1
|
Horton JR, Yu M, Zhou J, Tran M, Anakal RR, Lu Y, Blumenthal RM, Zhang X, Huang Y, Zhang X, Cheng X. Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs. Nat Commun 2025; 16:3672. [PMID: 40246927 PMCID: PMC12006351 DOI: 10.1038/s41467-025-58998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BCL11A, a transcription factor, is vital for hematopoiesis, including B and T cell maturation and the fetal-to-adult hemoglobin switch. Mutations in BCL11A are linked to neurodevelopmental disorders. BCL11A contains two DNA-binding zinc-finger arrays, low-affinity ZF2-3 and high-affinity ZF4-6, separated by a 300-amino-acid linker. ZF2-3 and ZF4-5 share 73% identity, including five out of six DNA base-interacting residues. These arrays bind similar short sequence motifs in clusters, with the linker enabling a broader binding span. Crystallographic structures of ZF4-6, in complex with oligonucleotides from the β-globin locus region, reveal DNA sequence recognition by residues Asn756 (ZF4), Lys784 and Arg787 (ZF5). A Lys784-to-Thr mutation, linked to a neurodevelopmental disorder with persistent fetal globin expression, reduces DNA binding over 10-fold but gains interaction with a variable base pair. BCL11A isoforms may form oligomers, enhancing chromatin occupancy and repressor functions by allowing multiple copies of both low- and high-affinity ZF arrays to bind DNA. These distinctive properties, apparently conserved among vertebrates, provide essential functional flexibility to this crucial regulator.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meigen Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melody Tran
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rithvi R Anakal
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX, 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Vedovato-Dos-Santos JH, Tooze RS, Sithambaram S, McCann E, Alanay Y, Dogan OA, Kilercik M, Bingol A, Ozek MM, Johnson D, Nellaker C, Wilkie AOM, Twigg SRF. BCL11B-related disease: a single phenotypic entity? Eur J Hum Genet 2025; 33:451-460. [PMID: 40033098 PMCID: PMC11985952 DOI: 10.1038/s41431-025-01824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Craniosynostosis (CRS), the premature fusion of sutures between the skull bones, is characterised by a long "tail" of rare genetic diagnoses. This means that pathogenic variants in many genes are responsible for a minority of cases, and identifying these disease genes and delineating the associated phenotype is extremely important for patient diagnosis and for genetic counselling of families. One such gene is BCL11B. Heterozygous pathogenic variants in BCL11B have been described as causative for two Mendelian phenotypes, but until recently the gene remained only marginally associated with CRS. We have carried out a systematic review of literature, providing evidence that BCL11B-related disease (BRD) should be regarded as a single phenotypic entity. Furthermore, we describe four new patients, all of whom presented with CRS, thus expanding the phenotype of BRD and highlighting CRS as an important diagnostic clue.
Collapse
Affiliation(s)
- J Heather Vedovato-Dos-Santos
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Jesus College, Oxford, UK
| | - Rebecca S Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sivagamy Sithambaram
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Emma McCann
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, Acibadem University, School of Medicine, Istanbul, Turkey
- Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey
| | - Ozlem A Dogan
- Division of Pediatric Genetics, Department of Pediatrics, Acibadem University, School of Medicine, Istanbul, Turkey
- Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey
| | - Meltem Kilercik
- Division of Medical Biochemistry, Department Of Basic Sciences, Acibadem University, School Of Medicine, Istanbul, Turkey
| | - Aysen Bingol
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Memet M Ozek
- Department of Neurosurgery, Acibadem University, School of Medicine, Istanbul, Turkey
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christoffer Nellaker
- Big Data Institute, Nuffield Department of Women's & Reproductive Health (NDWRH), University of Oxford, Oxford, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
3
|
Black J, Lebel RR, Garg R, de Koning M, Ruivenkamp C, Goel H, Smith SC. Proximal Deletions of 14q32.2 Result in Severe Neurodevelopmental Outcomes, Congenital Anomalies, and Dysmorphic Features. Am J Med Genet A 2025:e64042. [PMID: 40110997 DOI: 10.1002/ajmg.a.64042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Deletions of chromosome 14q32.2 often involve the imprinted region of chromosome 14, giving rise to paternal or maternal UPD(14)-like phenotypes. A few individuals with deletions that spare the imprinted region have been reported, with significant variability in deletion size and gene involvement. Four patients with proximal deletions of 14q32.2 were gathered from the primary authors' clinic or through the DECIPHER database. Informed consent for inclusion in this study was obtained from all participants. A retrospective chart review was performed, and medical history records were compiled and analyzed. We report four patients with similar deletions of 14q32.2, three of whom do not involve the imprinted region. These deletions overlapped for 13 different genes, three of which are associated with autosomal dominant conditions: BCL11B, CCNK, and YY1. All four patients presented with prenatal and/or postnatal growth restriction, feeding problems, congenital urogenital anomalies, hypotonia, severe intellectual and developmental disability, and similar dysmorphic features. We propose that deletions involving BCL11B, CCNK, and YY1 result in a discrete clinical entity entailing a severe neurodevelopmental phenotype, characteristic facial features, and congenital anomalies. We propose the nomenclature of proximal 14q32.2 deletion syndrome.
Collapse
Affiliation(s)
- Jennifer Black
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Robert Roger Lebel
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Ria Garg
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Maayke de Koning
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Himanshu Goel
- Hunter Genetics, Hunter New England Local Health District, Waratah, New South Wales, Australia
- University of Newcastle, Callaghan, New South Wales, Australia
| | - Scott C Smith
- Department of Pathology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
4
|
Susemihl A, Geist N, Grabarczyk P, Schmidt CA, Delcea M, Schulig L. Double the Double: Revisiting BCL11B's Multimerization. Proteins 2025. [PMID: 39976228 DOI: 10.1002/prot.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
The transcription factor B Cell Lymphoma/Leukemia 11B (BCL11B) exerts a bi-directional function in cancer, with its role as an emerging therapeutic target in cancer treatment being particularly intriguing. BCL11B knockouts in cultured T cells revealed the acquisition of properties characteristic of natural killer cells, hinting at its importance in innate versus adaptive immune regulation. Our previous studies using Förster Resonance Energy Transfer-assisted Fluorescence-Activated Cell Sorting and Hybrid Solvent Replica-Exchange Simulations indicated that BCL11B forms dimers, with this being a prerequisite for its activity. However, size exclusion chromatography and crosslinking experiments have challenged this view, suggesting that BCL11B forms tetramers instead. An atypical CCHC zinc finger motif within the N-terminal region of the protein mediates multimerization and a novel 3D structure is presented based on extensive replica-exchange simulations in strong agreement with experimental data. The physiological relevance of multimer formation of this zinc finger protein has been demonstrated previously. Therefore, understanding the nature of BCL11B's multimerization could potentially enhance our ability to target this protein effectively, hopefully paving the way for novel BCL11B-targeted therapies.
Collapse
Affiliation(s)
- Anne Susemihl
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
- Comprehensive Cancer Center Mecklenburg-Vorpommern, University of Greifswald, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Piotr Grabarczyk
- Comprehensive Cancer Center Mecklenburg-Vorpommern, University of Greifswald, Greifswald, Germany
| | - Christian A Schmidt
- Comprehensive Cancer Center Mecklenburg-Vorpommern, University of Greifswald, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Sertori R, Truong B, Singh MK, Shinton S, Price R, Sharo A, Shultes P, Sunderam U, Rana S, Srinivasan R, Datta S, Font-Burgada J, Brenner SE, Puck JM, Wiest DL. Disruption of the moonlighting function of CTF18 in a patient with T-lymphopenia. Front Immunol 2025; 16:1539848. [PMID: 40028343 PMCID: PMC11868726 DOI: 10.3389/fimmu.2025.1539848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Newborn screening for immunodeficiency has led to the identification of numerous cases for which the causal etiology is unknown. Methods Here we report the diagnosis of T lymphopenia of unknown etiology in a male proband. Whole exome sequencing (WES) was employed to nominate candidate variants, which were then analyzed functionally in zebrafish and in mice bearing orthologous mutations. Results WES revealed missense mutations in CHTF18 that were inherited in an autosomal recessive manner. CTF18, encoded by the CHTF18 gene, is a component of a secondary clamp loader, which is primarily thought to function by promoting DNA replication. We determined that the patient's variants in CHTF18 (CTF18 R751W and E851Q) were damaging to function and severely attenuated the capacity of CTF18 to support hematopoiesis and lymphoid development, strongly suggesting that they were responsible for his T lymphopenia; however, the function of CTF18 appeared to be unrelated to its role as a clamp loader. DNA-damage, expected when replication is impaired, was not evident by expression profiling in murine Chtf18 mutant hematopoietic stem and progenitor cells (HSPC), nor was development of Ctf18-deficient progenitors rescued by p53 loss. Instead, we observed an expression signature suggesting disruption of HSPC positioning and migration. Indeed, the positioning of HSPC in ctf18 morphant zebrafish embryos was perturbed, suggesting that HSPC function was impaired through disrupted positioning in hematopoietic organs. Discussion Accordingly, we propose that T lymphopenia in our patient resulted from disturbed cell-cell contacts and migration of HSPC, caused by a non-canonical function of CHTF18 in regulating gene expression.
Collapse
Affiliation(s)
- Robert Sertori
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Billy Truong
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Manoj K. Singh
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Susan Shinton
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Rachael Price
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Andrew Sharo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Paulameena Shultes
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Uma Sunderam
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Sadhna Rana
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | | | - Sutapa Datta
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Joan Font-Burgada
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Steven E. Brenner
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Jennifer M. Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco (UCSF) and UCSF Benioff Children’s Hospital, San Francisco, CA, United States
| | - David L. Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
6
|
Lessel I, Baresic A, Chinn IK, May J, Goenka A, Chandler KE, Posey JE, Afenjar A, Averdunk L, Bedeschi MF, Besnard T, Brager R, Brick L, Brugger M, Brunet T, Byrne S, Calle-Martín ODL, Capra V, Cardenas P, Chappé C, Chong HJ, Cogne B, Conboy E, Cope H, Courtin T, Deb W, Dilena R, Dubourg C, Elgizouli M, Fernandes E, Fitzgerald KK, Gangi S, George-Abraham JK, Gucsavas-Calikoglu M, Haack TB, Hadonou M, Hanker B, Hüning I, Iascone M, Isidor B, Järvelä I, Jin JJ, Jorge AAL, Josifova D, Kalinauskiene R, Kamsteeg EJ, Keren B, Kessler E, Kölbel H, Kozenko M, Kubisch C, Kuechler A, Leal SM, Leppälä J, Luu SM, Lyon GJ, Madan-Khetarpal S, Mancardi M, Marchi E, Mehta L, Menendez B, Morel CF, Harasink SM, Nevay DL, Nigro V, Odent S, Oegema R, Pappas J, Pastore MT, Perilla-Young Y, Platzer K, Powell-Hamilton N, Rabin R, Rekab A, Rezende RC, Robert L, Romano F, Scala M, Poths K, Schrauwen I, Sebastian J, Short J, Sidlow R, Sullivan J, Szakszon K, Tan QKG, Undiagnosed Diseases Network, Wagner M, Wieczorek D, Yuan B, Maeding N, Strunk D, Begtrup A, Banka S, Lupski JR, Tolosa E, Lessel D. DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders. Am J Hum Genet 2025; 112:394-413. [PMID: 39798569 PMCID: PMC11866971 DOI: 10.1016/j.ajhg.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive. To dissect these, we performed genotype-phenotype correlations of 92 affected individuals harboring a pathogenic or likely pathogenic BCL11B variant, followed by immune phenotyping, analysis of chromatin immunoprecipitation DNA-sequencing data, dual-luciferase reporter assays, and molecular modeling. These integrative analyses enabled us to define three clinical subtypes of BCL11B-related disorders. It is likely that gene-disruptive BCL11B variants and missense variants affecting zinc-binding cysteine and histidine residues cause mild to moderate neurodevelopmental delay with increased propensity for behavioral and dental anomalies, allergies and asthma, and reduced type 2 innate lymphoid cells. Missense variants within C2H2-ZnF DNA-contacting α helices cause highly variable clinical presentations ranging from multisystem anomalies with demise in the first years of life to late-onset, hyperkinetic movement disorder with poor fine motor skills. Those not in direct DNA contact cause a milder phenotype through reduced, target-specific transcriptional activity. However, missense variants affecting C2H2-ZnFs, DNA binding, and "specificity residues" impair BCL11B transcriptional activity in a target-specific, dominant-negative manner along with aberrant regulation of alternative DNA targets, resulting in more severe and unpredictable clinical outcomes. Taken together, we suggest that the phenotypic severity and variability is largely dependent on the DNA-binding affinity and specificity of altered BCL11B proteins.
