1
|
Pourshaban-Shahrestani A, Rezazadeh A, Hassan J. Zebrafish as a model for assessing biocide toxicity: A comprehensive review. Toxicol Rep 2025; 14:101980. [PMID: 40129880 PMCID: PMC11930722 DOI: 10.1016/j.toxrep.2025.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The utilization of biocides in a myriad of products has become a widespread and critical practice in recent years. Among these, quaternary ammonium compounds, polyhexamethylene, parabens, and triclosan are notably prevalent across various industrial applications. However, the incorporation of these biocides raises significant concerns regarding their toxicological profile. Not only do these chemicals pose potential risks to consumers using biocide-containing products, but their environmental discharge also represents a substantial threat to the biosphere. In our meticulous review, we examined approximately 150 articles from esteemed databases including PubMed, MDPI, and Google Scholar, ultimately utilizing at least 88 of these articles to inform our analysis. Our investigation encompassed studies that probe general toxicity, behavioral toxicity, cardiovascular toxicity, and genotoxicity, among other toxicological impacts. With this comprehensive approach, we explore the zebrafish (Danio rerio) as a prominent model organism in toxicology research. This review article aims to synthesize research employing zebrafish to evaluate biocide toxicity and ascertain the suitability of this model for comprehensive analysis of biocidal agents and their associated products.
Collapse
Affiliation(s)
- Ali Pourshaban-Shahrestani
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Rezazadeh
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Ding P, Zhang J, Li X, Ma P, Hu G, Zhang L, Yu Y. Transgenerational thyroid hormone disruption in zebrafish induced by environmentally relevant concentrations of triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126242. [PMID: 40222611 DOI: 10.1016/j.envpol.2025.126242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The use of triclosan (TCS)-containing disinfectants has become increasingly prevalent in response to the COVID-19 pandemic, leading to a heightened presence of TCS in aquatic ecosystems. Thyroid hormones (THs), which are essential for numerous developmental and metabolic processes, are structurally similar to TCS, rendering it prone to exert endocrine-disrupting effects. In this study, we demonstrate that TCS can induce thyroid hormone disruption in zebrafish, with transgenerational consequences. Zebrafish embryos were exposed to environmentally relevant concentrations of TCS (0, 1, 3, and 10 μg/L) for 30, 60, and 180 days. TCS accumulated in zebrafish over an extended period, causing significant, dose-dependent alterations in TH levels. Furthermore, TCS significantly thereby interfered with the expression of thyroid axis-related genes in the P0-F1 generations. Molecular docking further confirmed that TCS induces transgenerational thyroid effects through potentially strong interactions with thyroglobulin (TG), interfering with the normal physiological function of THs. These findings suggest that TCS at environmentally relevant concentrations can exert ecologically harmful effects by disrupting THs. A rigorous ecological assessment of TCS is recommended before promoting or substituting antimicrobial agents in future disinfection products.
