1
|
Gxasheka M, Mbita Z, Laka K, Mndela M, Dlamini P. Phytochemical Analysis and Allelopathic Potential of an Aggressive Encroacher Shrub, Euryops floribundus ( Asteraceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:601. [PMID: 40006860 PMCID: PMC11859777 DOI: 10.3390/plants14040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Euryops floribundus is an encroaching shrub species that poses a threat to grassland diversity and productivity in the Eastern Cape region of South Africa. This shrub inhibits understory herbaceous plant recruitment and establishment, thereby exposing soils to erosion, owing potentially to toxins it secretes. However, the allelochemicals of E. floribundus and their potential effects on the germination and establishment of plants remains poorly understood. We investigated the phytochemical classes of leaves and twigs of E. floribundus and evaluated the effects of extracts from these plant parts on seed germination and seedling growth of Lactuca sativa through a laboratory experiment. In the laboratory, we analysed phytochemicals in leaf and twig extracts and tested their allelopathic effects on Lactuca sativa seed germination and growth using the Petri dish method. In this proof-of-concept study, we identified 12 phytochemical classes of E. floribundus. Quantitative analysis showed that the leaves had significantly higher levels of flavonoids, phenolics, and tannins than twigs. As a result, leaf extracts caused 100% inhibition of seed germination, while twig extracts inhibited seed germination by 90% at 50 g L-1. Both leaf and twig extracts also significantly reduced radicle and plumule growth, with a stronger effect observed from the leaves than twigs. This study provides new insights into the phytochemical composition and strong allelopathic potential of E. floribundus, contributing to a better understanding of the mechanisms driving its encroachment in semi-arid grasslands.
Collapse
Affiliation(s)
- Masibonge Gxasheka
- Department of Plant Production, Soil Science & Agricultural Engineering, School of Agriculture & Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga, Polokwane 0727, South Africa;
- Department of Livestock and Pasture, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa;
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, Polokwane 0727, South Africa; (Z.M.); (K.L.)
| | - Kagiso Laka
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, Polokwane 0727, South Africa; (Z.M.); (K.L.)
| | - Mthunzi Mndela
- Department of Livestock and Pasture, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa;
| | - Phesheya Dlamini
- Department of Plant Production, Soil Science & Agricultural Engineering, School of Agriculture & Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga, Polokwane 0727, South Africa;
| |
Collapse
|
2
|
Muravnik LE, Kostina OV, Mosina AA. Morphology, histochemistry and ultrastructure of the floral glandular trichomes in three Doronicum species (Asteraceae). PROTOPLASMA 2025:10.1007/s00709-025-02033-5. [PMID: 39833597 DOI: 10.1007/s00709-025-02033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Previously, it was found that four types of glandular trichomes (GTs) are developed on the surface of all aerial organs in Doronicum species. A detailed study of leaves had shown that only two types of GTs form in them. Nothing was known about any differences of GTs on vegetative and reproductive organs. Current work studies morphological, histochemical and ultrastructural features of two types of GTs arising on floral elements in three Doronicum species. The straight GTs there are on all elements of the inflorescence (peduncle, phyllaries, ray and disk florets); they have a short stalk and do not have a clearly visible head. The capitate GTs are located only on the inflorescence peduncle and phyllaries; the trichomes form a long stalk and a distinct head. The chemical composition of the secretion is confirmed by histochemical reactions. Both types of GTs have the specific ultrastructural features and secretory mechanisms. In capitate GTs, a smooth endoplasmic reticulum is the main organelle of cytoplasm and takes part in a synthesis of the phenolic substances. Phenols accumulate in the numerous small vacuoles and thick cell wall. In straight trichomes, leucoplasts of various shapes with plastoglobuli and peripheral reticulum predominate. Terpenes synthesized in leucoplasts are stored in the subcuticular cavity and are released when the cavity ruptures. The acidic polysaccharides are the additional components of a straight trichome secretion. The studied species of Doronicum differ from each other in localization, size and structure of the GTs.
Collapse
Affiliation(s)
- Lyudmila E Muravnik
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia.
| | - Olga V Kostina
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia
| | - Anna A Mosina
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia
| |
Collapse
|
3
|
Li J, Hu H, Fu H, Li J, Zeng T, Li J, Wang M, Jongsma MA, Wang C. Exploring the co-operativity of secretory structures for defense and pollination in flowering plants. PLANTA 2024; 259:41. [PMID: 38270671 DOI: 10.1007/s00425-023-04322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
MAIN CONCLUSION In flowers multiple secretory systems cooperate to deliver specialized metabolites to support specific roles in defence and pollination. The collective roles of cell types, enzymes, and transporters are discussed. The interplay between reproductive strategies and defense mechanisms in flowering plants has long been recognized, with trade-offs between investment in defense and reproduction predicted. Glandular trichomes and secretory cavities or ducts, which are epidermal and internal structures, play a pivotal role in the secretion, accumulation, and transport of specialized secondary metabolites, and contribute significantly to defense and pollination. Recent investigations have revealed an intricate connection between these two structures, whereby specialized volatile and non-volatile metabolites are exchanged, collectively shaping their respective ecological functions. However, a comprehensive understanding of this profound integration remains largely elusive. In this review, we explore the secretory systems and associated secondary metabolism primarily in Asteraceous species to propose potential shared mechanisms facilitating the directional translocation of these metabolites to diverse destinations. We summarize recent advances in our understanding of the cooperativity between epidermal and internal secretory structures in the biosynthesis, secretion, accumulation, and emission of terpenes, providing specific well-documented examples from pyrethrum (Tanacetum cinerariifolium). Pyrethrum is renowned for its natural pyrethrin insecticides, which accumulate in the flower head, and more recently, for emitting an aphid alarm pheromone. These examples highlight the diverse specializations of secondary metabolism in pyrethrum and raise intriguing questions regarding the regulation of production and translocation of these compounds within and between its various epidermal and internal secretory systems, spanning multiple tissues, to serve distinct ecological purposes. By discussing the cooperative nature of secretory structures in flowering plants, this review sheds light on the intricate mechanisms underlying the ecological roles of terpenes in defense and pollination.
Collapse
Affiliation(s)
- Jinjin Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hansen Fu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Li
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tuo Zeng
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Jocković J, Rajčević N, Zorić L, Jocković M, Radanović A, Cvejić S, Jocić S, Vujisić L, Miladinović D, Miklič V, Luković J. Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:345. [PMID: 38337878 PMCID: PMC10857358 DOI: 10.3390/plants13030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Although flower pollinator interactions are known to be mediated by floral traits, not enough attention has been paid to the research of secretory tissues and volatile components of sunflower disc florets as potentially important parameters in breeding programs. (1) To our knowledge, this is the first integrated study aimed at better understanding the attractiveness of sunflower capitula to insects. In the study, we have made a very detailed comparative analysis of secretory tissues and the characterization of the volatile components (VOCs) of disc florets in 10 wild perennial Helianthus species. (2) For anatomical analyses, cross-sections were obtained from the nectary zone of disc florets using a cryotechnique procedure. Micromorphological observation and morphological and anatomical analysis of disc florets were performed using light and scanning electron microscopy. For VOCs, we applied headspace, GC-FID, and GC/MS analyses. (3) The obtained results indicate that there is a difference between the analyzed traits among studied species. H. eggertii, H. hirsutus, H. mollis, H. resinosus, and H. tuberosus had high disc diameter values, a high cross-section area and disc floret corolla length, as well as the largest cross-section area and thickness of the disc florets nectary. In the analyzed VOCs, 30 different compounds were detected. The highest yield and quantity of α-Pinene was observed in H. mollis. (4) Inflorescence features, such as receptacle diameter, corolla and secretory tissue properties, and floret VOCs production and characterization, provided valuable information that can be used as guidelines in sunflower breeding programs to maximize pollinator attractiveness and increase seed yield.
