7 months, respectively; log-rank test, p = 0.001). Low pre-chemotherapy F3 and F8 expression levels were associated with a higher susceptibility for OC-related VTE after tumour diagnosis (χ2, p < 0.05). Regardless of thrombogenesis, patients with low baseline F8 expression had a shorter progression-free survival (PFS) than their counterparts (adjusted hazard ratio (aHR) = 2.54; p = 0.021). Among those who were not under platelet anti-aggregation therapy, low F8 levels were also associated with a shorter OS (aHR = 6.16; p = 0.006). Moving forward, efforts should focus on external validation in larger cohorts.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
21
|
Featherby SJ, Ettelaie C. Endothelial-derived microvesicles promote pro-migratory cross-talk with smooth muscle cells by a mechanism requiring tissue factor and PAR2 activation. Front Cardiovasc Med 2024; 11:1365008. [PMID: 38966751 PMCID: PMC11222581 DOI: 10.3389/fcvm.2024.1365008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Microvesicles (MV) released by endothelial cells (EC) following injury or inflammation contain tissue factor (TF) and mediate communication with the underlying smooth muscle cells (SMC). Ser253-phosphorylated TF co-localizes with filamin A at the leading edge of migrating SMC. In this study, the influence of endothelial-derived TF-MV, on human coronary artery SMC (HCASMC) migration was examined. Methods and Results MV derived from human coronary artery EC (HCAEC) expressing TFWt accelerated HCASMC migration, but was lower with cytoplasmic domain-deleted TF. Furthermore, incubation with TFAsp253-MV, or expression of TFAsp253 in HCASMC, reduced cell migration. Blocking TF-factor VIIa (TF-fVIIa) procoagulant/protease activity, or inhibiting PAR2 signaling on HCASMC, abolished the accelerated migration. Incubation with fVIIa alone increased HCASMC migration, but was significantly enhanced on supplementation with TF. Neither recombinant TF alone, factor Xa, nor PAR2-activating peptide (SLIGKV) influenced cell migration. In other experiments, HCASMC were transfected with peptides corresponding to the cytoplasmic domain of TF prior to stimulation with TF-fVIIa. Cell migration was suppressed only when the peptides were phosphorylated at position of Ser253. Expression of mutant forms of filamin A in HCASMC indicated that the enhancement of migration by TF but not by PDGF-BB, was dependent on the presence of repeat-24 within filamin A. Incubation of HCASMC with TFWt-MV significantly reduced the levels of Smoothelin-B protein, and upregulated FAK expression. Discussion In conclusion, Ser253-phosphorylated TF and fVIIa released as MV-cargo by EC, act in conjunction with PAR2 on SMC to promote migration and may be crucial for normal arterial homeostasis as well as, during development of vascular disease.
Collapse
|
22
|
Yu P, Zhu C, You X, Gu W, Wang X, Wang Y, Bu R, Wang K. The combination of immune checkpoint inhibitors and antibody-drug conjugates in the treatment of urogenital tumors: a review insights from phase 2 and 3 studies. Cell Death Dis 2024; 15:433. [PMID: 38898003 PMCID: PMC11186852 DOI: 10.1038/s41419-024-06837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
With the high incidence of urogenital tumors worldwide, urinary system tumors are among the top 10 most common tumors in men, with prostate cancer ranking first and bladder cancer fourth. Patients with resistant urogenital tumors often have poor prognosis. In recent years, researchers have discovered numerous specific cancer antigens, which has led to the development of several new anti-cancer drugs. Using protein analysis techniques, researchers developed immune checkpoint inhibitors (ICIs) and antibody-conjugated drugs (ADCs) for the treatment of advanced urogenital tumors. However, tumor resistance often leads to the failure of monotherapy. Therefore, clinical trials of the combination of ICIs and ADCs have been carried out in numerous centers around the world. This article reviewed phase 2 and 3 clinical studies of ICIs, ADCs, and their combination in the treatment of urogenital tumors to highlight safe and effective methods for selecting individualized therapeutic strategies for patients. ICIs activate the immune system, whereas ADCs link monoclonal antibodies to toxins, which can achieve a synergistic effect when the two drugs are combined. This synergistic effect provides multiple advantages for the treatment of urogenital tumors.
Collapse
Affiliation(s)
- Puguang Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiangyun You
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Urology, Yichang Central People's Hospital, Yichang, 443002, China
| | - Wen Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
23
|
Zhai C, Cui Y, Guo L, Chen C, Song Y, Zhong J, Wang Y. Progress in the study of antibody-drug conjugates for the treatment of cervical cancer. Front Oncol 2024; 14:1395784. [PMID: 38903711 PMCID: PMC11187480 DOI: 10.3389/fonc.2024.1395784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Cervical cancer is the second most prevalent malignancy affecting women's health globally, and the number of morbidity and mortality from cervical cancer continues to rise worldwide. The 5-year survival rate of patients with recurrent or metastatic cervical cancer is significantly reduced, and existing treatment modalities have low efficacy and high adverse effects, so there is a strong need for new, effective, and well-tolerated therapies. Antibody-drug conjugates (ADCs) are a new targeted therapeutic modality that can efficiently kill tumor cells. This review aims to summarize the composition, research, and development history and mechanism of action of ADCs, to review the research progress of ADCs in the treatment of cervical cancer, and to summarize and prospect the application of ADCs.
Collapse
Affiliation(s)
- Congcong Zhai
- Department of Oncology, Gannan Medical University, Ganzhou, China
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Yan Cui
- Department of Oncology, Bengbu Medical University, Lu’an, China
| | - Ling Guo
- Department of Oncology, Gannan Medical University, Ganzhou, China
| | - Cixiang Chen
- Department of Oncology, Gannan Medical University, Ganzhou, China
| | - Yanfang Song
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Yili Wang
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| |
Collapse
|
24
|
Shi Q, Xu J, Chen C, Hu X, Wang B, Zeng F, Ren T, Huang Y, Guo W, Tang X, Ji T. Direct contact between tumor cells and platelets initiates a FAK-dependent F3/TGF-β positive feedback loop that promotes tumor progression and EMT in osteosarcoma. Cancer Lett 2024; 591:216902. [PMID: 38641310 DOI: 10.1016/j.canlet.2024.216902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Platelets have received growing attention for their roles in hematogenous tumor metastasis. However, the tumor-platelet interaction in osteosarcoma (OS) remains poorly understood. Here, using platelet-specific focal adhesion kinase (FAK)-deficient mice, we uncover a FAK-dependent F3/TGF-β positive feedback loop in OS. Disruption of the feedback loop by inhibition of F3, TGF-β, or FAK significantly suppresses OS progression. We demonstrate that OS F3 initiated the feedback loop by increasing platelet TGF-β secretion, and platelet-derived TGF-β promoted OS F3 expression in turn and modulated OS EMT process. Immunofluorescence results indicate platelet infiltration in OS niche and we verified it was mediated by platelet FAK. In addition, platelet FAK was proved to mediate platelet adhesion to OS cells, which was vital for the initiation of F3/TGF-β feedback loop. Collectively, these findings provide a rationale for novel therapeutic strategies targeting tumor-platelet interplay in metastatic OS.