Collapse
Affiliation(s)
- Ivana Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Anja Baresic
- Division of Computing and Data Science, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jonathan May
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra Afenjar
- Département de Génétique Paris, Centre de Référence Malformations et maladies congénitales du cervelet et déficiences intellectuelles de causes rares, APHP, Sorbonne Université, Paris, France
| | - Luisa Averdunk
- Institute of Human Genetics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Thomas Besnard
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Rae Brager
- Division of Rheumatology, Immunology and Allergy, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Lauren Brick
- Division of Genetics and Metabolics, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Susan Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Céline Chappé
- Service d'oncohematologie pédiatrique, CHU Rennes, 35000 Rennes, France
| | - Hey J Chong
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital, Pittsburgh, PA 15224, USA
| | - Benjamin Cogne
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Thomas Courtin
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Wallid Deb
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Robertino Dilena
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuropathophysiology Unit, Milan, Italy
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU, 35033 Rennes, France; University Rennes, CNRS, IGDR, UMR 6290, 35000 Rennes, France
| | - Magdeldin Elgizouli
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Erica Fernandes
- Division of Genetics, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | | | - Silvana Gangi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 28, 20122 Milan, Italy
| | - Jaya K George-Abraham
- Dell Children's Medical Group, Austin, TX, USA; Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Muge Gucsavas-Calikoglu
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Medard Hadonou
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Maria Iascone
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, 24128 Bergamo, Italy
| | - Bertrand Isidor
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, P.O. Box 720, 00251 Helsinki, Finland
| | - Jay J Jin
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander A L Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil; Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Dragana Josifova
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ruta Kalinauskiene
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Keren
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elena Kessler
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Mariya Kozenko
- Division of Genetics and Metabolics, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Suzanne M Leal
- Department of Neurology, Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, Columbia University, New York, NY 10032, USA; Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Juha Leppälä
- The Wellbeing Services County of South Ostrobothnia, 60280 Seinäjoki, Finland
| | - Sharon M Luu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA; George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Suneeta Madan-Khetarpal
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Margherita Mancardi
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Epicare Network for Rare Disease, Genoa, Italy
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Lakshmi Mehta
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Beatriz Menendez
- Division of Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Chantal F Morel
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Sue Moyer Harasink
- Division of Genetics, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | - Dayna-Lynn Nevay
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Sylvie Odent
- Clinical Genetics, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; University Rennes, CNRS, INSERM, Institut de génétique et développement de Rennes, UMR 6290, ERL U1305, Rennes, France
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - John Pappas
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Matthew T Pastore
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yezmin Perilla-Young
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | | - Rachel Rabin
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Aisha Rekab
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Raissa C Rezende
- Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Leema Robert
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ferruccio Romano
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16145 Genoa, Italy; U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Karin Poths
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Isabelle Schrauwen
- Department of Translational Neurosciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Jessica Sebastian
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - John Short
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Jennifer Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Katalin Szakszon
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Queenie K G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Munich, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicole Maeding
- Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | | | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Hamburg, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
7
|
Wu Z, Ren M, Tan M, Yang B, Chen S, Yang F, Yuan G, Tan J. Identification and Validation of T Cell-Related Hub Biomarkers for Early Diagnosis of Diabetic Kidney Disease Using Single-Cell and Bulk Dataset Analysis. Crit Rev Eukaryot Gene Expr 2025; 35:65-84. [PMID: 40228227 DOI: 10.1615/critreveukaryotgeneexpr.2025056960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Diabetic kidney disease (DKD) is the most common complication of diabetes and a leading cause of chronic kidney disease that frequently leads to end-stage renal disease (ESRD). The pathogenesis of DKD is complex and is not fully understood. This study was designed to identify key targets for DKD diagnosis and explore the underlying molecular mechanisms. METHODS DKD-specific clusters were selected from single-cell datasets. Gene modules were identified using hairpin-dynamic weighted gene co-expression network analysis (hdWGCNA). Multiple machine learning algorithms were applied to model and screen hub genes from two bulk datasets. Rat model of DKD was built using optical microscopes to observe the histopathological changes in the kidney by HE, PAS, and Masson staining. The expression of RASGRP3, PDE3B, and CD247 in DKD-Rat was verified by RT-PCR, and the expression of RASGRP3, PDE3B, and CD247 in the serum samples of DKD patients was verified by ELISA. The results of sex and age, RASGRP3, PDE3B, CD247 were calculated by multivariate logistic regression analysis. RESULTS Three hub genes were obtained through screening single-cell and two bulk datasets. In-depth exploration of the potential molecular mechanisms of the hub genes was conducted using gene set variation analysis (GSVA), immune infiltration analysis, and single-cell correlation analysis. Receiver operating characteristic (ROC) curve confirmed a high diagnostic value of the hub biomarkers, and a high-efficiency diagnostic model was constructed and mutually validated in the two datasets. We found that damaged tubular number and interstitial fibrotic percentage were significantly increased in DKD rat. As shown by HE, PAS and Masson staining, the mRNA levels of PDE3B and CD247 were markedly upregulated in DKD rat compared with those in the control group. Lower expression levels of RASGRP3 mRNA were manifested in DKD. The levels of RASGRP3, PDE3B, CD247 in DKD patients by ELISA were statistically significant (p < 0.05). PDE3B and CD247 had an AUC value greater than 0.9,RASGRP3 had an AUC value greater than 0.7. CONCLUSION This study identified 3 T cell-related hub biomarkers, providing references for the early diagnosis of DKD and changes in T cells during DKD progression.
Collapse
Affiliation(s)
| | - Meifang Ren
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| | - Miao Tan
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, 050011, China
| | - Bing Yang
- Graduate School, Hebei University of Chinese Medicine, 050091, China
| | - Suzhi Chen
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| | - Fengwen Yang
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| | - Guodong Yuan
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| | - Jinchuan Tan
- Department of Nephrology, The First Affiliated Hospital of Hebei University of Chinese Medicine, 050000, China
| |
Collapse
|
8
|
Bakoev S, Getmantseva L, Kolosova M, Bakoev F, Kolosov A, Romanets E, Shevtsova V, Romanets T, Kolosov Y, Usatov A. Identifying Significant SNPs of the Total Number of Piglets Born and Their Relationship with Leg Bumps in Pigs. BIOLOGY 2024; 13:1034. [PMID: 39765701 PMCID: PMC11673605 DOI: 10.3390/biology13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study was to identify genetic variants and pathways associated with the total number of piglets born and to investigate the potential negative consequences of the intensive selection for reproductive traits, particularly the formation of bumps on the legs of pigs. We used genome-wide association analysis and methods for identifying selection signatures. As a result, 47 SNPs were identified, localized in genes that play a significant role during sow pregnancy. These genes are involved in follicle growth and development (SGC), early embryonic development (CCDC3, LRRC8C, LRFN3, TNFRSF19), endometrial receptivity and implantation (NEBL), placentation, and embryonic development (ESRRG, GHRHR, TUSC3, NBAS). Several genes are associated with disorders of the nervous system and brain development (BCL11B, CDNF, ULK4, CC2D2A, KCNK2). Additionally, six SNPs are associated with the formation of bumps on the legs of pigs. These variants include intronic variants in the CCDC3, ULK4, and MINDY4 genes, as well as intergenic variants, regulatory region variants, and variants in the exons of non-coding transcripts. The results suggest important biological pathways and genetic variants associated with sow fertility and highlight the potential negative impacts on the health and physical condition of pigs.
Collapse
Affiliation(s)
- Siroj Bakoev
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Lyubov Getmantseva
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Maria Kolosova
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Faridun Bakoev
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Anatoly Kolosov
- All Russian Research Institute of Animal Breeding, Lesnye Polyany 141212, Russia;
| | - Elena Romanets
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Varvara Shevtsova
- Southern Scientific Center Russian Academy of Sciences, Rostov-on-Don 344006, Russia;
| | - Timofey Romanets
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Yury Kolosov
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Alexander Usatov
- Academy of Biology and Biotechnology Named After D.I. Ivanovsky, Southern Federal University, Rostov-on-Don 344006, Russia;
| |
Collapse
|
9
|
Inborn errors of immunity caused by dominant negative interference by a BCL11B variant. Nat Immunol 2024; 25:2184-2185. [PMID: 39506135 DOI: 10.1038/s41590-024-02003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
10
|
Okuyama K, Yamashita M, Koumoundourou A, Wiegreffe C, Ohno-Oishi M, Murphy SJH, Zhao X, Yoshida H, Ebihara T, Satoh-Takayama N, Kojo S, Ohno H, Morio T, Wu Y, Puck J, Xue HH, Britsch S, Taniuchi I. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. Nat Immunol 2024; 25:2284-2296. [PMID: 39487351 DOI: 10.1038/s41590-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Genetic studies in mice have shown that the zinc finger transcription factor BCL11B has an essential role in regulating early T cell development and neurogenesis. A de novo heterozygous missense BCL11B variant, BCL11BN441K, was isolated from a patient with T cell deficiency and neurological disorders. Here, we show that mice harboring the corresponding Bcl11bN440K mutation show the emergence of natural killer (NK)/group 1 innate lymphoid cell (ILC1)-like NKp46+ cells in the thymus and reduction in TBR1+ neurons in the neocortex, which are observed with loss of Bcl11a but not Bcl11b. Thus, the mutant BCL11B-N440K protein interferes with BCL11A function upon heterodimerization. Mechanistically, the Bcl11bN440K mutation dampens the interaction of BCL11B with T cell factor 1 (TCF1) in thymocytes, resulting in weakened antagonism against TCF1 activity that supports the differentiation of NK/ILC1-like cells. Collectively, our results shed new light on the function of BCL11A in suppressing non-T lymphoid developmental potential and uncover the pathogenic mechanism by which BCL11B-N440K interferes with partner BCL11 family proteins.
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Samuel J H Murphy
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jennifer Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
11
|
Yang X, He J, Peng W, Zheng S, Ma N, Chen Y, Shen J, Kong X. Opening SCID newborn screening for novel exon genetic variants through whole-exome sequencing in China. Int Immunopharmacol 2024; 137:112402. [PMID: 38908084 DOI: 10.1016/j.intimp.2024.112402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/13/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) is the most fatal form of inherited primary immunodeficiency disease. Known molecular defect mutations occur in most children with SCID. METHODS Herein, we report Adenosine Deaminase-SCID (ADA-SCID) using whole-exome sequencing (WES), explore exome mutational landscape and significance for 17 SCID samples, and verify the mutated exon genes using the Gene Expression Omnibus (GEO) datasets. A total of 250 patients, who were hospitalized at the Neonatal Intensive Care Unit (NICU) of The Seventh Medical Center of the PLA General Hospital for 3 years (from 2017 to 2020), were screened for SCID. We collected mutated genes from the WES data of 17 SCID children. GSE609 and GSE99176 cohorts were used to identify the expressions of mutated exon genes and molecular features in SCID. Gene set variation analyses (GSVA) and correlation analyses were performed. RESULTS The detection rate with approximately 6.8 % (17/250) of SCID is high in the NICU. A total of 16 genes were identified among 17 SCID samples, of which the Top 2 genes (MUC6 and RP11-683L23.1) might be crucial in the progression of SCID with 94 % mutation frequency. Furthermore, CNN2 and SCGB1C1 had significant co-mutations and may cooperate to affect SCID development. Importantly, the phylogenetic tree classification results of 17 SCID samples are more correlated to MUC6 with the most significant mutations. Expression profiles of seven mutated genes and five mutated genes were documented in GSE609 and GSE99176 cohorts based on microarray, respectively. Several immune-related pathways were significantly enriched, and Foxd4, differing from the other four mutated genes, was inversely correlated with the GSVA-enriched pathway. CONCLUSION Due to its high detection rate (6.8%) and fatality rate (100%), the inclusion of SCID in newborn screening (NBS) is urgent for children in China. The WES successfully identified several common exonic variants (e.g., MUC6) and depicted the feature of mutations and evolution, which will help develop new diagnostic methods for SCID.