Collapse
Affiliation(s)
- Jelena Jocković
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (S.C.); (S.J.); (D.M.); (V.M.)
| | - Nemanja Rajčević
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Lana Zorić
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (L.Z.); (J.L.)
| | - Milan Jocković
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (S.C.); (S.J.); (D.M.); (V.M.)
| | - Aleksandra Radanović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (S.C.); (S.J.); (D.M.); (V.M.)
| | - Sandra Cvejić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (S.C.); (S.J.); (D.M.); (V.M.)
| | - Siniša Jocić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (S.C.); (S.J.); (D.M.); (V.M.)
| | - Ljubodrag Vujisić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (S.C.); (S.J.); (D.M.); (V.M.)
| | - Vladimir Miklič
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (S.C.); (S.J.); (D.M.); (V.M.)
| | - Jadranka Luković
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (L.Z.); (J.L.)
| |
Collapse
|
5
|
Roth-Nebelsick A, Krause M. The Plant Leaf: A Biomimetic Resource for Multifunctional and Economic Design. Biomimetics (Basel) 2023; 8:biomimetics8020145. [PMID: 37092397 PMCID: PMC10123730 DOI: 10.3390/biomimetics8020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
As organs of photosynthesis, leaves are of vital importance for plants and a source of inspiration for biomimetic developments. Leaves are composed of interconnected functional elements that evolved in concert under high selective pressure, directed toward strategies for improving productivity with limited resources. In this paper, selected basic components of the leaf are described together with biomimetic examples derived from them. The epidermis (the "skin" of leaves) protects the leaf from uncontrolled desiccation and carries functional surface structures such as wax crystals and hairs. The epidermis is pierced by micropore apparatuses, stomata, which allow for regulated gas exchange. Photosynthesis takes place in the internal leaf tissue, while the venation system supplies the leaf with water and nutrients and exports the products of photosynthesis. Identifying the selective forces as well as functional limitations of the single components requires understanding the leaf as an integrated system that was shaped by evolution to maximize carbon gain from limited resource availability. These economic aspects of leaf function manifest themselves as trade-off solutions. Biomimetics is expected to benefit from a more holistic perspective on adaptive strategies and functional contexts of leaf structures.
Collapse
Affiliation(s)
| | - Matthias Krause
- State Museum of Natural History, Rosenstein 1, 70191 Stuttgart, Germany
| |
Collapse
|
6
|
Machado SR, de Deus Bento KB, Canaveze Y, Rodrigues TM. Peltate trichomes in the dormant shoot apex of Metrodorea nigra, a Rutaceae species with rhythmic growth. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:161-175. [PMID: 36278887 DOI: 10.1111/plb.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In Metrodorea nigra, a Rutaceae species with rhythmic growth, the shoot apex in the dormant stage is enclosed by modified stipules. The young organs are fully covered with peltate secretory trichomes, and these structures remain immersed in a hyaline exudate within a hood-shaped structure. Our study focused on the morpho-functional characterization of the peltate trichomes and cytological events associated with secretion. Shoot apices were collected during both dormant and active stages and processed for anatomical, cytochemical and ultrastructural studies. Trichomes initiate secretion early on, remain active throughout leaf development, but collapse as the leaves expand; at which time secretory cavities start differentiation in the mesophyll and secretion increases as the leaf reaches full expansion. The subcellular apparatus of the trichome head cells is consistent with hydrophilic and lipophilic secretion. Secretion involves two vesicle types: the smaller vesicles are PATAg-positive (periodic acid/thiocarbohydrazide/silver proteinate) for carbohydrates and the larger ones are PATAg-negative. In the first phase of secretory activity, the vesicles containing polysaccharides discharge their contents through exocytosis with the secretion accumulating beneath the cuticle, which detaches from the cell wall. Later, a massive discharge of lipophilic substances (lipids and terpenes/phenols) results in their accumulation between the wall and cuticle. Release of the secretions occurs throughout the cuticular microchannels. Continued protection of the leaves throughout shoot development is ensured by replacement of the collapsed secretory trichomes by oil-secreting cavities. Our findings provide new perspectives for understanding secretion regulation in shoot apices of woody species with rhythmic growth.
Collapse
Affiliation(s)
- S R Machado
- Center of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu City, SP, Brazil
| | - K B de Deus Bento
- Postgraduate Program in Plant Biology Interunits, Paulo State University (UNESP), Botucatu City, SP, Brazil
| | - Y Canaveze
- Department of Botany, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro City, RJ, Brazil
| | - T M Rodrigues
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences - IBB, São Paulo State University - UNESP, Botucatu City, SP, Brazil
| |
Collapse
|
7
|
Mehal KK, Kaur A, Singh HP, Batish DR. Investigating the phytotoxic potential of Verbesina encelioides: effect on growth and performance of co-occurring weed species. PROTOPLASMA 2023; 260:77-87. [PMID: 35441891 DOI: 10.1007/s00709-022-01761-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Allelopathy has been proposed as an efficient mechanism of invasion by plant species via growth inhibition and suppression of the resident plant community. Verbesina encelioides (Cav.) Benth. & Hook. f. ex A. Gray (golden crownbeard; Asteraceae), a native of south-western USA and Mexican Plateau, is an emerging troublesome invasive weed species of north-western states of India. We investigated the allelopathic potential of the aqueous extracts prepared from the fresh foliage and leaf litter of V. encelioides on its co-occurring species, Amaranthus viridis and Senna occidentalis. Phytotoxicity bioassay showed concentration-dependent (control < 0.5% < 1% < 2% < 4% extract) inhibition of growth and photosynthetic parameters in the test plants. Both the extracts induced ~ 50% inhibition of germination compared to control at 4% concentration. The maximum synthesis effect (collective effect on seedling length and dry weight) was observed to be - 0.69 and - 0.62 in A. viridis and - 0.68 and - 0.57 in S. occidentalis for the fresh leaf and leaf litter extracts, respectively, at 4% concentration. Also, an antagonistic concentration-dependent impact was observed on the photosynthetic pigments (total chlorophyll and chlorophyll a content) and photosynthetic efficiency. The liquid chromatography-mass spectrometry assay of leaf extracts revealed the presence of 15 allelochemicals including phenolic acids, flavonoids, phytosterols, phytophenols, dicarboxylic acid, guanidine, and triterpenes. Of these, 14 compounds were present in both fresh and leaf litter materials. However, a guanidine derivative, galegine, was only found in the fresh leaf material of the plant. The findings support the novel weapon hypothesis and suggest that V. encelioides competitively excludes its neighboring plants by virtue of allelopathic interference.
Collapse
Affiliation(s)
| | - Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
8
|
Naidoo Y, Dladla T, Dewir YH, Gangaram S, Naidoo CM, Rihan HZ. The Micromorphology and Histochemistry of Foliar Mixed Indumentum of Leucas lavandulaefolia (Lamiaceae). PLANTS (BASEL, SWITZERLAND) 2021; 10:1767. [PMID: 34579300 PMCID: PMC8465491 DOI: 10.3390/plants10091767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022]
Abstract
Leucas lavandulaefolia Sm. (Lamiaceae) is an important medicinal plant with a broad spectrum of pharmacological activities. This study aimed at characterizing the morphology, distribution, and chemical composition of the secretions of trichomes at different developmental stages on the leaves of L. lavandulaefolia, using light and electron microscopy. Morphological observations revealed the presence of bicellular non-glandular, glandular peltate, and capitate trichomes on both adaxial and abaxial leaf surfaces. The density of both non-glandular and glandular trichomes decreased with the progression of leaf development. Heads of peltate and short-stalked capitate trichomes were between 20.78-42.80 µm and 14.98-18.93 µm at different developmental stages. Furthermore, long-stalked capitate trichomes were rare and infrequent. Leaf sections revealed the presence of important secondary metabolites in glandular trichomes, i.e., terpenoids. This study represents the first report on the morphology and histochemistry of trichomes of L. lavandulaefolia; therefore, there is a great scope for further research in this field.
Collapse
Affiliation(s)
- Yougasphree Naidoo
- School of Life Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4000, South Africa; (Y.N.); (T.D.); (S.G.); (C.M.N.)
| | - Thobekile Dladla
- School of Life Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4000, South Africa; (Y.N.); (T.D.); (S.G.); (C.M.N.)