Collapse
Affiliation(s)
- Qianyu Shi
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Chenglong Chen
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| | - Xueyu Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Fanwei Zeng
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yi Huang
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tao Ji
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| |
Collapse
|
25
|
Filippini DM, Le Tourneau C. The potential roles of antibody-drug conjugates in head and neck squamous cell carcinoma. Curr Opin Oncol 2024; 36:147-154. [PMID: 38573203 DOI: 10.1097/cco.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW To summarize the actual antibody-drug conjugates (ADCs) tested for patients with advanced head and neck squamous cell carcinoma (HNSCC), outlining the results of safety and efficacy through published clinical trials. RECENT FINDINGS ADCs combine the specificity of mAbs with the cytotoxic drug (known as payload) via a chemical linker and it is designed to selectively deliver the ultratoxic payload directly to the target cancer cells. To date, various ADCs have been investigated in multiple solid malignancies and others are in clinical development. In this study, we provide an overview of the structure and biology of ADC and we review recent clinical experience with the ADC in patients with advanced HNSCC, followed by a brief discussion of the evolvement of ADC conception, drug resistance and future perspectives. SUMMARY ADC strategy is emerging as a potential active treatment in previously treated patients with advanced HNSCC. However, the recent improvement in the bioengineering of ADC and a better comprehension of sequencing and association strategies could provide more benefit to HNSCC patients in need of innovative therapy.
Collapse
Affiliation(s)
- Daria Maria Filippini
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900 Research Unit, Saint-Cloud
- Paris-Saclay University, Paris, France
| |
Collapse
|
26
|
Englisch C, Moik F, Thaler J, Koder S, Mackman N, Preusser M, Pabinger I, Ay C. Tissue factor pathway inhibitor is associated with risk of venous thromboembolism and all-cause mortality in patients with cancer. Haematologica 2024; 109:1128-1136. [PMID: 37822244 PMCID: PMC10985431 DOI: 10.3324/haematol.2023.283581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Venous thromboembolism (VTE) is a common complication in patients with cancer. Data on the role of natural inhibitors of coagulation for occurrence of cancer-associated VTE are limited, thus, we investigated the association of tissue factor pathway inhibitor (TFPI) with risk of VTE and all-cause mortality in patients with cancer. Total TFPI antigen levels were measured with a commercially available enzyme-linked immunosorbant assay in patients included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study with the primary outcome VTE. Competing risk analysis and Cox regression analysis were performed to explore the association of TFPI levels with VTE and all-cause mortality. TFPI was analyzed in 898 patients (median age 62 years; interquartile range [IQR], 53-68; 407 (45%) women). Sixty-seven patients developed VTE and 387 died (24-month cumulative risk 7.5% and 42.1%, respectively). Patients had median TFPI levels at study inclusion of 56.4 ng/mL (IQR, 45.7-70.0), with highest levels in tumor types known to have a high risk of VTE (gastroesophageal, pancreatic and brain cancer: 62.0 ng/mL; IQR, 52.0-75.0). In multivariable analysis adjusting for age, sex, cancer type and stage, TFPI levels were associated with VTE risk (subdistribution hazard ratio per doubling =1.63, 95% confidence interval [CI]: 1.03-2.57). When patients with high and intermediate/low VTE risk were analyzed separately, the association remained independently associated in the high risk group only (subdistribution hazard ratio =2.63, 95% CI: 1.40-4.94). TFPI levels were independently associated with all-cause mortality (hazard ratio =2.36, 95% CI: 1.85-3.00). In cancer patients increased TFPI levels are associated with VTE risk, specifically in patients with high-risk tumor types, and with all-cause mortality.
Collapse
Affiliation(s)
- Cornelia Englisch
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Florian Moik
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna, Austria; Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz
| | - Johannes Thaler
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Silvia Koder
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna.
| |
Collapse
|
27
|
Costamagna G, Navi BB, Beyeler M, Hottinger AF, Alberio L, Michel P. Ischemic Stroke in Cancer: Mechanisms, Biomarkers, and Implications for Treatment. Semin Thromb Hemost 2024; 50:342-359. [PMID: 37506734 DOI: 10.1055/s-0043-1771270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Ischemic stroke is an important cause of morbidity and mortality in cancer patients. The underlying mechanisms linking cancer and stroke are not completely understood. Long-standing and more recent evidence suggests that cancer-associated prothrombotic states, along with treatment-related vascular toxicity, such as with chemotherapy and immunotherapy, contribute to an increased risk of ischemic stroke in cancer patients. Novel biomarkers, including coagulation, platelet and endothelial markers, cell-free DNA, and extracellular vesicles are being investigated for their potential to improve risk stratification and patient selection for clinical trials and to help guide personalized antithrombotic strategies. Treatment of cancer-related stroke poses unique challenges, including the need to balance the risk of recurrent stroke and other thromboembolic events with that of bleeding associated with antithrombotic therapy. In addition, how and when to restart cancer treatment after stroke remains unclear. In this review, we summarize current knowledge on the mechanisms underlying ischemic stroke in cancer, propose an etiological classification system unique to cancer-related stroke to help guide patient characterization, provide an overview of promising biomarkers and their clinical utility, and discuss the current state of evidence-based management strategies for cancer-related stroke. Ultimately, a personalized approach to stroke prevention and treatment is required in cancer patients, considering both the underlying cancer biology and the individual patient's risk profile.
Collapse
Affiliation(s)
- Gianluca Costamagna
- Stroke Unit, Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Babak B Navi
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, Department of Neurology, Weill Cornell Medicine, New York, New York
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Morin Beyeler
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas F Hottinger
- Services of Neurology and Oncology, Lundin Family Brain Tumor Research Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lorenzo Alberio
- Division of Hematology and Hematology Central Laboratory, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Patrik Michel
- Department of Clinical Neurosciences, Stroke Center, Neurology Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Buijs JT, van Beijnum R, Anijs RJS, Laghmani EH, Sensuk L, Minderhoud C, Ünlü B, Klok FA, Kuppen PJK, Cannegieter SC, Versteeg HH. The association of tumor-expressed REG4, SPINK4 and alpha-1 antitrypsin with cancer-associated thrombosis in colorectal cancer. J Thromb Thrombolysis 2024; 57:370-380. [PMID: 38066386 PMCID: PMC10961291 DOI: 10.1007/s11239-023-02907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 03/26/2024]
Abstract
Novel biomarkers are needed to improve current imperfect risk prediction models for cancer-associated thrombosis (CAT). We recently identified an RNA-sequencing profile that associates with CAT in colorectal cancer (CRC) patients, with REG4, SPINK4, and SERPINA1 as the top-3 upregulated genes at mRNA level. In the current study, we investigated whether protein expression of REG4, SPINK4 and alpha-1 antitrypsin (A1AT, encoded by SERPINA1) in the tumor associated with CAT in an independent cohort of CRC patients. From 418 patients with resected CRC, 18 patients who developed CAT were age, sex, and tumor stage-matched to 18 CRC patients without CAT. Protein expression was detected by immunohistochemical staining and scored blindly by assessing the H-score (percentage positive cells*scoring intensity). The association with CAT was assessed by means of logistic regression, using patients with an H-score below 33 as reference group. The odds ratios (ORs) for developing CAT for patients with A1AThigh, REG4high, SPINK4high tumors were 3.5 (95%CI 0.8-14.5), 2.0 (95%CI 0.5-7.6) and 2.0 (95%CI 0.5-7.4) when compared to A1ATlow, REG4low, SPINK4low, respectively. The OR was increased to 24.0 (95%CI 1.1-505.1) when two proteins were combined (A1AThigh/REG4high). This nested case-control study shows that combined protein expression of A1AT and REG4 associate with CAT in patients with colorectal cancer. Therefore, REG4/A1AT are potential biomarkers to improve the identification of patients with CRC who may benefit from thromboprophylaxis.