Collapse
Affiliation(s)
- Xiao Yang
- Faculty of Pediatrics, the Chinese PLA General Hospital, Beijing, China; Institute of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth defects prevention and Control of key technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - JianHu He
- Department of Information, Women's Hospital School of Medicine Zhejiang University, Zhejiang, China
| | - Wei Peng
- Faculty of Pediatrics, the Chinese PLA General Hospital, Beijing, China; Institute of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth defects prevention and Control of key technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Sheng Zheng
- ShangHai Z&S Biotechnology Company, Shanghai, China
| | - Ning Ma
- Faculty of Pediatrics, the Chinese PLA General Hospital, Beijing, China; Institute of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth defects prevention and Control of key technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - YuHan Chen
- Faculty of Pediatrics, the Chinese PLA General Hospital, Beijing, China; Institute of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth defects prevention and Control of key technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Jian Shen
- Department of Gynecology and Obstetrics, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200003, China.
| | - XiangYong Kong
- Faculty of Pediatrics, the Chinese PLA General Hospital, Beijing, China; Institute of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth defects prevention and Control of key technology, Beijing, China; Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China.
| |
Collapse
|
12
|
Patterson AR, Needle GA, Sugiura A, Jennings EQ, Chi C, Steiner KK, Fisher EL, Robertson GL, Bodnya C, Markle JG, Sheldon RD, Jones RG, Gama V, Rathmell JC. Functional overlap of inborn errors of immunity and metabolism genes defines T cell metabolic vulnerabilities. Sci Immunol 2024; 9:eadh0368. [PMID: 39151020 PMCID: PMC11590014 DOI: 10.1126/sciimmunol.adh0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
Inborn errors of metabolism (IEMs) and immunity (IEIs) are Mendelian diseases in which complex phenotypes and patient rarity have limited clinical understanding. Whereas few genes have been annotated as contributing to both IEMs and IEIs, immunometabolic demands suggested greater functional overlap. Here, CRISPR screens tested IEM genes for immunologic roles and IEI genes for metabolic effects and found considerable previously unappreciated crossover. Analysis of IEMs showed that N-linked glycosylation and the hexosamine pathway enzyme Gfpt1 are critical for T cell expansion and function. Further, T helper (TH1) cells synthesized uridine diphosphate N-acetylglucosamine more rapidly and were more impaired by Gfpt1 deficiency than TH17 cells. Screening IEI genes found that Bcl11b promotes the CD4 T cell mitochondrial activity and Mcl1 expression necessary to prevent metabolic stress. Thus, a high degree of functional overlap exists between IEM and IEI genes, and immunometabolic mechanisms may underlie a previously underappreciated intersection of these disorders.
Collapse
Affiliation(s)
- Andrew R. Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriel A. Needle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin Q. Jennings
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Channing Chi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - KayLee K. Steiner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emilie L. Fisher
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Caroline Bodnya
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Janet G. Markle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan D. Sheldon
- Mass Spectrometry Core, Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Murthy S, Nongthomba U. Role of the BCL11A/B Homologue Chronophage (Cph) in Locomotor Behaviour of Drosophila melanogaster. Neuroscience 2024; 551:1-16. [PMID: 38763224 DOI: 10.1016/j.neuroscience.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Functioning of the nervous system requires proper formation and specification of neurons as well as accurate connectivity and signalling between them. Locomotor behaviour depends upon these events that occur during neural development, and any aberration in them could result in motor disorders. Transcription factors are believed to be master regulators that control these processes, but very few linked to behaviour have been identified so far. The Drosophila homologue of BCL11A (CTIP1) and BCL11B (CTIP2), Chronophage (Cph), was recently shown to be involved in temporal patterning of neural stem cells but its role in post-mitotic neurons is not known. We show that knockdown of Cph in neurons during development results in animals with locomotor defects at both larval and adult stages. The defects are more severe in adults, with inability to stand, uncoordinated behaviour and complete loss of ability to walk, climb, or fly. These defects are similar to the motor difficulties observed in some patients with mutations in BCL11A and BCL11B. Electrophysiological recordings showed reduced evoked activity and irregular neuronal firing. All Cph-expressing neurons in the ventral nerve cord are glutamatergic. Our results imply that Cph modulates primary locomotor activity through configuration of glutamatergic neurons. Thus, this study ascribes a hitherto unknown role to Cph in locomotor behaviour of Drosophila melanogaster.
Collapse
Affiliation(s)
- Smrithi Murthy
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| |
Collapse
|
14
|
García-Aznar JM, Alonso Alvarez S, Bernal Del Castillo T. Pivotal role of BCL11B in the immune, hematopoietic and nervous systems: a review of the BCL11B-associated phenotypes from the genetic perspective. Genes Immun 2024; 25:232-241. [PMID: 38472338 PMCID: PMC11178493 DOI: 10.1038/s41435-024-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The transcription factor BCL11B plays an essential role in the development of central nervous system and T cell differentiation by regulating the expression of numerous genes involved in several pathways. Monoallelic defects in the BCL11B gene leading to loss-of-function are associated with a wide spectrum of phenotypes, including neurological disorders with or without immunological features and susceptibility to hematological malignancies. From the genetic point of view, the landscape of BCL11B mutations reported so far does not fully explain the genotype-phenotype correlation. In this review, we sought to compile the phenotypic and genotypic variables associated with previously reported mutations in this gene in order to provide a better understanding of the consequences of deleterious variants. We also highlight the importance of a careful evaluation of the mutation type, its location and the pattern of inheritance of the variants in order to assign the most accurate pathogenicity and actionability of the genetic findings.
Collapse
Affiliation(s)
- José María García-Aznar
- Healthincode, A Coruña, Spain.
- Universitary Institute of Oncology of Principado de Asturias (IUOPA), Oviedo, Spain.
- Health Research Institute of Principado de Asturias, Oviedo, Spain.
| | - Sara Alonso Alvarez
- Universitary Institute of Oncology of Principado de Asturias (IUOPA), Oviedo, Spain
- Health Research Institute of Principado de Asturias, Oviedo, Spain
- Hematology Department, Hospital Universitario Clínico de Asturias, Oviedo, Spain
| | - Teresa Bernal Del Castillo
- Universitary Institute of Oncology of Principado de Asturias (IUOPA), Oviedo, Spain
- Health Research Institute of Principado de Asturias, Oviedo, Spain
- Hematology Department, Hospital Universitario Clínico de Asturias, Oviedo, Spain
| |
Collapse
|
15
|
Matsumoto K, Okuyama K, Sidwell T, Yamashita M, Endo T, Satoh-Takayama N, Ohno H, Morio T, Rothenberg EV, Taniuchi I. A Bcl11b N797K variant isolated from an immunodeficient patient inhibits early thymocyte development in mice. Front Immunol 2024; 15:1363704. [PMID: 38495886 PMCID: PMC10940544 DOI: 10.3389/fimmu.2024.1363704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
BCL11B is a transcription factor with six C2H2-type zinc-finger domains. Studies in mice have shown that Bcl11b plays essential roles in T cell development. Several germline heterozygous BCL11B variants have been identified in human patients with inborn errors of immunity (IEI) patients. Among these, two de novo mis-sense variants cause asparagine (N) to lysine (K) replacement in distinct zinc-finger domains, BCL11BN441K and BCL11BN807K. To elucidate the pathogenesis of the BCL11BN807K variant, we generated a mouse model of BCL11BN807K by inserting the corresponding mutation, Bcl11bN797K, into the mouse genome. In Bcl11b+/N797K mice, the proportion of immature CD4-CD8+ single-positive thymocytes was increased, and the development of invariant natural killer cells was severely inhibited in a T-cell-intrinsic manner. Under competitive conditions, γδT cell development was outcompeted by control cells. Bcl11bN797K/N797K mice died within one day of birth. Recipient mice reconstituted with Bcl11bN797K/N797K fetal liver cells nearly lacked CD4+CD8+ double-positive thymocytes, which was consistent with the lack of their emergence in culture from Bcl11bN797K/N797K fetal liver progenitors. Interestingly, Bcl11bN797K/N797K progenitors gave rise to aberrant c-Kit+ and CD44+ cells both in vivo and in vitro. The increase in the proportion of immature CD8 single-positive thymocytes in the Bcl11bN797K mutants is caused, in part, by the inefficient activation of the Cd4 gene due to the attenuated function of the two Cd4 enhancers via distinct mechanisms. Therefore, we conclude that immunodeficient patient-derived Bcl11bN797K mutant mice elucidated a novel role for Bcl11b in driving the appropriate transition of CD4-CD8- into CD4+CD8+ thymocytes.
Collapse
Affiliation(s)
- Kazuaki Matsumoto
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| | - Tom Sidwell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaho Endo
- Genome Platform, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| |
Collapse
|
16
|
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. BIOLOGY 2024; 13:126. [PMID: 38392344 PMCID: PMC10886639 DOI: 10.3390/biology13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| |
Collapse
|
17
|
Yang R, Ai Y, Bai T, Lu XX, He G. Williams-Beuren syndrome in pediatric T-cell acute lymphoblastic leukemia: A rare case report and review of literature. Medicine (Baltimore) 2024; 103:e36976. [PMID: 38363891 PMCID: PMC10869033 DOI: 10.1097/md.0000000000036976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Williams-Beuren syndrome (WBS) is a rare genetic disorder caused by hemizygous microdeletion of contiguous genes on chromosome 7q11.23. Although the phenotype features extensive heterogeneity in severity and performance, WBS is not considered to be a predisposing factor for cancer development. Currently, hematologic cancers, mainly Burkitt lymphoma, are rarely reported in patients with WBS. Here in, we report a unique case of T-cell acute lymphoblastic leukemia in a male child with WBS. METHODS This retrospective study analyzed the clinical data of this case receiving chemotherapy were analyzed. This is a retrospective study. RESULTS The patient, who exhibited a typical WBS phenotype and presented with hemorrhagic spots. Chromosomal genome-wide chip analysis (CMA) revealed abnormalities on chromosomes 7 and 9. The fusion gene STIL-TAL1 and mutations in BCL11B, NOTCH1, and USP7 have also been found and all been associated with the occurrence of T-cell leukemia. The patient responded well to the chemotherapy. CONCLUSION To the best of our knowledge, this is the first reported case of WBS in T-cell acute lymphoblastic leukemia. We want to emphasize that the occurrence of leukemia in this patient might be related to the loss of 7q11.23 and microdeletion of 9p21.3 (including 3 TSGs), but the relationship between WBS and malignancy remains unclear. Further studies are required to clarify the relationship between WBS and malignancy.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuan Ai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Bai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiao-Xi Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Guoqian He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
18
|
Koumoundourou A, Rannap M, De Bruyckere E, Nestel S, Reissner C, Egorov AV, Liu P, Missler M, Heimrich B, Draguhn A, Britsch S. Regulation of hippocampal mossy fiber-CA3 synapse function by a Bcl11b/C1ql2/Nrxn3(25b+) pathway. eLife 2024; 12:RP89854. [PMID: 38358390 PMCID: PMC10942602 DOI: 10.7554/elife.89854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The transcription factor Bcl11b has been linked to neurodevelopmental and neuropsychiatric disorders associated with synaptic dysfunction. Bcl11b is highly expressed in dentate gyrus granule neurons and is required for the structural and functional integrity of mossy fiber-CA3 synapses. The underlying molecular mechanisms, however, remained unclear. We show in mice that the synaptic organizer molecule C1ql2 is a direct functional target of Bcl11b that regulates synaptic vesicle recruitment and long-term potentiation at mossy fiber-CA3 synapses in vivo and in vitro. Furthermore, we demonstrate C1ql2 to exert its functions through direct interaction with a specific splice variant of neurexin-3, Nrxn3(25b+). Interruption of C1ql2-Nrxn3(25b+) interaction by expression of a non-binding C1ql2 mutant or by deletion of Nrxn3 in the dentate gyrus granule neurons recapitulates major parts of the Bcl11b as well as C1ql2 mutant phenotype. Together, this study identifies a novel C1ql2-Nrxn3(25b+)-dependent signaling pathway through which Bcl11b controls mossy fiber-CA3 synapse function. Thus, our findings contribute to the mechanistic understanding of neurodevelopmental disorders accompanied by synaptic dysfunction.
