1
|
Jewlikar SS, Tolentino Collado J, Ali MI, Sabbah A, He Y, Iuliano JN, Hall CR, Adamczyk K, Greetham GM, Lukacs A, Meech SR, Tonge PJ. Probing the Signal Transduction Mechanism of the Light-Activated Adenylate Cyclase OaPAC Using Unnatural Amino Acid Mutagenesis. ACS Chem Biol 2025; 20:369-377. [PMID: 39844630 DOI: 10.1021/acschembio.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
OaPAC, the photoactivated adenylyl cyclase from Oscillatoria acuminata, is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site. To provide insight into site-specific structural dynamics, we replaced W90 which is close to the chromophore pocket, F103 which interacts with W90 across the dimer interface, and F180 in the central core of the AC domain, with the infrared probe azido-Phe (AzPhe). Using ultrafast IR, we show that AzPhe at position 90 responds on multiple time scales following photoexcitation. In contrast, the light minus dark IR spectrum of AzPhe103 shows only a minor perturbation in environment between the dark and light states, while replacement of F180 with AzPhe resulted in a protein with no catalytic activity. We also replaced Y125, which hydrogen bonds with N256 across the dimer interface, with fluoro-Tyr residues. All the fluoro-Tyr substituted proteins retained the light-induced red shift in the flavin absorption spectrum; however, only the 3-FY125 OaPAC retained photoinduced catalytic activity. The loss of activity in 3,5-F2Y125 and 2,3,5-F3Y125 OaPAC, which potentially increase the acidity of the Y125 phenol by more than 1000-fold, suggests that deprotonation of Y125 disrupts the signal transduction pathway from the BLUF to the AC domain.
Collapse
Affiliation(s)
- Samruddhi S Jewlikar
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | - Madeeha I Ali
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Aya Sabbah
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - YongLe He
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | | - Katrin Adamczyk
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| |
Collapse
|
2
|
He Y, Gil AA, Laptenok SP, Fatima A, Collado JT, Iuliano JN, Woroniecka HA, Brust R, Sabbah A, Towrie M, Greetham GM, Sazanovich IV, French JB, Lukacs A, Meech SR, Tonge PJ. Enhancing Proton-Coupled Electron Transfer in Blue Light Using FAD Photoreceptor AppA BLUF. J Am Chem Soc 2025; 147:39-44. [PMID: 39706583 PMCID: PMC11726546 DOI: 10.1021/jacs.4c11817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
The Blue Light Using FAD (BLUF) photoreceptor utilizes a noncovalently bound FAD to absorb light and trigger the initial ultrafast events in receptor activation. FAD undergoes 1 and 2 electron reduction as an enzyme redox cofactor, and studies on the BLUF photoreceptor PixD revealed the formation of flavin radicals (FAD•- and FADH•) during the photocycle, supporting a general mechanism for BLUF operation that involves PCET from a conserved Tyr to the oxidized FAD. However, no radical intermediates are observed in the closely related BLUF proteins AppABLUF and BlsA, and replacing the conserved Tyr with fluoro-Tyr analogs that increase the acidity of the phenol OH has a minor effect on AppABLUF photoactivation in contrast to PixD where the photocycle is halted at FAD•-. The hydrogen bonding network in BLUF proteins contains several strictly conserved residues but differs in the identity of amino acids that interact with the flavin C2═O. In PixD there are two hydrogen bonds to the C2═O, whereas there is only one in AppABLUF. Using TRIR we show that the introduction of a second hydrogen bond to the C2═O in AppABLUF results in the formation of flavin radicals (FAD•- and FADH•) during the photocycle. Subsequent replacement of the conserved Tyr (Y21) in the double mutant with 2,3,5-trifluoroTyr prevents radical formation and generation of the light state, indicating that the AppABLUF photocycle is now similar to that of PixD. The ability to trigger PCET provides fundamental insight into the role of electron transfer in the mechanism of BLUF photoactivation.
Collapse
Affiliation(s)
- YongLe He
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Agnieszka A. Gil
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sergey P. Laptenok
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Anam Fatima
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | - James N. Iuliano
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Helena A. Woroniecka
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Richard Brust
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Aya Sabbah
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell,
Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell,
Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell,
Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Jarrod B. French
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Andras Lukacs
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Whitaker W, Ghosh D, Malakar P, Karras G, Orr-Ewing AJ. Femtosecond to Microsecond Observation of Photochemical Pathways in Nitroaromatic Phototriggers Using Transient Absorption Spectroscopy. J Phys Chem A 2024; 128:5892-5905. [PMID: 38988292 DOI: 10.1021/acs.jpca.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The synthetic accessibility and tolerance to structural modification of phototriggered compounds (PTs) based on the ortho- nitrobenzene (ONB) protecting group have encouraged a myriad of applications including optimization of biological activity, and supramolecular polymerization. Here, a combination of ultrafast transient absorption spectroscopy techniques is used to study the multistep photochemistry of two nitroaromatic phototriggers based on the ONB chromophore, O-(4,5-dimethoxy-2-nitrobenzyl)-l-serine (DMNB-Ser) and O-[(2-nitrophenyl)methyl]-l-tyrosine hydrochloride (NB-Tyr), in DMSO solutions on femtosecond to microsecond time scales following the absorption of UV light. From a common nitro-S1 excited state, the PTs can either undergo excited state intramolecular hydrogen transfer (ESIHT) to an aci-S1 isomer within the singlet state manifold, leading to direct S1 → S0 internal conversion through a conical intersection, or competitive intersystem crossing (ISC) to access the triplet state manifold on time scales of (1.93 ± 0.03) ps and (13.9 ± 1.2) ps for DMNB-Ser and NB-Tyr, respectively. Deprotonation of aci-T1 species to yield triplet anions is proposed to occur in both PTs, with an illustrative time constant of (9.4 ± 0.7) ns for DMNB-Ser. More than 75% of the photoexcited molecules return to their electronic ground states within 8 μs, either by direct S1 → S0 relaxation or anion reprotonation. Hence, upper limits to the quantum yields of photoproduct formation are estimated to be in the range of 13-25%. Mixed DMSO/H2O solvents show the influence of the environment on the observed photochemistry, for example, revealing two nitro-S1 lifetimes for DMNB-Ser in a 10:1 DMSO/H2O mixture of 1.95 ps and (10.1 ± 1.2) ps, which are attributed to different microsolvation environments.
Collapse
Affiliation(s)
- William Whitaker
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Deborin Ghosh
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Partha Malakar
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Gabriel Karras
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
4
|
Lau N, Ghosh D, Bourne-Worster S, Kumar R, Whitaker WA, Heitland J, Davies JA, Karras G, Clark IP, Greetham GM, Worth GA, Orr-Ewing AJ, Fielding HH. Unraveling the Ultrafast Photochemical Dynamics of Nitrobenzene in Aqueous Solution. J Am Chem Soc 2024; 146:10407-10417. [PMID: 38572973 PMCID: PMC11027148 DOI: 10.1021/jacs.3c13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Nitroaromatic compounds are major constituents of the brown carbon aerosol particles in the troposphere that absorb near-ultraviolet (UV) and visible solar radiation and have a profound effect on the Earth's climate. The primary sources of brown carbon include biomass burning, forest fires, and residential burning of biofuels, and an important secondary source is photochemistry in aqueous cloud and fog droplets. Nitrobenzene is the smallest nitroaromatic molecule and a model for the photochemical behavior of larger nitroaromatic compounds. Despite the obvious importance of its droplet photochemistry to the atmospheric environment, there have not been any detailed studies of the ultrafast photochemical dynamics of nitrobenzene in aqueous solution. Here, we combine femtosecond transient absorption spectroscopy, time-resolved infrared spectroscopy, and quantum chemistry calculations to investigate the primary steps following the near-UV (λ ≥ 340 nm) photoexcitation of aqueous nitrobenzene. To understand the role of the surrounding water molecules in the photochemical dynamics of nitrobenzene, we compare the results of these investigations with analogous measurements in solutions of methanol, acetonitrile, and cyclohexane. We find that vibrational energy transfer to the aqueous environment quenches internal excitation, and therefore, unlike the gas phase, we do not observe any evidence for formation of photoproducts on timescales up to 500 ns. We also find that hydrogen bonding between nitrobenzene and surrounding water molecules slows the S1/S0 internal conversion process.
Collapse
Affiliation(s)
- Nicholas
A. Lau
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Deborin Ghosh
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | | | - Rhea Kumar
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - William A. Whitaker
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Jonas Heitland
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Julia A. Davies
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Gabriel Karras
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Ian P. Clark
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Graham A. Worth
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Helen H. Fielding
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
5
|
Fairlamb IJS, Lynam JM. Unveiling Mechanistic Complexity in Manganese-Catalyzed C-H Bond Functionalization Using IR Spectroscopy Over 16 Orders of Magnitude in Time. Acc Chem Res 2024; 57:919-932. [PMID: 38412502 PMCID: PMC10956383 DOI: 10.1021/acs.accounts.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
ConspectusAn understanding of the mechanistic processes that underpin reactions catalyzed by 3d transition metals is vital for their development as potential replacements for scarce platinum group metals. However, this is a significant challenge because of the tendency of 3d metals to undergo mechanistically diverse pathways when compared with their heavier congeners, often as a consequence of one-electron transfer reactions and/or intrinsically weaker metal-ligand bonds. We have developed and implemented a new methodology to illuminate the pathways that underpin C-H bond functionalization pathways in reactions catalyzed by Mn-carbonyl compounds. By integrating measurements performed on catalytic reactions with in situ reaction monitoring and state-of-the-art ultrafast spectroscopic methods, unique insight into the mode of action and fate of the catalyst have been obtained.Using a combination of time-resolved spectroscopy and in situ low-temperature NMR studies, we have shown that photolysis of manganese-carbonyl precatalysts results in rapid (<5 ps) CO dissociation─the same process that occurs under thermal catalytic conditions. This enabled the detection of the key states relevant to catalysis, including solvent and alkyne complexes and their resulting transformation into manganacycles, which results from a migratory insertion reaction into the Mn-C bond. By systematic variation of the substrates (many of which are real-world structurally diverse substrates and not simple benchmark systems) and quantification of the resulting rate constants for the insertion step, a universal model for this migratory insertion process has been developed. The time-resolved spectroscopic method gave insight into fundamental mechanistic pathways underpinning other aspects of modern synthetic chemistry. The most notable was the first direct experimental observation of the concerted metalation deprotonation (CMD) mechanism through which carboxylate groups are able to mediate C-H bond activation at a metal center. This step underpins a host of important synthetic applications. This study demonstrated how the time-resolved multiple probe spectroscopy (TRMPS) method enables the observation of mechanistic process occurring on time scales from several picoseconds through to μs in a single experiment, thereby allowing the sequential observation of solvation, ligand substitution, migratory insertion, and ultimate protonation of a Mn-C bond.These studies have been complemented by an investigation of the "in reaction flask" catalyst behavior, which has provided additional insight into new pathways for precatalyst activation, including evidence that alkyne C-H bond activation may occur before heterocycle activation. Crucial insight into the fate of the catalyst species showed that excess water played a key role in deactivation to give higher-order hydroxyl-bridged manganese carbonyl clusters, which were independently found to be inactive. Traditional in situ IR and NMR spectroscopic analysis on the second time scale bridges the gap to the analysis of real catalytic reaction systems. As a whole, this work has provided unprecedented insight into the processes underpinning manganese-catalyzed reactions spanning 16 orders of magnitude in time.