Collapse
Affiliation(s)
- Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Robin van Beijnum
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rayna J S Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lily Sensuk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cas Minderhoud
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Betül Ünlü
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Frederikus A Klok
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Suzanne C Cannegieter
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Epidemiology, LUMC, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Park JK, Brake MA, Schulman S. Human Genetic Variation in F3 and Its Impact on Tissue Factor-Dependent Disease. Semin Thromb Hemost 2024; 50:188-199. [PMID: 37201535 DOI: 10.1055/s-0043-1769079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tissue factor (TF) is the primary initiator of blood coagulation in humans. As improper intravascular TF expression and procoagulant activity underlie numerous thrombotic disorders, there has been longstanding interest in the contribution of heritable genetic variation in F3, the gene encoding TF, to human disease. This review seeks to comprehensively and critically synthesize small case-control studies focused on candidate single nucleotide polymorphisms (SNPs), as well as modern genome-wide association studies (GWAS) seeking to discover novel associations between variants and clinical phenotypes. Where possible, correlative laboratory studies, expression quantitative trait loci, and protein quantitative trait loci are evaluated to glean potential mechanistic insights. Most disease associations implicated in historical case-control studies have proven difficult to replicate in large GWAS. Nevertheless, SNPs linked to F3, such as rs2022030, are associated with increased F3 mRNA expression, monocyte TF expression after endotoxin exposure, and circulating levels of the prothrombotic biomarker D-dimer, consistent with the central role of TF in the initiation of blood coagulation.
Collapse
Affiliation(s)
- Jin K Park
- Division of Health, Sciences, and Technology, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts
| | - Marisa A Brake
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Sol Schulman
- Division of Health, Sciences, and Technology, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Doubre H, Monnet I, Azarian R, Girard P, Meyer G, Trichereau J, Devillier P, Van Dreden P, Couderc LJ, Chouaid C, Vasse M. Plasma tissue factor activity in lung cancer patients predicts venous thromboembolism and poor overall survival. Res Pract Thromb Haemost 2024; 8:102359. [PMID: 38666062 PMCID: PMC11043639 DOI: 10.1016/j.rpth.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background Biomarkers to identify lung cancer (LC) patients with high risk of venous thromboembolism (VTE) are needed. Objectives To evaluate the usefulness of plasma tissue factor activity (TFA) and D-dimer levels for the prediction of VTE and overall survival in patients with LC. Methods In a prospective multicenter observational cohort of consecutive LC patients, TFA and D-dimer levels were measured at diagnosis before any cancer treatment (V1) and between 8 and 12 weeks after diagnosis (V2). Results Among 302 patients, 38 (12.6%) experienced VTE within the first year after diagnosis. V1-TFA and V1-D-dimer levels were significantly (P = .02) higher in patients who presented VTE within 3 months than in patients without VTE: V1-TFA was 2.02 (25th-75th percentiles, 0.20-4.01) vs 0.49 (0.20-3.09) ng/mL and V1-D-dimer was 1.42 (0.64-4.40) vs 0.69 (0.39-1.53) μg/mL, respectively. Cutoffs of 1.92 ng/mL for TFA and 1.26 μg/mL for D-dimer could discriminate both groups of patients. In multivariate analysis, V1-TFA > 1.92 ng/mL was the only significant predictor of VTE risk at 1 year (hazard ratio, 2.10; 95% CI, 1.06-4.16; P = .03). V2-TFA, quantified in 251 patients, decreased significantly compared with V1-TFA (0.20 vs 0.56 ng/mL, P < .05), but a V2-TFA level > 0.77 ng/mL could predict VTE in the following 3 months. Median overall survival was worse for patients with V1-TFA > 1.92 ng/mL (14.6 vs 23.8 months) and V1-D-dimer > 1.26 μg/mL (13.8 vs 24 months, P < .001). Conclusion High plasma TFA levels are associated with the occurrence of VTE within the next 3 months after each visit (V1 or V2) and poor survival.
Collapse
Affiliation(s)
- Helene Doubre
- Service de Pneumologie, Hôpital Foch, Suresnes, France
| | - Isabelle Monnet
- Service de Pneumologie, Centre Hospitalier Intercommunal, Creteil, France
| | - Reza Azarian
- Service de Pneumologie, Centre Hospitalier Versailles, Le Chesnay, France
| | - Philippe Girard
- Département de pneumologie, Institut du Thorax Curie-Montsouris, Institut Mutualiste Montsouris, Paris, France
| | - Guy Meyer
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Trichereau
- Direction Recherche Clinique et Innovation, Hôpital Foch, Suresnes, France
| | - Philippe Devillier
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- VIM Suresnes, UMR 0892, Pôle des Maladies Respiratoires, Hopital Foch, Université Paris Saclay, Suresnes, France
| | | | | | - Christos Chouaid
- Service de Pneumologie, Centre Hospitalier Intercommunal, Creteil, France
| | - Marc Vasse
- Biology Department, Hôpital Foch, Suresnes, France
- UMRS-1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
31
|
Zhang Y, Liu L, Pei J, Ren Z, Deng Y, Yu K. Tissue factor overexpression promotes resistance to KRAS-G12C inhibition in non-small cell lung cancer. Oncogene 2024; 43:668-681. [PMID: 38191673 PMCID: PMC10890931 DOI: 10.1038/s41388-023-02924-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
The recently approved KRASG12C mutation-specific inhibitors sotorasib and adagrasib (KRASG12C-I) represent a promising therapy for KRASG12C-driven non-small cell lung cancer (NSCLC). However, many eligible patients do not benefit due to intrinsic or acquired drug resistance. Tissue factor (TF) is overexpressed in KRAS-mutated (KRASmut) NSCLC and is the target of the FDA-approved ADC Tivdak. Here, we employed HuSC1-39, the parent antibody of a clinical stage TF-ADC (NCT04843709), to investigate the role of TF in KRASmut NSCLC. We found that patients with TF-overexpression had poor survival, elevated P-ERK/P-AKT activity levels and low immune effector cell infiltration in the tumor. In a panel of KRASG12C cell lines, KRASG12C-I response correlated with suppression of TF mRNA, which was not observed in resistant cells. In the drug resistant cells, TF-overexpression relied on an mTORC2-mediated and proteasome-dependent pathway. Combination treatment of HuSC1-39 or mTORC1/2 inhibitor MTI-31 with KRASG12C-I each produced synergistic antitumor efficacy in cell culture and in an orthotopic lung tumor model. TF-depletion in the resistant cells diminished epithelial mesenchymal transition, reduced tumor growth and greatly sensitized KRASG12C-I response. Moreover, employing immunohistochemistry and coculture studies, we demonstrated that HuSC1-39 or MTI-31 reset the tumor microenvironment and restore KRASG12C-I sensitivity by reshaping an M1-like macrophage profile with greatly enhanced phagocytic capacity toward tumor cell killing. Thus, we have identified the TF/mTORC2 axis as a critical new mechanism for triggering immunosuppression and KRASG12C-I resistance. We propose that targeting this axis with HuSC1-39 or MTI-31 will improve KRASG12C-I response in KRAS-driven NSCLC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Liang Liu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Jinpeng Pei
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Zhiqiang Ren
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Yan Deng
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China.
| |
Collapse
|
32
|
Li H, Huang H, Tan H, Jia Q, Song W, Zhang Q, Zhou B, Bai J. Key processes in tumor metastasis and therapeutic strategies with nanocarriers: a review. Mol Biol Rep 2024; 51:197. [PMID: 38270746 DOI: 10.1007/s11033-023-08910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/26/2024]
Abstract
Cancer metastasis is the leading cause of cancer-related death. Metastasis occurs at all stages of tumor development, with unexplored changes occurring at the primary site and distant colonization sites. The growing understanding of the metastatic process of tumor cells has contributed to the emergence of better treatment options and strategies. This review summarizes a range of features related to tumor cell metastasis and nanobased drug delivery systems for inhibiting tumor metastasis. The mechanisms of tumor metastasis in the ideal order of metastatic progression were summarized. We focus on the prominent role of nanocarriers in the treatment of tumor metastasis, summarizing the latest applications of nanocarriers in combination with drugs to target important components and processes of tumor metastasis and providing ideas for more effective nanodrug delivery systems.