Collapse
Affiliation(s)
- Ping Ding
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jiayi Zhang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Xin Li
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Pengcheng Ma
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guocheng Hu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Lijuan Zhang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yunjiang Yu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
3
|
Rathod NV, Mishra S. Synthesis and Biological Evaluation of Bile Acid-Triclosan Conjugates: A Study on Antibacterial, Antibiofilm, and Molecular Docking. Bioconjug Chem 2025; 36:276-290. [PMID: 39841879 DOI: 10.1021/acs.bioconjchem.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This work describes the synthesis, characterization, and antibacterial properties of four bile acid-triclosan conjugates. The in vitro antibacterial activity of synthetic bile acid-triclosan conjugates was investigated against a panel of Gram-positive and Gram-negative bacteria. Conjugates 3 and 4 show high activity against Escherichia coli (ATCC25922), with IC50 values of 2.94 ± 0.7 and 1.51 ± 0.05 μM, respectively. Conjugate 4 demonstrated 9 times the activity of triclosan (6.77 μM) and 18 times the potency of kanamycin, a well-known antibiotic. Compound 3 showed higher potential activity against all evaluated strains, including Bacillus megaterium (IC50: 3.05 ± 0.02), Bacillus amyloquefaciens (IC50: 8.79 ± 0.01), Serratia marcescens (IC50: 6.77 ± 0.4), and E. coli (IC50: 1.51 ± 0.05 μM). These findings indicate that it has broad-spectrum antibacterial activity. Bile acid-triclosan conjugates prevent biofilms by up to 99% at low doses (conjugates 4; 4.16 ± 0.8 μM), compared to triclosan. Conjugate 5 was most potent against B. amyloquefaciens (IC50 = 5.23 ± 0.2 μM), while conjugate 4 was most effective against B. megaterium (IC50 = 4.16 ± 0.8 μM) in biofilm formation. These conjugates inhibit biofilm formation by limiting the extracellular polymeric substance generation. The in vitro antibacterial study revealed that bile acid-triclosan conjugates were more effective than the parent molecule triclosan at inhibiting bacterial growth and biofilm formation against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Neha V Rathod
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382426, India
| | - Satyendra Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382426, India
| |
Collapse
|
4
|
Gil-Gil T, Laborda P, Martínez JL, Hernando-Amado S. Use of adjuvants to improve antibiotic efficacy and reduce the burden of antimicrobial resistance. Expert Rev Anti Infect Ther 2025; 23:31-47. [PMID: 39670956 DOI: 10.1080/14787210.2024.2441891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION The increase in antibiotic resistance, together with the absence of novel antibiotics, makes mandatory the introduction of novel strategies to optimize the use of existing antibiotics. Among these strategies, the use of molecules that increase their activity looks promising. AREAS COVERED Different categories of adjuvants have been reviewed. Anti-resistance adjuvants increase the activity of antibiotics by inhibiting antibiotic resistance determinants. Anti-virulence approaches focus on the infection process itself; reducing virulence in combination with an antibiotic can improve therapeutic efficacy. Combination of phages with antibiotics can also be useful, since they present different mechanisms of action and targets. Finally, combining antibiotics with adjuvants in the same molecule may serve to improve antibiotics' efficacy and to overcome potential problems of differential pharmacokinetics/pharmacodynamics. EXPERT OPINION The successful combination of inhibitors of β-lactamases with β-lactams has shown that adjuvants can improve the efficacy of current antibiotics. In this sense, novel anti-resistance adjuvants able to inhibit efflux pumps are still needed, as well as anti-virulence compounds that improve the efficacy of antibiotics by interfering with the infection process. Although adjuvants may present different pharmacodynamics/pharmacokinetics than antibiotics, conjugates containing both compounds can solve this problem. Finally, already approved drugs can be a promising source of antibiotic adjuvants.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Pablo Laborda
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
5
|
Liu J, Lu L, Song H, Liu S, Liu G, Lou B, Shi W. Effects of triclosan on lipid metabolism and underlying mechanisms in the cyprinid fish Squalidus argentatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175627. [PMID: 39168348 DOI: 10.1016/j.scitotenv.2024.175627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The ubiquitous presence of the disinfectant triclosan (TCS) has raised global concerns regarding its potential threat to aquatic organisms. However, the effects of TCS on lipid metabolism in fish and its underlying mechanisms remain unclear. This study investigated the effect of environmentally relevant levels of TCS on the lipid metabolism in the cyprinid fish Squalidus argentatus. Our results showed that the lipid metabolism in the cyprinid fish S. argentatus was perturbed by 28-day exposure to TCS, as evidenced by higher levels of lipid accumulation in both the liver and blood. To elucidate the mechanisms underlying toxicity, we evaluated oxidative stress, inflammatory status, and lipase activity in the liver. Our findings indicated increased ROS-specific fluorescence intensity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in the livers of S. argentatus exposed to TCS, suggesting oxidative damage. Additionally, TCS treatment induced the production of proinflammatory cytokines in the liver of S. argentatus exposed to TCS, which suppressed hepatic lipase activity. Intestinal tissue morphology, inflammation, and blood lipopolysaccharide (LPS) levels were also examined. Significant increases in goblet cell count and MDA levels were observed in the intestinal tract. After 28 days of TCS exposure, the serum LPS levels were significantly elevated. 16S rRNA sequencing was conducted to analyze the effects of TCS on the diversity and composition of the intestinal microbiota. Transcriptomic analysis was performed to reveal global molecular alterations following TCS exposure. In conclusion, our results indicate that TCS may disrupt the lipid metabolism in S. argentatus by (i) inducing hepatic oxidative stress and inflammation, which suppress lipoprotein lipase activity, (ii) affecting the production of beneficial metabolites and endotoxins by dysregulating gut microbiota composition, and (iii) altering the expression levels of lipid metabolism-related pathways.