Collapse
Affiliation(s)
- Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
6
|
He Y, Collado JT, Iuliano JN, Woroniecka HA, Hall CR, Gil AA, Laptenok SP, Greetham GM, Illarionov B, Bacher A, Fischer M, French JB, Lukacs A, Meech SR, Tonge PJ. Elucidating the Signal Transduction Mechanism of the Blue-Light-Regulated Photoreceptor YtvA: From Photoactivation to Downstream Regulation. ACS Chem Biol 2024; 19:696-706. [PMID: 38385342 PMCID: PMC10949197 DOI: 10.1021/acschembio.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The blue-light photoreceptor YtvA from Bacillus subtilis has an N-terminal flavin mononucleotide (FMN)-binding light-oxygen-voltage (LOV) domain that is fused to a C-terminal sulfate transporter and anti-σ factor antagonist (STAS) output domain. To interrogate the signal transduction pathway that leads to photoactivation, the STAS domain was replaced with a histidine kinase, so that photoexcitation of the flavin could be directly correlated with biological activity. N94, a conserved Asn that is hydrogen bonded to the FMN C2═O group, was replaced with Ala, Asp, and Ser residues to explore the role of this residue in triggering the structural dynamics that activate the output domain. Femtosecond to millisecond time-resolved multiple probe spectroscopy coupled with a fluorescence polarization assay revealed that the loss of the hydrogen bond between N94 and the C2═O group decoupled changes in the protein structure from photoexcitation. In addition, alterations in N94 also decreased the stability of the Cys-FMN adduct formed in the light-activated state by up to a factor of ∼25. Collectively, these studies shed light on the role of the hydrogen bonding network in the LOV β-scaffold in signal transduction.
Collapse
Affiliation(s)
- YongLe He
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - James N. Iuliano
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Helena A. Woroniecka
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Christopher R. Hall
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Agnieszka A. Gil
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Boris Illarionov
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Adelbert Bacher
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
- TUM School
of Natural Sciences, Technical University
of Munich, 85747 Garching, Germany
| | - Markus Fischer
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Jarrod B. French
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Andras Lukacs
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
7
|
Hawkins AP, Edmeades AE, Hutchison CDM, Towrie M, Howe RF, Greetham GM, Donaldson PM. Laser induced temperature-jump time resolved IR spectroscopy of zeolites. Chem Sci 2024; 15:3453-3465. [PMID: 38455000 PMCID: PMC10915812 DOI: 10.1039/d3sc06128k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Combining pulsed laser heating and time-resolved infrared (TR-IR) absorption spectroscopy provides a means of initiating and studying thermally activated chemical reactions and diffusion processes in heterogeneous catalysts on timescales from nanoseconds to seconds. To this end, we investigated single pulse and burst laser heating in zeolite catalysts under realistic conditions using TR-IR spectroscopy. 1 ns, 70 μJ, 2.8 μm laser pulses from a Nd:YAG-pumped optical parametric oscillator were observed to induce temperature-jumps (T-jumps) in zeolite pellets in nanoseconds, with the sample cooling over 1-3 ms. By adopting a tightly focused beam geometry, T-jumps as large as 145 °C from the starting temperature were achieved, demonstrated through comparison of the TR-IR spectra with temperature dependent IR absorption spectra and three dimensional heat transfer modelling using realistic experimental parameters. The simulations provide a detailed understanding of the temperature distribution within the sample and its evolution over the cooling period, which we observe to be bi-exponential. These results provide foundations for determining the magnitude of a T-jump in a catalyst/adsorbate system from its absorption spectrum and physical properties, and for applying T-jump TR-IR spectroscopy to the study of reactive chemistry in heterogeneous catalysts.
Collapse
Affiliation(s)
- Alexander P Hawkins
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Amy E Edmeades
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Christopher D M Hutchison
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Russell F Howe
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| | - Paul M Donaldson
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Didcot Oxon OX11 0QX UK
| |
Collapse
|
8
|
Hunt NT. Biomolecular infrared spectroscopy: making time for dynamics. Chem Sci 2024; 15:414-430. [PMID: 38179520 PMCID: PMC10763549 DOI: 10.1039/d3sc05223k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Time resolved infrared spectroscopy of biological molecules has provided a wealth of information relating to structural dynamics, conformational changes, solvation and intermolecular interactions. Challenges still exist however arising from the wide range of timescales over which biological processes occur, stretching from picoseconds to minutes or hours. Experimental methods are often limited by vibrational lifetimes of probe groups, which are typically on the order of picoseconds, while measuring an evolving system continuously over some 18 orders of magnitude in time presents a raft of technological hurdles. In this Perspective, a series of recent advances which allow biological molecules and processes to be studied over an increasing range of timescales, while maintaining ultrafast time resolution, will be reviewed, showing that the potential for real-time observation of biomolecular function draws ever closer, while offering a new set of challenges to be overcome.
Collapse
Affiliation(s)
- Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| |
Collapse
|
9
|
Whitaker W, Sazanovich IV, Kwon Y, Jeon W, Kwon MS, Orr-Ewing AJ. Characterization of the Reversible Intersystem Crossing Dynamics of Organic Photocatalysts Using Transient Absorption Spectroscopy and Time-Resolved Fluorescence Spectroscopy. J Phys Chem A 2023; 127:10775-10788. [PMID: 38096377 PMCID: PMC10758116 DOI: 10.1021/acs.jpca.3c04780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
Thermally activated delayed fluorescence (TADF) emitters are molecules of interest as homogeneous organic photocatalysts (OPCs) for photoredox chemistry. Here, three classes of OPC candidates are studied in dichloromethane (DCM) or N,N-dimethylformamide (DMF) solutions, using transient absorption spectroscopy and time-resolved fluorescence spectroscopy. These OPCs are benzophenones with either carbazole (2Cz-BP and 2tCz-BP) or phenoxazine/phenothiazine (2PXZ-BP and 2PTZ-BP) appended groups and the dicyanobenzene derivative 4DP-IPN. Dual lifetimes of the S1 state populations are observed, consistent with reverse intersystem crossing (RISC) and TADF emission. Example fluorescence lifetimes in DCM are (5.18 ± 0.01) ns and (6.22 ± 1.27) μs for 2Cz-BP, (1.38 ± 0.01) ns and (0.32 ± 0.01) μs for 2PXZ-BP, and (2.97 ± 0.01) ns and (62.0 ± 5.8) μs for 4DP-IPN. From ground state bleach recoveries and time-correlated single photon counting measurements, triplet quantum yields in DCM are estimated to be 0.62 ± 0.16, 0.04 ± 0.01, and 0.83 ± 0.02 for 2Cz-BP, 2PXZ-BP, and 4DP-IPN, respectively. 4DP-IPN displays similar photophysical behavior to the previously studied OPC 4Cz-IPN. Independent of the choice of solvent, 4DP-IPN, 2Cz-BP, and 2tCz-BP are shown to be TADF emitters, whereas emission by 2PXZ-BP and 2PTZ-BP depends on the molecular environment, with TADF emission enhanced in aggregates compared to monomers. Behavior of this type is representative of aggregation-induced emission luminogens (AIEgens).
Collapse
Affiliation(s)
- William Whitaker
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Yonghwan Kwon
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic
of Korea
| | - Woojin Jeon
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic
of Korea
| | - Min Sang Kwon
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic
of Korea
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
10
|
Stitch M, Avagliano D, Graczyk D, Clark IP, González L, Towrie M, Quinn SJ. Good Vibrations Report on the DNA Quadruplex Binding of an Excited State Amplified Ruthenium Polypyridyl IR Probe. J Am Chem Soc 2023; 145:21344-21360. [PMID: 37736878 PMCID: PMC10557146 DOI: 10.1021/jacs.3c06099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 09/23/2023]
Abstract
The nitrile containing Ru(II)polypyridyl complex [Ru(phen)2(11,12-dCN-dppz)]2+ (1) is shown to act as a sensitive infrared probe of G-quadruplex (G4) structures. UV-visible absorption spectroscopy reveals enantiomer sensitive binding for the hybrid htel(K) and antiparallel htel(Na) G4s formed by the human telomer sequence d[AG3(TTAG3)3]. Time-resolved infrared (TRIR) of 1 upon 400 nm excitation indicates dominant interactions with the guanine bases in the case of Λ-1/htel(K), Δ-1/htel(K), and Λ-1/htel(Na) binding, whereas Δ-1/htel(Na) binding is associated with interactions with thymine and adenine bases in the loop. The intense nitrile transient at 2232 cm-1 undergoes a linear shift to lower frequency as the solution hydrogen bonding environment decreases in DMSO/water mixtures. This shift is used as a sensitive reporter of the nitrile environment within the binding pocket. The lifetime of 1 in D2O (ca. 100 ps) is found to increase upon DNA binding, and monitoring of the nitrile and ligand transients as well as the diagnostic DNA bleach bands shows that this increase is related to greater protection from the solvent environment. Molecular dynamics simulations together with binding energy calculations identify the most favorable binding site for each system, which are in excellent agreement with the observed TRIR solution study. This study shows the power of combining the environmental sensitivity of an infrared (IR) probe in its excited state with the TRIR DNA "site effect" to gain important information about the binding site of photoactive agents and points to the potential of such amplified IR probes as sensitive reporters of biological environments.