Collapse
Affiliation(s)
- Hongjie Li
- School of Clinical Medicine, Weifang Medical University, 261053, Weifang, China
| | - Haiqin Huang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, 250012, Jinan, China
| | - Qitao Jia
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Weina Song
- Department of Pediatric Respiratory and Critical Care, Qilu Hospital of Shandong University Dezhou Hospital, 253000, Dezhou, China
| | - Qingdong Zhang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, 261053, Weifang, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| |
Collapse
|
33
|
Martinelli N, Moruzzi S, Udali S, Castagna A, Di Santo L, Ambrosani F, Baroni M, Pattini P, Pizzolo F, Ruzzenente A, Conci S, Grusse M, Campagnaro T, Van Dreden P, Guglielmi A, Bernardi F, Olivieri O, Friso S. Tissue factor pathway-related biomarkers in liver cancer: activated factor VII-antithrombin complex and tissue factor mRNA levels are associated with mortality. Res Pract Thromb Haemost 2024; 8:102310. [PMID: 38282902 PMCID: PMC10818084 DOI: 10.1016/j.rpth.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Background Tissue factor (TF), the main initiator of the coagulation cascade, plays a role in cancer progression and prognosis. Activated factor VII-antithrombin complex (FVIIa-AT) is considered an indirect marker of TF exposure by reflecting TF-FVIIa interaction. Objectives To assess the link between FVIIa-AT plasma levels, TF messenger RNA (mRNA) expression, and survival in cancer. Methods TF pathway-related coagulation biomarkers were assessed in 136 patients with cancer (52 with hepatocellular carcinoma, 41 with cholangiocarcinoma, and 43 with colon cancer) undergoing surgical intervention with curative intent. TF mRNA expression analysis in neoplastic vs nonneoplastic liver tissues was evaluated in a subgroup of 91 patients with primary liver cancer. Results FVIIa-AT levels were higher in patients with cancer than in 136 sex- and age-matched cancer-free controls. In patients with cancer, high levels of FVIIa-AT and total TF pathway inhibitor were associated with an increased mortality risk after adjustment for confounders, but only FVIIa-AT remained a predictor of mortality by including both FVIIa-AT and total TF pathway inhibitor in Cox regression (hazard ratio, 2.80; 95% CI, 1.23-6.39; the highest vs the lowest quartile). This association remained significant even after adjustment for extracellular vesicle-associated TF-dependent procoagulant activity. In the subgroup of patients with primary liver cancer, patients with high TF mRNA levels had an increased mortality risk compared with that for those with low TF mRNA levels (hazard ratio, 1.92; 95% CI, 1.03-3.57), and there was a consistent correlation among high FVIIa-AT levels, high TF mRNA levels, and increased risk of mortality. Conclusion High FVIIa-AT levels may allow the identification of patients with cancer involving high TF expression and predict a higher mortality risk in liver cancer.
Collapse
Affiliation(s)
| | - Sara Moruzzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Udali
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Laura Di Santo
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | - Simone Conci
- Department of Surgery, University of Verona, Verona, Italy
| | - Matthieu Grusse
- Clinical Research Department, Diagnostica Stago, Gennevilliers, France
| | | | | | | | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
34
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Fukui S, Wada H, Ikeda K, Kobayashi M, Shimada Y, Nakazawa Y, Mizutani H, Ichikawa Y, Nishiura Y, Moritani I, Yamanaka Y, Inoue H, Shimaoka M, Shimpo H, Shiraki K. Detection of a Prethrombotic State in Patients with Hepatocellular Carcinoma, Using a Clot Waveform Analysis. Clin Appl Thromb Hemost 2024; 30:10760296241246002. [PMID: 38591954 PMCID: PMC11005492 DOI: 10.1177/10760296241246002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Although hepatocellular carcinoma (HCC) is frequently associated with thrombosis, it is also associated with liver cirrhosis (LC) which causes hemostatic abnormalities. Therefore, hemostatic abnormalities in patients with HCC were examined using a clot waveform analysis (CWA). Methods: Hemostatic abnormalities in 88 samples from HCC patients, 48 samples from LC patients and 153 samples from patients with chronic liver diseases (CH) were examined using a CWA-activated partial thromboplastin time (APTT) and small amount of tissue factor induced FIX activation (sTF/FIXa) assay. Results: There were no significant differences in the peak time on CWA-APTT among HCC, LC, and CH, and the peak heights of CWA-APTT were significantly higher in HCC and CH than in HVs and LC. The peak heights of the CWA-sTF/FIXa were significantly higher in HCC than in LC. The peak times of the CWA-APTT were significantly longer in stages B, C, and D than in stage A or cases of response. In the receiver operating characteristic (ROC) curve, the fibrin formation height (FFH) of the CWA-APTT and CWA-sTF/FIXa showed the highest diagnostic ability for HCC and LC, respectively. Thrombosis was observed in 13 HCC patients, and arterial thrombosis and portal vein thrombosis were frequently associated with HCC without LC and HCC with LC, respectively. In ROC, the peak time×peak height of the first derivative on the CWA-sTF/FIXa showed the highest diagnostic ability for thrombosis. Conclusion: The CWA-APTT and CWA-sTF/FIXa can increase the evaluability of HCC including the association with LC and thrombotic complications.
Collapse
Affiliation(s)
- Shunsuke Fukui
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hideo Wada
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
- Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Kohei Ikeda
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Mayu Kobayashi
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yasuaki Shimada
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuuichi Nakazawa
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hiroki Mizutani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuhuko Ichikawa
- Department of Central Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuuki Nishiura
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Isao Moritani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yutaka Yamanaka
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hidekazu Inoue
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideto Shimpo
- Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Katsuya Shiraki
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
- Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| |
Collapse
|
36
|
Su Y, Yi J, Zhang Y, Leng D, Huang X, Shi X, Zhang Y. EML4-ALK fusion protein in Lung cancer cells enhances venous thrombogenicity through the pERK1/2-AP-1-tissue factor axis. J Thromb Thrombolysis 2024; 57:67-81. [PMID: 37940761 PMCID: PMC10830642 DOI: 10.1007/s11239-023-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Accumulating evidence links the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement to venous thromboembolism (VTE) in non-small cell lung cancer (NSCLC) patients. However, the corresponding mechanisms remain unclear. METHOD High-throughput sequencing analysis of H3122 human ALK-positive NSCLC cells treated with ALK inhibitor/ dimethyl sulfoxide (DMSO) was performed to identify coagulation-associated differential genes between EML4-ALK fusion protein inhibited cells and control cells. Sequentially, we confirmed its expression in NSCLC patients' tissues and in the plasma of a subcutaneous xenograft mouse model. An inferior vena cava (IVC) ligation model was used to assess clot formation potential. Additionally, pathways involved in tissue factor (TF) regulation were explored in ALK-positive cell lines H3122 and H2228. Statistical significance was determined by Student t-test and one-way ANOVA using SPSS. RESULTS Sequencing analysis identified a significant downregulation of TF after inhibiting EML4-ALK fusion protein activity in H3122 cells. In clinical NSCLC cases, TF expression was increased especially in ALK-positive NSCLC tissues. Meanwhile, H3122 and H2228 with high TF expression exhibited shorter plasma clotting time and higher TF activity versus ALK-negative H1299 and A549 in cell culture supernatant. Mice bearing H2228 tumor showed a higher concentration of tumor-derived TF and TF activity in plasma and the highest adjusted IVC clot weights. Limiting EML4-ALK protein phosphorylation downregulated extracellular regulated protein kinases 1/2 (ERK1/2)-activating the protein-1(AP-1) signaling pathway and thus attenuated TF expression. CONCLUSION EML4-ALK fusion protein may enhance venous thrombogenicity by regulating coagulation factor TF expression. There was potential involvement of the pERK1/2-AP-1 pathway in this process.