Collapse
Affiliation(s)
| | - Märt Rannap
- Institute of Physiology and Pathophysiology, Faculty of Medicine, Heidelberg UniversityHeidelbergGermany
| | | | - Sigrun Nestel
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, University of MünsterMünsterGermany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Faculty of Medicine, Heidelberg UniversityHeidelbergGermany
| | - Pengtao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
- Centre for Translational Stem Cell BiologyHong KongChina
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of MünsterMünsterGermany
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Faculty of Medicine, Heidelberg UniversityHeidelbergGermany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm UniversityUlmGermany
| |
Collapse
|
19
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Vickridge E, Faraco CCF, Lo F, Rahimian H, Liu Z, Tehrani P, Djerir B, Ramdzan ZM, Leduy L, Maréchal A, Gingras AC, Nepveu A. The function of BCL11B in base excision repair contributes to its dual role as an oncogene and a haplo-insufficient tumor suppressor gene. Nucleic Acids Res 2024; 52:223-242. [PMID: 37956270 PMCID: PMC10783527 DOI: 10.1093/nar/gkad1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Genetic studies in mice and human cancers established BCL11B as a haploinsufficient tumor suppressor gene. Paradoxically, BCL11B is overexpressed in some human cancers where its knockdown is synthetic lethal. We identified the BCL11B protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro DNA repair assays demonstrated that both BCL11B and a small recombinant BCL11B213-560 protein lacking transcription regulation potential can stimulate the enzymatic activities of two base excision repair (BER) enzymes: NTHL1 and Pol β. In cells, BCL11B is rapidly recruited to sites of DNA damage caused by laser microirradiation. BCL11B knockdown delays, whereas ectopic expression of BCL11B213-560 accelerates, the repair of oxidative DNA damage. Inactivation of one BCL11B allele in TK6 lymphoblastoid cells causes an increase in spontaneous and radiation-induced mutation rates. In turn, ectopic expression of BCL11B213-560 cooperates with the RAS oncogene in cell transformation by reducing DNA damage and cellular senescence. These findings indicate that BCL11B functions as a BER accessory factor, safeguarding normal cells from acquiring mutations. Paradoxically, it also enables the survival of cancer cells that would otherwise undergo senescence or apoptosis due to oxidative DNA damage resulting from the elevated production of reactive oxygen species.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Camila C F Faraco
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Fanny Lo
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Hedyeh Rahimian
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Zi Yang Liu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Payman S Tehrani
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario Canada
| | - Billel Djerir
- Department of Biology and Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Alexandre Maréchal
- Department of Biology and Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Medicine, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Oncology, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
21
|
Sabbagh Q, Haghshenas S, Piard J, Trouvé C, Amiel J, Attié-Bitach T, Balci T, Barat-Houari M, Belonis A, Boute O, Brightman DS, Bruel AL, Caraffi SG, Chatron N, Collet C, Dufour W, Edery P, Fong CT, Fusco C, Gatinois V, Gouy E, Guerrot AM, Heide S, Joshi A, Karp N, Keren B, Lesieur-Sebellin M, Levy J, Levy MA, Lozano C, Lyonnet S, Margot H, Marzin P, McConkey H, Michaud V, Nicolas G, Nizard M, Paulet A, Peluso F, Pernin V, Perrin L, Philippe C, Prasad C, Prasad M, Relator R, Rio M, Rondeau S, Ruault V, Ruiz-Pallares N, Sanchez E, Shears D, Siu VM, Sorlin A, Tedder M, Tharreau M, Mau-Them FT, van der Laan L, Van Gils J, Verloes A, Whalen S, Willems M, Yauy K, Zuntini R, Kerkhof J, Sadikovic B, Geneviève D. Clinico-biological refinement of BCL11B-related disorder and identification of an episignature: A series of 20 unreported individuals. Genet Med 2024; 26:101007. [PMID: 37860968 DOI: 10.1016/j.gim.2023.101007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.
Collapse
Affiliation(s)
- Quentin Sabbagh
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Juliette Piard
- University Hospital of Besançon, Department of Clinical Genetics, Besançon, France
| | - Chloé Trouvé
- University Hospital of Besançon, Department of Clinical Genetics, Besançon, France
| | - Jeanne Amiel
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tugce Balci
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Mouna Barat-Houari
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Alyce Belonis
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH
| | - Odile Boute
- University Hospital of Lille, Department of Clinical Genetics, Lille, France
| | - Diana S Brightman
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH
| | - Ange-Line Bruel
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France
| | | | - Nicolas Chatron
- University Hospital of Lyon, Laboratory of Medical Genetics, AURAGEN Platform, Lyon, France
| | - Corinne Collet
- Robert Debré University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - William Dufour
- University Hospital of Lille, Department of Clinical Genetics, Lille, France
| | - Patrick Edery
- University Hospital of Lyon, Department of Clinical Genetics, Lyon, France
| | - Chin-To Fong
- University of Rochester, Department of Genetics, Rochester, NY
| | - Carlo Fusco
- Azienda USL-IRCCS di Reggio Emilia, Child Neurology and Psychiatry Unit, 42123 Reggio Emilia, Italy
| | - Vincent Gatinois
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Evan Gouy
- University Hospital of Lyon, Department of Clinical Genetics, Lyon, France
| | - Anne-Marie Guerrot
- Rouen-Normandie University, University Hospital of Rouen, Department of Genetics, Reference Center for Developmental Disorders, Inserm UMR1245, F-76000 Rouen, France
| | - Solveig Heide
- Pitié-Salpêtrière University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Aakash Joshi
- Churchill Hospital, Department of Clinical Genetics, ERN-ITHACA, Oxford, United Kingdom
| | - Natalya Karp
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Boris Keren
- Pitié-Salpêtrière University Hospital, Laboratory of Molecular Genetics and Cytogenetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marion Lesieur-Sebellin
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jonathan Levy
- Robert Debré University Hospital, Laboratory of Cytogenetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Claire Lozano
- University Hospital of Montpellier, Department of Immunology, Montpellier, France
| | - Stanislas Lyonnet
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Henri Margot
- University of Bordeaux, University Hospital of Bordeaux, Department of Medical Genetics, MRGM Inserm UMR1211, F-33000 Bordeaux, France
| | - Pauline Marzin
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Vincent Michaud
- University of Bordeaux, University Hospital of Bordeaux, Department of Medical Genetics, MRGM Inserm UMR1211, F-33000 Bordeaux, France
| | - Gaël Nicolas
- Rouen-Normandie University, University Hospital of Rouen, Department of Genetics, Reference Center for Developmental Disorders, Inserm UMR1245, F-76000 Rouen, France
| | - Mevyn Nizard
- Necker-Enfants Malades University Hospital, Department of Pediatric Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alix Paulet
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Francesca Peluso
- Azienda USL-IRCCS di Reggio Emilia, Medical Genetics Unit, 42123 Reggio Emilia, Italy
| | - Vincent Pernin
- University of Montpellier, Department of Nephrology, Montpellier, France
| | - Laurence Perrin
- Robert Debré University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Philippe
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France; Hospital of Metz-Thionville, Mercy Hospital, Laboratory of Genetics, Metz, France
| | - Chitra Prasad
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Madhavi Prasad
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Marlène Rio
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Rondeau
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Valentin Ruault
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Nathalie Ruiz-Pallares
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Elodie Sanchez
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Debbie Shears
- Churchill Hospital, Department of Clinical Genetics, ERN-ITHACA, Oxford, United Kingdom
| | - Victoria Mok Siu
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Arthur Sorlin
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France
| | | | - Mylène Tharreau
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Frédéric Tran Mau-Them
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France
| | - Liselot van der Laan
- University of Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, AUMC Department of Human Genetics, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Julien Van Gils
- University of Bordeaux, University Hospital of Bordeaux, Department of Medical Genetics, MRGM Inserm UMR1211, F-33000 Bordeaux, France
| | - Alain Verloes
- Robert Debré University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sandra Whalen
- Pitié-Salpêtrière University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marjolaine Willems
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Kévin Yauy
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Roberta Zuntini
- Azienda USL-IRCCS di Reggio Emilia, Medical Genetics Unit, 42123 Reggio Emilia, Italy
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - David Geneviève
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France.
| |
Collapse
|
22
|
Yamaguchi M, Huynh MA, Chiyonobu T, Yoshida H. Knockdown of Chronophage in the nervous system mimics features of neurodevelopmental disorders caused by BCL11A/B variants. Exp Cell Res 2023; 433:113827. [PMID: 37926342 DOI: 10.1016/j.yexcr.2023.113827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Neurodevelopmental disorders (NDD) are a group of disorders that include intellectual disability. Although several genes have been implicated in NDD, the molecular mechanisms underlying its pathogenesis remain unclear. Therefore, it is important to develop novel models to analyze the functions of NDD-causing genes in vivo. Recently, rare pathogenic variants of the B-cell lymphoma/leukemia11A/B (BCL11A/B) gene have been identified in several patients with NDD. Drosophila carries the Chronophage (Cph) gene, which has been predicted to be a homolog of BCL11A/B based on the conservation of the amino acid sequence. In the present study, we investigated whether nervous system-specific knockdown of Cph mimics NDD phenotypes in Drosophila. Nervous system-specific knockdown of Cph induced learning and locomotor defects in larvae and epilepsy-like behaviors in adults. The number of synaptic branches was also elevated in the larval neuromuscular junction without a corresponding increase in the number of boutons. Furthermore, the expression levels of putative target genes that are Drosophila homologs of the mammalian BCL11 target genes were decreased in Cph knockdown flies. These results suggest that Cph knockdown flies are a promising model for investigating the pathology of NDD-induced BCL11A/B dysfunction.
Collapse
Affiliation(s)
- Mizuki Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Man Anh Huynh
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomohiro Chiyonobu
- Department of Molecular Diagnostics and Therapeutics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
23
|
Nishimura A, Yokoyama K, Naruto T, Yamagishi C, Imamura T, Nakazono H, Kimura S, Ito M, Sagisaka M, Tanaka Y, Piao J, Namikawa Y, Yanagimachi M, Isoda T, Kanai A, Matsui H, Isobe T, Sato-Otsubo A, Higuchi N, Takada A, Okuno H, Saito S, Karakawa S, Kobayashi S, Hasegawa D, Fujisaki H, Hasegawa D, Koike K, Koike T, Rai S, Umeda K, Sano H, Sekinaka Y, Ogawa A, Kinoshita A, Shiba N, Miki M, Kimura F, Nakayama H, Nakazawa Y, Taga T, Taki T, Adachi S, Manabe A, Koh K, Ishida Y, Takita J, Ishikawa F, Goto H, Morio T, Mizutani S, Tojo A, Takagi M. Myeloid/natural killer (NK) cell precursor acute leukemia as a distinct leukemia type. SCIENCE ADVANCES 2023; 9:eadj4407. [PMID: 38091391 PMCID: PMC10848711 DOI: 10.1126/sciadv.adj4407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Myeloid/natural killer (NK) cell precursor acute leukemia (MNKPL) has been described on the basis of its unique immunophenotype and clinical phenotype. However, there is no consensus on the characteristics for identifying this disease type because of its rarity and lack of defined distinctive molecular characteristics. In this study, multiomics analysis revealed that MNKPL is distinct from acute myeloid leukemia, T cell acute lymphoblastic leukemia, and mixed-phenotype acute leukemia (MPAL), and NOTCH1 and RUNX3 activation and BCL11B down-regulation are hallmarks of MNKPL. Although NK cells have been classically considered to be lymphoid lineage-derived, the results of our single-cell analysis using MNKPL cells suggest that NK cells and myeloid cells share common progenitor cells. Treatment outcomes for MNKPL are unsatisfactory, even when hematopoietic cell transplantation is performed. Multiomics analysis and in vitro drug sensitivity assays revealed increased sensitivity to l-asparaginase and reduced levels of asparagine synthetase (ASNS), supporting the clinically observed effectiveness of l-asparaginase.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takuya Naruto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chika Yamagishi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
| | - Hiroto Nakazono
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Mieko Ito
- Division of Hematology/Oncology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Maiko Sagisaka
- Division of Hematology/Oncology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yukie Tanaka
- Research Core, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jinhua Piao
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yui Namikawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoya Isobe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoko Higuchi
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akiko Takada
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruna Okuno
- Department of Pediatrics, Gunma University Hospital, Maebashi, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Shogo Kobayashi
- Department of Pediatric Oncology, Fukushima Medical University Hospital, Fukushima, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke’s International Hospital, Tokyo, Japan
| | - Hiroyuki Fujisaki
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Japan
| | - Kazutoshi Koike
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
| | - Takashi Koike
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Sano
- Department of Pediatric Oncology, Fukushima Medical University Hospital, Fukushima, Japan
| | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Atsushi Ogawa
- Department of Pediatrics, Niigata Cancer Center Hospital, Niigata, Japan
| | - Akitoshi Kinoshita
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mizuka Miki
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Fumihiko Kimura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Nakayama
- Department of Pediatrics, Kyushu Cancer Center, Fukuoka, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Taga
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Pediatrics, Shiga University of Medical Science, Ohtsu, Japan
| | - Tomohiko Taki
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Souichi Adachi
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Manabe
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsuyoshi Koh
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Department of Hematology/Oncology, Saitama Children’s Medical Center, Saitama, Japan
| | - Yasushi Ishida
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
- Pediatric Medical Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Comprehensive Pathology, Tokyo Medical and Dental University University (TMDU), Tokyo, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Data Science and Faculty Affairs, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Leukemia/Lymphoma Committee of Japanese Society of Pediatric Hematology and Oncology, Tokyo, Japan
| |
Collapse
|
24
|
Dai W, Wang H, Zhan Y, Li N, Li F, Wang J, Yan H, Zhang Y, Wang J, Wu L, Liu H, Fan Y, Tao Y, Mo X, Yang JJ, Sun K, Chen G, Yu Y. CCNK Gene Deficiency Influences Neural Progenitor Cells Via Wnt5a Signaling in CCNK-Related Syndrome. Ann Neurol 2023; 94:1136-1154. [PMID: 37597256 DOI: 10.1002/ana.26766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Rare variants of CCNK (cyclin K) give rise to a syndrome with intellectual disability. The purpose of this study was to describe the genotype-phenotype spectrum of CCNK-related syndrome and the underlying molecular mechanisms of pathogenesis. METHODS We identified a number of de novo CCNK variants in unrelated patients. We generated patient-induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) as disease models. In addition, we constructed NPC-specific Ccnk knockout (KO) mice and performed molecular and morphological analyses. RESULTS We identified 2 new patients harboring CCNK missense variants and followed-up 3 previous reported patients, which constitute the largest patient population analysis of the disease. We demonstrate that both the patient-derived NPC models and the Ccnk KO mouse displayed deficient NPC proliferation and enhanced apoptotic cell death. RNA sequencing analyses of these NPC models uncovered transcriptomic signatures unique to CCNK-related syndrome, revealing significant changes in genes, including WNT5A, critical for progenitor proliferation and cell death. Further, to confirm WNT5A's role, we conducted rescue experiments using NPC and mouse models. We found that a Wnt5a inhibitor significantly increased proliferation and reduced apoptosis in NPCs derived from patients with CCNK-related syndrome and NPCs in the developing cortex of Ccnk KO mice. INTERPRETATION We discussed the genotype-phenotype relationship of CCNK-related syndrome. Importantly, we demonstrated that CCNK plays critical roles in NPC proliferation and NPC apoptosis in vivo and in vitro. Together, our study highlights that Wnt5a may serve as a promising therapeutic target for the disease intervention. ANN NEUROL 2023;94:1136-1154.