Collapse
Affiliation(s)
- Mark Stitch
- School
of Chemistry, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Davide Avagliano
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
- Department
of Chemistry, Chemical Physics Theory Group, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada
| | - Daniel Graczyk
- School
of Chemistry, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ian P. Clark
- Central
Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
| | - Michael Towrie
- Central
Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Susan J Quinn
- School
of Chemistry, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
11
|
Donaldson PM, Greetham GM, Middleton CT, Luther BM, Zanni MT, Hamm P, Krummel AT. Breaking Barriers in Ultrafast Spectroscopy and Imaging Using 100 kHz Amplified Yb-Laser Systems. Acc Chem Res 2023; 56:2062-2071. [PMID: 37429010 PMCID: PMC10809409 DOI: 10.1021/acs.accounts.3c00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 07/12/2023]
Abstract
ConspectusUltrafast spectroscopy and imaging have become tools utilized by a broad range of scientists involved in materials, energy, biological, and chemical sciences. Commercialization of ultrafast spectrometers including transient absorption spectrometers, vibrational sum frequency generation spectrometers, and even multidimensional spectrometers have put these advanced spectroscopy measurements into the hands of practitioners originally outside the field of ultrafast spectroscopy. There is now a technology shift occurring in ultrafast spectroscopy, made possible by new Yb-based lasers, that is opening exciting new experiments in the chemical and physical sciences. Amplified Yb-based lasers are not only more compact and efficient than their predecessors but also, most importantly, operate at many times the repetition rate with improved noise characteristics in comparison to the previous generation of Ti:sapphire amplifier technologies. Taken together, these attributes are enabling new experiments, generating improvements to long-standing techniques, and affording the transformation of spectroscopies to microscopies. This Account aims to show that the shift to 100 kHz lasers is a transformative step in nonlinear spectroscopy and imaging, much like the dramatic expansion that occurred with the commercialization of Ti:sapphire laser systems in the 1990s. The impact of this technology will be felt across a great swath of scientific communities. We first describe the technology landscape of amplified Yb-based laser systems used in conjunction with 100 kHz spectrometers operating with shot-to-shot pulse shaping and detection. We also identify the range of different parametric conversion and supercontinuum techniques which now provide a path to making pulses of light optimal for ultrafast spectroscopy. Second, we describe specific instances from our laboratories of how the amplified Yb-based light sources and spectrometers are transformative. For multiple probe time-resolved infrared and transient 2D IR spectroscopy, the gain in temporal span and signal-to-noise enables dynamical spectroscopy measurements from femtoseconds to seconds. These gains widen the applicability of time-resolved infrared techniques across a range of topics in photochemistry, photocatalysis, and photobiology as well as lower the technical barriers to implementation in a laboratory. For 2D visible spectroscopy and microscopy with white light, as well as 2D IR imaging, the high repetition rates of these new Yb-based light sources allow one to spatially map 2D spectra while maintaining high signal-to-noise in the data. To illustrate the gains, we provide examples of imaging applications in the study of photovoltaic materials and spectroelectrochemistry.
Collapse
Affiliation(s)
- Paul M. Donaldson
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Greg M. Greetham
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Chris T. Middleton
- PhaseTech
Spectroscopy, Inc., 4916
East Broadway, Suite 125, Madison, Wisconsin 53716, United States
| | - Bradley M. Luther
- Colorado
State University, Department of Chemistry, 200 W. Lake Street, Fort Collins, Colorado 80523, United States
| | - Martin T. Zanni
- University
of Wisconsin, Department of Chemistry, Room 8361, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Peter Hamm
- University
of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amber T. Krummel
- Colorado
State University, Department of Chemistry, 200 W. Lake Street, Fort Collins, Colorado 80523, United States
| |
Collapse
|
12
|
Helbing J, Hamm P. Versatile Femtosecond Laser Synchronization for Multiple-Timescale Transient Infrared Spectroscopy. J Phys Chem A 2023. [PMID: 37478282 DOI: 10.1021/acs.jpca.3c03526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Several ways to electronically synchronize different types of amplified femtosecond laser systems are presented based on a single freely programmable electronics hardware: arbitrary-detuning asynchronous optical sampling (ADASOPS), as well as actively locking two femtosecond laser oscillators, albeit not necessarily to the same round-trip frequency. They allow us to rapidly probe a very wide range of timescales, from picoseconds to potentially seconds, in a single transient absorption experiment without the need to move any delay stage. Experiments become possible that address a largely unexplored aspect of many photochemical reactions, in particular in the context of photo-catalysis as well as photoactive proteins, where an initial femtosecond trigger very often initiates a long-lasting cascade of follow-up processes. The approach is very versatile and allows us to synchronize very different lasers, such as a Ti:Sa amplifier and a 100 kHz Yb-laser system. The jitter of the synchronization, and therewith the time-resolution in the transient experiment, lies in the range from 1 to 3 ps, depending on the method. For illustration, transient IR measurements of the excited state solvation and decay of a metal carbonyl complex as well as the full reaction cycle of bacteriorhodopsin are shown. The pros and cons of the various methods are discussed, with regard to the scientific question one might want to address, and also with regard to the laser systems that might be already existent in a laser lab.
Collapse
Affiliation(s)
- Jan Helbing
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
13
|
Sneha M, Thornton GL, Lewis-Borrell L, Ryder ASH, Espley SG, Clark IP, Cresswell AJ, Grayson MN, Orr-Ewing AJ. Photoredox-HAT Catalysis for Primary Amine α-C-H Alkylation: Mechanistic Insight with Transient Absorption Spectroscopy. ACS Catal 2023; 13:8004-8013. [PMID: 37342833 PMCID: PMC10278065 DOI: 10.1021/acscatal.3c01474] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Indexed: 06/23/2023]
Abstract
The synergistic use of (organo)photoredox catalysts with hydrogen-atom transfer (HAT) cocatalysts has emerged as a powerful strategy for innate C(sp3)-H bond functionalization, particularly for C-H bonds α- to nitrogen. Azide ion (N3-) was recently identified as an effective HAT catalyst for the challenging α-C-H alkylation of unprotected, primary alkylamines, in combination with dicyanoarene photocatalysts such as 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN). Here, time-resolved transient absorption spectroscopy over sub-picosecond to microsecond timescales provides kinetic and mechanistic details of the photoredox catalytic cycle in acetonitrile solution. Direct observation of the electron transfer from N3- to photoexcited 4CzIPN reveals the participation of the S1 excited electronic state of the organic photocatalyst as an electron acceptor, but the N3• radical product of this reaction is not observed. Instead, both time-resolved infrared and UV-visible spectroscopic measurements implicate rapid association of N3• with N3- (a favorable process in acetonitrile) to form the N6•- radical anion. Electronic structure calculations indicate that N3• is the active participant in the HAT reaction, suggesting a role for N6•- as a reservoir that regulates the concentration of N3•.
Collapse
Affiliation(s)
- Mahima Sneha
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Georgia L. Thornton
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Luke Lewis-Borrell
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Alison S. H. Ryder
- Centre
for Sustainable Chemical Technologies, University
of Bath, 1 South, Claverton Down, Bath BA2 7AY, U.K.
| | - Samuel G. Espley
- Department
of Chemistry, University of Bath, 1 South, Claverton Down, Bath BA2 7AY, U.K.
| | - Ian P. Clark
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot OX11 0QX, U.K.
| | - Alexander J. Cresswell
- Department
of Chemistry, University of Bath, 1 South, Claverton Down, Bath BA2 7AY, U.K.
| | - Matthew N. Grayson
- Department
of Chemistry, University of Bath, 1 South, Claverton Down, Bath BA2 7AY, U.K.
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
14
|
Liu Y, Chaudhari AS, Chatterjee A, Andrikopoulos PC, Picchiotti A, Rebarz M, Kloz M, Lorenz-Fonfria VA, Schneider B, Fuertes G. Sub-Millisecond Photoinduced Dynamics of Free and EL222-Bound FMN by Stimulated Raman and Visible Absorption Spectroscopies. Biomolecules 2023; 13:161. [PMID: 36671546 PMCID: PMC9855911 DOI: 10.3390/biom13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Time-resolved femtosecond-stimulated Raman spectroscopy (FSRS) provides valuable information on the structural dynamics of biomolecules. However, FSRS has been applied mainly up to the nanoseconds regime and above 700 cm-1, which covers only part of the spectrum of biologically relevant time scales and Raman shifts. Here we report on a broadband (~200-2200 cm-1) dual transient visible absorption (visTA)/FSRS set-up that can accommodate time delays from a few femtoseconds to several hundreds of microseconds after illumination with an actinic pump. The extended time scale and wavenumber range allowed us to monitor the complete excited-state dynamics of the biological chromophore flavin mononucleotide (FMN), both free in solution and embedded in two variants of the bacterial light-oxygen-voltage (LOV) photoreceptor EL222. The observed lifetimes and intermediate states (singlet, triplet, and adduct) are in agreement with previous time-resolved infrared spectroscopy experiments. Importantly, we found evidence for additional dynamical events, particularly upon analysis of the low-frequency Raman region below 1000 cm-1. We show that fs-to-sub-ms visTA/FSRS with a broad wavenumber range is a useful tool to characterize short-lived conformationally excited states in flavoproteins and potentially other light-responsive proteins.
Collapse
Affiliation(s)
- Yingliang Liu
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
| | - Aditya S. Chaudhari
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Aditi Chatterjee
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | | | - Alessandra Picchiotti
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
- The Hamburg Centre for Ultrafast Imaging, Hamburg University, 22761 Hamburg, Germany
| | - Mateusz Rebarz
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
| | - Miroslav Kloz
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
| | | | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| | - Gustavo Fuertes
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
15
|
Keane PM, Zehe C, Poynton FE, Bright SA, Estayalo-Adrián S, Devereux SJ, Donaldson PM, Sazanovich IV, Towrie M, Botchway SW, Cardin CJ, Williams DC, Gunnlaugsson T, Long C, Kelly JM, Quinn SJ. Time-resolved infra-red studies of photo-excited porphyrins in the presence of nucleic acids and in HeLa tumour cells: insights into binding site and electron transfer dynamics. Phys Chem Chem Phys 2022; 24:27524-27531. [PMID: 36345709 DOI: 10.1039/d2cp04604k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Cationic porphyrins based on the 5,10,15,20-meso-(tetrakis-4-N-methylpyridyl) core (TMPyP4) have been studied extensively over many years due to their strong interactions with a variety of nucleic acid structures, and their potential use as photodynamic therapeutic agents and telomerase inhibitors. In this paper, the interactions of metal-free TMPyP4 and Pt(II)TMPyP4 with guanine-containing nucleic acids are studied for the first time using time-resolved infrared spectroscopy (TRIR). In D2O solution (where the metal-free form exists as D2TMPyP4) both compounds yielded similar TRIR spectra (between 1450-1750 cm-1) following pulsed laser excitation in their Soret B-absorption bands. Density functional theory calculations reveal that vibrations centred on the methylpyridinium groups are responsible for the dominant feature at ca. 1640 cm-1. TRIR spectra of D2TMPyP4 or PtTMPyP4 in the presence of guanosine 5'-monophosphate (GMP), double-stranded {d(GC)5}2 or {d(CGCAAATTTGCG)}2 contain negative-going signals, 'bleaches', indicative of binding close to guanine. TRIR signals for D2TMPyP4 or PtTMPyP bound to the quadruplex-forming cMYC sequence {d(TAGGGAGGG)}2T indicate that binding occurs on the stacked guanines. For D2TMPyP4 bound to guanine-containing systems, the TRIR signal at ca. 1640 cm-1 decays on the picosecond timescale, consistent with electron transfer from guanine to the singlet excited state of D2TMPyP4, although IR marker bands for the reduced porphyrin/oxidised guanine were not observed. When PtTMPyP is incorporated into HeLa tumour cells, TRIR studies show protein binding with time-dependent ps/ns changes in the amide absorptions demonstrating TRIR's potential for studying light-activated molecular processes not only with nucleic acids in solution but also in biological cells.