Collapse
Affiliation(s)
- Yanping Su
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiawen Yi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dong Leng
- Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaoxi Huang
- Basic Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Yuhui Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
37
|
Martins-Cardoso K, Maçao A, Souza JL, Silva AG, König S, Martins-Gonçalves R, Hottz ED, Rondon AMR, Versteeg HH, Bozza PT, Almeida VH, Monteiro RQ. TF/PAR2 Signaling Axis Supports the Protumor Effect of Neutrophil Extracellular Traps (NETs) on Human Breast Cancer Cells. Cancers (Basel) 2023; 16:5. [PMID: 38201433 PMCID: PMC10778307 DOI: 10.3390/cancers16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have been implicated in several hallmarks of cancer. Among the protumor effects, NETs promote epithelial-mesenchymal transition (EMT) in different cancer models. EMT has been linked to an enhanced expression of the clotting-initiating protein, tissue factor (TF), thus favoring the metastatic potential. TF may also exert protumor effects by facilitating the activation of protease-activated receptor 2 (PAR2). Herein, we evaluated whether NETs could induce TF expression in breast cancer cells and further promote procoagulant and intracellular signaling effects via the TF/PAR2 axis. T-47D and MCF7 cell lines were treated with isolated NETs, and samples were obtained for real-time PCR, flow cytometry, Western blotting, and plasma coagulation assays. In silico analyses were performed employing RNA-seq data from breast cancer patients deposited in The Cancer Genome Atlas (TCGA) database. A positive correlation was observed between neutrophil/NETs gene signatures and TF gene expression. Neutrophils/NETs gene signatures and PAR2 gene expression also showed a significant positive correlation in the bioinformatics model. In vitro analysis showed that treatment with NETs upregulated TF gene and protein expression in breast cancer cell lines. The inhibition of ERK/JNK reduced the TF gene expression induced by NETs. Remarkably, the pharmacological or genetic inhibition of the TF/PAR2 signaling axis attenuated the NETs-induced expression of several protumor genes. Also, treatment of NETs with a neutrophil elastase inhibitor reduced the expression of metastasis-related genes. Our results suggest that the TF/PAR2 signaling axis contributes to the pro-cancer effects of NETs in human breast cancer cells.
Collapse
Affiliation(s)
- Karina Martins-Cardoso
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Aquiles Maçao
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Juliana L. Souza
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Alexander G. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Sandra König
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Remy Martins-Gonçalves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (R.M.-G.); (P.T.B.)
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Rio de Janeiro 23890-000, Brazil;
| | - Araci M. R. Rondon
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, 333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, 333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (R.M.-G.); (P.T.B.)
| | - Vitor H. Almeida
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| |
Collapse
|
38
|
Liu X, Deng J, Zhang R, Xing J, Wu Y, Chen W, Liang B, Xing D, Xu J, Zhang M. The clinical development of antibody-drug conjugates for non-small cell lung cancer therapy. Front Immunol 2023; 14:1335252. [PMID: 38162667 PMCID: PMC10755013 DOI: 10.3389/fimmu.2023.1335252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Despite the emergence of molecular targeted therapy and immune checkpoint inhibitors as standard first-line treatments for non-small cell lung cancer (NSCLC), their efficacy in some patients is limited by intrinsic and acquired resistance. Antibody-drug conjugates (ADCs), a revolutionary class of antitumor drugs, have displayed promising clinical outcomes in cancer treatment. In 2022, trastuzumab deruxtecan (Enhertu) was approved for treating HER2-mutated NSCLC, thereby underscoring the clinical value of ADCs in NSCLC treatment strategies. An increasing number of ADCs, focusing on NSCLC, are undergoing clinical trials, potentially positioning them as future treatment options. In this review, we encapsulate recent advancements in the clinical research of novel ADCs for treating NSCLC. Subsequently, we discuss the mechanisms of action, clinical efficacy, and associated limitations of these ADCs.
Collapse
Affiliation(s)
- Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
39
|
Paul S, Das K, Ghosh A, Chatterjee A, Bhoumick A, Basu A, Sen P. Coagulation factor VIIa enhances programmed death-ligand 1 expression and its stability in breast cancer cells to promote breast cancer immune evasion. J Thromb Haemost 2023; 21:3522-3538. [PMID: 37579880 DOI: 10.1016/j.jtha.2023.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Immunotherapy for breast cancer has not gained significant success. Coagulation factor VIIa (FVIIa)-tissue factor (TF) mediated activation of protease-activated receptor 2 (PAR2) is shown to promote metastasis and secretion of the immune-modulatory cytokines but the role of FVIIa in cancer immunology is still not well understood. OBJECTIVES Here, we aim to investigate whether FVIIa protects breast cancer cells from CD8 T-cell-mediated killing. METHODS Peripheral blood mononuclear cell-derived CD8 T cells were cocultured with vehicle or FVIIa pretreated MDAMB468 cells. The proliferation and activity of CD8 T cells were measured by flow cytometry and ELISA. An allograft model, using wild-type or TF/PAR2-deleted 4T1 cells, was employed to determine the effect of FVIIa on breast cancer immune evasion in vivo. RESULTS Here, we demonstrate that TF-FVIIa induces programmed death-ligand 1 (PD-L1) in breast cancer cells by activating PAR2. PAR2 activation triggers large tumor suppressor kinase 1 (LATS1) inactivation leading to loss of yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) phosphorylation and subsequent nuclear localization of YAP/TAZ. YAP/TAZ inhibition reduces PD-L1 expression and increases CD8 T-cell activity. We further demonstrate that, apart from transcriptional induction of PD-L1, PAR2 activation also increases PD-L1 stability by enhancing its glycosylation through N-glycosyltransferases STT3A and STT3B. CONCLUSION In a mouse model of breast cancer, tumor cell-specific PAR2 depletion leads to PD-L1 downregulation and increases anti-PD-1 immunotherapy efficacy. In conclusion, we showed that FVIIa-mediated signaling cascade in cancer cells serves as a tumor intrinsic mechanism of immunosuppression to promote cancer immune evasion.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Avinandan Bhoumick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Abhimanyu Basu
- Department of General Surgery, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
40
|
Emilescu RA, Jinga M, Cotan HT, Popa AM, Orlov-Slavu CM, Olaru MC, Iaciu CI, Parosanu AI, Moscalu M, Nitipir C. The Role of KRAS Mutation in Colorectal Cancer-Associated Thrombosis. Int J Mol Sci 2023; 24:16930. [PMID: 38069251 PMCID: PMC10707331 DOI: 10.3390/ijms242316930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Venous thromboembolic events (VTE) are common in patients with colorectal cancer (CRC) and represent a significant contributor to morbidity and mortality. Risk stratification is paramount in deciding the initiation of thromboprophylaxis and is calculated using scores that include tumor location, laboratory values, patient clinical characteristics, and tumor burden. Commonly used risk scores do not include the presence of molecular aberrations as a variable. This retrospective study aims to confirm the link between KRAS-activating mutations and the development of VTE in CRC. A total of 166 patients were included in this study. They were split into two cohorts based on KRAS mutational status. We evaluated the frequency and mean time to VTE development stratified by the presence of KRAS mutations. Patients with mutant KRAS had an odds ratio (OR) of 2.758 for VTE compared to KRAS wild-type patients, with an increased risk of thrombosis being maintained in KRAS mutant patients even after adjusting for other known VTE risk factors. Taking into account the results of this study, KRAS mutation represents an independent risk factor for VTE.