Collapse
Affiliation(s)
- Jindian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongjian Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuai Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Shekhar, Chowdhary S, Mosnier J, Fonta I, Pradines B, Kumar V. Design, synthesis and mechanistic insights into triclosan derived dimers as potential anti-plasmodials. RSC Med Chem 2024:d4md00494a. [PMID: 39464649 PMCID: PMC11503656 DOI: 10.1039/d4md00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
In pursuit of novel anti-plasmodial agents, a library of triclosan-based dimers both with and without a 1H-1,2,3 triazole core were designed and synthesized in order to achieve a multitargeted approach. In vitro assessment against chloroquine-susceptible (3D7) and resistant (W2) P. falciparum strains identified that two of the synthesized dimers containing triazole were the most potent in the series. The most potent of the synthesized compounds exhibited IC50 values of 9.27 and 12.09 μM against the CQ-resistant (W2) and CQ-susceptible (3D7) strains of P. falciparum, with an RI of 0.77, suggesting little or no cross-resistance with CQ. Heme binding and molecular modelling studies revealed the most promising scaffold as a dual inhibitor for hemozoin formation and a P. falciparum chloroquine resistance transporter (PfCRT), respectively. In silico studies of the most potent compound revealed that it shows better binding affinity with PfACP and PfCRT compared to TCS. To the best of our knowledge, this is the first report of triclosan-based compounds demonstrating promising heme-inhibition behaviour, with binding values comparable to those of chloroquine (CQ).
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Shefali Chowdhary
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| |
Collapse
|
7
|
Cui MH, Chen L, Sangeetha T, Yan WM, Zhang C, Zhang XD, Niu SM, Liu H, Liu WZ. Impact and migration behavior of triclosan on waste-activated sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 407:131094. [PMID: 38986885 DOI: 10.1016/j.biortech.2024.131094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Triclosan (TCS), a hydrophobic antibacterial agent, is extensive application in daily life. Despite a low biodegradability rate, its hydrophobicity results in its accumulation in waste-activated sludge (WAS) during domestic and industrial wastewater treatment. While anaerobic digestion is the foremost strategy for WAS treatment, limited research has explored the interphase migration behavior and impacts of TCS on WAS degradation during anaerobic digestion. This study revealed TCS migration between solid- and liquid-phase in WAS digestion. The solid-liquid distribution coefficients of TCS were negative for proteins and polysaccharides and positive for ammonium. High TCS levels promoted volatile-fatty-acid accumulation and reduced methane production. Enzyme activity tests and functional prediction indicated that TCS increased enzyme activity associated with acid production, in contrast to the inhibition of key methanogenic enzymes. The findings of the TCS migration behavior and its impacts on WAS anaerobic digestion provide an in-depth understanding of the evolution of enhanced TCS-removing technology.