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- School of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Clara Zehe
- School of Chemistry, University College Dublin, Dublin 4, Ireland.
| | - Fergus E Poynton
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Sandra A Bright
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Sandra Estayalo-Adrián
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | | | - Paul M Donaldson
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Igor V Sazanovich
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Stanley W Botchway
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Christine J Cardin
- School of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - D Clive Williams
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, The University of Dublin, Pearse St., Dublin 2, Ireland
| | - Conor Long
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
16
|
Younesi AT, Ulbricht R. Broadband transient absorption spectroscopy using an incoherent white-light source as probe. OPTICS EXPRESS 2022; 30:38896-38906. [PMID: 36258443 DOI: 10.1364/oe.467483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Time-resolved spectroscopy and, in particular, transient absorption methods have been widely employed to study the dynamics of materials, usually achieving time resolution down to femtoseconds with measurement windows up to a few nanoseconds. Various techniques have been developed to extend the measurement duration up to milliseconds and beyond to permit probing slower dynamics. However, most of these either demand complicated and expensive equipment or do not provide broadband spectral coverage. This paper proposes a transient absorption technique in which an ultra-short pulse laser and a broadband incoherent continuous-wave light source are employed as pump and probe, respectively. Detection of the transient probe transmission is performed in a time-resolved fashion with a fast photodiode after a monochromator and the data is recorded with an oscilloscope. The time resolution is determined by the electronic bandwidth of the detection and acquisition devices and is ∼1 ns, with a measurement duration window of up to milliseconds and a spectral resolution of <2 nm covering from 0.4 to 2 µm. In addition, the setup can be employed to measure time- and spectrally-resolved photoluminescence.
Collapse
|
17
|
Boden PJ, Di Martino‐Fumo P, Bens T, Steiger ST, Marhöfer D, Niedner‐Schatteburg G, Sarkar B. Mechanistic and Kinetic Investigations of ON/OFF (Photo)Switchable Binding of Carbon Monoxide by Chromium(0), Molybdenum(0) and Tungsten(0) Carbonyl Complexes with a Pyridyl‐Mesoionic Carbene Ligand. Chemistry 2022; 28:e202201038. [PMID: 35705508 PMCID: PMC9542575 DOI: 10.1002/chem.202201038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/30/2022]
Abstract
This work tackles the photochemistry of a series of mononuclear Cr0, Mo0 and W0 carbonyl complexes containing a bidentate mesoionic carbene ligand of the 1,2,3‐triazol‐5‐ylidene type. FTIR spectroscopy, combined with density functional theory calculations, revealed a clean photo‐induced reaction in organic solvents (acetonitrile, pyridine, valeronitrile) to give mainly one photoproduct with monosubstitution of a carbonyl ligand for a solvent molecule. The highest photodissociation quantum yields were reached for the Cr0 complex under UV irradiation (266 nm). Based on previous investigations, the kinetics of the dark reverse reactions have now been determined, with reaction times of up to several hours in pyridine. Photochemical studies in the solid state (KBr matrix, frozen solution) also showed light‐induced reactivity with stabilization of the metastable intermediate with a free coordination site at very low temperature. The identified reactive species emphasizes a mechanism without ligand–sphere reorganization.
Collapse
Affiliation(s)
- Pit J. Boden
- Department of Chemistry and State Research Center Optimas TU Kaiserslautern Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Germany
| | - Patrick Di Martino‐Fumo
- Department of Chemistry and State Research Center Optimas TU Kaiserslautern Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Germany
| | - Tobias Bens
- Chair of Inorganic Coordination Chemistry Institute of Inorganic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sophie T. Steiger
- Department of Chemistry and State Research Center Optimas TU Kaiserslautern Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Germany
| | - Daniel Marhöfer
- Department of Chemistry and State Research Center Optimas TU Kaiserslautern Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Germany
| | - Gereon Niedner‐Schatteburg
- Department of Chemistry and State Research Center Optimas TU Kaiserslautern Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Germany
| | - Biprajit Sarkar
- Chair of Inorganic Coordination Chemistry Institute of Inorganic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
18
|
Maiti S, Mitra S, Johnson CA, Gronborg KC, Garrett-Roe S, Donaldson PM. pH Jumps in a Protic Ionic Liquid Proceed by Vehicular Proton Transport. J Phys Chem Lett 2022; 13:8104-8110. [PMID: 35997534 PMCID: PMC9442784 DOI: 10.1021/acs.jpclett.2c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The dynamics of excess protons in the protic ionic liquid (PIL) ethylammonium formate (EAF) have been investigated from femtoseconds to microseconds using visible pump mid-infrared probe spectroscopy. The pH jump following the visible photoexcitation of a photoacid (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) results in proton transfer to the formate of the EAF. The proton transfer predominantly (∼70%) occurs over picoseconds through a preformed hydrogen-bonded tight complex between HPTS and EAF. We investigate the longer-range and longer-time-scale proton-transport processes in the PIL by obtaining the ground-state conjugate base (RO-) dynamics from the congested transient-infrared spectra. The spectral kinetics indicate that the protons diffuse only a few solvent shells from the parent photoacid before recombining with RO-. A kinetic isotope effect of nearly unity (kH/kD ≈ 1) suggests vehicular transfer and the transport of excess protons in this PIL. Our findings provide comprehensive insight into the complete photoprotolytic cycle of excess protons in a PIL.
Collapse
Affiliation(s)
- Sourav Maiti
- Central
Laser Facility, RCaH, STFC-Rutherford Appleton
Laboratory, Harwell Science
and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Sunayana Mitra
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Clinton A. Johnson
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kai C. Gronborg
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Sean Garrett-Roe
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Paul M. Donaldson
- Central
Laser Facility, RCaH, STFC-Rutherford Appleton
Laboratory, Harwell Science
and Innovation Campus, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
19
|
Ma J, Miao TJ, Tang J. Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by time-resolved spectroscopies. Chem Soc Rev 2022; 51:5777-5794. [PMID: 35770623 DOI: 10.1039/d1cs01164b] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sunlight as the most abundant renewable energy holds the promise to make our society sustainable. However, due to its low power density and intermittence, efficient conversion and storage of solar energy as a clean fuel are crucial. Apart from solar fuel synthesis, sunlight can also be used to drive other reactions including organic conversion and air/water purification. Given such potential of photocatalysis, the past few decades have seen a surge in the discovery of photocatalysts. However, the current photocatalytic efficiency is still very moderate. To address this challenge, it is important to understand fundamental factors that dominate the efficiency of a photocatalytic process to enable the rational design and development of photocatalytic systems. Many recent studies highlighted transient absorption spectroscopy (TAS) and time-resolved infrared (TRIR) spectroscopy as powerful approaches to characterise charge carrier dynamics and reaction pathways to elucidate the reasons behind low photocatalytic efficiencies, and to rationalise photocatalytic activities exhibited by closely related materials. Accordingly, as a fast-moving area, the past decade has witnessed an explosion in reports on charge carrier dynamics and reaction mechanisms on a wide range of photocatalytic materials. This critical review will discuss the application of TAS and TRIR in a wide range of heterogeneous photocatalytic systems, demonstrating the variety of ways in which these techniques can be used to understand the correlation between materials design, charge carrier behaviour, and photocatalytic activity. Finally, it provides a comprehensive outlook for potential developments in the area of time-resolved spectroscopies with an aim to provide design strategies for photocatalysts.
Collapse
Affiliation(s)
- Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Tina Jingyan Miao
- Department of Chemical Engineering, University College London (UCL), WC1E 7JE, London, UK.,Department of Chemistry, University College London (UCL), WC1H 0AJ, London, UK.
| | - Junwang Tang
- Department of Chemical Engineering, University College London (UCL), WC1E 7JE, London, UK
| |
Collapse
|
20
|
Schubert L, Langner P, Ehrenberg D, Lorenz-Fonfria VA, Heberle J. Protein conformational changes and protonation dynamics probed by a single shot using quantum-cascade-laser-based IR spectroscopy. J Chem Phys 2022; 156:204201. [PMID: 35649857 DOI: 10.1063/5.0088526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mid-IR spectroscopy is a powerful and label-free technique to investigate protein reactions. In this study, we use quantum-cascade-laser-based dual-comb spectroscopy to probe protein conformational changes and protonation events by a single-shot experiment. By using a well-characterized membrane protein, bacteriorhodopsin, we provide a comparison between dual-comb spectroscopy and our homebuilt tunable quantum cascade laser (QCL)-based scanning spectrometer as tools to monitor irreversible reactions with high time resolution. In conclusion, QCL-based infrared spectroscopy is demonstrated to be feasible for tracing functionally relevant protein structural changes and proton translocations by single-shot experiments. Thus, we envisage a bright future for applications of this technology for monitoring the kinetics of irreversible reactions as in (bio-)chemical transformations.