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Serisha Gangaram
- School of Life Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4000, South Africa; (Y.N.); (T.D.); (S.G.); (C.M.N.)
| | - Clarissa Marcelle Naidoo
- School of Life Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4000, South Africa; (Y.N.); (T.D.); (S.G.); (C.M.N.)
| | - Hail Z. Rihan
- Faculty of Science and Environment, School of Biological Sciences, University of Plymouth, Drake Circus PL4 8AA, UK;
- Phytome Life Sciences, Launceston PL15 7AB, UK
| |
Collapse
|
9
|
Amrehn E, Spring O. Ultrastructural Alterations in Cells of Sunflower Linear Glandular Trichomes during Maturation. PLANTS 2021; 10:plants10081515. [PMID: 34451559 PMCID: PMC8398616 DOI: 10.3390/plants10081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Sunflower and related taxa are known to possess a characteristic type of multicellular uniseriate trichome which produces sesquiterpenes and flavonoids of yet unknown function for this plant. Contrary to the metabolic profile, the cytological development and ultrastructural rearrangements during the biosynthetic activity of the trichome have not been studied in detail so far. Light, fluorescence and transmission electron microscopy were employed to investigate the functional structure of different trichome cells and their subcellular compartmentation in the pre-secretory, secretory and post-secretory phase. It was shown that the trichome was composed of four cell types, forming the trichome basis with a basal and a stalk cell, a variable number (mostly from five to eight) of barrel-shaped glandular cells and the tip consisting of a dome-shaped apical cell. Metabolic activity started at the trichome tip sometimes accompanied by the formation of small subcuticular cavities at the apical cell. Subsequently, metabolic activity progressed downwards in the upper glandular cells. Cells involved in the secretory process showed disintegration of the subcellular compartments and lost vitality in parallel to deposition of fluorescent and brownish metabolites. The subcuticular cavities usually collapsed in the early secretory stage, whereas the colored depositions remained in cells of senescent hairs.
Collapse
|
10
|
|
11
|
Leal M, Zampini IC, Mercado MI, Moreno MA, Simirgiotis MJ, Bórquez J, Ponessa G, Isla MI. Flourensia fiebrigii S.F. blake: A medicinal plant from the Argentinean highlands with potential use as anti-rheumatic and anti-inflammatory. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113296. [PMID: 32841690 DOI: 10.1016/j.jep.2020.113296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flourensia fiebrigii is a plant used in traditional medicine in the Argentine Calchaquí Valley as purgative, expectorant, anti-rheumatic and anti-inflammatory. AIM OF THE STUDY The aim of this study was to analyze the macroscopic and microscopic characteristics of F. fiebrigii leaf and stem, the phytochemical composition of leaves ethanolic extracts and to validate its traditional use as anti-rheumatic and anti-inflammatory. MATERIALS AND METHODS The macroscopic and microscopic description of F. fiebrigii leaf and stem was carried out. Two extracts (immersions and tinctures) from leaves were obtained. The phytochemical analysis and UHPLC-OT-MS metabolome fingerprinting of both extracts were performed. The anti-rheumatic and anti-inflammatory activities of both extracts were determined using enzymatic inhibition assays of xanthine-oxidase (XOD), secretory phospholipase A2 (sPLA2) and lipoxygenase (LOX). RESULTS The macroscopic and micrographic characters of F. fiebrigii were described to allow the botanical characterization of the plant species. The leaves extracts showed a high level of phenolic compounds with similar chromatographic patterns. Forty-five compounds were identified based on UHPLC-OT-MS including several sesquiterpenes, chalcones, flavonoids, isoflavonoids, a lignan and phenylpropanoids phenolic acids that have been identified for the first time in this plant species. F. fiebrigii extracts were able to inhibit the XOD activity and, consequently, the formation of uric acid and reactive oxygen species, primary cause of diseases, such as gouty arthritis (IC50 values of 1.10-2.12 μg/mL). Pro-inflammatory enzymes like sPLA2 and LOX were also inhibited by F. fiebrigii extracts (IC50 values of 22.00-2.20 μg/mL) decreasing the production of inflammation mediators. CONCLUSIONS The present work validates the traditional medicinal use of F. fiebrigii as anti-rheumatic and anti-inflammatory through the use of enzymatic assays. The presence of several chemical compounds with demonstrated anti-rheumatic and anti-inflammatory properties also supports the bioactivity of the F. fiebrigii.
Collapse
Affiliation(s)
- Mariana Leal
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Inés Mercado
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Alejandra Moreno
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina
| | - Mario Juan Simirgiotis
- Instituto de Farmacia, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 5090000, Chile
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, 1240000, Chile
| | - Graciela Ponessa
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
12
|
Zheng T, Wang M, Zhan J, Sun W, Yang Q, Lin Z, Bu T, Tang Z, Li C, Yan J, Shan Z, Chen H. Ferrous iron-induced increases in capitate glandular trichome density and upregulation of CbHO-1 contributes to increases in blinin content in Conyza blinii. PLANTA 2020; 252:81. [PMID: 33037484 DOI: 10.1007/s00425-020-03492-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Ferrous iron can promote the development of glandular trichomes and increase the content of blinin, which depends on CbHO-1 expression. Conyza blinii (C. blinii) is a unique Chinese herbal medicine that grows in Sichuan Province, China. Because the habitat of C. blinii is an iron ore mining area with abundant iron content, this species can be used as one of the best materials to study the mechanism of plant tolerance to iron. In this study, C. blinii was treated with ferrous-EDTA solutions at different concentrations, and it was found that the tolerance value of C. blinii to iron was 200 μM. Under this concentration, the plant height, root length, biomass, and iron content of C. blinii increased to the maximum values, and the effect was dependent on the upregulated expression of CbHO-1. At the same time, under ferrous iron, the photosynthetic capacity and capitate glandular trichome density of C. blinii also significantly increased, providing precursors and sites for the synthesis of blinin, thus significantly increasing the content of blinin. These processes were also dependent on the high expression of CbHO-1. Correlation analysis showed that there were strong positive correlations between iron content, capitate glandular trichome density, CbHO-1 gene expression, and blinin content. This study explored the effects of ferrous iron on the physiology and biochemistry of C. blinii, greatly improving our understanding of the mechanism of iron tolerance in C. blinii.
Collapse
Affiliation(s)
- Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Maojia Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Junyi Zhan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qin Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiyi Lin
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Zhi Shan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
13
|
Frey M, Klaiber I, Conrad J, Spring O. CYP71BL9, the missing link in costunolide synthesis of sunflower. PHYTOCHEMISTRY 2020; 177:112430. [PMID: 32516579 DOI: 10.1016/j.phytochem.2020.112430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Despite intensive research in recent years, the biosynthetic route to costunolide in sunflower so far remained obscured. Additional P450 sequences from public sunflower transcriptomic database were screened to search for candidate enzymes which are able to introduce the 6α-hydroxy-group required for the esterification with the carboxy group of germacarane A acid, the final step in costunolide formation. CYP71BL9, a new P450 enzyme from sunflower was shown to catalyze this hydroxylation, hence being identified as HaCOS. Phylogentically, HaCOS is closer related to HaG8H than to any other known costunolide synthase in Asteraceae.The enzyme was successfully employed to reconstruct the sunflower biosynthesis of costunolide in transformed tobacco. Contrary, in yeast, only minor amounts of sesquiterpene lactone was produced, while 5-hydroxyfarnesylic acid was formed instead. HaCOS in combination with HaG8H produced 8β-hydroxycostunolide (eupatolide) in transformed plants, thus indicating that sunflower possesses two independent modes of eupatolide synthesis via HaCOS and via HaES. The lack of HaCOS expression and of costunolide in trichomes suggests that the enzyme triggers the costunolied synthesis of the inner tissues of sunflower and might be linked to growth regulation processes.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Biology, Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Iris Klaiber
- Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Emil-Wolff-Str. 12, 70599, Stuttgart, Germany
| | - Jürgen Conrad
- Institute of Chemistry, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Otmar Spring
- Institute of Biology, Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| |
Collapse
|
14
|
Padilla-González GF, Amrehn E, Frey M, Gómez-Zeledón J, Kaa A, Costa FBD, Spring O. Metabolomic and Gene Expression Studies Reveal the Diversity, Distribution and Spatial Regulation of the Specialized Metabolism of Yacón ( Smallanthus sonchifolius, Asteraceae). Int J Mol Sci 2020; 21:ijms21124555. [PMID: 32604977 PMCID: PMC7348818 DOI: 10.3390/ijms21124555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 02/02/2023] Open
Abstract
Smallanthus sonchifolius, also known as yacón, is an Andean crop species commercialized for its nutraceutical and medicinal properties. The tuberous roots of yacón accumulate a diverse array of probiotic and bioactive metabolites including fructooligosaccharides and caffeic acid esters. However, the metabolic diversity of yacón remains unexplored, including the site of biosynthesis and accumulation of key metabolite classes. We report herein a multidisciplinary approach involving metabolomics, gene expression and scanning electron microscopy, to provide a comprehensive analysis of the diversity, distribution and spatial regulation of the specialized metabolism in yacón. Our results demonstrate that different metabolic fingerprints and gene expression patterns characterize specific tissues, organs and cultivars of yacón. Manual inspection of mass spectrometry data and molecular networking allowed the tentative identification of 71 metabolites, including undescribed structural analogues of known bioactive compounds. Imaging by scanning electron microscopy revealed the presence of a new type of glandular trichome in yacón bracts, with a distinctive metabolite profile. Furthermore, the high concentration of sesquiterpene lactones in capitate glandular trichomes and the restricted presence of certain flavonoids and caffeic acid esters in underground organs and internal tissues suggests that these metabolites could be involved in protective and ecological functions. This study demonstrates that individual organs and tissues make specific contributions to the highly diverse and specialized metabolome of yacón, which is proving to be a reservoir of previously undescribed molecules of potential significance in human health.