Collapse
Affiliation(s)
- Radu Andrei Emilescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania; (R.A.E.)
| | - Mariana Jinga
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania; (R.A.E.)
| | - Horia Teodor Cotan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania; (R.A.E.)
| | - Ana Maria Popa
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania; (R.A.E.)
| | - Cristina Maria Orlov-Slavu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania; (R.A.E.)
| | - Mihaela Cristina Olaru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania; (R.A.E.)
| | - Cristian Ion Iaciu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania; (R.A.E.)
| | - Andreea Ioana Parosanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania; (R.A.E.)
| | - Mihaela Moscalu
- Preventive Medicine and Interdisciplinarity Department, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Cornelia Nitipir
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania; (R.A.E.)
| |
Collapse
|
41
|
Mei X, Ouyang H, Zhang H, Jia W, Lu B, Zhang J, Ji L. Scutellarin suppresses the metastasis of triple-negative breast cancer via targeting TNFα/TNFR2-RUNX1-triggered G-CSF expression in endothelial cells. Biochem Pharmacol 2023; 217:115808. [PMID: 37716622 DOI: 10.1016/j.bcp.2023.115808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Triple-negative breast cancer (TNBC) is heterogeneous and aggressive, with high vascularity and frequent metastasis. We have already found natural flavonoid scutellarin (SC) suppressed spontaneous TNBC metastasis via normalizing tumor vasculature in vivo. In this study, supernatant from tumor necrosis factorα (TNFα)-treated human mammary microvascular endothelial cell (HMMEC) promoted cell migration and pseudopod formation in TNBC cells, but these phenomena were disappeared in SC-co-treated HMMEC. TNFα enhanced the expression of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in both HMMEC and human umbilical vein endothelial cell (HUVEC). G-CSF promoted TNBC migration and invasion in vitro, while G-CSF neutralization antibody and SC both inhibited TNBC metastasis in Balb/c mice. SC had no inhibition on the G-CSF-induced TNBC cell migration, but reduced G-CSF content in TNBC tumor tissues and TNFα-stimulated endothelial cells (ECs). SC restricted the nuclear translocation of runt-related transcription factor 1 (RUNX1) in TNBC tumor vessels and TNFα-treated ECs. RUNX1 was found to directly bind to the promoter of G-CSF in TNBC tumor vessels and regulated G-CSF expression. TNF receptor 2 (TNFR2) was crucial for regulating the TNFα-induced RUNX1 activation and G-CSF expression. Notably, SC hindered the interaction between TNFα and TNFR2 via binding to TNFR2. This work demonstrated that SC reduced TNBC metastasis by targeting TNFα/TNFR2-initiated RUNX1 activation and subsequent G-CSF production in TNBC-associated ECs.
Collapse
Affiliation(s)
- Xiyu Mei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Key Laboratory of Pharmacodynamic Material Basis Research in Chinese Medicine of Zhejiang Province, Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wangya Jia
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
42
|
Bai J, Li Y, Cai L. Clinical implications of forkhead box M1, cyclooxygenase-2 , and glucose-regulated protein 78 in breast invasive ductal carcinoma. World J Clin Cases 2023; 11:7284-7293. [PMID: 37969442 PMCID: PMC10643068 DOI: 10.12998/wjcc.v11.i30.7284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Breast infiltrating ductal carcinoma (BIDC) represents the largest heterotypic tumor group, and an in-depth understanding of the pathogenesis of BIDC is key to improving its prognosis. AIM To analyze the expression profiles and clinical implications of forkhead box M1 (FOXM1), cyclooxygenase-2 (COX-2), and glucose-regulated protein 78 (GRP78) in BIDC. METHODS A total of 65 BIDC patients and 70 healthy controls who presented to our hospital between August 2019 and May 2021 were selected for analysis. The peripheral blood FOXM1, COX-2, and GRP78 levels in both groups were measured and the association between their expression profiles in BIDC was examined. Additionally, we investigated the diagnostic value of FOXM1, COX-2, and GRP78 in patients with BIDC and their correlations with clinicopathological features. Furthermore, BIDC patients were followed for 1 year to identify factors influencing patient prognosis. RESULTS The levels of FOXM1, COX-2, and GRP78 were significantly higher in BIDC patients compared to healthy controls (P < 0.05), and a positive correlation was observed among them (P < 0.05). Receiver operating characteristic analysis demonstrated that FOXM1, COX-2, and GRP78 had excellent diagnostic value in predicting the occurrence of BIDC (P < 0.05). Subsequently, we found significant differences in FOXM1, COX-2, and GRP78 levels among patients with different histological grades and metastasis statuses (with vs without) (P < 0.05). Cox analysis revealed that FOXM1, COX-2, GRP78, increased histological grade, and the presence of tumor metastasis were independent risk factors for prognostic death in BIDC (P < 0.001). CONCLUSION FOXM1, COX-2, and GRP78 exhibit abnormally high expression in BIDC, promoting malignant tumor development and closely correlating with prognosis. These findings hold significant research implications for the future diagnosis and treatment of BIDC.
Collapse
Affiliation(s)
- Jie Bai
- Department of Clinical Laboratory, Joint Logistics Support Unit 940 Hospital, Lanzhou 730030, Gansu Province, China
| | - Ying Li
- Department of Breast Surgery, The Fourth Hospital of Shijiazhuang, Shijiazhuang 050032, Hebei Province, China
| | - Li Cai
- Department of Pathology, Huai’an Maternal and Child Health Care Center, Huai’an 223002, Jiangsu Province, China
| |
Collapse
|
43
|
Wittwer NL, Brown MP, Liapis V, Staudacher AH. Antibody drug conjugates: hitting the mark in pancreatic cancer? J Exp Clin Cancer Res 2023; 42:280. [PMID: 37880707 PMCID: PMC10598980 DOI: 10.1186/s13046-023-02868-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic cancer is one of the most common causes of cancer-related death, and the 5-year survival rate has only improved marginally over the last decade. Late detection of the disease means that in most cases the disease has advanced locally and/or metastasized, and curative surgery is not possible. Chemotherapy is still the first-line treatment however, this has only had a modest impact in improving survival, with associated toxicities. Therefore, there is an urgent need for targeted approaches to better treat pancreatic cancer, while minimizing treatment-induced side-effects. Antibody drug conjugates (ADCs) are one treatment option that could fill this gap. Here, a monoclonal antibody is used to deliver extremely potent drugs directly to the tumor site to improve on-target killing while reducing off-target toxicity. In this paper, we review the current literature for ADC targets that have been examined in vivo for treating pancreatic cancer, summarize current and on-going clinical trials using ADCs to treat pancreatic cancer and discuss potential strategies to improve their therapeutic window.