Collapse
Affiliation(s)
- Luiz Schubert
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Pit Langner
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Victor A Lorenz-Fonfria
- Institute of Molecular Science, Universitat de Valencia, Catedrático José Beltrán Martínez, No. 2, 46980 Paterna, Spain
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
21
|
Uriarte LM, Vitale R, Niziński S, Hadjidemetriou K, Zala N, Lukacs A, Greetham GM, Sazanovich IV, Weik M, Ruckebusch C, Meech SR, Sliwa M. Structural Information about the trans-to- cis Isomerization Mechanism of the Photoswitchable Fluorescent Protein rsEGFP2 Revealed by Multiscale Infrared Transient Absorption. J Phys Chem Lett 2022; 13:1194-1202. [PMID: 35085441 DOI: 10.1021/acs.jpclett.1c02920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RsEGFP2 is a reversibly photoswitchable fluorescent protein used in super-resolved optical microscopies, which can be toggled between a fluorescent On state and a nonfluorescent Off state. Previous time-resolved ultraviolet-visible spectroscopic studies have shown that the Off-to-On photoactivation extends over the femto- to millisecond time scale and involves two picosecond lifetime excited states and four ground state intermediates, reflecting a trans-to-cis excited state isomerization, a millisecond deprotonation, and protein structural reorganizations. Femto- to millisecond time-resolved multiple-probe infrared spectroscopy (TRMPS-IR) can reveal structural aspects of intermediate species. Here we apply TRMPS-IR to rsEGFP2 and implement a Savitzky-Golay derivative analysis to correct for baseline drift. The results reveal that a subpicosecond twisted excited state precursor controls the trans-to-cis isomerization and the chromophore reaches its final position in the protein pocket within 100 ps. A new step with a time constant of 42 ns is reported and assigned to structural relaxation of the protein that occurs prior to the deprotonation of the chromophore on the millisecond time scale.
Collapse
Affiliation(s)
- Lucas M Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Raffaele Vitale
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Stanisław Niziński
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | | | - Ninon Zala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| |
Collapse
|
22
|
Abstract
Light activated proteins are at the heart of photobiology and optogenetics, so there is wide interest in understanding the mechanisms coupling optical excitation to protein function. In addition, such light activated proteins provide unique insights into the real-time dynamics of protein function. Using pump-probe spectroscopy, the function of a photoactive protein can be initiated by a sub-100 fs pulse of light, allowing subsequent protein dynamics to be probed from femtoseconds to milliseconds and beyond. Among the most interesting photoactive proteins are the blue light using flavin (BLUF) domain proteins, which regulate the response to light of a wide range of bacterial and some euglenoid processes. The photosensing mechanism of BLUF domains has long been a subject of debate. In contrast to other photoactive proteins, the electronic and nuclear structure of the chromophore (flavin) is the same in dark- and light-adapted states. Thus, the driving force for photoactivity is unclear.To address this question requires real-time observation of both chromophore excited state processes and their effect on the structure and dynamics of the surrounding protein matrix. In this Account we describe how time-resolved infrared (IR) experiments, coupled with chemical biology, provide important new insights into the signaling mechanism of BLUF domains. IR measurements are sensitive to changes in both chromophore electronic structure and protein hydrogen bonding interactions. These contributions are resolved by isotope labeling of the chromophore and protein separately. Further, a degree of control over BLUF photochemistry is achieved through mutagenesis, while unnatural amino acid substitution allows us to both fine-tune the photochemistry and time resolve protein dynamics with spatial resolution.Ultrafast studies of BLUF domains reveal non-single-exponential relaxation of the flavin excited state. That relaxation leads within one nanosecond to the original flavin ground state bound in a modified hydrogen-bonding network, as seen in transient and steady-state IR spectroscopy. The change in H-bond configuration arises from formation of an unusual enol (imine) form of a critical glutamine residue. The dynamics observed, complemented by quantum mechanical calculations, suggest a unique sequential electron then double proton transfer reaction as the driving force, followed by rapid reorganization in the binding site and charge recombination. Importantly, studies of several BLUF domains reveal an unexpected diversity in their dynamics, although the underlying structure appears highly conserved. It is suggested that this diversity reflects structural dynamics in the ground state at standard temperature, leading to a distribution of structures and photochemical outcomes. Time resolved IR measurements were extended to the millisecond regime for one BLUF domain, revealing signaling state formation on the microsecond time scale. The mechanism involves reorganization of a β-sheet connected to the chromophore binding pocket via a tryptophan residue. The potential of site-specific labeling amino acids with IR labels as a tool for probing protein structural dynamics was demonstrated.In summary, time-resolved IR studies of BLUF domains (along with related studies at visible wavelengths and quantum and molecular dynamics calculations) have resolved the photoactivation mechanism and real-time dynamics of signaling state formation. These measurements provide new insights into protein structural dynamics and will be important in optimizing the potential of BLUF domains in optobiology.
Collapse
Affiliation(s)
- Andras Lukacs
- Department of Biophysics, Medical School, University of Pécs, Szigeti str 12, 7624 Pécs, Hungary
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794-3400, United States
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
23
|
Buhrke D, Ruf J, Heckmeier P, Hamm P. A stop-flow sample delivery system for transient spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:123001. [PMID: 34972444 DOI: 10.1063/5.0068227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
A stop-flow sample delivery system for transient spectroscopy is presented, which is, in particular, suited for laser-based instruments (quantum-cascade lasers or amplified femtosecond lasers) with excitation pulse repetition rates in the range 10-100 Hz. Two pulsing micro-valves are mounted onto a flow cuvette designed for transient IR spectroscopy, which is integrated into a flow cycle driven by a peristaltic pump. The performance of the system is demonstrated with transient IR experiments of the trans-to-cis photoisomerization of a water-soluble azobenzene derivative. The sample stands still when the micro-valves are closed and is pushed out from the probe beam focus on a 1 ms timescale when opening the micro-valves. The setup is extremely sample efficient. It needs only small sample volumes, and at the same time, it enables excitation of a large fraction of molecules in solution.
Collapse
Affiliation(s)
- David Buhrke
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Jeannette Ruf
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Philipp Heckmeier
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
24
|
Kübel J, Westenhoff S, Maj M. Giving voice to the weak: Application of active noise reduction in transient infrared spectroscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Lewis-Borrell L, Sneha M, Clark IP, Fasano V, Noble A, Aggarwal VK, Orr-Ewing AJ. Direct Observation of Reactive Intermediates by Time-Resolved Spectroscopy Unravels the Mechanism of a Radical-Induced 1,2-Metalate Rearrangement. J Am Chem Soc 2021; 143:17191-17199. [PMID: 34614354 DOI: 10.1021/jacs.1c07964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radical-induced 1,2-metalate rearrangements of boronate complexes are an emerging and promising class of reactions that allow multiple new bonds to be formed in a single, tunable reaction step. These reactions involve the addition of an alkyl radical, typically generated from an alkyl iodide under photochemical activation, to a boronate complex to produce an α-boryl radical intermediate. From this α-boryl radical, there are two plausible reaction pathways that can trigger the product forming 1,2-metalate rearrangement: iodine atom transfer (IAT) or single electron transfer (SET). Previous steady-state techniques have struggled to differentiate these pathways. Here we apply state-of-the-art time-resolved infrared absorption spectroscopy to resolve all the steps in the reaction cycle by mapping production and consumption of the reactive intermediates over picosecond to millisecond time scales. We apply this technique to a recently reported reaction involving the addition of an electron-deficient alkyl radical to the strained σ-bond of a bicyclo[1.1.0]butyl boronate complex to form a cyclobutyl boronic ester. We show that the previously proposed SET mechanism does not adequately account for the observed spectral and kinetic data. Instead, we demonstrate that IAT is the preferred pathway for this reaction and is likely to be operative for other reactions of this type.
Collapse
Affiliation(s)
- Luke Lewis-Borrell
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Mahima Sneha
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Valerio Fasano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
26
|
Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme. Proc Natl Acad Sci U S A 2021; 118:2107939118. [PMID: 34556577 PMCID: PMC8488605 DOI: 10.1073/pnas.2107939118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Multiheme cytochromes have been identified as essential proteins for electron exchange between bacterial enzymes and redox substrates outside of the cell. In microbiology, these proteins contribute to efficient energy storage and conversion. For biotechnology, multiheme cytochromes contribute to the production of green fuels and electricity. Furthermore, these proteins inspire the design of molecular-scale electronic devices. Here, we report exceptionally high rates of heme-to-heme electron transfer in a multiheme cytochrome. We expect similarly high rates, among the highest reported for ground-state electron transfer in biology, in other multiheme cytochromes as the close-packed hemes adopt similar configurations despite very different amino acid sequences and protein folds. Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme–heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis. We observed rates of heme-to-heme electron transfer on the order of 109 s−1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser–Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.
Collapse
|
27
|
Sneha M, Bhattacherjee A, Lewis-Borrell L, Clark IP, Orr-Ewing AJ. Structure-Dependent Electron Transfer Rates for Dihydrophenazine, Phenoxazine, and Phenothiazine Photoredox Catalysts Employed in Atom Transfer Radical Polymerization. J Phys Chem B 2021; 125:7840-7854. [PMID: 34237215 DOI: 10.1021/acs.jpcb.1c05069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organic photocatalysts (PCs) are gaining popularity in applications of photoredox catalysis, but few studies have explored their modus operandi. We report a detailed mechanistic investigation of the electron transfer activation step of organocatalyzed atom transfer radical polymerization (O-ATRP) involving electronically excited organic PCs and a radical initiator, methyl 2-bromopropionate (MBP). This study compares nine N-aryl modified PCs possessing dihydrophenazine, phenoxazine, or phenothiazine core chromophores. Transient electronic and vibrational absorption spectroscopies over subpicosecond to nanosecond and microsecond time intervals, respectively, track spectroscopic signatures of both the reactants and products of photoinduced electron transfer in N,N-dimethylformamide, dichloromethane, and toluene solutions. The rate coefficients for electron transfer exhibit a range of values up to ∼1010 M-1 s-1 influenced systematically by the PC structures. These rate coefficients are an order of magnitude smaller for catalysts with charge transfer character in their first excited singlet (S1) or triplet (T1) states than for photocatalysts with locally excited character. The latter species show nearly diffusion-limited rate coefficients for the electron transfer to MBP. The derived kinetic parameters are used to model the contributions to electron transfer from the S1 state of each PC for different concentrations of MBP. Comparisons of singlet and triplet reactivity for one of the phenoxazine PCs reveal that the rate coefficient kET(T1) = (2.7 ± 0.3) × 107 M-1 s-1 for electron transfer from the T1 state is 2 orders of magnitude lower than that from the S1 state, kET(S1) = (2.6 ± 0.4) × 109 M-1 s-1. The trends in bimolecular electron transfer rate coefficients are accounted for using a modified Marcus theory for dissociative electron transfer.