Collapse
Affiliation(s)
- Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment & Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Lei Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment & Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Thangavel Sangeetha
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wei-Mon Yan
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chao Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment & Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Xue-Dong Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment & Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Shi-Ming Niu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment & Ecology, Jiangnan University, Wuxi 214122, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment & Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Wen-Zong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
8
|
Zhang J, Pitol AK, Kinung’hi S, Angelo T, Emery AM, Cieplinski A, Templeton MR, Braun L. The lethal effect of soap on Schistosoma mansoni cercariae in water. PLoS Negl Trop Dis 2024; 18:e0012372. [PMID: 39074137 PMCID: PMC11309484 DOI: 10.1371/journal.pntd.0012372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic disease which is spread through skin contact with water containing Schistosoma cercariae. Drug treatment has been the main control method, but it does not prevent reinfection. The use of soap can be a complementary measure to reduce transmission. Therefore, this study investigates the quantitative effect of different soaps on the mortality of Schistosoma mansoni cercariae. METHODOLOGY Four soaps including two powder soaps (Kleesoft and Omo) and two bar soaps (B29 and Rungu) which are used in a schistosomiasis-endemic Tanzanian village were studied. S. mansoni cercariae were exposed to powder soaps of 0 (control), 10, 50, 75, 100 and 1000 mg/L and to bar soaps of 0 (control), 100, 500 and 1000 mg/L. The highest concentration of 1000 mg/L was selected based on the laboratory-estimated average soap concentration during handwashing. Cercariae were observed under a microscope after 0, 5, 15, 30, 45 and 60 minutes of exposure to determine their survival. CONCLUSIONS All four soaps can kill S. mansoni cercariae and this lethal effect was related to soap concentration and exposure time. At the highest concentration of 1000 mg/L, all cercariae were dead at 5 minutes post-exposure with two powder soaps and Rungu, while 100% cercarial death was achieved between 5 minutes to 15 minutes for B29. Almost all cercariae survived after being exposed to 10 mg/L powder soaps and 100 mg/L bar soaps for 60 minutes. Powder soaps were more lethal than bar soaps. Considering the widely varying concentrations of soap during real-world hygiene activities and the necessity for a very high soap concentration to eliminate all cercariae in a short 5-minute exposure, providing the efficacy of soap in preventing schistosomiasis becomes challenging. Future studies should investigate whether soap can influence alternative mechanisms such as making cercariae unable to penetrate the skin, thereby providing protection.
Collapse
Affiliation(s)
- Jiaodi Zhang
- Department of Civil and Environmental Engineering, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Ana K. Pitol
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Safari Kinung’hi
- National Institute for Medical Research (NIMR), Mwanza Centre, Mwanza, Tanzania
| | - Teckla Angelo
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Aidan M. Emery
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - Adam Cieplinski
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - Michael R. Templeton
- Department of Civil and Environmental Engineering, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Laura Braun
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
Shekhar, Alcaraz M, Anand A, Sharma RK, Kremer L, Kumar V. Cu-promoted synthesis of triclosan-Mannich and Glaser adducts: anti-mycobacterial evaluation with in silico validations. Future Med Chem 2024; 16:949-961. [PMID: 38910577 DOI: 10.4155/fmc-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 06/25/2024] Open
Abstract
Aim: The WHO, Global tuberculosis report 2022 estimated number of tuberculosis (TB) cases reached 10.6 million in 2021, reflecting a 4.5% increase compared with the 10.1 million reported in 2020. The incidence rate of TB showed 3.6% rise from 2020 to 2021. Results/methodology: This manuscript discloses Cu-promoted single pot A3-coupling between triclosan (TCS)-based alkyne, formaldehyde and secondary amines to yield TCS-based Mannich adducts. Additionally, the coupling of TCS-alkynes in the presence of Cu(OAc)2 afforded the corresponding homodimers. Among tested compounds, the most potent one in the series 11 exhibited fourfold higher potency than rifabutin against drug-resistant Mycobacterium abscessus. The selectivity index was also substantially improved, being 26 (day 1) and 15 (day 3), which is four-times better than TCS.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