Collapse
Affiliation(s)
- Weiqian Dai
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongkun Zhan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Nan Li
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Department of Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingmin Wang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Huifang Yan
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu Zhang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Junyu Wang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Huili Liu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yue Tao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Sun
- Department of Pediatric Cardiovascular, Center of Clinical Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiquan Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
25
|
Chang J, Yamashita M, Padhi AK, Zhang KYJ, Taniuchi I. Impaired tissue homing by the Ikzf3 N159S variant is mediated by interfering with Ikaros function. Front Immunol 2023; 14:1239779. [PMID: 37662955 PMCID: PMC10469740 DOI: 10.3389/fimmu.2023.1239779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
AIOLOS, encoded by IKZF3, is a member of the IKZF family of proteins that plays an important role in regulating late B-cell differentiation. Human individuals heterozygous for the AIOLOS p.N160S variant displayed impaired humoral immune responses as well as impaired B and T cell development. We have previously reported that a mouse strain harboring an Ikzf3N159S allele that corresponds to human IKZF3N160S recapitulated immune-deficient phenotypes, such as impaired B cell development and loss of CD23 expression. In this study, we investigated the effect of the Ikzf3N159S variant and found that B1a cell development was impaired in Ikzf3N159S/N159S mice. In addition, CD62L expression was severely decreased in both B and T lymphocytes by the Ikzf3N159S mutation, in a dose-dependent manner. Mixed bone marrow chimera experiments have revealed that most immunodeficient phenotypes, including low CD62L expression, occur in intrinsic cells. Interestingly, while Ikzf3N159S/N159S lymphocytes were still present in the spleen, they were completely outcompeted by control cells in the lymph nodes, suggesting that the capacity for homing or retention in the lymph nodes was lost due to the Ikzf3N159S mutation. The homing assay confirmed severely decreased homing abilities to lymph nodes of Ikzf3N159S/N159S B and T lymphocytes but selective enrichment of CD62L expressing Ikzf3N159S/N159S lymphocytes in lymph nodes. This finding suggests that impaired CD62L expression is the major reason for the impaired homing capacity caused by the Ikzf3N159S mutation. Interestingly, an excess amount of Ikaros, but not Aiolos, restored CD62L expression in Ikzf3N159S/N159S B cells. Together with the loss of CD62L expression due to Ikaros deficiency, the AiolosN159S mutant protein likely interferes with Ikaros function through heterodimerization, at least in activating the Sell gene encoding CD62L expression. Thus, our results revealed that AiolosN159S causes some immunodeficient phenotypes via the pathogenesis referred to as the heterodimeric interference as observed for AiolosG158R variant.
Collapse
Affiliation(s)
- Jingjie Chang
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aditya K. Padhi
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Kam Y. J. Zhang
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
26
|
Pande S, Mascarenhas S, Venkatraman A, Bhat V, Narayanan DL, Siddiqui S, Bielas S, Girisha KM, Shukla A. Further validation of craniosynostosis as a part of phenotypic spectrum of BCL11B-related BAFopathy. Am J Med Genet A 2023; 191:2175-2180. [PMID: 37337996 PMCID: PMC10448182 DOI: 10.1002/ajmg.a.63330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Heterozygous disease-causing variants in BCL11B are the basis of a rare neurodevelopmental syndrome with craniofacial and immunological involvement. Isolated craniosynostosis, without systemic or immunological findings, has been reported in one of the 17 individuals reported with this disorder till date. We report three additional individuals harboring de novo heterozygous frameshift variants, all lying in the exon 4 of BCL11B. All three individuals presented with the common findings of this disorder i.e. developmental delay, recurrent infections with immunologic abnormalities and facial dysmorphism. Notably, craniosynostosis of variable degree was seen in all three individuals. We, thus add to the evolving genotypes and phenotypes of BCL11B-related BAFopathy and also review the clinical, genomic spectrum along with the underlying disease mechanisms of this disorder.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Aishwarya Venkatraman
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Shahyan Siddiqui
- Department of Neuroimaging and Interventional Radiology, STAR Institute of Neurosciences, STAR hospitals, Hyderabad, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal
| |
Collapse
|
27
|
Yu Y, Jia X, Yin H, Jiang H, Du Y, Yang F, Yang Z, Li H. A novel variant in BCL11B in an individual with neurodevelopmental delay: A case report. Mol Genet Genomic Med 2023; 11:e2132. [PMID: 36683525 PMCID: PMC10094078 DOI: 10.1002/mgg3.2132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND B-Cell CLL/Lymphoma 11B (BCL11B) is a C2 H2 zinc finger transcription factor that has broad biological functions and is essential for the development of the immune system, neural system, cardiovascular system, dermis, and dentition. Variants of BCL11B have been found in patients with neurodevelopmental disorders and immunodeficiency. MATERIALS AND METHODS Whole-exome sequencing (WES) and clinical examinations were performed to identify the etiology of our patient. A variant in the BCL11B gene, NM_138576.4: c.1206delG (p.Phe403Serfs*2) was found and led to frameshift truncation. RESULTS We reported a male patient with developmental delay and cerebral palsy who carried the BCL11B variant. The detailed clinical features, such as brain structure and immune detection, were described and reviewed in comparison to previous patients. CONCLUSIONS The BCL11B-related neurodevelopmental disorders are rare, and only 17 variants in 25 patients have been found to date. Our report expands the variants spectrum of BCL11B and increases the case of neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Yonglin Yu
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Xiaoyi Jia
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Hongwei Yin
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Hongfang Jiang
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yu Du
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | | | | | - Haifeng Li
- Department of Rehabilitation, the Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| |
Collapse
|
28
|
Basheer F, Sertori R, Liongue C, Ward AC. Zebrafish: A Relevant Genetic Model for Human Primary Immunodeficiency (PID) Disorders? Int J Mol Sci 2023; 24:ijms24076468. [PMID: 37047441 PMCID: PMC10095346 DOI: 10.3390/ijms24076468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Primary immunodeficiency (PID) disorders, also commonly referred to as inborn errors of immunity, are a heterogenous group of human genetic diseases characterized by defects in immune cell development and/or function. Since these disorders are generally uncommon and occur on a variable background profile of potential genetic and environmental modifiers, animal models are critical to provide mechanistic insights as well as to create platforms to underpin therapeutic development. This review aims to review the relevance of zebrafish as an alternative genetic model for PIDs. It provides an overview of the conservation of the zebrafish immune system and details specific examples of zebrafish models for a multitude of specific human PIDs across a range of distinct categories, including severe combined immunodeficiency (SCID), combined immunodeficiency (CID), multi-system immunodeficiency, autoinflammatory disorders, neutropenia and defects in leucocyte mobility and respiratory burst. It also describes some of the diverse applications of these models, particularly in the fields of microbiology, immunology, regenerative biology and oncology.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
29
|
Screening of potential immune-related genes expressed during sepsis using gene sequencing technology. Sci Rep 2023; 13:4258. [PMID: 36918563 PMCID: PMC10014830 DOI: 10.1038/s41598-022-23062-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/25/2022] [Indexed: 03/16/2023] Open
Abstract
To screen potential pivotal targets in sepsis through peripheral blood. Septic patients (n = 23) and healthy volunteers (n = 10) were enrolled according to SEPSIS 3.0. Peripheral blood was collected within 24 h of enrollment, RNA-seq was performed on the peripheral blood. The sequencing data was screened for DEGs (p < 0.01; logFC ≥ 2). PPI, WGCNA and survival curve analysis were used to identify potential targets. Then, 5 PBMC samples were conducted by single-cell sequencing for cell lineage location. Finally, mouse sepsis model and clinic samples were performed to verify the targets gene using RNA-seq and RT-PCR, respectively. Compared to the control group, 1007 DEGs were found in septic group. BCL9L, BCL11B, CD247, CD96, MAFG and SAMD3 were in the core of network. These six genes correlated to the survival rate of septic patients and they were mainly expressed in T cells, except that MAFG was located in monocyte cell. The expression levels of six key genes were confirmed by animal and clinical samples. BCL9L, BCL11B, CD247, CD96 and SAMD3 were decreased in sepsis and mainly expressed in the T cell; while MAFG increased in sepsis and localizes to monocytes. These genes may be therapeutic targets for sepsis.
Collapse
|
30
|
Dvorak CC, Haddad E, Heimall J, Dunn E, Cowan MJ, Pai SY, Kapoor N, Satter LF, Buckley RH, O'Reilly RJ, Chandra S, Bednarski JJ, Williams O, Rayes A, Moore TB, Ebens CL, Davila Saldana BJ, Petrovic A, Chellapandian D, Cuvelier GDE, Vander Lugt MT, Caywood EH, Chandrakasan S, Eissa H, Goldman FD, Shereck E, Aquino VM, Desantes KB, Madden LM, Miller HK, Yu L, Broglie L, Gillio A, Shah AJ, Knutsen AP, Andolina JP, Joshi AY, Szabolcs P, Kapadia M, Martinez CA, Parrot RE, Sullivan KE, Prockop SE, Abraham RS, Thakar MS, Leiding JW, Kohn DB, Pulsipher MA, Griffith LM, Notarangelo LD, Puck JM. The diagnosis of severe combined immunodeficiency: Implementation of the PIDTC 2022 Definitions. J Allergy Clin Immunol 2023; 151:547-555.e5. [PMID: 36456360 PMCID: PMC9905305 DOI: 10.1016/j.jaci.2022.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Shearer et al in 2014 articulated well-defined criteria for the diagnosis and classification of severe combined immunodeficiency (SCID) as part of the Primary Immune Deficiency Treatment Consortium's (PIDTC's) prospective and retrospective studies of SCID. OBJECTIVE Because of the advent of newborn screening for SCID and expanded availability of genetic sequencing, revision of the PIDTC 2014 Criteria was needed. METHODS We developed and tested updated PIDTC 2022 SCID Definitions by analyzing 379 patients proposed for prospective enrollment into Protocol 6901, focusing on the ability to distinguish patients with various SCID subtypes. RESULTS According to PIDTC 2022 Definitions, 18 of 353 patients eligible per 2014 Criteria were considered not to have SCID, whereas 11 of 26 patients ineligible per 2014 Criteria were determined to have SCID. Of note, very low numbers of autologous T cells (<0.05 × 109/L) characterized typical SCID under the 2022 Definitions. Pathogenic variant(s) in SCID-associated genes was identified in 93% of patients, with 7 genes (IL2RG, RAG1, ADA, IL7R, DCLRE1C, JAK3, and RAG2) accounting for 89% of typical SCID. Three genotypes (RAG1, ADA, and RMRP) accounted for 57% of cases of leaky/atypical SCID; there were 13 other rare genotypes. Patients with leaky/atypical SCID were more likely to be diagnosed at more than age 1 year than those with typical SCID lacking maternal T cells: 20% versus 1% (P < .001). Although repeat testing proved important, an initial CD3 T-cell count of less than 0.05 × 109/L differentiated cases of typical SCID lacking maternal cells from leaky/atypical SCID: 97% versus 7% (P < .001). CONCLUSIONS The PIDTC 2022 Definitions describe SCID and its subtypes more precisely than before, facilitating analyses of SCID characteristics and outcomes.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif.