Collapse
Affiliation(s)
- Mahima Sneha
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Aditi Bhattacherjee
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Luke Lewis-Borrell
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
28
|
Lepeshkevich SV, Sazanovich IV, Parkhats MV, Gilevich SN, Dzhagarov BM. Towards understanding non-equivalence of α and β subunits within human hemoglobin in conformational relaxation and molecular oxygen rebinding. Chem Sci 2021; 12:7033-7047. [PMID: 34123331 PMCID: PMC8153241 DOI: 10.1039/d1sc00712b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Picosecond to millisecond laser time-resolved transient absorption spectroscopy was used to study molecular oxygen (O2) rebinding and conformational relaxation following O2 photodissociation in the α and β subunits within human hemoglobin in the quaternary R-like structure. Oxy-cyanomet valency hybrids, α2(Fe2+-O2)β2(Fe3+-CN) and α2(Fe3+-CN)β2(Fe2+-O2), were used as models for oxygenated R-state hemoglobin. An extended kinetic model for geminate O2 rebinding in the ferrous hemoglobin subunits, ligand migration between the primary and secondary docking site(s), and nonexponential tertiary relaxation within the R quaternary structure, was introduced and discussed. Significant functional non-equivalence of the α and β subunits in both the geminate O2 rebinding and concomitant structural relaxation was revealed. For the β subunits, the rate constant for the geminate O2 rebinding to the unrelaxed tertiary structure and the tertiary transition rate were found to be greater than the corresponding values for the α subunits. The conformational relaxation following the O2 photodissociation in the α and β subunits was found to decrease the rate constant for the geminate O2 rebinding, this effect being more than one order of magnitude greater for the β subunits than for the α subunits. Evidence was provided for the modulation of the O2 rebinding to the individual α and β subunits within human hemoglobin in the R-state structure by the intrinsic heme reactivity through a change in proximal constraints upon the relaxation of the tertiary structure on a picosecond to microsecond time scale. Our results demonstrate that, for native R-state oxyhemoglobin, O2 rebinding properties and spectral changes following the O2 photodissociation can be adequately described as the sum of those for the α and β subunits within the valency hybrids. The isolated β chains (hemoglobin H) show similar behavior to the β subunits within the valency hybrids and can be used as a model for the β subunits within the R-state oxyhemoglobin. At the same time, the isolated α chains behave differently to the α subunits within the valency hybrids.
Collapse
Affiliation(s)
- Sergei V Lepeshkevich
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus 68 Nezavisimosti Ave Minsk 220072 Belarus
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Harwell Campus OX11 0QX UK
| | - Marina V Parkhats
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus 68 Nezavisimosti Ave Minsk 220072 Belarus
| | - Syargey N Gilevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5 Academician V. F. Kuprevich Street Minsk 220141 Belarus
| | - Boris M Dzhagarov
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus 68 Nezavisimosti Ave Minsk 220072 Belarus
| |
Collapse
|
29
|
Firth JD, Hammarback LA, Burden TJ, Eastwood JB, Donald JR, Horbaczewskyj CS, McRobie MT, Tramaseur A, Clark IP, Towrie M, Robinson A, Krieger JP, Lynam JM, Fairlamb IJS. Light- and Manganese-Initiated Borylation of Aryl Diazonium Salts: Mechanistic Insight on the Ultrafast Time-Scale Revealed by Time-Resolved Spectroscopic Analysis. Chemistry 2021; 27:3979-3985. [PMID: 33135818 DOI: 10.1002/chem.202004568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/12/2022]
Abstract
Manganese-mediated borylation of aryl/heteroaryl diazonium salts emerges as a general and versatile synthetic methodology for the synthesis of the corresponding boronate esters. The reaction proved an ideal testing ground for delineating the Mn species responsible for the photochemical reaction processes, that is, involving either Mn radical or Mn cationic species, which is dependent on the presence of a suitably strong oxidant. Our findings are important for a plethora of processes employing Mn-containing carbonyl species as initiators and/or catalysts, which have considerable potential in synthetic applications.
Collapse
Affiliation(s)
- James D Firth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - Thomas J Burden
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - James R Donald
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - Matthew T McRobie
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Adam Tramaseur
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Alan Robinson
- Syngenta Crop Protection AG, Breitenloh 5, 4333, Münchwilen, Switzerland
| | | | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Ian J S Fairlamb
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
30
|
Hammarback LA, Aucott BJ, Bray JTW, Clark IP, Towrie M, Robinson A, Fairlamb IJS, Lynam JM. Direct Observation of the Microscopic Reverse of the Ubiquitous Concerted Metalation Deprotonation Step in C-H Bond Activation Catalysis. J Am Chem Soc 2021; 143:1356-1364. [PMID: 33428402 DOI: 10.1021/jacs.0c10409] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of carboxylate groups to promote the direct functionalization of C-H bonds in organic compounds is unquestionably one of the most important discoveries in modern chemical synthesis. Extensive computational studies have indicated that this process proceeds through the deprotonation of a metal-coordinated C-H bond by the basic carboxylate, yet experimental validation of these predicted mechanistic pathways is limited and fraught with difficulty, mainly as rapid proton transfer is frequently obscured in ensemble measures in multistep reactions (i.e., a catalytic cycle consisting of several steps). In this paper, we describe a strategy to experimentally observe the microscopic reverse of the key C-H bond activation step underpinning functionalization processes (viz. M-C bond protonation). This has been achieved by utilizing photochemical activation of the thermally robust precursor [Mn(ppy)(CO)4] (ppy = metalated 2-phenylpyridine) in neat acetic acid. Time-resolved infrared spectroscopy on the picosecond-millisecond time scale allows direct observation of the states involved in the proton transfer from the acetic acid to the cyclometalated ligand, providing direct experimental evidence for the computationally predicted reaction pathways. The power of this approach to probe the mechanistic pathways in transition-metal-catalyzed reactions is demonstrated through experiments performed in toluene solution in the presence of PhC2H and HOAc. These allowed for the observation of sequential displacement of the metal-bound solvent by the alkyne, C-C bond formation though insertion in the Mn-C bond, and a slower protonation step by HOAc to generate the product of a Mn(I)-catalyzed C-H bond functionalization reaction.
Collapse
Affiliation(s)
| | - Benjamin J Aucott
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Joshua T W Bray
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Ian P Clark
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, U.K
| | - Alan Robinson
- Syngenta Crop Protection AG, Breitenloh 5, Münchwilen 433, Switzerland
| | - Ian J S Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
31
|
Iuliano JN, Collado JT, Gil AA, Ravindran PT, Lukacs A, Shin S, Woroniecka HA, Adamczyk K, Aramini JM, Edupuganti UR, Hall CR, Greetham GM, Sazanovich IV, Clark IP, Daryaee T, Toettcher JE, French JB, Gardner KH, Simmerling CL, Meech SR, Tonge PJ. Unraveling the Mechanism of a LOV Domain Optogenetic Sensor: A Glutamine Lever Induces Unfolding of the Jα Helix. ACS Chem Biol 2020; 15:2752-2765. [PMID: 32880430 DOI: 10.1021/acschembio.0c00543] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-activated protein domains provide a convenient, modular, and genetically encodable sensor for optogenetics and optobiology. Although these domains have now been deployed in numerous systems, the precise mechanism of photoactivation and the accompanying structural dynamics that modulate output domain activity remain to be fully elucidated. In the C-terminal light-oxygen-voltage (LOV) domain of plant phototropins (LOV2), blue light activation leads to formation of an adduct between a conserved Cys residue and the embedded FMN chromophore, rotation of a conserved Gln (Q513), and unfolding of a helix (Jα-helix) which is coupled to the output domain. In the present work, we focus on the allosteric pathways leading to Jα helix unfolding in Avena sativa LOV2 (AsLOV2) using an interdisciplinary approach involving molecular dynamics simulations extending to 7 μs, time-resolved infrared spectroscopy, solution NMR spectroscopy, and in-cell optogenetic experiments. In the dark state, the side chain of N414 is hydrogen bonded to the backbone N-H of Q513. The simulations predict a lever-like motion of Q513 after Cys adduct formation resulting in a loss of the interaction between the side chain of N414 and the backbone C═O of Q513, and formation of a transient hydrogen bond between the Q513 and N414 side chains. The central role of N414 in signal transduction was evaluated by site-directed mutagenesis supporting a direct link between Jα helix unfolding dynamics and the cellular function of the Zdk2-AsLOV2 optogenetic construct. Through this multifaceted approach, we show that Q513 and N414 are critical mediators of protein structural dynamics, linking the ultrafast (sub-ps) excitation of the FMN chromophore to the microsecond conformational changes that result in photoreceptor activation and biological function.
Collapse
Affiliation(s)
- James N. Iuliano
- Department of Chemistry, Stony Brook University, New York, 11794, United States
| | | | - Agnieszka A. Gil
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Pavithran T. Ravindran
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Andras Lukacs
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
- Department of Biophysics, Medical School, University of Pecs, Szigeti út 12, 7624 Pecs, Hungary
| | - SeungYoun Shin
- Department of Chemistry, Stony Brook University, New York, 11794, United States
| | | | - Katrin Adamczyk
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - James M. Aramini
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Uthama R. Edupuganti
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, New York, New York, United States
| | - Christopher R. Hall
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Gregory M. Greetham
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| | - Igor V. Sazanovich
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| | - Ian P. Clark
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| | - Taraneh Daryaee
- Department of Chemistry, Stony Brook University, New York, 11794, United States
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Jarrod B. French
- Department of Chemistry, Stony Brook University, New York, 11794, United States
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kevin H. Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Ph.D. Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center, New York, New York, United States
- Department of Chemistry and Biochemistry, City College of New York, New York, New York, United States
| | | | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, New York, 11794, United States
| |
Collapse
|
32
|
Bens T, Boden P, Di Martino-Fumo P, Beerhues J, Albold U, Sobottka S, Neuman NI, Gerhards M, Sarkar B. Chromium(0) and Molydenum(0) Complexes with a Pyridyl-Mesoionic Carbene Ligand: Structural, (Spectro)electrochemical, Photochemical, and Theoretical Investigations. Inorg Chem 2020; 59:15504-15513. [DOI: 10.1021/acs.inorgchem.0c02537] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias Bens
- Lehrstuhl für Anorganische Koordinationschemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34−36, 14195, Berlin, Germany
| | - Pit Boden
- Department of Chemistry and Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Patrick Di Martino-Fumo
- Department of Chemistry and Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Julia Beerhues
- Lehrstuhl für Anorganische Koordinationschemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34−36, 14195, Berlin, Germany
| | - Uta Albold
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34−36, 14195, Berlin, Germany
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34−36, 14195, Berlin, Germany
| | - Nicolás I. Neuman
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34−36, 14195, Berlin, Germany
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34−36, 14195, Berlin, Germany
| |
Collapse
|
33
|
Wagner HE, Di Martino‐Fumo P, Boden P, Zimmer M, Klopper W, Breher F, Gerhards M. Structural Characterization and Lifetimes of Triple-Stranded Helical Coinage Metal Complexes: Synthesis, Spectroscopy and Quantum Chemical Calculations. Chemistry 2020; 26:10743-10751. [PMID: 32428347 PMCID: PMC7496093 DOI: 10.1002/chem.202001544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Indexed: 11/11/2022]
Abstract
This work reports on a series of polynuclear complexes containing a trinuclear Cu, Ag, or Au core in combination with the fac-isomer of the metalloligand [Ru(pypzH)3 ](PF6 )2 (pypzH=3-(pyridin-2-yl)pyrazole). These (in case of the Ag and Au containing species) newly synthesized compounds of the general formula [{Ru(pypz)3 }2 M3 ](PF6 ) (2: M=Cu; 3: M=Ag; 4: M=Au) contain triple-stranded helical structures in which two ruthenium moieties are connected by three N-M-N (M=Cu, Ag, Au) bridges. In order to obtain a detailed description of the structure both in the electronic ground and excited states, extensive spectroscopic and quantum chemical calculations are applied. The equilateral coinage metal core triangle in the electronic ground state of 2-4 is distorted in the triplet state. Furthermore, the analyses offer a detailed description of electronic excitations. By using time-resolved IR spectroscopy from the microsecond down to the nanosecond regime, both the vibrational spectra and the lifetime of the lowest lying electronically excited triplet state can be determined. The lifetimes of these almost only non-radiative triplet states of 2-4 show an unusual effect in a way that the Au-containing complex 4 has a lifetime which is by more than a factor of five longer than in case of the Cu complex 2. Thus, the coinage metals have a significant effect on the electronically excited state, which is localized on a pypz ligand coordinated to the Ru atom indicating an unusual cooperative effect between two moieties of the complex.