Collapse
Affiliation(s)
- Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| |
Collapse
|
44
|
Hu S, Yang Q, Chen Z, Fu W. Role of β1-integrin in promoting cell motility and tamoxifen resistance of human breast cancer MCF-7 cells. Asia Pac J Clin Oncol 2023; 19:e223-e230. [PMID: 36065151 DOI: 10.1111/ajco.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The mechanism of acquired resistance of tamoxifen in endocrine therapy of breast cancer is not fully understood. In this study, we investigated the genomic changes in acquired tamoxifen-resistant cell lines. METHODS Tamoxifen-resistant subclones (MCF-7R) derived from parent MCF-7 cells, which is an ER(+) breast cancer cell line, cultured with 4-hydrotamoxifen more than 6 months were used to obtain genomic alterations. Cell growth, microarray, and quantitative real-time PCR (q-RTPCR) assays were conducted. Additionally, the ITGB1 function was investigated in MCF-7R cells and MCF-7R ITGB1-silenced subclones using MTT and Transwell assays. Online pathway analysis was performed to assess the genetic characteristics of tamoxifen resistance. RESULTS The gene expression profile of the tamoxifen-resistant cell line was considerably changed compared to the tamoxifen-sensitive cell line. Of 4102 genes with altered expressions, 1986 genes were upregulated, whereas 2116 were downregulated. The ITGB1 expression in MCF-7R cells was higher than that in MCF-7 cells. Interestingly, ITGB1 silencing partially rescued the sensitivity of MCF-7R cells to tamoxifen and reduced their motility. The activation of the β1-integrin signaling pathway was probably responsible for this phenomenon. CONCLUSIONS Our data confirm the presence of alterations in the genes of tamoxifen-resistance breast cancer cells. ITGB1 probably partially contributes to tamoxifen resistance and cell motility via the β1-integrin signaling pathway. Thus, ITGB1 may be a potential target for the improvement of anti-hormone therapy reaction in ER(+) breast cancer patients.
Collapse
Affiliation(s)
- Song Hu
- Department of General Surgery, Chongqing University Central Hospital (Chong qing Emergency Medical Center), Chongqing, China
| | - Qian Yang
- Department of General Surgery, Chongqing University Central Hospital (Chong qing Emergency Medical Center), Chongqing, China
| | - Zhenhai Chen
- Department of General Surgery, Chongqing University Central Hospital (Chong qing Emergency Medical Center), Chongqing, China
| | - Weijie Fu
- Department of General Surgery, Chongqing University Central Hospital (Chong qing Emergency Medical Center), Chongqing, China
| |
Collapse
|
45
|
Ma Y, Wu S, Zhao F, Li H, Li Q, Zhang J, Li H, Yuan Z. Hirudin inhibits glioma growth through mTOR-regulated autophagy. J Cell Mol Med 2023; 27:2701-2713. [PMID: 37539490 PMCID: PMC10494300 DOI: 10.1111/jcmm.17851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/05/2023] Open
Abstract
Glioma is the most common primary malignant brain tumour, and survival is poor. Hirudin has anticancer pharmacological effects through suppression of glioma cell progression, but the molecular target and mechanism are poorly understood. In this study, we observed that hirudin dose- and time-dependently inhibited glioma invasion, migration and proliferation. Mechanistically, hirudin activated LC3-II but not Caspase-3 to induce the autophagic death of glioma cells by decreasing the phosphorylation of mTOR and its downstream substrates ULK1, P70S6K and 4EBP1. Furthermore, hirudin inhibited glioma growth and induced changes in autophagy in cell-derived xenograft (CDX) nude mice, with a decrease in mTOR activity and activation of LC3-II. Collectively, our results highlight a new anticancer mechanism of hirudin in which hirudin-induced inhibition of glioma progression through autophagy activation is likely achieved by inhibition of the mTOR signalling pathway, thus providing a molecular basis for hirudin as a potential and effective clinical drug for glioma therapy.
Collapse
Affiliation(s)
- Ying Ma
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Senbin Wu
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Fanyi Zhao
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Huifeng Li
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Qiaohong Li
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Jingzhi Zhang
- Department of Traditional Chinese MedicineThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hua Li
- Laboratory animal center, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Zhongmin Yuan
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| |
Collapse
|
46
|
Chen Q, Cui S, Huang J, Wang J, Wang D, Wang H, Lyu S, Lang R. Venous thromboembolism in patients undergoing distal cholangiocarcinoma surgery: Prevalence, risk factors, and outcomes. Asian J Surg 2023; 46:3648-3655. [PMID: 36797089 DOI: 10.1016/j.asjsur.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND To investigate venous thromboembolism (VTE) in patients undergoing distal cholangiocarcinoma (dCCA) surgery, we performed a single-center study to assess its prevalence, risk factors, prognosis. METHOD We studied a total of 177 patients undergoing dCCA surgery from January 2017 to April 2022. Demographic, clinical data, laboratory data (including lower extremity ultrasound findings), and outcome variables were obtained, and compared between VTE and non-VTE groups. RESULTS Of the 177 patients undergoing dCCA surgery (aged 65.2 ± 9.6 years; 108 (61.0%) male), 64 patients developed VTE after surgery. Logistic multivariate analysis showed that, age, operation procedure, TNM stage, ventilator duration and preoperative D-dimer were independent risk factors. Based on these factors, we constructed the nomogram to predict VTE after dCCA for the first time. The areas under the receiver operating curve (ROC) of the nomogram were 0.80 (95% CI: 0.72-0.88) and 0.79 (95% CI: 0.73-0.89) in the training and validation groups, respectively. Patients developed VTE had a worse prognosis by Kaplan-Meier curve analysis (p = 0.001). CONCLUSION The prevalence of VTE is high and is associated with adverse outcomes in patients undergoing dCCA surgery. We developed a nomogram assessing VTE risk, which may help clinicians to screen out people at high risk for VTE and to undertake rational preventive measures.
Collapse
Affiliation(s)
- Qing Chen
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Songping Cui
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jincan Huang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Wang
- Department of Thoaracic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Di Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hanxuan Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shaocheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
47
|
Wilhelm G, Mertowska P, Mertowski S, Przysucha A, Strużyna J, Grywalska E, Torres K. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int J Mol Sci 2023; 24:12563. [PMID: 37628744 PMCID: PMC10454528 DOI: 10.3390/ijms241612563] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The coagulation and immune systems, two vital systems in the human body, share intimate connections that fundamentally determine patient health. These systems work together through several common regulatory pathways, including the Tissue Factor (TF) Pathway. Immune cells expressing TF and producing pro-inflammatory cytokines can influence coagulation, while coagulation factors and processes reciprocally impact immune responses by activating immune cells and controlling their functions. These shared pathways contribute to maintaining health and are also involved in various pathological conditions. Dysregulated coagulation, triggered by infection, inflammation, or tissue damage, can result in conditions such as disseminated intravascular coagulation (DIC). Concurrently, immune dysregulation may lead to coagulation disorders and thrombotic complications. This review elucidates these intricate interactions, emphasizing their roles in the pathogenesis of autoimmune diseases and cancer. Understanding the complex interplay between these systems is critical for disease management and the development of effective treatments. By exploring these common regulatory mechanisms, we can uncover innovative therapeutic strategies targeting these intricate disorders. Thus, this paper presents a comprehensive overview of the mutual interaction between the coagulation and immune systems, highlighting its significance in health maintenance and disease pathology.