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jennifer Heimall
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Elizabeth Dunn
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Neena Kapoor
- Hematology, Oncology and TCT, Children's Hospital Los Angeles, Los Angeles, Calif
| | - Lisa Forbes Satter
- Pediatric Immunology Allergy and Retrovirology, Baylor College of Medicine, Houston, Tex
| | - Rebecca H Buckley
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Richard J O'Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering, New York, NY
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jeffrey J Bednarski
- Division of Pediatric Hematology and Oncology, Washington University School of Medicine, St Louis, Mo
| | | | - Ahmad Rayes
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Theodore B Moore
- Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, Calif
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minn
| | | | - Aleksandra Petrovic
- Division of Pediatric Immunology and Bone Marrow Transplantation, University of Washington, Seattle Children's Hospital, Seattle, Wash
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non Malignant Conditions, Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark T Vander Lugt
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, Mich
| | - Emi H Caywood
- Nemours Children's Health Delaware, Thomas Jefferson University, Wilmington, Del
| | - Shanmuganathan Chandrakasan
- Bone Marrow Transplantation Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, Colo
| | - Frederick D Goldman
- Division of Hematology/Oncology/BMT, Department of Pediatrics, University of Alabama, Birmingham, Ala
| | - Evan Shereck
- Division of Pediatric Hematology/Oncology, Oregon Health & Science University, Portland, Ore
| | - Victor M Aquino
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Kenneth B Desantes
- Division of Pediatric Heme/Onc & Bone Marrow Transplant, University of Wisconsin School of Medicine, Madison, Wis
| | - Lisa M Madden
- Pediatric Bone Marrow Transplant Program, Texas Transplant Institute, San Antonio, Tex
| | | | - Lolie Yu
- Division of Pediatric Hematology-Oncology/HSCT, LSUHSC and Children's Hospital, New Orleans, La
| | - Larisa Broglie
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wis
| | - Alfred Gillio
- Joseph M. Sanzani's Children's Hospital at Hackensack University Medical Center, Hackensack, NJ
| | - Ami J Shah
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Palo Alto, Calif
| | - Alan P Knutsen
- Division of Pediatric Allergy & Immunology, Saint Louis University, St Louis, Mo
| | - Jeffrey P Andolina
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY
| | - Avni Y Joshi
- Division of Pediatric Allergy and Immunology, Mayo Clinic Childrens Center, Rochester, Minn
| | - Paul Szabolcs
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Malika Kapadia
- Division of Pediatric Oncology, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard University Medical School, Boston, Mass
| | - Caridad A Martinez
- Hematology/Oncology/BMT, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Roberta E Parrot
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Kathleen E Sullivan
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Susan E Prockop
- Division of Pediatric Oncology, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard University Medical School, Boston, Mass
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Monica S Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, Wash
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif; Department of Pediatrics, University of California, Los Angeles, Los Angeles, Calif
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| |
Collapse
|
31
|
Patterson AR, Needle GA, Sugiura A, Chi C, Steiner KK, Fisher EL, Robertson GL, Bodnya C, Markle JG, Gama V, Rathmell JC. Functional Overlap of Inborn Errors of Immunity and Metabolism Genes Define T Cell Immunometabolic Vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525419. [PMID: 36747715 PMCID: PMC9900827 DOI: 10.1101/2023.01.24.525419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inborn Errors of Metabolism (IEM) and Immunity (IEI) are Mendelian diseases in which complex phenotypes and patient rarity can limit clinical annotations. Few genes are assigned to both IEM and IEI, but immunometabolic demands suggest functional overlap is underestimated. We applied CRISPR screens to test IEM genes for immunologic roles and IEI genes for metabolic effects and found considerable crossover. Analysis of IEM showed N-linked glycosylation and the de novo hexosamine synthesis enzyme, Gfpt1 , are critical for T cell expansion and function. Interestingly, Gfpt1 -deficient T H 1 cells were more affected than T H 17 cells, which had increased Nagk for salvage UDP-GlcNAc synthesis. Screening IEI genes showed the transcription factor Bcl11b promotes CD4 + T cell mitochondrial activity and Mcl1 expression necessary to prevent metabolic stress. These data illustrate a high degree of functional overlap of IEM and IEI genes and point to potential immunometabolic mechanisms for a previously unappreciated set of these disorders. HIGHLIGHTS Inborn errors of immunity and metabolism have greater overlap than previously known Gfpt1 deficiency causes an IEM but also selectively regulates T cell subset fate Loss of Bcl11b causes a T cell deficiency IEI but also harms mitochondrial function Many IEM may have immune defects and IEI may be driven by metabolic mechanisms.
Collapse
|
32
|
Sertori R, Zhang Y, Wiest DL. Zebrafish: A Tractable Model for Analysis of T Cell Development. Methods Mol Biol 2023; 2580:355-377. [PMID: 36374469 DOI: 10.1007/978-1-0716-2740-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the zebrafish has for some time been regarded as a powerful model organism with which to study early events in hematopoiesis, recent evidence suggests that it also ideal for unraveling the molecular requirements for T cell development in the thymus. Like mammals, zebrafish possess an adaptive immune system, comprising B lymphocytes as well as both the γδ and αβ lineages of T cells, which develop in the thymus. Moreover, the molecular processes underlying T cell development in zebrafish appear to be remarkably conserved. Thus, findings in the zebrafish model will be of high relevance to the equivalent processes in mammals. Finally, molecular processes can be interrogated in zebrafish far more rapidly than is possible in mammals because the zebrafish possesses many unique advantages. Here, we describe these unique attributes and the methods by which they can be exploited to investigate the role of novel genes in T cell development.
Collapse
Affiliation(s)
- Robert Sertori
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Impact of Genetic Diagnosis on the Outcome of Hematopoietic Stem Cell Transplant in Primary Immunodeficiency Disorders. J Clin Immunol 2023; 43:636-646. [PMID: 36495401 PMCID: PMC9958161 DOI: 10.1007/s10875-022-01403-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
To evaluate the relationship between knowledge of genetic diagnosis before HSCT and outcome, we reviewed all HSCTs for primary immune deficiencies (PID) performed at UCSF from 2007 through 2018. SCID, a distinct entity identified since 2010 in California by newborn screening and treated early, was considered separately. The underlying genetic condition was known at the time of HSCT in 85% of cases. Graft failure was less frequent in patients with a genetic diagnosis (19% with a genetic diagnosis versus 47% without, p = 0.020). Furthermore, event-free survival and overall survival (OS) at 5 years were better for those with a genetic diagnosis (78% with versus 44% without, p = 0.006; and 93% versus 60% without, p = 0.0002, respectively). OS at 5 years was superior for known-genotype patients with both SCID (p = 0.010) and non-SCID PID (p = 0.010). There was no difference in OS between HSCT done in 2007-2010 compared to more recently (p = 0.19). These data suggest that outcomes of HSCT for PID with known genotype may reflect specific experience and literature, or that a substantial proportion of patients with PID of undetermined genotype may have had underlying conditions for which HSCT may carry greater risk. The higher rate of graft failure in PID with unknown genotype may be in part explained by insufficient conditioning, which in turn could be dictated by compromised organ function in patients undergoing HSCT late in the course. Widespread availability of PID gene sequencing as standard care can provide genetic diagnoses for most patients with PID prior to HSCT, permitting optimization of transplant approach.
Collapse
|
34
|
CARNEIRO VF, MACHADO RA, BARBOSA MC, DIAS VO, MARTELLI DRB, MARTELLI-JÚNIOR H. Dental anomalies in syndromes displaying hypertrichosis in the clinical spectrum. Braz Oral Res 2023; 37:e030. [PMID: 37018811 DOI: 10.1590/1807-3107bor-2023.vol37.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/19/2022] [Indexed: 04/05/2023] Open
Abstract
Hypertrichosis and dental anomalies may occur alone or in combination in the spectrum of many syndromes. To identify genetic entities characterized by hypertrichosis and dental anomalies, a search was performed in the Mendelian Inheritance in Man database with the terms "hypertrichosis" or "hirsutism" and "tooth" or "dental abnormalities." Nondependent androgen metabolism disturbances were classified as hypertrichosis. Genetic entities with hypertrichosis and dental anomalies were included in the study. Additional searches were performed in the PubMed and Orphanet databases, when necessary, in order to include data from scientific articles. An integrative analysis of the genes associated with the identified syndromes was conducted using STRING to characterize biological processes, pathways, and interactive networks. The p-values were subjected to the false discovery rate for the correction of multiple tests. Thirty-nine syndromes were identified, and dental agenesis was the most frequent dental anomaly present in 41.02% (n = 16) of the syndromes. Causative genes were identified in 33 out of 39 genetic syndromes. Among them, 39 genes were identified, and 38 were analyzed by STRING, which showed 148 biological processes and three pathways that were statistically significant. The most significant biological processes were the disassembly of the nucleosome (GO:0006337, p = 1.09e-06), chromosomal organization (GO:0051276, p = 1.09e-06) and remodeling of the chromatin (GO: 0006338, p = 7.86e-06), and the pathways were hepatocellular carcinoma (hsa05225, p = 5.77e-05), thermogenesis (hsa04714, p = 0.00019), and cell cycle (hsa04110, p = 0.0433). Our results showed that the identification of hypertrichosis and dental anomalies may raise the suspicion of one of the thirty-nine syndromes with both phenotypes.
Collapse
|
35
|
Chaisrisawadisuk S, Vatanavicharn N, Khampalikit I, Moore MH. Multisuture craniosynostosis: a case report of unusual presentation of chromosome 14q32 deletion. Childs Nerv Syst 2022; 39:1317-1322. [PMID: 36512050 DOI: 10.1007/s00381-022-05788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Multisuture craniosynostosis is associated with a number of syndromes and underlying gene mutations. It is rarely caused by chromosome disorders. For the management, multisuture craniosynostosis raises concerns about abnormal head shape and risks of increased intracranial pressure in affected patients. Calvarial reconstruction to reshape the skull shape and expand the intracranial volume plays an essential role in correcting particular problems. Here, we report a 2-month-old female infant presenting with low birth weight, abnormal head shape, dysmorphic facies and pinnae, hypotonia, and feeding difficulty. Three-dimensional computed tomographic scans revealed left unicoronal and sagittal synostoses. Chromosome microarray analysis revealed de novo chromosome 14q32.12-q32.31 deletion. Among the deleted genes, YY1 and BCL11B are the most likely candidate genes causing craniosynostosis. Some clinical features of the patient are similar to Temple syndrome indicating that the deleted region is paternal in origin. In summary, this is a rare case of chromosome 14q32 deletion with multisuture craniosynostosis. We also report the multidisciplinary management and clinical outcomes after early cranial vault remodelling procedures.
Collapse
Affiliation(s)
- Sarut Chaisrisawadisuk
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nithiwat Vatanavicharn
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Inthira Khampalikit
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mark H Moore
- Cleft and Craniofacial South Australia, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Roa-Bautista A, López-Duarte M, Paz-Gandiaga N, San Segundo Arribas D, Ocejo-Vinyals JG. Deletion in the BCL11B Gene and Intellectual Developmental Disorder with Speech Delay, Dysmorphic Facies, and T-cell Abnormalities - a Case Report. EJIFCC 2022; 33:325-333. [PMID: 36605301 PMCID: PMC9768616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein we described a retrospective analysis of a 13-year-old female patient with facial dysmorphia and immune disorder caused by BCL11B gene mutation. The patient upon physical examination presented a particular face (thin eyebrows, small mandible, and widened eye distance), delayed language and motor development. Supplementary examination showed expansion of CD8+, absence of type 2 Innate Lymphoid Cells, increased IgG and altered distribution of T cells. Genetic testing revealed a heterozygous frameshift variation in exon 4 of the BCL11B gene; c.1887_c.1893delCGGCGGG (p.Gly630Glyfs*91). Finally, a BCL11B gene mutation could lead to abnormal development of the nervous and immune systems, therefore, it is necessary to consider this syndrome in patients with the clinical and immunological phenotype described below.
Collapse
Affiliation(s)
- Adriel Roa-Bautista
- Division of Immunology, Marques de Valdecilla University Hospital, University of Cantabria, IDIVAL, Santander, Cantabria, Spain,Corresponding author: Adriel Roa-Bautista, MD, MHSc Division of Immunology Marques de Valdecilla University Hospital University of Cantabria IDIVAL, Santander, Cantabria (39008) Spain Phone: +34 640 55 57 65 E-mail:
| | - Mónica López-Duarte
- Division of Hematology, Marques de Valdecilla University Hospital, University of Cantabria, IDIVAL, Santander, Cantabria, Spain
| | - Nerea Paz-Gandiaga
- Division of Genetics, Marques de Valdecilla University Hospital, University of Cantabria, IDIVAL, Santander, Cantabria, Spain
| | - David San Segundo Arribas
- Division of Immunology, Marques de Valdecilla University Hospital, University of Cantabria, IDIVAL, Santander, Cantabria, Spain
| | - J. Gonzalo Ocejo-Vinyals
- Division of Immunology, Marques de Valdecilla University Hospital, University of Cantabria, IDIVAL, Santander, Cantabria, Spain
| |
Collapse
|
37
|
Eto K, Machida O, Yanagishita T, Shimojima Yamamoto K, Chiba K, Aihara Y, Hasegawa Y, Nagata M, Ishihara Y, Miyashita Y, Asano Y, Nagata S, Yamamoto T. Novel BCL11B truncation variant in a patient with developmental delay, distinctive features, and early craniosynostosis. Hum Genome Var 2022; 9:43. [PMID: 36470856 PMCID: PMC9722650 DOI: 10.1038/s41439-022-00220-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 12/12/2022] Open
Abstract
Intellectual developmental disorder with dysmorphic facies, speech delay, and T-cell abnormalities (MIM # 618092) is a congenital disorder derived from pathogenic variants of the B-cell leukemia/lymphoma 11B gene (BCL11B). Several variants have been reported to date. Here, through comprehensive genomic analysis, a novel BCL11B truncation variant, NM_138576.4(BCL11B_v001): c.2439_2452dup [p.(His818Argfs*31)], was identified in a Japanese male patient with developmental delay, distinctive features, and early craniosynostosis.