| | - Amit Anand
- Department of Chemistry, Khalsa college, Amritsar, Punjab, 143005, India
| | - Rajni Kant Sharma
- Department of Chemistry, College of Basic Science & Humanities CCS, Haryana Agricultural University, Hisar, Haryana, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
- INSERM, IRIM, Montpellier, 34293, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
10
|
Chokki Veettil P, Nikarthil Sidhick J, Kavungal Abdulkhader S, Ms SP, Kumari Chidambaran C. Triclosan, an antimicrobial drug, induced reproductive impairment in the freshwater fish, Anabas testudineus (Bloch, 1792). Toxicol Ind Health 2024; 40:254-271. [PMID: 38518096 DOI: 10.1177/07482337241242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Triclosan (TCS), an antimicrobial drug, is known to occupy different compartments in aquatic ecosystems. The present study focused to evaluate the reproductive toxicity of triclosan, at environmentally relevant (0.009 and 9 μg L-1) and sublethal (176.7 μg L-1) concentrations for 90 days in the pre-spawning phase of the fish, Anabas testudineus. The reproductive biomarkers, namely, gonadal steroidogenic enzymes, expression of aromatic genes, levels of serum gonadotropins, sex hormones, and histology of gonads were analyzed. The weight of the animal, brain weights along with gonadosomatic index decreased while mucus deposition increased significantly at all concentrations of triclosan as the primary defensive mechanism to prevent the entry of toxicants. Triclosan disrupted gonadal steroidogenesis as evidenced by a reduction in the activities of gonadal steroidogenic enzymes. The expressions of cyp19a1a and cyp19a1b genes were up-regulated in the brain of both sexes and testis, while down-regulated in the ovary indicating estrogenic effects of the compound. The endocrine-disrupting effects of triclosan were confirmed. The current results suggest that chronic exposure to triclosan altered reproductive endpoints thereby impairing normal reproductive functions in fish.
Collapse
Affiliation(s)
| | | | | | - Siva Prasad Ms
- Department of Forensic Science, University of Calicut, Kerala Police Academy, Thrissur, India
| | - Chitra Kumari Chidambaran
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram, India
| |
Collapse
|
11
|
Wu H, Yu M, Zhang S, You M, Xiong A, Feng B, Niu J, Yuan G, Yue B, Pei J. Mg-based implants with a sandwiched composite coating simultaneously facilitate antibacterial and osteogenic properties. J Mater Chem B 2024; 12:2015-2027. [PMID: 38304935 DOI: 10.1039/d3tb02744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Insufficient antibacterial effects and over-fast degradation are the main limitations of magnesium (Mg)-based orthopedic implants. In this study, a sandwiched composite coating containing a triclosan (TCS)-loaded poly(lactic acid) (PLA) layer inside and brushite (DCPD) layer outside was prepared on the surface of the Mg-Nd-Zn-Zr (denoted as JDBM) implant. In vitro degradation tests revealed a remarkable improvement in the corrosion resistance and moderate degradation rate. The drug release profile demonstrated a controllable and sustained TCS release for at least two weeks in vitro. The antibacterial rates of the implant were all over 99.8% for S. aureus, S. epidermidis, and E. coli, demonstrating superior antibacterial effects. Additionally, this coated JDBM implant exhibited no cytotoxicity but improved cell adhesion and proliferation, indicating excellent cytocompatibility. In vivo assays were conducted by implant-related femur osteomyelitis and osseointegration models in rats. Few bacteria were attached to the implant surface and the surrounding bone tissue. Furthermore, the coated JDBM implant exhibited more new bone formation than other groups due to the synergistic biological effects of released TCS and Mg2+, revealing excellent osteogenic ability. In summary, the JDBM implant with the sandwiched composite coating could significantly enhance the antibacterial activities and osteogenic properties simultaneously by the controllable release of TCS and Mg2+, presenting great potential for clinical transformation.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mengjiao Yu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingyu You
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Boxuan Feng