Collapse
Affiliation(s)
- Guillermo F. Padilla-González
- AsterBioChem Research Team, Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do café s/n, 14040-903 Ribeirão Preto, SP, Brazil;
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Kew Green Road, London TW9 3AB, UK
- Correspondence: ; Tel.: +44-20-8332-5375
| | - Evelyn Amrehn
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| | - Maximilian Frey
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| | - Javier Gómez-Zeledón
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| | - Alevtina Kaa
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| | - Fernando B. Da Costa
- AsterBioChem Research Team, Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do café s/n, 14040-903 Ribeirão Preto, SP, Brazil;
| | - Otmar Spring
- Department of Biochemistry of Plant Secondary Metabolism, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, BW, Germany; (E.A.); (M.F.); (J.G.-Z.); (A.K.); (O.S.)
| |
Collapse
|
15
|
Spring O, Schmauder K, Lackus ND, Schreiner J, Meier C, Wellhausen J, Smith LV, Frey M. Spatial and developmental synthesis of endogenous sesquiterpene lactones supports function in growth regulation of sunflower. PLANTA 2020; 252:2. [PMID: 32504343 PMCID: PMC7275010 DOI: 10.1007/s00425-020-03409-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
Tissue-specific occurrence and formation of endogenous sesquiterpene lactones has been assessed and suggests physiological function as antagonists of auxin-induced plant growth in sunflower. Sunflower, Helianthus annuus, accumulate high concentrations of bioactive sesquiterpene lactones (STL) in glandular trichomes, but in addition, structurally different STL occur in only trace amounts in the inner tissues. The spatial and temporal production of these endogenous STL during early phases of plant development is widely unknown and their physiological function as putative natural growth regulators is yet speculative. By means of HPLC and MS analysis it was shown that costunolide, dehydrocostuslactone, 8-epixanthatin and tomentosin are already present in dry seeds and can be extracted in low amounts from cotyledons, hypocotyls and roots of seedlings during the first days after germination. Semi-quantitative and RT-qPCR experiments with genes of the key enzymes of two independent routes of the endogenous STL biosynthesis confirmed the early and individual expression in these organs and revealed a gradual down regulation during the first 72-96 h after germination. Light irradiation of the plants led to a fast, but transient increase of STL in parts of the hypocotyl which correlated with growth retardation of the stem. One-sided external application of costunolide on hypocotyls conferred reduced growth of the treated side, thus resulting in the curving of the stem towards the side of the application. This indicates the inhibiting effects of STL on plant growth. The putative function of endogenous STL in sunflower as antagonists of auxin in growth processes is discussed.
Collapse
Affiliation(s)
- Otmar Spring
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Katharina Schmauder
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Nathalie D Lackus
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Jasmin Schreiner
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Carolin Meier
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Jan Wellhausen
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Lisa V Smith
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Maximilian Frey
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| |
Collapse
|
16
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
17
|
Metabolomic and gene expression approaches reveal the developmental and environmental regulation of the secondary metabolism of yacón (Smallanthus sonchifolius, Asteraceae). Sci Rep 2019; 9:13178. [PMID: 31511527 PMCID: PMC6739394 DOI: 10.1038/s41598-019-49246-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022] Open
Abstract
Acting as chemical defense or signaling compounds, secondary metabolites (SMs) play an essential role in the evolutionary success of many angiosperm plant families. However, the adaptive advantages that SMs confer, and the influence of environmental and developmental factors on SMs expression, remains poorly understood. A study of taxa endemic to the variable Andean climate, using a metabolomics approach, may provide further insight. By analyzing gene expression patterns and metabolic fingerprints, we report herein the developmental and environmental regulation of the secondary metabolism of Smallanthus sonchifolius (yacón), a medicinal Andean plant. Our results demonstrate a clear developmental stage dependent regulation of the secondary metabolism of yacón leaves wherein the metabolic diversity increases with plant age. However, environmental factors seem to regulate biosynthetic pathways, creating differences in the expression of chemical classes, pointing to an association between transcription levels of relevant genes and the relative amounts of more than 40 different metabolites. This study suggests that the secondary metabolism of yacón is regulated by a complex interplay between environmental factors and developmental stage and provides insight into the regulatory factors and adaptive roles of SMs in Andean taxa.
Collapse
|
18
|
|
19
|
Muravnik LE, Kostina OV, Mosina AA. Glandular trichomes of the leaves in three Doronicum species (Senecioneae, Asteraceae): morphology, histochemistry, and ultrastructure. PROTOPLASMA 2019; 256:789-803. [PMID: 30604244 DOI: 10.1007/s00709-018-01342-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/24/2018] [Indexed: 05/11/2023]
Abstract
Two types of glandular tichomes (GTs) develop on the leaves in three Doronicum species. The purpose of the work was to establish common and distinctive morphological, anatomical, histochemical, and ultrustructural features of the trichomes. It turned out that differences between types of trichomes are more significant than interspecific ones. For each Doronicum species, differences between GTs of two types include the dimensions, intensity of coloration by histochemical dyes, as well as ultrastructural features of the cells. The GTs of the first type are higher than GTs of the second type. Two to three upper cell layers of the first trichomes develop histochemical staining, whereas in the second ones, only apical cells give a positive histochemical reaction. In all trichomes, polysaccharides, polyphenols, and terpenoids are detected. In the GTs of the first type, polysaccharides are synthesized in larger quantity; in the GTs of the second type, synthesis of the secondary metabolites predominates. Main ultrastructural features of the GTs of the first type include proliferation of RER and an activity of Golgi apparatus denoting the synthesis of enzymes and pectin; however, development of SER, diversiform leucoplasts with reticular sheaths, and chloroplasts with peripheral plastid reticulum also demonstrate the synthesis of lipid substances. The ultrastructural characteristics of the second type GTs indicate the primary synthesis of lipid components. Secretion is localized in a periplasmic space of the upper cell layers. The secretory products pass through the cell wall, accumulate in the subcuticular cavity, and rupture it.
Collapse
Affiliation(s)
- Lyudmila E Muravnik
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, St. Petersburg, Russia, 197376.
| | - Olga V Kostina
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, St. Petersburg, Russia, 197376
| | - Anna A Mosina
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, St. Petersburg, Russia, 197376
| |
Collapse
|
20
|
Göpfert J, Conrad J, Spring O. 5-Deoxynevadensin, a Novel Flavone in Sunflower and Aspects of Biosynthesis during Trichome Development. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600101104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fluorescent microscopy of sunflower glandular trichomes from anther appendages showed a strong autofluorescence, caused by flavonoids. Chemical analysis with NMR and HRMS lead to the identification of 7-hydroxy-6,8,4′-trimethoxyflavone, a novel 5-deoxyflavone, exclusively found in capitate glandular trichomes. 5-Deoxy flavones are rarely found in Asteraceae and this is the first report for the genus Helianthus. Semiquantitative RT-PCR showed the presence of transcripts for phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) in all biosynthetically active trichome stages. PAL and CHS are key steps in flavonoid biosynthesis indicating that flavonoid production occurs directly within the trichomes. This offers the possibility for examination of 5-deoxyflavone biosynthesis within Asteraceae.