Collapse
Affiliation(s)
- Kaoru Eto
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Osamu Machida
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan ,grid.410818.40000 0001 0720 6587Division of Gene Medicine, Tokyo Women’s Medical University Graduate School of Medicine, Tokyo, Japan
| | - Tomoe Yanagishita
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- grid.410818.40000 0001 0720 6587Department of Transfusion Medicine and Cell Processing, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kentaro Chiba
- grid.410818.40000 0001 0720 6587Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yasuo Aihara
- grid.410818.40000 0001 0720 6587Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuuki Hasegawa
- grid.410818.40000 0001 0720 6587Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Miho Nagata
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuki Ishihara
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Miyashita
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan ,grid.410796.d0000 0004 0378 8307Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiro Asano
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan ,grid.410796.d0000 0004 0378 8307Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satoru Nagata
- grid.410818.40000 0001 0720 6587Department of Pediatrics, Tokyo Women’s Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- grid.410818.40000 0001 0720 6587Division of Gene Medicine, Tokyo Women’s Medical University Graduate School of Medicine, Tokyo, Japan ,grid.410818.40000 0001 0720 6587Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The development of cancer in patients with genetically determined inborn errors of immunity (IEI) is much higher than in the general population. The hallmarks of cancer are a conceptualization tool that can refine the complexities of cancer development and pathophysiology. Each genetic defect may impose a different pathological tumor predisposition, which needs to be identified and linked with known hallmarks of cancer. RECENT FINDINGS Four new hallmarks of cancer have been suggested, recently, including unlocking phenotypic plasticity, senescent cells, nonmutational epigenetic reprogramming, and polymorphic microbiomes. Moreover, more than 50 new IEI genes have been discovered during the last 2 years from which 15 monogenic defects perturb tumor immune surveillance in patients. SUMMARY This review provides a more comprehensive and updated overview of all 14 cancer hallmarks in IEI patients and covers aspects of cancer predisposition in novel genes in the ever-increasing field of IEI.
Collapse
|
39
|
Harrer P, Leppmeier V, Berger A, Demund S, Winkelmann J, Berweck S, Zech M. A de novo BCL11B variant case manifesting with dystonic movement disorder regarding the article “BCL11B-related disorder in two canadian children: Expanding the clinical phenotype (Prasad et al., 2020).”. Eur J Med Genet 2022; 65:104635. [DOI: 10.1016/j.ejmg.2022.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
|
40
|
Che F, Tie X, Lei H, Zhang X, Duan M, Zhang L, Yang Y. Identification of two novel variants of the BCL11B gene in two Chinese pedigrees associated with neurodevelopmental disorders. Front Mol Neurosci 2022; 15:927357. [PMID: 36176959 PMCID: PMC9513357 DOI: 10.3389/fnmol.2022.927357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveAccording to a recent report, the mutation of transcription factor gene BCL11B is associated with the development of neurodevelopmental disorders and immune deficiency. By analyzing both clinical features and genetic variations, this study aims to reveal the genetic etiology of four patients with neurodevelopmental disorders from two unrelated Chinese pedigrees.MethodsFrom the 4 cases, the clinical data were collected. The potential pathogenic gene variations were analyzed by means of based-trio whole exome sequencing (Trio-WES) and then validated through Sanger sequencing in their respective pedigrees. Furthermore, both the in vitro minigene assay and the NMD assay were performed to evaluate the impact of splicing and frameshift variants.ResultsThe 4 patients displayed mild-to-severe intellectual developmental disorder, which was accompanied by speech delay, dysmorphic facies, and serious caries. In addition, the extended phenotype of developmental regression was observed in the proband from Family 1, which has been unreported previously. Molecular analysis was conducted to identify two novel heterozygous variants in the BCL11B gene: a maternal splicing variant c.427 + 1G > A in Family 1 and a de novo frameshift variant c.2461_2462insGAGCCACACCGGCG (p.Glu821Glyfs*28) in Family 2. As revealed by the in vitro minigene assay, the c.427 + 1G > A variant activated a new cryptic splice site. As confirmed by an overexpression assay, there was no significant difference in the level of mRNA and protein expression between the mutate-BCL11B (p.Glu821Glyfs*28) and the wild type. It confirms that p.Glu821Glyfs*28 variant could be an NMD escaping variant.ConclusionThe extended phenotype of BCL11B-related disorders is reported in this study to reveal the clinical and genetic heterogeneity of the disease. The study starts by identifying a splicing variant and a novel frameshift variant of the BCL11B gene, thus confirming its aberrant translation. The findings of this study expand the mutation spectrum of the genetic BCL11B gene, which not only improves the understanding of the associated neurodevelopmental disorders from a clinical perspective but also provides guidance on diagnosis and genetic counseling for patients.
Collapse
Affiliation(s)
- Fengyu Che
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Xiaoling Tie
- Department of Rehabilitation, Xi’an Children’s Hospital, Xi’an, China
| | - Hong Lei
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Xi Zhang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Mingyue Duan
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Liyu Zhang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Ying Yang,
| |
Collapse
|
41
|
Li Z, Klein JA, Rampam S, Kurzion R, Campbell NB, Patel Y, Haydar TF, Zeldich E. Asynchronous excitatory neuron development in an isogenic cortical spheroid model of Down syndrome. Front Neurosci 2022; 16:932384. [PMID: 36161168 PMCID: PMC9504873 DOI: 10.3389/fnins.2022.932384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
The intellectual disability (ID) in Down syndrome (DS) is thought to result from a variety of developmental deficits such as alterations in neural progenitor division, neurogenesis, gliogenesis, cortical architecture, and reduced cortical volume. However, the molecular processes underlying these neurodevelopmental changes are still elusive, preventing an understanding of the mechanistic basis of ID in DS. In this study, we used a pair of isogenic (trisomic and euploid) induced pluripotent stem cell (iPSC) lines to generate cortical spheroids (CS) that model the impact of trisomy 21 on brain development. Cortical spheroids contain neurons, astrocytes, and oligodendrocytes and they are widely used to approximate early neurodevelopment. Using single cell RNA sequencing (scRNA-seq), we uncovered cell type-specific transcriptomic changes in the trisomic CS. In particular, we found that excitatory neuron populations were most affected and that a specific population of cells with a transcriptomic profile resembling layer IV cortical neurons displayed the most profound divergence in developmental trajectory between trisomic and euploid genotypes. We also identified candidate genes potentially driving the developmental asynchrony between trisomic and euploid excitatory neurons. Direct comparison between the current isogenic CS scRNA-seq data and previously published datasets revealed several recurring differentially expressed genes between DS and control samples. Altogether, our study highlights the power and importance of cell type-specific analyses within a defined genetic background, coupled with broader examination of mixed samples, to comprehensively evaluate cellular phenotypes in the context of DS.
Collapse
Affiliation(s)
- Zhen Li
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Jenny A. Klein
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Sanjeev Rampam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ronni Kurzion
- Department of Chemistry, Boston University, Boston, MA, United States
| | | | - Yesha Patel
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Tarik F. Haydar
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
| |
Collapse
|
42
|
Alfei E, Cattaneo E, Spaccini L, Iascone M, Veggiotti P, Doneda C. Progressive Clinical and Neuroradiological Findings in a Child with BCL11B Missense Mutation: Expanding the Phenotypic Spectrum of Related Disorder. Neuropediatrics 2022; 53:283-286. [PMID: 34844266 DOI: 10.1055/s-0041-1736193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report a patient affected by BCL11B-related disorder, providing the first extensive demonstration of clinical and neuroradiological progressive course of the disease, with possible implications on the way it is studied and followed-up. Never described clinical aspects such as toes abnormalities and hypospadias widen the range of dysmorphisms associated with this condition. Our data suggest that BCL11B mutations may be implicated not only in impaired morphogenesis and hematopoiesis but also in progressive central nervous system damage, which remains to be further investigated and clarified.
Collapse
Affiliation(s)
- Enrico Alfei
- Pediatric Neurology Unit, Department of Pediatrics, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Elisa Cattaneo
- Clinical Genetics Unit, Department of Pediatrics, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Maria Iascone
- Medical Genetics Laboratory, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, "Vittore Buzzi" Children's Hospital, Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, Italy
| | - Chiara Doneda
- Department of Pediatric Radiology and Neuroradiology, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
43
|
Sertori R, Lin JX, Martinez E, Rana S, Sharo A, Kazemian M, Sunderam U, Andrake M, Shinton S, Truong B, Dunbrack RM, Liu C, Srinivasan R, Brenner SE, Seroogy CM, Puck JM, Leonard WJ, Wiest DL. Investigation of the causal etiology in a patient with T-B+NK+ immunodeficiency. Front Immunol 2022; 13:928252. [PMID: 35967429 PMCID: PMC9372720 DOI: 10.3389/fimmu.2022.928252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Newborn screening for severe combined immunodeficiency (SCID) has not only accelerated diagnosis and improved treatment for affected infants, but also led to identification of novel genes required for human T cell development. A male proband had SCID newborn screening showing very low T cell receptor excision circles (TRECs), a biomarker for thymic output of nascent T cells. He had persistent profound T lymphopenia, but normal numbers of B and natural killer (NK) cells. Despite an allogeneic hematopoietic stem cell transplant from his brother, he failed to develop normal T cells. Targeted resequencing excluded known SCID genes; however, whole exome sequencing (WES) of the proband and parents revealed a maternally inherited X-linked missense mutation in MED14 (MED14V763A), a component of the mediator complex. Morpholino (MO)-mediated loss of MED14 function attenuated T cell development in zebrafish. Moreover, this arrest was rescued by ectopic expression of cDNA encoding the wild type human MED14 ortholog, but not by MED14V763A , suggesting that the variant impaired MED14 function. Modeling of the equivalent mutation in mouse (Med14V769A) did not disrupt T cell development at baseline. However, repopulation of peripheral T cells upon competitive bone marrow transplantation was compromised, consistent with the incomplete T cell reconstitution experienced by the proband upon transplantation with bone marrow from his healthy male sibling, who was found to have the same MED14V763A variant. Suspecting that the variable phenotypic expression between the siblings was influenced by further mutation(s), we sought to identify genetic variants present only in the affected proband. Indeed, WES revealed a mutation in the L1 cell adhesion molecule (L1CAMQ498H); however, introducing that mutation in vivo in mice did not disrupt T cell development. Consequently, immunodeficiency in the proband may depend upon additional, unidentified gene variants.
Collapse
Affiliation(s)
- Robert Sertori
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Esteban Martinez
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Sadhna Rana
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Andrew Sharo
- Center for Computational Biology, University of California, Berkeley, CA, United States
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, United States
| | - Uma Sunderam
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Mark Andrake
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Susan Shinton
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Billy Truong
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Roland M. Dunbrack
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | | | - Steven E. Brenner
- Center for Computational Biology, University of California, Berkeley, CA, United States
| | - Christine M. Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer M. Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children’s Hospital, San Francisco, CA, United States
| | - Warren J. Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
44
|
Jiang Z, Qin L, Tang Y, Liao R, Shi J, He B, Li S, Zheng D, Cui Y, Wu Q, Long Y, Yao Y, Wei Z, Hong Q, Wu Y, Mai Y, Gou S, Li X, Weinkove R, Norton S, Luo W, Feng W, Zhou H, Liu Q, Chen J, Lai L, Chen X, Pei D, Graf T, Liu X, Li Y, Liu P, Zhang Z, Li P. Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomark Res 2022; 10:13. [PMID: 35331335 PMCID: PMC8943975 DOI: 10.1186/s40364-022-00358-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) is a particularly promising area of cancer immunotherapy, engineered T and NK cells that express chimeric antigen receptors (CAR) are being explored for treating hematopoietic malignancies but exhibit limited clinical benefits for solid tumour patients, successful cellular immunotherapy of solid tumors demands new strategies. METHODS Inactivation of BCL11B were performed by CRISPR/Cas9 in human T cells. Immunophenotypic and transcriptional profiles of sgBCL11B T cells were characterized by cytometer and transcriptomics, respectively. sgBCL11B T cells are further engineered with chimeric antigen receptor. Anti-tumor activity of ITNK or CAR-ITNK cells were evaluated in preclinical and clinical studies. RESULTS We report that inactivation of BCL11B in human CD8+ and CD4+ T cells induced their reprogramming into induced T-to-natural killer cells (ITNKs). ITNKs contained a diverse TCR repertoire; downregulated T cell-associated genes such as TCF7 and LEF1; and expressed high levels of NK cell lineage-associated genes. ITNKs and chimeric antigen receptor (CAR)-transduced ITNKs selectively lysed a variety of cancer cells in culture and suppressed the growth of solid tumors in xenograft models. In a preliminary clinical study, autologous administration of ITNKs in patients with advanced solid tumors was well tolerated, and tumor stabilization was seen in six out nine patients, with one partial remission. CONCLUSIONS The novel ITNKs thus may be a promising novel cell source for cancer immunotherapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT03882840 . Registered 20 March 2019-Retrospectively registered.