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Fang JL, Vanlandingham MM, Olson GR, Maisha MP, Felton R, Beland FA. Two-year dermal carcinogenicity bioassay of triclosan in B6C3F1 mice. Arch Toxicol 2024; 98:335-345. [PMID: 37874342 DOI: 10.1007/s00204-023-03613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Triclosan is a widely used antimicrobial agent in personal care products, household items, medical devices, and clinical settings. Due to its extensive use, there is potential for humans in all age groups to receive lifetime exposures to triclosan, yet data on the chronic dermal toxicity/carcinogenicity of triclosan are still lacking. We evaluated the toxicity/carcinogenicity of triclosan administered dermally to B6C3F1 mice for 104 weeks. Groups of 48 male and 48 female B6C3F1 mice received dermal applications of 0, 1.25, 2.7, 5.8, or 12.5 mg triclosan/kg body weight (bw)/day in 95% ethanol, 7 days/week for 104 weeks. Vehicle control animals received 95% ethanol only; untreated, naïve control mice did not receive any treatment. There were no significant differences in survival among the groups. The highest dose of triclosan significantly decreased the body weight of mice in both sexes, but the decrease was ≤ 9%. Minimal-to-mild epidermal hyperplasia, suppurative inflammation (males only), and ulceration (males only) were observed at the application site in the treated groups, with the highest incidence occurring in the 12.5 mg triclosan/kg bw/day group. No tumors were identified at the application site. Female mice had a positive trend in the incidence of pancreatic islet adenoma. In male mice, there were positive trends in the incidences of hepatocellular carcinoma and hepatocellular adenoma or carcinoma (combined), with the increase of carcinoma being significant in the 5.8 and 12.5 mg/kg/day groups and the increase in hepatocellular adenoma or carcinoma (combined) being significant in the 2.7, 5.8, and 12.5 mg/kg/day groups.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA.
| | - Michelle M Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Greg R Olson
- Toxicologic Pathology Associates, Inc., National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Mackean P Maisha
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Robert Felton
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| |
Collapse
|
13
|
Baur R, Kashon M, Lukomska E, Weatherly LM, Shane HL, Anderson SE. Exposure to the anti-microbial chemical triclosan disrupts keratinocyte function and skin integrity in a model of reconstructed human epidermis. J Immunotoxicol 2023; 20:1-11. [PMID: 36524471 PMCID: PMC10364087 DOI: 10.1080/1547691x.2022.2148781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan is an anti-microbial chemical incorporated into products that are applied to the skin of healthcare workers. Exposure to triclosan has previously been shown to be associated with allergic disease in humans and impact the immune responses in animal models. Additionally, studies have shown that exposure to triclosan dermally activates the NLRP3 inflammasome and disrupts the skin barrier integrity in mice. The skin is the largest organ of the body and plays an important role as a physical barrier and regulator of the immune system. Alterations in the barrier and immune regulatory functions of the skin have been demonstrated to increase the risk of sensitization and development of allergic disease. In this study, the impact of triclosan exposure on the skin barrier and keratinocyte function was investigated using a model of reconstructed human epidermis. The apical surface of reconstructed human epidermis was exposed to triclosan (0.05-0.2%) once for 6, 24, or 48 h or daily for 5 consecutive days. Exposure to triclosan increased epidermal permeability and altered the expression of genes involved in formation of the skin barrier. Additionally, exposure to triclosan altered the expression patterns of several cytokines and growth factors. Together, these results suggest that exposure to triclosan impacts skin barrier integrity and function of human keratinocytes and suggests that these alterations may impact immune regulation.
Collapse
Affiliation(s)
- Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Michael Kashon
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Lisa M. Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Hillary L. Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
14
|
Simila HO, Beltrán AM, Boccaccini AR. Developing a bioactive glass coated dental floss: antibacterial and mechanical evaluations. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:53. [PMID: 37855952 PMCID: PMC10587244 DOI: 10.1007/s10856-023-06758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
In the present study, we investigated commercial dental floss coated with chitosan or chitosan + mesoporous bioactive glass nanoparticles (MBGNs) in order to determine the antimicrobial and mechanical properties of the newly fabricated flosses. Whereas these coatings showed notable ability to inhibit growth of both Gram (+) and Gram (-) bacteria after 24 h, the impact was negligible at 3 h. Furthermore, the tensile strength of the floss was improved by the addition of these layers, making it more durable and effective for cleaning between teeth. We therefore propose enhanced investigations of these composites since they demonstrate enormous potential in promoting oral health.