Collapse
Affiliation(s)
- Jens Göpfert
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Jürgen Conrad
- Bioorganic Chemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
21
|
Liu Y, Jing SX, Luo SH, Li SH. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep 2019; 36:626-665. [PMID: 30468448 DOI: 10.1039/c8np00077h] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation methods, chemistry, bioactivities, and biosynthesis of non-volatile natural products involving 489 compounds in plant glandular trichomes are reviewed.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology
- Shenyang Agricultural University
- Shenyang
- P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| |
Collapse
|
22
|
Caldas LA, Horvath RO, Ferreira-Silva GÁ, Ferreira MJP, Ionta M, Sartorelli P. Calein C, a Sesquiterpene Lactone Isolated From Calea Pinnatifida ( Asteraceae), Inhibits Mitotic Progression and Induces Apoptosis in MCF-7 Cells. Front Pharmacol 2018; 9:1191. [PMID: 30405412 PMCID: PMC6201056 DOI: 10.3389/fphar.2018.01191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Estrogen receptor-positive (ER+) breast cancer represents approximately 75% of diagnosed cases, while 15-20% of them are triple-negative (TN). Although there have been improvements in the therapeutic approach, the mortality rate remains elevated. Thus, it is necessary to identify new chemotherapeutic agents. The present study aimed to evaluate the effects of calein C, a sesquiterpene lactone isolated from Calea pinnatifida, on breast cancer cell lines MCF-7 (ER+), Hs578T (TN) and MDA-MB-231 (TN). Calein C significantly reduced the viability of all cell lines; however, MCF-7 cells were more responsive than MDA-MB-231 or Hs578T cells. Thus, the MCF-7 cell line was selected for further investigation. We demonstrated that calein C inhibited cell cycle progression in MCF-7 cells at M-phase. Increased frequency of mitosis was observed in calein C-treated samples compared to the control group, especially of the cell population in initial stages of the mitosis. These events were associated with the ability of calein C to modulate expression levels of critical regulators of mitosis progression. We observed a significant reduction in the relative mRNA abundance of PLK1 and AURKB along with a concomitant increase in CDKN1A (p21) in treated samples. In addition, calein C induced apoptosis in MCF-7 cells due to, at least in part, its ability to reduce the BCL2/BAX ratio. Therefore, our data provide evidence that calein C is an important antimitotic agent and should be considered for further in vivo investigations.
Collapse
Affiliation(s)
- Lhaís Araújo Caldas
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Renato O Horvath
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Guilherme Álvaro Ferreira-Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Marcelo J P Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Ionta
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Patricia Sartorelli
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
23
|
Frey M, Schmauder K, Pateraki I, Spring O. Biosynthesis of Eupatolide-A Metabolic Route for Sesquiterpene Lactone Formation Involving the P450 Enzyme CYP71DD6. ACS Chem Biol 2018; 13:1536-1543. [PMID: 29758164 DOI: 10.1021/acschembio.8b00126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sesquiterpene lactones are a class of natural compounds well-known for their bioactivity and are characteristic for the Asteraceae family. Most sesquiterpene lactones are considered derivatives of germacrene A acid (GAA). GAA can be stereospecifically hydroxylated by the cytochrome P450 enzymes (CYP) Lactuca sativa costunolide synthase CYP71BL2 (LsCOS) and Helianthus annuus GAA 8β-hydroxylase CYP71BL1 (HaG8H) at C6 (in α-orientation) or C8 (in β-orientation), respectively. Spontaneous subsequent lactonization of the resulting 6α-hydroxy-GAA leads to costunolide, whereas 8β-hydroxy-GAA has not yet been reported to cyclize to a sesquiterpene lactone. Sunflower and related species of the Heliantheae tribe contain sesquiterpene lactones mainly derived from inunolide (7,8-cis lactone) and eupatolide (8β-hydroxy-costunolide) precursors. However, the mechanism of 7,8-cis lactonization in general, and the 6,7-trans lactone formation in the sunflower tribe, remain elusive. Here, we show that, in plant cells, heterologous expression of CYP71BL1 leads to the formation of inunolide. Using a phylogenetic analysis of enzymes from the CYP71 family involved in sesquiterpenoid metabolism, we identified the CYP71DD6 gene, which was able to catalyze the 6,7-trans lactonization in sunflowers, using as a substrate 8β-hydroxy-GAA. Consequently, CYP71DD6 resulted in the synthesis of eupatolide, thus called HaES ( Helianthus annuus eupatolide synthase). Thus, our study shows the entry point for the biosynthesis of two distinct types of sesquiterpene lactones in sunflowers: the 6,7-trans lactones derived from eupatolide and the 7,8-cis lactones derived from inunolide. The implications for tissue-specific localization, based on expression studies, are discussed.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Katharina Schmauder
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Irini Pateraki
- Department of Plant and Environment al Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
24
|
Gao QM, Kane NC, Hulke BS, Reinert S, Pogoda CS, Tittes S, Prasifka JR. Genetic Architecture of Capitate Glandular Trichome Density in Florets of Domesticated Sunflower ( Helianthus annuus L.). FRONTIERS IN PLANT SCIENCE 2018; 8:2227. [PMID: 29375602 PMCID: PMC5767279 DOI: 10.3389/fpls.2017.02227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Capitate glandular trichomes (CGT), one type of glandular trichomes, are most common in Asteraceae species. CGT can produce various secondary metabolites such as sesquiterpene lactones (STLs) and provide durable resistance to insect pests. In sunflower, CGT-based host resistance is effective to combat the specialist pest, sunflower moth. However, the genetic basis of CGT density is not well understood in sunflower. In this study, we identified two major QTL controlling CGT density in sunflower florets by using a F4 mapping population derived from the cross HA 300 × RHA 464 with a genetic linkage map constructed from genotyping-by-sequencing data and composed of 2121 SNP markers. One major QTL is located on chromosome 5, which explained 11.61% of the observed phenotypic variation, and the second QTL is located on chromosome 6, which explained 14.06% of the observed phenotypic variation. The QTL effects and the association between CGT density and QTL support interval were confirmed in a validation population which included 39 sunflower inbred lines with diverse genetic backgrounds. We also identified two strong candidate genes in the QTL support intervals, and the functions of their orthologs in other plant species suggested their potential roles in regulating capitate glandular trichome density in sunflower. Our results provide valuable information to sunflower breeding community for developing host resistance to sunflower insect pests.
Collapse
Affiliation(s)
- Qing-Ming Gao
- USDA-ARS Red River Valley Agricultural Research Center, Fargo, ND, United States
| | - Nolan C. Kane
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, United States
| | - Brent S. Hulke
- USDA-ARS Red River Valley Agricultural Research Center, Fargo, ND, United States
| | - Stephan Reinert
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, United States
| | - Cloe S. Pogoda
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, United States
| | - Silas Tittes
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, United States
| | - Jarrad R. Prasifka
- USDA-ARS Red River Valley Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
25
|
Brentan Silva D, Aschenbrenner AK, Lopes NP, Spring O. Direct Analyses of Secondary Metabolites by Mass Spectrometry Imaging (MSI) from Sunflower (Helianthus annuus L.) Trichomes. Molecules 2017; 22:molecules22050774. [PMID: 28489027 PMCID: PMC6154581 DOI: 10.3390/molecules22050774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023] Open
Abstract
Helianthus annuus (sunflower) displays non-glandular trichomes (NGT), capitate glandular trichomes (CGT), and linear glandular trichomes (LGT), which reveal different chemical compositions and locations in different plant tissues. With matrix-assisted laser desorption/ionization (MALDI) and laser desorption/ionization (LDI) mass spectrometry imaging (MSI) techniques, efficient methods were developed to analyze the tissue distribution of secondary metabolites (flavonoids and sesquiterpenes) and proteins inside of trichomes. Herein, we analyzed sesquiterpene lactones, present in CGT, from leaf transversal sections using the matrix 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA) (mixture 1:1) with sodium ions added to increase the ionization in positive ion mode. The results observed for sesquiterpenes and polymethoxylated flavones from LGT were similar. However, upon desiccation, LGT changed their shape in the ionization source, complicating analyses by MSI mainly after matrix application. An alternative method could be applied to LGT regions by employing LDI (without matrix) in negative ion mode. The polymethoxylated flavones were easily ionized by LDI, producing images with higher resolution, but the sesquiterpenes were not observed in spectra. Thus, the application and viability of MALDI imaging for the analyses of protein and secondary metabolites inside trichomes were confirmed, highlighting the importance of optimization parameters.