Collapse
Affiliation(s)
- Hanna E. Wagner
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Patrick Di Martino‐Fumo
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Pit Boden
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Manuel Zimmer
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Willem Klopper
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Markus Gerhards
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| |
Collapse
|
34
|
Keane PM, O'Sullivan K, Poynton FE, Poulsen BC, Sazanovich IV, Towrie M, Cardin CJ, Sun XZ, George MW, Gunnlaugsson T, Quinn SJ, Kelly JM. Understanding the factors controlling the photo-oxidation of natural DNA by enantiomerically pure intercalating ruthenium polypyridyl complexes through TA/TRIR studies with polydeoxynucleotides and mixed sequence oligodeoxynucleotides. Chem Sci 2020; 11:8600-8609. [PMID: 34123120 PMCID: PMC8163394 DOI: 10.1039/d0sc02413a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ruthenium polypyridyl complexes which can sensitise the photo-oxidation of nucleic acids and other biological molecules show potential for photo-therapeutic applications. In this article a combination of transient visible absorption (TrA) and time-resolved infra-red (TRIR) spectroscopy are used to compare the photo-oxidation of guanine by the enantiomers of [Ru(TAP)2(dppz)]2+ in both polymeric {poly(dG-dC), poly(dA-dT) and natural DNA} and small mixed-sequence duplex-forming oligodeoxynucleotides. The products of electron transfer are readily monitored by the appearance of a characteristic TRIR band centred at ca. 1700 cm−1 for the guanine radical cation and a band centered at ca. 515 nm in the TrA for the reduced ruthenium complex. It is found that efficient electron transfer requires that the complex be intercalated at a G-C base-pair containing site. Significantly, changes in the nucleobase vibrations of the TRIR spectra induced by the bound excited state before electron transfer takes place are used to identify preferred intercalation sites in mixed-sequence oligodeoxynucleotides and natural DNA. Interestingly, with natural DNA, while it is found that quenching is inefficient in the picosecond range, a slower electron transfer process occurs, which is not found with the mixed-sequence duplex-forming oligodeoxynucleotides studied. Efficient electron transfer requires the complex to be intercalated at a G-C base-pair. Identification of preferred intercalation sites is achieved by TRIR monitoring of the nucleobase vibrations before electron transfer.![]()
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland .,School of Chemistry, University of Reading RG6 6AD UK
| | - Kyra O'Sullivan
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - Fergus E Poynton
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland .,Trinity Biomedical Sciences Institute, The University of Dublin Pearse St. Dublin 2 Ireland
| | - Bjørn C Poulsen
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland .,Trinity Biomedical Sciences Institute, The University of Dublin Pearse St. Dublin 2 Ireland
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratories OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratories OX11 0QX UK
| | | | - Xue-Zhong Sun
- School of Chemistry, University of Nottingham NG7 2RD UK
| | - Michael W George
- School of Chemistry, University of Nottingham NG7 2RD UK.,Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China 199 Taikang East Road Ningbo 315100 China
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland .,Trinity Biomedical Sciences Institute, The University of Dublin Pearse St. Dublin 2 Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin Dublin 4 Ireland
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| |
Collapse
|
35
|
Antonucci L, Solinas X, Bonvalet A, Joffre M. Electronic measurement of femtosecond time delays for arbitrary-detuning asynchronous optical sampling. OPTICS EXPRESS 2020; 28:18251-18260. [PMID: 32680025 DOI: 10.1364/oe.393887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Arbitrary-Detuning ASynchronous OPtical Sampling (ADASOPS) is a pump-probe technique which relies on the stability of femtosecond oscillators. It provides access to a multiscale time window ranging up to millisecond, combined with a sub-picosecond time resolution. In contrast with the first ADASOPS demonstration based on the interferometric detection of coincidences between optical pulses, we show here that the optical setup can now be reduced to a mere pair of photodetectors embedded in a specially-designed electronic system. In analogy with super-resolution methods used in optical microscopy for localizing single emitters beyond the diffraction limit, we demonstrate that purely electronic means allow the determination of time delays between each pump-probe pulse pair with a standard deviation as small as 200 fs. The new method is shown to be simpler, more versatile and more accurate than the coincidence-based approach.
Collapse
|
36
|
Greetham GM, Clark IP, Young B, Fritsch R, Minnes L, Hunt NT, Towrie M. Time-Resolved Temperature-Jump Infrared Spectroscopy at a High Repetition Rate. APPLIED SPECTROSCOPY 2020; 74:720-727. [PMID: 32114769 DOI: 10.1177/0003702820913636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Time-resolved temperature-jump infrared absorption spectroscopy at a 0.5 to 1 kHz repetition rate is presented. A 1 kHz neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pumping an optical parametric oscillator provided >70 µJ, 3.75 µm pump pulses, which delivered a temperature jump via excitation of the O-D stretch of a D2O solution. A 10 kHz train of mid-infrared probe pulses was used to monitor spectral changes following the temperature jump. Calibration with trifluoroacetic acid solution showed that a temperature jump of 10 K lasting for tens of microseconds was achieved, sufficient to observe fast processes in functionally relevant biomolecular mechanisms. Modeling of heating profiles across ≤10 µm path length cells and subsequent cooling dynamics are used to describe the initial <100 ns cooling at the window surface and subsequent, >10 µs cooling dynamics of the bulk solution.
Collapse
Affiliation(s)
- Gregory M Greetham
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, UK
| | - Ian P Clark
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, UK
| | - Benjamin Young
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, UK
| | - Robby Fritsch
- Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| | - Lucy Minnes
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, UK
- Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Mike Towrie
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, UK
| |
Collapse
|
37
|
Miao TJ, Tang J. Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy. J Chem Phys 2020; 152:194201. [PMID: 33687236 DOI: 10.1063/5.0008537] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Photocatalysis is a promising sustainable method to generate solar fuels for the future, as well as having other applications such as water/air purification. However, the performance of photocatalysts is often limited by poor charge carrier dynamics. To improve charge carrier dynamics, it is necessary to characterize and understand charge carrier behavior in photocatalytic systems. This critical review will present Transient Absorption Spectroscopy (TAS) as a useful technique for understanding the behavior of photoexcited charges in semiconductor photocatalysts. The role of TAS amongst other techniques for characterizing charge carrier behavior will be outlined. Basic principles behind TAS will be introduced, and interpretation of TAS spectra and kinetics will be discussed in the context of exemplar literature. It will be demonstrated that TAS is a powerful technique to obtain fundamental understanding of the behavior of photoexcited charges.
Collapse
Affiliation(s)
- Tina Jingyan Miao
- Department of Chemical Engineering, University College London (UCL), WC1E 7JE London, United Kingdom
| | - Junwang Tang
- Department of Chemical Engineering, University College London (UCL), WC1E 7JE London, United Kingdom
| |
Collapse
|
38
|
Eastwood JB, Hammarback LA, McRobie MT, Clark IP, Towrie M, Fairlamb IJS, Lynam JM. Time-resolved infra-red spectroscopy reveals competitive water and dinitrogen coordination to a manganese(i) carbonyl complex. Dalton Trans 2020; 49:5463-5470. [PMID: 32255172 DOI: 10.1039/c9dt04878b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Time-resolved infra-red (TRIR) spectroscopy has been used to demonstrate that photolysis of [Mn(C^N)(CO)4] (C^N = bis-(4-methoxyphenyl)methanimine) in heptane solution results in ultra-fast CO dissociation and ultimate formation of a rare Mn-containing dinitrogen complex fac-[Mn(C^N)(CO)3(N2)] with a diagnostic stretching mode for a terminal-bound N[triple bond, length as m-dash]N ligand at 2249 cm-1. An isotopic shift to 2174 cm-1 was observed when the reaction was performed under 15N2 and the band was not present when the experiment was undertaken under an atmosphere of argon, reinforcing this assignment. An intermediate solvent complex fac-[Mn(C^N)(CO)3(heptane)] was identified which is formed in less than 2 ps, indicating that CO-release occurs on an ultra-fast timescale. The heptane ligand is labile and is readily displaced by both N2 and water to give fac-[Mn(C^N)(CO)3(N2)] and fac-[Mn(C^N)(CO)3(OH2)] respectively. The fac-[Mn(C^N)(CO)3(heptane)] framework showed a significant affinity for N2, as performing the reaction under air produced significant amounts of fac-[Mn(C^N)(CO)3(N2)]. Kinetic analysis reveals that the substitution of heptane by N2 (k = (1.028 ± 0.004) × 109 mol-1 dm3 s-1), and H2O is competitive on fast (<1 μs) time scales. The binding of water is reversible and, under an atmosphere of N2, some fac-[Mn(C^N)(CO)3(OH2)] converts to fac-[Mn(C^N)(CO)3(N2)].