Collapse
Affiliation(s)
- Zhiwu Jiang
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Le Qin
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuou Tang
- Department of Radiology; Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment; Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Liao
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingxuan Shi
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bingjia He
- Department of Radiology; Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment; Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanglin Li
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhihui Wei
- Guangdong Zhaotai InVivo Biomedicine Co. Ltd., Guangzhou, China
| | - Qilan Hong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yi Wu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuanbang Mai
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoping Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Weineng Feng
- Department of Head and Neck/Thoracic Medical Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Guangzhou, China
| | - Jiekai Chen
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Thomas Graf
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xingguo Liu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
| | - Zhenfeng Zhang
- Department of Radiology; Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment; Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China.
| |
Collapse
|
45
|
Zhao X, Wu B, Chen H, Zhang P, Qian Y, Peng X, Dong X, Wang Y, Li G, Dong C, Wang H. Case report: A novel truncating variant of BCL11B associated with rare feature of craniosynostosis and global developmental delay. Front Pediatr 2022; 10:982361. [PMID: 36275064 PMCID: PMC9582536 DOI: 10.3389/fped.2022.982361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Craniosynostosis is a premature fusion of cranial sutures, resulting in abnormally shaped skull and brain development disorder. The description of craniosynostosis in patients with BCL11B mutations is rare. Here, we firstly report a 25-month-old Chinese boy with a novel frameshift variant in BCL11B gene. The patient was identified c.2346_2361del by whole-exome sequencing and was confirmed to be de novo by parental Sanger sequencing. This patient presented clinical phenotype of craniosynostosis as well as global developmental delay. He had a small mouth, thin upper lip, arched eyebrows, a long philtrum, midfacial hypoplasia and craniosynostosis. Brain MRI showed brain extracerebral interval and myelination changes, and brain CT with 3D reconstruction showed multi-craniosynostosis. Our study expands the clinical phenotypes of patients with BCL11B gene mutation, and our findings may help guide clinical treatment and family genetic counseling.
Collapse
Affiliation(s)
- Xuemei Zhao
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Ping Zhang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaomin Peng
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yaqiong Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Gang Li
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Chenbin Dong
- Department of Plastic Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
46
|
Lu HY, Sertori R, Contreras AV, Hamer M, Messing M, Del Bel KL, Lopez-Rangel E, Chan ES, Rehmus W, Milner JD, McNagny KM, Lehman A, Wiest DL, Turvey SE. A Novel Germline Heterozygous BCL11B Variant Causing Severe Atopic Disease and Immune Dysregulation. Front Immunol 2021; 12:788278. [PMID: 34887873 PMCID: PMC8650153 DOI: 10.3389/fimmu.2021.788278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
B-cell lymphoma/leukemia 11B (BCL11B) is a C2H2 zinc finger transcription factor that is critically important for regulating the development and function of a variety of systems including the central nervous system, the skin, and the immune system. Germline heterozygous variants are associated with a spectrum of clinical disorders, including severe combined immunodeficiency as well as neurological, craniofacial, and dermal defects. Of these individuals, ~50% present with severe allergic disease. Here, we report the detailed clinical and laboratory workup of one of the most severe BCL11B-dependent atopic cases to date. Leveraging a zebrafish model, we were able to confirm a strong T-cell defect in the patient. Based on these data, we classify germline BCL11B-dependent atopic disease as a novel primary atopic disorder.
Collapse
Affiliation(s)
- Henry Y. Lu
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Robert Sertori
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Alejandra V. Contreras
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Mark Hamer
- Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Melina Messing
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Kate L. Del Bel
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Elena Lopez-Rangel
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Edmond S. Chan
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Wingfield Rehmus
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Kelly M. McNagny
- Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Anna Lehman
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Stuart E. Turvey
- Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Grabarczyk P, Delin M, Rogińska D, Schulig L, Forkel H, Depke M, Link A, Machaliński B, Schmidt CA. Nuclear import of BCL11B is mediated by a classical nuclear localization signal and not the Krüppel-like zinc fingers. J Cell Sci 2021; 134:272659. [PMID: 34714335 DOI: 10.1242/jcs.258655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/24/2021] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like transcription factor BCL11B is characterized by wide tissue distribution and crucial functions in key developmental and cellular processes and various pathologies including cancer or HIV infection. Although basics of BCL11B activity and relevant interactions with other proteins were uncovered, how this exclusively nuclear protein localizes to its compartment remained unclear. Here, we demonstrate that unlike other KLFs, BCL11B does not require the C-terminal DNA-binding domain to pass through the nuclear envelope but encodes an independent, previously unidentified nuclear localization signal (NLS) which is located distantly from the zinc finger domains and fulfills the essential criteria of an autonomous NLS. First, it can redirect a heterologous cytoplasmic protein to the nucleus. Second, its mutations cause aberrant localization of the protein of origin. Finally, we provide experimental and in silico evidences of the direct interaction with importin alpha. The relative conservation of this motif allows formulating a consensus sequence (K/R)K-X13-14-KR+K++ which can be found in all BCL11B orthologues among vertebrates and in the closely related protein BCL11A.
Collapse
Affiliation(s)
- Piotr Grabarczyk
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Delin
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Hannes Forkel
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Maren Depke
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
48
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
49
|
A variant in human AIOLOS impairs adaptive immunity by interfering with IKAROS. Nat Immunol 2021; 22:893-903. [PMID: 34155405 PMCID: PMC8958960 DOI: 10.1038/s41590-021-00951-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 05/07/2021] [Indexed: 02/05/2023]
Abstract
In the present study, we report a human-inherited, impaired, adaptive immunity disorder, which predominantly manifested as a B cell differentiation defect, caused by a heterozygous IKZF3 missense variant, resulting in a glycine-to-arginine replacement within the DNA-binding domain of the encoded AIOLOS protein. Using mice that bear the corresponding variant and recapitulate the B and T cell phenotypes, we show that the mutant AIOLOS homodimers and AIOLOS-IKAROS heterodimers did not bind the canonical AIOLOS-IKAROS DNA sequence. In addition, homodimers and heterodimers containing one mutant AIOLOS bound to genomic regions lacking both canonical motifs. However, the removal of the dimerization capacity from mutant AIOLOS restored B cell development. Hence, the adaptive immunity defect is caused by the AIOLOS variant hijacking IKAROS function. Heterodimeric interference is a new mechanism of autosomal dominance that causes inborn errors of immunity by impairing protein function via the mutation of its heterodimeric partner.
Collapse
|
50
|
Huyghe JR, Harrison TA, Bien SA, Hampel H, Figueiredo JC, Schmit SL, Conti DV, Chen S, Qu C, Lin Y, Barfield R, Baron JA, Cross AJ, Diergaarde B, Duggan D, Harlid S, Imaz L, Kang HM, Levine DM, Perduca V, Perez-Cornago A, Sakoda LC, Schumacher FR, Slattery ML, Toland AE, van Duijnhoven FJB, Van Guelpen B, Agudo A, Albanes D, Alonso MH, Anderson K, Arnau-Collell C, Arndt V, Banbury BL, Bassik MC, Berndt SI, Bézieau S, Bishop DT, Boehm J, Boeing H, Boutron-Ruault MC, Brenner H, Brezina S, Buch S, Buchanan DD, Burnett-Hartman A, Caan BJ, Campbell PT, Carr PR, Castells A, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Curtis KR, de la Chapelle A, Easton DF, English DR, Feskens EJM, Gala M, Gallinger SJ, Gauderman WJ, Giles GG, Goodman PJ, Grady WM, Grove JS, Gsur A, Gunter MJ, Haile RW, Hampe J, Hoffmeister M, Hopper JL, Hsu WL, Huang WY, Hudson TJ, Jenab M, Jenkins MA, Joshi AD, Keku TO, Kooperberg C, Kühn T, Küry S, Le Marchand L, Lejbkowicz F, Li CI, Li L, Lieb W, Lindblom A, Lindor NM, Männistö S, Markowitz SD, Milne RL, Moreno L, Murphy N, Nassir R, Offit K, Ogino S, Panico S, Parfrey PS, Pearlman R, et alHuyghe JR, Harrison TA, Bien SA, Hampel H, Figueiredo JC, Schmit SL, Conti DV, Chen S, Qu C, Lin Y, Barfield R, Baron JA, Cross AJ, Diergaarde B, Duggan D, Harlid S, Imaz L, Kang HM, Levine DM, Perduca V, Perez-Cornago A, Sakoda LC, Schumacher FR, Slattery ML, Toland AE, van Duijnhoven FJB, Van Guelpen B, Agudo A, Albanes D, Alonso MH, Anderson K, Arnau-Collell C, Arndt V, Banbury BL, Bassik MC, Berndt SI, Bézieau S, Bishop DT, Boehm J, Boeing H, Boutron-Ruault MC, Brenner H, Brezina S, Buch S, Buchanan DD, Burnett-Hartman A, Caan BJ, Campbell PT, Carr PR, Castells A, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Curtis KR, de la Chapelle A, Easton DF, English DR, Feskens EJM, Gala M, Gallinger SJ, Gauderman WJ, Giles GG, Goodman PJ, Grady WM, Grove JS, Gsur A, Gunter MJ, Haile RW, Hampe J, Hoffmeister M, Hopper JL, Hsu WL, Huang WY, Hudson TJ, Jenab M, Jenkins MA, Joshi AD, Keku TO, Kooperberg C, Kühn T, Küry S, Le Marchand L, Lejbkowicz F, Li CI, Li L, Lieb W, Lindblom A, Lindor NM, Männistö S, Markowitz SD, Milne RL, Moreno L, Murphy N, Nassir R, Offit K, Ogino S, Panico S, Parfrey PS, Pearlman R, Pharoah PDP, Phipps AI, Platz EA, Potter JD, Prentice RL, Qi L, Raskin L, Rennert G, Rennert HS, Riboli E, Schafmayer C, Schoen RE, Seminara D, Song M, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Trichopoulou A, Ulrich CM, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Weigl K, Weinstein SJ, White E, Wolk A, Woods MO, Wu AH, Abecasis GR, Nickerson DA, Scacheri PC, Kundaje A, Casey G, Gruber SB, Hsu L, Moreno V, Hayes RB, Newcomb PA, Peters U. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut 2021; 70:1325-1334. [PMID: 33632709 PMCID: PMC8223655 DOI: 10.1136/gutjnl-2020-321534] [Show More Authors] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE An understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined. DESIGN To identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling. RESULTS We identified 13 loci that reached genome-wide significance (p<5×10-8) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer. CONCLUSION Genetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.
Collapse
Affiliation(s)
- Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - David V Conti
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Sai Chen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Richard Barfield
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Brenda Diergaarde
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - David Duggan
- Translational Genomics Research Institute - An Affiliate of City of Hope, Phoenix, Arizona, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Liher Imaz
- Public Health Division of Gipuzkoa, Health Department of Basque Country, San Sebastian, Spain
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - David M Levine
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Vittorio Perduca
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, Paris, France
- Centre for Research in Epidemiology and Population Health (CESP), Institut pour la Santé et la Recherche Médicale (INSERM) U1018, Université Paris-Saclay, Villejuif, France
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - M Henar Alonso
- Cancer Prevention and Control Program, Catalan Institute of Oncology - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Kristin Anderson
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Coral Arnau-Collell
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Juergen Boehm
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Marie-Christine Boutron-Ruault
- Centre for Research in Epidemiology and Population Health (CESP), Institut pour la Santé et la Recherche Médicale (INSERM) U1018, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Centre (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | - Bette J Caan
- Division of Research, Kaiser Permanente Medical Care Program, Oakland, California, USA
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, USA
| | - Prudence R Carr
- Division of Clinical Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Keith R Curtis
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven J Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - W James Gauderman
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - John S Grove
- University of Hawai'i Cancer Center, Honolulu, Hawaii, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Robert W Haile
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Wan-Ling Hsu
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mazda Jenab
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sébastien Küry
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | | | - Flavio Lejbkowicz
- The Clalit Health Services, Personalized Genomic Service, Carmel Medical Center, Haifa, Israel
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Wolfgang Lieb
- Institute of Epidemiology, PopGen Biobank, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, Arizona, USA
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Sanford D Markowitz
- Departments of Medicine and Genetics, Case Comprehensive Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Lorena Moreno
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Mecca, Saudi Arabia
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, University of Naples Federico II, Naples, Italy
| | - Patrick S Parfrey
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lihong Qi
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, California, USA
| | - Leon Raskin
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hedy S Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Daniela Seminara
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland, USA
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, MayoClinic, Rochester, Minnesota, USA
| | - Duncan C Thomas
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Anna H Wu
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- City of Hope National Medical Center, Duarte, California, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|