Collapse
Affiliation(s)
- Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil.
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-020, SP, Brazil.
| | | | - Norberto Peporine Lopes
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-020, SP, Brazil.
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, Stuttgart 70593, Germany.
| |
Collapse
|
26
|
Muravnik LE, Kostina OV, Shavarda AL. Glandular trichomes of Tussilago Farfara (Senecioneae, Asteraceae). PLANTA 2016; 244:737-52. [PMID: 27150548 DOI: 10.1007/s00425-016-2539-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/25/2016] [Indexed: 05/25/2023]
Abstract
The glandular trichomes are developed on the aerial organs of Tussilago farfara ; they produce phenols and terpenoids. Smooth endoplasmic reticulum and leucoplasts are the main organelles of the trichome secretory cells. The aim of this study was to characterise the morphology, anatomy, histochemistry and ultrastructure of the trichomes in Tussilago farfara as well as to identify composition of the secretory products. Structure of trichomes located on the peduncles, bracts, phyllaries, and leaves were studied by light and electron microscopy. The capitate glandular trichomes consist of a multicellular head and a biseriate long stalk. Histochemical tests and fluorescence microscopy reveal phenols and terpenoids in the head cells. During secretory stage, the head cells contain smooth and rough endoplasmic reticulum, Golgi apparatus, diversiform leucoplasts with opaque contents in lamellae, chloroplasts, mitochondria, and microbodies. In the capitate glandular trichomes of T. farfara subcuticular cavity is absent, unlike glandular trichomes in other Asteraceae species. For the first time, content of metabolites in the different vegetative and reproductive organs as well as in the isolated capitate glandular trichomes was identified by GC-MS. Forty-five compounds, including organic acids, sugars, polyols, phenolics, and terpenoids were identified. It appeared that metabolite content in the methanol extracts from peduncles, bracts and phyllaries is biochemically analogous, and similar to the metabolites from leaves, in which photosynthesis happens. At the same time, the metabolites from trichome extracts essentially differ and refer to the above-mentioned secondary substances. The study has shown that the practical value of the aerial organs of coltsfoot is provided with flavonoids produced in the capitate glandular trichomes.
Collapse
Affiliation(s)
- Lyudmila E Muravnik
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia.
| | - Olga V Kostina
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia
| | - Alexey L Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia
| |
Collapse
|
27
|
Bombo AB, Appezzato-da-Glória B, Aschenbrenner AK, Spring O. Capitate glandular trichomes in Aldama discolor (Heliantheae - Asteraceae): morphology, metabolite profile and sesquiterpene biosynthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:455-462. [PMID: 26642998 DOI: 10.1111/plb.12423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
The capitate glandular trichome is the most common type described in Asteraceae species. It is known for its ability to produce various plant metabolites of ecological and economic importance, among which sesquiterpene lactones are predominant. In this paper, we applied microscopy, phytochemical and molecular genetics techniques to characterise the capitate glandular trichome in Aldama discolor, a native Brazilian species of Asteraceae, with pharmacological potential. It was found that formation of trichomes on leaf primordia of germinating seeds starts between 24 h and 48 h after radicle growth indicates germination. The start of metabolic activity of trichomes was indicated by separation of the cuticle from the cell wall of secretory cells at the trichome tip after 72 h. This coincided with the accumulation of budlein A, the major sesquiterpene lactone of A. discolor capitate glandular trichomes, in extracts of leaf primordia after 96 h. In the same timeframe of 72-96 h post-germination, gene expression studies showed up-regulation of the putative germacrene A synthase (pGAS2) and putative germacrene A oxidase (pGAO) of A. discolor in the transcriptome of these samples, indicating the start of sesquiterpene lactone biosynthesis. Sequencing of the two genes revealed high similarity to HaGAS and HaGAO from sunflower, which shows that key steps of this pathway are highly conserved. The processes of trichome differentiation, metabolic activity and genetic regulation in A. discolor and in sunflower appear to be typical for other species of the subtribe Helianthinae.
Collapse
Affiliation(s)
- A B Bombo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - B Appezzato-da-Glória
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | | | - O Spring
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
28
|
Amrehn E, Aschenbrenner AK, Heller A, Spring O. Localization of sesquiterpene lactone biosynthesis in cells of capitate glandular trichomes of Helianthus annuus (Asteraceae). PROTOPLASMA 2016; 253:447-455. [PMID: 25956500 DOI: 10.1007/s00709-015-0823-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Capitate glandular trichomes (CGT) of sunflower, Helianthus annuus, synthesize bioactive sesquiterpene lactones (STLs) within a short period of only a few days during trichome development. In the current project, the subcellular localization of H. annuus germacrene A monooxygenase (HaGAO), a key enzyme of the STL biosynthesis in sunflower CGT, was investigated. A polyclonal antibody raised against this enzyme was used for immunolabelling. HaGAO was found in secretory and stalk cells of CGT. This correlated with the appearance of smooth endoplasmic reticulum in both cell types. Stalk cells and secretory cells differed in form, size and types of plastids, but both had structures necessary for secretion. No HaGAO-specific immunoreaction was found in sunflower leaf tissue outside of CGT or in developing CGT before the secretory phase had started. Our results indicated that not only secretory cells but also nearly all cells of the CGT were involved in the biosynthesis of STL and that this process was not linked to the presence or absence of a specific type of plastid.
Collapse
Affiliation(s)
- Evelyn Amrehn
- Institute of Botany, University Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | | | - Annerose Heller
- Institute of Botany, University Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Otmar Spring
- Institute of Botany, University Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
29
|
Spring O, Pfannstiel J, Klaiber I, Conrad J, Beifuß U, Apel L, Aschenbrenner AK, Zipper R. The nonvolatile metabolome of sunflower linear glandular trichomes. PHYTOCHEMISTRY 2015; 119:83-89. [PMID: 26412774 DOI: 10.1016/j.phytochem.2015.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/03/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Uniseriate linear glandular trichomes occur on stems, leaves and flowering parts of Helianthus species and related taxa. Their metabolic activity and biological function are still poorly understood. A phytochemical study documented the accumulation of bisabolene type sesquiterpenes and flavonoids as the major constituents of the non-volatile metabolome of linear glandular trichomes in the common sunflower, Helianthus annuus. Besides known sesquiterpenes of the glandulone, helibisabonol and heliannuol type, four previously undescribed sesquiterpenes named glandulone D, E, F and helibisabonol C were identified by spectroscopic analysis. In addition, four known nevadensin type flavonoids varying in O-methoxy substitutions were found. None of them has previously been reported from Helianthus annuus.
Collapse
Affiliation(s)
- Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany.
| | - Jens Pfannstiel
- Mass Spectrometry Core Facility, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Iris Klaiber
- Mass Spectrometry Core Facility, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Jürgen Conrad
- Institute of Bioorganic Chemistry, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Uwe Beifuß
- Institute of Bioorganic Chemistry, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Lysanne Apel
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | | | - Reinhard Zipper
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| |
Collapse
|
30
|
Aschenbrenner AK, Amrehn E, Bechtel L, Spring O. Trichome differentiation on leaf primordia of Helianthus annuus (Asteraceae): morphology, gene expression and metabolite profile. PLANTA 2015; 241:837-846. [PMID: 25515194 DOI: 10.1007/s00425-014-2223-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
Sunflower trichomes fully develop on embryonic plumula within 3 days after start of germination. Toxic sesquiterpene lactones are produced immediately thereafter thus protecting the apical bud of the seedling against herbivory. Helianthus annuus harbors non-glandular and two different types of multicellular glandular trichomes, namely the biseriate capitate glandular trichomes and the uniseriate linear glandular trichomes. The development of capitate glandular trichomes is well known from anther tips on sunflower disk florets, but not from leaves and no information is yet available on the development of the linear glandular trichomes. Scanning electron microscopy of sunflower seedlings unravelled that within the first 40 h of seed germination all three types of trichomes started to emerge on primordia of the first true leaves. Within the following 20-30 h trichomes developed from trichoblasts to fully differentiated hairs. Gene expression studies showed that genes involved in the trichome-based sesquiterpene lactone formation were up-regulated between 72 and 96 h after start of germination. Metabolite profiling with HPLC confirmed the synthesis of sesquiterpene lactones which may contribute to protect the germinating seedlings from herbivory. The study has shown that sunflower leaf primordia can serve as a fast and easy to handle model system for the investigation of trichome development in Asteraceae.