Collapse
Affiliation(s)
- Grzegorz Wilhelm
- Department of Plastic and Reconstructive Surgery and Microsurgery, Medical University of Lublin, 20-059 Lublin, Poland; (G.W.); (K.T.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Anna Przysucha
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Jerzy Strużyna
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Kamil Torres
- Department of Plastic and Reconstructive Surgery and Microsurgery, Medical University of Lublin, 20-059 Lublin, Poland; (G.W.); (K.T.)
| |
Collapse
|
48
|
Heo J, Lee H, Seog Y, Kim S, Baek JH, Park H, Seo KD, Kim GS, Cho HJ, Baik M, Yoo J, Kim J, Lee J, Chang Y, Song TJ, Seo JH, Ahn SH, Lee HW, Kwon I, Park E, Kim BM, Kim DJ, Kim YD, Nam HS. Cancer Prediction With Machine Learning of Thrombi From Thrombectomy in Stroke: Multicenter Development and Validation. Stroke 2023; 54:2105-2113. [PMID: 37462056 DOI: 10.1161/strokeaha.123.043127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND We aimed to develop and validate machine learning models to diagnose patients with ischemic stroke with cancer through the analysis of histopathologic images of thrombi obtained during endovascular thrombectomy. METHODS This was a retrospective study using a prospective multicenter registry which enrolled consecutive patients with acute ischemic stroke from South Korea who underwent endovascular thrombectomy. This study included patients admitted between July 1, 2017 and December 31, 2021 from 6 academic university hospitals. Whole-slide scanning was performed for immunohistochemically stained thrombi. Machine learning models were developed using transfer learning with image slices as input to classify patients into 2 groups: cancer group or other determined cause group. The models were developed and internally validated using thrombi from patients of the primary center, and external validation was conducted in 5 centers. The model was also applied to patients with hidden cancer who were diagnosed with cancer within 1 month of their index stroke. RESULTS The study included 70 561 images from 182 patients in both internal and external datasets (119 patients in internal and 63 in external). Machine learning models were developed for each immunohistochemical staining using antibodies against platelets, fibrin, and erythrocytes. The platelet model demonstrated consistently high accuracy in classifying patients with cancer, with area under the receiver operating characteristic curve of 0.986 (95% CI, 0.983-0.989) during training, 0.954 (95% CI, 0.937-0.972) during internal validation, and 0.949 (95% CI, 0.891-1.000) during external validation. When applied to patients with occult cancer, the model accurately predicted the presence of cancer with high probabilities ranging from 88.5% to 99.2%. CONCLUSIONS Machine learning models may be used for prediction of cancer as the underlying cause or detection of occult cancer, using platelet-stained immunohistochemical slide images of thrombi obtained during endovascular thrombectomy.
Collapse
Affiliation(s)
- JoonNyung Heo
- Department of Neurology (J.N., H.L., Y.S., S.K., H.W.L., I.K., Y.D.K., H.S.N.), Yonsei University College of Medicine, Seoul, Korea
- Department of Radiology (J.H., H.L., B.M.K., D.J.K.), Yonsei University College of Medicine, Seoul, Korea
| | - Hyungwoo Lee
- Department of Neurology (J.N., H.L., Y.S., S.K., H.W.L., I.K., Y.D.K., H.S.N.), Yonsei University College of Medicine, Seoul, Korea
- Department of Radiology (J.H., H.L., B.M.K., D.J.K.), Yonsei University College of Medicine, Seoul, Korea
| | - Young Seog
- Department of Neurology (J.N., H.L., Y.S., S.K., H.W.L., I.K., Y.D.K., H.S.N.), Yonsei University College of Medicine, Seoul, Korea
| | - Sungeun Kim
- Department of Neurology (J.N., H.L., Y.S., S.K., H.W.L., I.K., Y.D.K., H.S.N.), Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, Korea (S.K., H.W.L., I.K., E.P., Y.G.K., H.S.N.)
| | - Jang-Hyun Baek
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-H.B.)
| | - Hyungjong Park
- Department of Neurology, Keimyung University School of Medicine, Daegu, Korea (H.P.)
| | - Kwon-Duk Seo
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Korea (K.-D.S., G.S.K.)
| | - Gyu Sik Kim
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Korea (K.-D.S., G.S.K.)
| | - Han-Jin Cho
- Department of Neurology, Pusan National University School of Medicine, Busan, Korea (H.-J.C.)
| | - Minyoul Baik
- Department of Neurology, Yonsei University College of Medicine, Yongin Severance Hospital, Korea (M.B., J.Y., J.K.)
| | - Joonsang Yoo
- Department of Neurology, Yonsei University College of Medicine, Yongin Severance Hospital, Korea (M.B., J.Y., J.K.)
| | - Jinkwon Kim
- Department of Neurology, Yonsei University College of Medicine, Yongin Severance Hospital, Korea (M.B., J.Y., J.K.)
| | - Jun Lee
- Department of Neurology, College of Medicine, Yeungnam University, Korea (J.L.)
| | - Yoonkyung Chang
- Department of Neurology, Mokdong Hospital (Y.-K.C.), Ewha Womans University College of Medicine, Korea
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital (T.-J.S.), Ewha Womans University College of Medicine, Korea
| | - Jung Hwa Seo
- Department of Neurology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea (J.H.S.)
| | - Seong Hwan Ahn
- Department of Neurology, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea (S.H.A.)
| | - Heow Won Lee
- Department of Neurology (J.N., H.L., Y.S., S.K., H.W.L., I.K., Y.D.K., H.S.N.), Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, Korea (S.K., H.W.L., I.K., E.P., Y.G.K., H.S.N.)
| | - Il Kwon
- Department of Neurology (J.N., H.L., Y.S., S.K., H.W.L., I.K., Y.D.K., H.S.N.), Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, Korea (S.K., H.W.L., I.K., E.P., Y.G.K., H.S.N.)
| | - Eunjeong Park
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, Korea (S.K., H.W.L., I.K., E.P., Y.G.K., H.S.N.)
| | - Byung Moon Kim
- Department of Radiology (J.H., H.L., B.M.K., D.J.K.), Yonsei University College of Medicine, Seoul, Korea
| | - Dong Joon Kim
- Department of Radiology (J.H., H.L., B.M.K., D.J.K.), Yonsei University College of Medicine, Seoul, Korea
| | - Young Dae Kim
- Department of Neurology (J.N., H.L., Y.S., S.K., H.W.L., I.K., Y.D.K., H.S.N.), Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, Korea (S.K., H.W.L., I.K., E.P., Y.G.K., H.S.N.)
| | - Hyo Suk Nam
- Department of Neurology (J.N., H.L., Y.S., S.K., H.W.L., I.K., Y.D.K., H.S.N.), Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, Korea (S.K., H.W.L., I.K., E.P., Y.G.K., H.S.N.)
| |
Collapse
|
49
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Esapa B, Jiang J, Cheung A, Chenoweth A, Thurston DE, Karagiannis SN. Target Antigen Attributes and Their Contributions to Clinically Approved Antibody-Drug Conjugates (ADCs) in Haematopoietic and Solid Cancers. Cancers (Basel) 2023; 15:1845. [PMID: 36980732 PMCID: PMC10046624 DOI: 10.3390/cancers15061845] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Antibody drug conjugates (ADCs) are powerful anti-cancer therapies comprising an antibody joined to a cytotoxic payload through a chemical linker. ADCs exploit the specificity of antibodies for their target antigens, combined with the potency of cytotoxic drugs, to selectively kill target antigen-expressing tumour cells. The recent rapid advancement of the ADC field has so far yielded twelve and eight ADCs approved by the US and EU regulatory bodies, respectively. These serve as effective targeted treatments for several haematological and solid tumour types. In the development of an ADC, the judicious choice of an antibody target antigen with high expression on malignant cells but restricted expression on normal tissues and immune cells is considered crucial to achieve selectivity and potency while minimising on-target off-tumour toxicities. Aside from this paradigm, the selection of an antigen for an ADC requires consideration of several factors relating to the expression pattern and biological features of the target antigen. In this review, we discuss the attributes of antigens selected as targets for antibodies used in clinically approved ADCs for the treatment of haematological and solid malignancies. We discuss target expression, functions, and cellular kinetics, and we consider how these factors might contribute to ADC efficacy.
Collapse
Affiliation(s)
- Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Jiexuan Jiang
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Anthony Cheung
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - David E. Thurston
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| |
Collapse
|