Collapse
Affiliation(s)
- Jonathan B Eastwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
40
|
Robben KC, Cheatum CM. Edge-pixel referencing suppresses correlated baseline noise in heterodyned spectroscopies. J Chem Phys 2020; 152:094201. [PMID: 33480715 DOI: 10.1063/1.5134987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Referencing schemes are commonly used in heterodyned spectroscopies to mitigate correlated baseline noise arising from shot-to-shot fluctuations of the local oscillator. Although successful, these methods rely on careful pixel-to-pixel matching between the two spectrographs. A recent scheme introduced by Feng et al. [Opt. Express 27(15), 20323-20346 (2019)] employed a correlation matrix to allow free mapping between dissimilar spectrographs, leading to the first demonstration of floor noise limited detection on a multichannel array used in heterodyned spectroscopy. In addition to their primary results using a second reference spectrometer, Feng et al. briefly demonstrated the flexibility of their method by referencing to same-array pixels at the two spectral edges (i.e., edge-pixel referencing). We present a comprehensive study of this approach, which we term edge-pixel referencing, including optimization of the approach, assessment of the performance, and determination of the effects of background responses. We show that, within some limitations, the distortions due to background signals will not affect the 2D IR line shape or amplitude and can be mitigated by band narrowing of the pump beams. We also show that the performance of edge-pixel referencing is comparable to that of referencing to a second spectrometer in terms of noise suppression and that the line shapes and amplitudes of the spectral features are, within the measurement error, identical. Altogether, these results demonstrate that edge-pixel referencing is a powerful approach for noise suppression in heterodyned spectroscopies, which requires no new hardware and, so, can be implemented as a software solution for anyone performing heterodyned spectroscopy with multichannel array detectors already.
Collapse
Affiliation(s)
- Kevin C Robben
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
41
|
Morichika I, Murata K, Sakurai A, Ishii K, Ashihara S. Molecular ground-state dissociation in the condensed phase employing plasmonic field enhancement of chirped mid-infrared pulses. Nat Commun 2019; 10:3893. [PMID: 31467268 PMCID: PMC6715752 DOI: 10.1038/s41467-019-11902-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
Selective bond cleavage via vibrational excitation is the key to active control over molecular reactions. Despite its great potential, the practical implementation in condensed phases have been hampered to date by poor excitation efficiency due to fast vibrational relaxation. Here we demonstrate vibrationally mediated, condensed-phase molecular dissociation by employing intense plasmonic near-fields of temporally-shaped mid-infrared (mid-IR) pulses. Both down-chirping and substantial field enhancement contribute to efficient ladder climbing of the carbonyl stretch vibration of W(CO)6 in n-hexane solution and to the resulting CO dissociation. We observe an absorption band emerging with laser irradiation at the excitation beam area, which indicates that the dissociation is followed by adsorption onto metal surfaces. This successful demonstration proves that the combination of ultrafast optics and nano-plasmonics in the mid-IR range is useful for mode-selective vibrational ladder climbing, paving the way toward controlled ground-state chemistry.
Collapse
Affiliation(s)
- Ikki Morichika
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Atsunori Sakurai
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Satoshi Ashihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
42
|
van Wonderen JH, Hall CR, Jiang X, Adamczyk K, Carof A, Heisler I, Piper SEH, Clarke TA, Watmough NJ, Sazanovich IV, Towrie M, Meech SR, Blumberger J, Butt JN. Ultrafast Light-Driven Electron Transfer in a Ru(II)tris(bipyridine)-Labeled Multiheme Cytochrome. J Am Chem Soc 2019; 141:15190-15200. [DOI: 10.1021/jacs.9b06858] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jessica H. van Wonderen
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Christopher R. Hall
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Xiuyun Jiang
- Department of Physics and Astronomy and Thomas-Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Katrin Adamczyk
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Antoine Carof
- Department of Physics and Astronomy and Thomas-Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Ismael Heisler
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Samuel E. H. Piper
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Thomas A. Clarke
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Nicholas J. Watmough
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Igor V. Sazanovich
- Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Stephen R. Meech
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas-Young Centre, University College London, London WC1E 6BT, United Kingdom
- Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2 a, D-85748 Garching, Germany
| | - Julea N. Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
43
|
Fritzsch R, Greetham GM, Clark IP, Minnes L, Towrie M, Parker AW, Hunt NT. Monitoring Base-Specific Dynamics during Melting of DNA-Ligand Complexes Using Temperature-Jump Time-Resolved Infrared Spectroscopy. J Phys Chem B 2019; 123:6188-6199. [PMID: 31268327 DOI: 10.1021/acs.jpcb.9b04354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ultrafast time-resolved infrared spectroscopy employing nanosecond temperature-jump initiation has been used to study the melting of double-stranded (ds)DNA oligomers in the presence and absence of minor groove-binding ligand Hoechst 33258. Ligand binding to ds(5'-GCAAATTTCC-3'), which binds Hoechst 33258 in the central A-tract region with nanomolar affinity, causes a dramatic increase in the timescales for strand melting from 30 to ∼250 μs. Ligand binding also suppresses premelting disruption of the dsDNA structure, which takes place on 100 ns timescales and includes end-fraying. In contrast, ligand binding to the ds(5'-GCATATATCC-3') sequence, which exhibits an order of magnitude lower affinity for Hoechst 33258 than the A-tract motif, leads to an increase by only a factor of 5 in melting timescales and reduced suppression of premelting sequence perturbation and end-fraying. These results demonstrate a dynamic impact of the minor groove ligand on the dsDNA structure that correlates with binding strength and thermodynamic stabilization of the duplex. Moreover, the ability of the ligand to influence base pairs distant from the binding site has potential implications for allosteric communication mechanisms in dsDNA.
Collapse
Affiliation(s)
- Robby Fritzsch
- Department of Physics, SUPA , University of Strathclyde , Glasgow G4 0NG , U.K
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Ian P Clark
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Lucy Minnes
- Department of Physics, SUPA , University of Strathclyde , Glasgow G4 0NG , U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute , University of York , Heslington, York YO10 5DD , U.K
| |
Collapse
|
44
|
Aucott BJ, Duhme-Klair AK, Moulton BE, Clark IP, Sazanovich IV, Towrie M, Hammarback LA, Fairlamb IJS, Lynam JM. Manganese Carbonyl Compounds Reveal Ultrafast Metal–Solvent Interactions. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Benjamin J. Aucott
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | | | - Benjamin E. Moulton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Ian P. Clark
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, U.K
| | - Igor V. Sazanovich
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, U.K
| | | | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
45
|
Orr-Ewing AJ. Perspective: How can ultrafast laser spectroscopy inform the design of new organic photoredox catalysts for chemical and materials synthesis? STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:010901. [PMID: 30868082 PMCID: PMC6404927 DOI: 10.1063/1.5082620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Photoredox catalysis of chemical reactions, using light-activated molecules which serve as electron donors or acceptors to initiate chemical transformations under mild conditions, is finding widespread use in the synthesis of organic compounds and materials. The transition-metal-centred complexes first developed for these photoredox-catalysed applications are steadily being superseded by more sustainable and lower toxicity organic photocatalysts. While the diversity of possible structures for photoredox-active organic molecules brings benefits of design flexibility, it also presents considerable challenges for optimization of the photocatalyst molecular architecture. Transient absorption spectroscopy over timescales from the femtosecond to microsecond domains can explore the detailed mechanisms of activation and reaction of these organic photocatalysts in solution and, by linking their dynamical properties to their structures, has the potential to establish reliable design principles for future development of improved photocatalysts.
Collapse
Affiliation(s)
- Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
46
|
Aucott BJ, Eastwood JB, Anders Hammarback L, Clark IP, Sazanovich IV, Towrie M, Fairlamb IJS, Lynam JM. Insight into the mechanism of CO-release from trypto-CORM using ultra-fast spectroscopy and computational chemistry. Dalton Trans 2019; 48:16426-16436. [DOI: 10.1039/c9dt03343b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photolysis of trypto-CORM results in ultra-fast CO-dissociation and formation of a 16-e triplet followed by solvation.
Collapse
Affiliation(s)
| | | | | | - Ian P. Clark
- Central Laser Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | | | - Michael Towrie
- Central Laser Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | | | | |
Collapse
|
47
|
Black FA, Wood CJ, Ngwerume S, Summers GH, Clark IP, Towrie M, Camp JE, Gibson EA. Charge-transfer dynamics at the dye-semiconductor interface of photocathodes for solar energy applications. Faraday Discuss 2018; 198:449-461. [PMID: 28286896 DOI: 10.1039/c6fd00228e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes a comparison between the photophysical properties of two charge-transfer dyes adsorbed onto NiO via two different binding moieties. Transient spectroscopy measurements suggest that the structure of the anchoring group affects both the rate of charge recombination between the dye and NiO surface and the rate of dye regeneration by an iodide/triiodide redox couple. This is consistent with the performance of the dyes in p-type dye sensitised solar cells. A key finding was that the recombination rate differed in the presence of the redox couple. These results have important implications on the study of electron transfer at dye|semiconductor interfaces for solar energy applications.
Collapse
Affiliation(s)
- Fiona A Black
- School of Chemistry, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Laptenok SP, Gil AA, Hall CR, Lukacs A, Iuliano JN, Jones GA, Greetham GM, Donaldson P, Miyawaki A, Tonge PJ, Meech SR. Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa. Nat Chem 2018; 10:845-852. [PMID: 29892029 DOI: 10.1038/s41557-018-0073-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
Photochromic fluorescent proteins play key roles in super-resolution microscopy and optogenetics. The light-driven structural changes that modulate the fluorescence involve both trans-to-cis isomerization and proton transfer. The mechanism, timescale and relative contribution of chromophore and protein dynamics are currently not well understood. Here, the mechanism of off-to-on-state switching in dronpa is studied using femtosecond-to-millisecond time-resolved infrared spectroscopy and isotope labelling. Chromophore and protein dynamics are shown to occur on multiple timescales, from picoseconds to hundreds of microseconds. Following excitation of the trans chromophore, a ground-state primary product is formed within picoseconds. Surprisingly, the characteristic vibrational spectrum of the neutral cis isomer appears only after several tens of nanoseconds. Further fluctuations in protein structure around the neutral cis chromophore are required to form a new intermediate, which promotes the final proton-transfer reaction. These data illustrate the interplay between chromophore dynamics and the protein environment underlying fluorescent protein photochromism.
Collapse
Affiliation(s)
- Sergey P Laptenok
- School of Chemistry, University of East Anglia, Norwich, UK.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Agnieszka A Gil
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Christopher R Hall
- School of Chemistry, University of East Anglia, Norwich, UK.,ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Gregory M Greetham
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Paul Donaldson
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
50
|
Keane PM, Kelly JM. Transient absorption and time-resolved vibrational studies of photophysical and photochemical processes in DNA-intercalating polypyridyl metal complexes or cationic porphyrins. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|