Collapse
|
31
|
Frey M, Spring O. Molecular traits to elucidate the ancestry of Helianthus x multiflorus. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2014.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Silva MP, Tourn GM, López D, Galati BG, Piazza LA, Zarlavsky G, Cantero JJ, Scopel AL. Secretory Structures in <i>Flourensia campestris</i> and <i>F. oolepis</i>: Ultrastructure, Distribution, and (-)-Hamanasic Acid A Secretion. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.67100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Lusa MG, Cardoso EC, Machado SR, Appezzato-da-Glória B. Trichomes related to an unusual method of water retention and protection of the stem apex in an arid zone perennial species. AOB PLANTS 2014; 7:plu088. [PMID: 25527474 PMCID: PMC4381741 DOI: 10.1093/aobpla/plu088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/26/2014] [Indexed: 05/29/2023]
Abstract
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.
Collapse
Affiliation(s)
- Makeli Garibotti Lusa
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Campinas, São Paulo 13083-970, Brazil
| | - Elaine Cristina Cardoso
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil
| | - Silvia Rodrigues Machado
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Beatriz Appezzato-da-Glória
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil
| |
Collapse
|
34
|
Amrehn E, Heller A, Spring O. Capitate glandular trichomes of Helianthus annuus (Asteraceae): ultrastructure and cytological development. PROTOPLASMA 2014; 251:161-167. [PMID: 23921677 DOI: 10.1007/s00709-013-0534-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Previous studies have shown that capitate glandular trichomes (CGT) of the common sunflower, Helianthus annuus, produce sesquiterpene lactones (STL) and flavonoids, which are sequestered and accumulated between the apical cuticle and the wall of the tip cells. To explore the cellular structures required and putatively involved in the STL biosynthesis and secretion, the present study was focused on the development of CGT and the comparison of the ultrastructure of its different cell types. Gradual maturation of flowers in the capitulum of the sunflower provided the possibility to study the simultaneous differentiation from the primordial to the secretory stage of CGT located by light microscopy (bright field, differential interference contrast and fluorescence) as well as transmission electron microscopy. It was shown that the CGT of sunflower anthers had a biseriate structure with up to 14 cell pairs. In mature trichomes, the apical cells called secretory cells were covered entirely by a large cuticle globe, which enclosed the resinous terpenoids and was specialised in thickness and structure. The secretory cells lacked chloroplasts and contained mainly smooth endoplasmic reticulum (sER). Conspicuous cell wall protuberances and an accumulation of mitochondria nearby occurred in the horizontally oriented cell walls. The cytological differences between stalk cells and secretory cells indicate a different function. The dominance of sER suggests its involvement in STL biosynthesis and cell wall protuberances enlarge the surface of the plasmamembrane of secretory cells and may be involved in the secretion processes of STL into the subcuticular space.
Collapse
Affiliation(s)
- Evelyn Amrehn
- Institute of Botany, University Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | | | | |
Collapse
|
35
|
Aschenbrenner AK, Horakh S, Spring O. Linear glandular trichomes of Helianthus (Asteraceae): morphology, localization, metabolite activity and occurrence. AOB PLANTS 2013; 5:plt028. [PMCID: PMC4455483 DOI: 10.1093/aobpla/plt028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The plant surface of sunflower is covered with at least three types of trichomes, two of which have glandular nature and produce a rich spectrum of allelochemicals. While the development and metabolic activity of the biseriate multicelluar glands has been investigated intensively in the past, hardly any information was yet available on the uniseriate linear glands. The current study of this latter type of plant hairs provides first detailed results on: (i) the occurrence in Helianthus and related genera, (ii) the accumulation of sesquiterpenes and other metabolites, and (iii) a possible a function of the trichomes in plant insect interaction. Capitate glandular trichomes of sunflower are well investigated, but detailed studies are lacking for the linear glandular trichomes (LGT), a second type of physiologically active plant hair present on the surface of sunflowers. Light, fluorescence and scanning electron microscopy as well as histochemical staining were used to investigate the structure and metabolite deposition of LGT. Consisting of 6–11 linearly arranged cells, LGT were found on the surface of most plant organs of Helianthus annuus. They were associated with the leaf vascular system, and also occurred along petioles, stems and the abaxial surface of chaffy bracts, ray and disc florets. The highest density was found on the abaxial surface of phyllaries. Phenotypically similar LGT were common in all species of the genus, but also occurred in most other genera of the Helianthinae so far screened. Brownish and fluorescent metabolites of an as yet unknown chemical structure, together with terpenoids, were produced and stored in apical cells of LGT. The deposition of compounds gradually progressed from the tip cell to the basal cells of older trichomes. This process was accompanied by nucleus degradation in metabolite-accumulating cells. The localization of these trichomes on prominent plant parts of the apical bud and the capitulum combined with the accumulation of terpenoids and other as yet unknown compounds suggests a chemo-ecological function of the LGT in plant–insect or plant–herbivore interaction.
Collapse
|
36
|
Ramirez AM, Saillard N, Yang T, Franssen MCR, Bouwmeester HJ, Jongsma MA. Biosynthesis of sesquiterpene lactones in pyrethrum (Tanacetum cinerariifolium). PLoS One 2013; 8:e65030. [PMID: 23741445 PMCID: PMC3669400 DOI: 10.1371/journal.pone.0065030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/21/2013] [Indexed: 11/18/2022] Open
Abstract
The daisy-like flowers of pyrethrum (Tanacetum cinerariifolium) are used to extract pyrethrins, a botanical insecticide with a long history of safe and effective use. Pyrethrum flowers also contain other potential defense compounds, particularly sesquiterpene lactones (STLs), which represent problematic allergenic residues in the extracts that are removed by the pyrethrum industry. The STLs are stored in glandular trichomes present on the pyrethrum achenes, and have been shown to be active against herbivores, micro-organisms and in the below-ground competition with other plants. Despite these reported bioactivities and industrial significance, the biosynthetic origin of pyrethrum sesquiterpene lactones remains unknown. In the present study, we show that germacratrien-12-oic acid is most likely the central precursor for all sesquiterpene lactones present in pyrethrum. The formation of the lactone ring depends on the regio- (C6 or C8) and stereo-selective (α or β) hydroxylation of germacratrien-12-oic acid. Candidate genes implicated in three committed steps leading from farnesyl diphosphate to STL and other oxygenated derivatives of germacratrien-12-oic acid were retrieved from a pyrethrum trichome EST library, cloned, and characterized in yeast and in planta. The diversity and distribution of sesquiterpene lactones in different tissues and the correlation with the expression of these genes are shown and discussed.
Collapse
Affiliation(s)
- Aldana M. Ramirez
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Nils Saillard
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Ting Yang
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Maurice C. R. Franssen
- Laboratory for Organic Chemistry, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Maarten A. Jongsma
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
37
|
Lopes AA, Pina ES, Silva DB, Pereira AMS, da Silva MFDGF, Da Costa FB, Lopes NP, Pupo MT. A biosynthetic pathway of sesquiterpene lactones in Smallanthus sonchifolius and their localization in leaf tissues by MALDI imaging. Chem Commun (Camb) 2013; 49:9989-91. [DOI: 10.1039/c3cc46213g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Lange BM, Turner GW. Terpenoid biosynthesis in trichomes--current status and future opportunities. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:2-22. [PMID: 22979959 DOI: 10.1111/j.1467-7652.2012.00737.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/24/2012] [Accepted: 07/31/2012] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are anatomical structures specialized for the synthesis of secreted natural products. In this review we focus on the description of glands that accumulate terpenoid essential oils and oleoresins. We also provide an in-depth account of the current knowledge about the biosynthesis of terpenoids and secretion mechanisms in the highly specialized secretory cells of glandular trichomes, and highlight the implications for metabolic engineering efforts.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry, M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
39
|
Rowe HC, Ro DK, Rieseberg LH. Response of sunflower (Helianthus annuus L.) leaf surface defenses to exogenous methyl jasmonate. PLoS One 2012; 7:e37191. [PMID: 22623991 PMCID: PMC3356381 DOI: 10.1371/journal.pone.0037191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/18/2012] [Indexed: 11/24/2022] Open
Abstract
Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography–mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness.
Collapse
Affiliation(s)
- Heather C. Rowe
- Botany Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dae-kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Loren H. Rieseberg
- Botany Department, University of British Columbia, Vancouver, British Columbia, Canada
- Biology Department, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
40
|
Majdi M, Liu Q, Karimzadeh G, Malboobi MA, Beekwilder J, Cankar K, Vos RD, Todorović S, Simonović A, Bouwmeester H. Biosynthesis and localization of parthenolide in glandular trichomes of feverfew (Tanacetum parthenium L. Schulz Bip.). PHYTOCHEMISTRY 2011; 72:1739-50. [PMID: 21620424 DOI: 10.1016/j.phytochem.2011.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 05/09/2023]
Abstract
Feverfew (Tanacetum parthenium) is a perennial medicinal herb and is a rich source of sesquiterpene lactones. Parthenolide is the main sesquiterpene lactone in feverfew and has attracted attention because of its medicinal potential for treatment of migraine and cancer. In the present work the parthenolide content in different tissues and developmental stages of feverfew was analyzed to study the timing and localization of parthenolide biosynthesis. The strongest accumulating tissue was subsequently used to isolate sesquiterpene synthases with the goal to isolate the gene encoding the first dedicated step in parthenolide biosynthesis. This led to the isolation and charachterization of a germacrene A synthase (TpGAS) and an (E)-β-caryophyllene synthase (TpCarS). Transcript level patterns of both sesquiterpene synthases were analyzed in different tissues and glandular trichomes. Although TpGAS was expressed in all aerial tissues, the highest expression was observed in tissues that contain high concentrations of parthenolide and in flowers the highest expression was observed in the biosynthetically most active stages of flower development. The high expression of TpGAS in glandular trichomes which also contain the highest concentration of parthenolide, suggests that glandular trichomes are the secretory tissues where parthenolide biosynthesis and accumulation occur.
Collapse
Affiliation(s)
- Mohammad Majdi
- Plant Breeding and Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ikezawa N, Göpfert JC, Nguyen DT, Kim SU, O'Maille PE, Spring O, Ro DK. Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. J Biol Chem 2011; 286:21601-11. [PMID: 21515683 DOI: 10.1074/jbc.m110.216804] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sesquiterpene lactones (STLs) are terpenoid natural products possessing the γ-lactone, well known for their diverse biological and medicinal activities. The occurrence of STLs is sporadic in nature, but most STLs have been isolated from plants in the Asteraceae family. Despite the implication of the γ-lactone group in many reported bioactivities of STLs, the biosynthetic origins of the γ-lactone ring remains elusive. Germacrene A acid (GAA) has been suggested as a central precursor of diverse STLs. The regioselective (C6 or C8) and stereoselective (α or β) hydroxylation on a carbon of GAA adjacent to its carboxylic acid at C12 is responsible for the γ-lactone formation. Here, we report two cytochrome P450 monooxygenases (P450s) capable of catalyzing 6α- and 8β-hydroxylation of GAA from lettuce and sunflower, respectively. To identify these P450s, sunflower trichomes were isolated to generate a trichome-specific transcript library, from which 10 P450 clones were retrieved. Expression of these clones in a yeast strain metabolically engineered to synthesize substrate GAA identified a P450 catalyzing 8β-hydroxylation of GAA, but the STL was not formed by spontaneous lactonization. Subsequently, we identified the closest homolog of the GAA 8β-hydroxylase from lettuce and discovered 6α-hydroxylation of GAA by the recombinant enzyme. The resulting 6α-hydroxy-GAA spontaneously undergoes a lactonization to yield the simplest form of STL, costunolide. Furthermore, we demonstrate the milligram per liter scale de novo synthesis of costunolide using the lettuce P450 in an engineered yeast strain, an important advance that will enable exploitation of STLs. Evolution and homology models of these two P450s are discussed.
Collapse
Affiliation(s)
- Nobuhiro Ikezawa
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Göpfert J, Bülow AK, Spring O. Identification and Functional Characterization of a new Sunflower Germacrene A Synthase (HaGAS3). Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sesquiterpenes and sesquiterpene lactones are major natural compounds found in linear and capitate glandular trichomes of sunflower, Helianthus annuus L. In addition to two recently identified germacrene A synthases HaGAS1 and HaGAS2, found in capitate trichome gland cells, reverse transcription-PCR experiments have now allowed identification of a third enzyme of this type, HaGAS3. Its cDNA sequence was established and its functional characterization as a germacrene A synthase was achieved through in vitro expression in engineered yeast, and by GC-MS experiments. PCR and RT-PCR experiments with cDNA from different plant organs revealed that the new enzyme is expressed independently from the other two. While these latter two were expressed in plant organs bearing capitate glandular trichomes and in roots, the new enzyme occurred in plant tissues not linked to the presence of specific trichomes (for example, cotyledons), and was absent in roots. The experiments show that independently regulated pathways for the first cyclic sesquiterpene, germacrene A, are present in sunflower.
Collapse
Affiliation(s)
- Jens Göpfert
- University of Hohenheim, Institute of Botany (210), Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Anna-Katharina Bülow
- University of Hohenheim, Institute of Botany (210), Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Otmar Spring
- University of Hohenheim, Institute of Botany (210), Garbenstrasse 30, 70599 Stuttgart, Germany
| |
Collapse
|
43
|
Nguyen DT, Göpfert JC, Ikezawa N, Macnevin G, Kathiresan M, Conrad J, Spring O, Ro DK. Biochemical conservation and evolution of germacrene A oxidase in asteraceae. J Biol Chem 2010; 285:16588-98. [PMID: 20351109 DOI: 10.1074/jbc.m110.111757] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes approximately 8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.
Collapse
Affiliation(s)
- Don Trinh Nguyen
- Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Robles-Zepeda RE, Lozoya-Gloria E, López MG, Villarreal ML, Ramírez-Chávez E, Molina-Torres J. Montanoa tomentosa glandular trichomes containing kaurenoic acids chemical profile and distribution. Fitoterapia 2009; 80:12-7. [DOI: 10.1016/j.fitote.2008.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 11/30/2022]
|
45
|
Gobbo-Neto L, Gates PJ, Lopes NP. Negative ion 'chip-based' nanospray tandem mass spectrometry for the analysis of flavonoids in glandular trichomes of Lychnophora ericoides Mart. (Asteraceae). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3802-8. [PMID: 18980260 DOI: 10.1002/rcm.3802] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This paper reports a method for the analysis of secondary metabolites stored in glandular trichomes, employing negative ion 'chip-based' nanospray tandem mass spectrometry. The analyses of glandular trichomes from Lychnophora ericoides, a plant endemic to the Brazilian 'cerrado' and used in traditional medicine as an anti-inflammatory and analgesic agent, led to the identification of five flavonoids (chrysin, pinocembrin, pinostrobin, pinobanksin and 3-O-acetylpinobanksin) by direct infusion of the extracts of glandular trichomes into the nanospray ionisation source. All the flavonoids have no oxidation at ring B, which resulted in a modification of the fragmentation pathways compared with that of the oxidised 3,4-dihydroflavonoids already described in the literature. The absence of the anti-inflammatory and antioxidant di-C-glucosylflavone vicenin-2, or any other flavonoid glycosides, in the glandular trichomes was also demonstrated. The use of the 'chip-based' nanospray QqTOF apparatus is a new fast and useful tool for the identification of secondary metabolites stored in the glandular trichomes, which can be useful for chemotaxonomic studies based on metabolites from glandular trichomes.
Collapse
Affiliation(s)
- Leonardo Gobbo-Neto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
46
|
Abstract
This review covers the isolation, structural determination, synthesis and chemical and microbiological transformations of natural sesquiterpenoids. The literature from January to December 2005 is reviewed,and 386 references are cited.
Collapse
Affiliation(s)
- Braulio M Fraga
- Instituto de Productos Naturales y Agrobiología, CSIC, 38206, La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|