Collapse
Affiliation(s)
- Hazel O Simila
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011, Seville, Spain
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| |
Collapse
|
15
|
Li Y, Xiang S, Hu L, Qian J, Liu S, Jia J, Cui J. In vitro metabolism of triclosan and chemoprevention against its cytotoxicity. CHEMOSPHERE 2023; 339:139708. [PMID: 37536533 DOI: 10.1016/j.chemosphere.2023.139708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triclosan (TCS), a broad-spectrum antibacterial chemical, has been extensively used in personal daily care items, household commodities, and clinical medications; therefore, humans are at risk of being exposed to TCS in their daily lives. This chemical also accumulated in food chains, and potential risks were associated with its metabolism in vivo. The aim of this study was to investigate the difference in metabolic profile of TCS by hepatic P450 enzymes and extrahepatic P450s, and also identify chemical structures of its metabolites. The results showed that RLM mediated the hydroxylation and cleavage of the ether moiety of TCS, resulting in phenolic metabolites that are more polar than the parent compound, including 4-chlorocatechol, 2,4-dichlorophenol and monohydroxylated triclosan. The major metabolite of CYP1A1 and CYP1B1 mediated TCS metabolism is 4-chlorochol. We also performed molecular docking experiments to investigate possible binding modes of TCS in the active sites of human CYP1B1, CYP1A1, and CYP3A4. In addition to in vitro experiments, we further examined the cytotoxic effects of TCS on HepG2 cells expressing hepatic P450 and MCF-7/1B1 cells expressing CYP1B1. It exhibited significant cytotoxicity on HepG2, MCF-10A and MCF-7/1B1 cells, with IC50 values of 70 ± 10 μM, 20 ± 10 μM and 60 ± 20 μM, respectively. The co-incubation of TCS with glutathione (GSH) as a chemopreventive agent could reduce the cytotoxicity of TCS in vitro. The chemopreventive effects of GSH might be ascribed to the promotion of TCS efflux mediated by membrane transporter MRP1 and also its antioxidant property, which partially neutralized the oxidative stress of TCS on mammalian cells. This study contributed to our understanding of the relationship between the P450 metabolism and the toxicity of TCS. It also had implications for the use of specific chemopreventive agents against the toxicity of TCS.
Collapse
Affiliation(s)
- Yubei Li
- School of China-UK Low Carbon College, Shanghai Jiaotong University, Shanghai, China
| | - Shouyan Xiang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Liuyin Hu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiajun Qian
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Shuoguo Liu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China; School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
16
|
Costa RC, Borges GA, Dini C, Bertolini M, Souza JGS, Mesquita MF, Barão VAR. Clinical efficacy of triclosan-containing toothpaste in peri-implant health: A systematic review and meta-analysis of randomized clinical trials. J Prosthet Dent 2023:S0022-3913(23)00508-5. [PMID: 37723004 DOI: 10.1016/j.prosdent.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2023]
Abstract
STATEMENT OF PROBLEM Recent evidence suggests that toothpaste containing 0.3% triclosan (TCS) is more effective than regular toothpaste in improving clinical periodontal conditions. However, a consensus on whether TCS favors a healthy peri-implant environment is limited. PURPOSE The purpose of this systematic review and meta-analysis of randomized clinical trials was to determine the effects of TCS-containing toothpaste on dental implant health based on clinical, immunological, and microbiological parameters, as well as on reported adverse events. MATERIAL AND METHODS Clinical studies comparing peri-implant conditions in participants by using TCS toothpaste versus conventional fluoride toothpaste (control) were extracted from 9 databases. The studies were assessed with the Cochrane risk-of-bias tool for randomized clinical trials (RoB 2). Datasets for bleeding on probing (BOP), probing depth (PD), clinical attachment level (CAL), gingival index (GI), plaque index (PI), osteo-immunoinflammatory mediators, and bacterial load were plotted, and the standard mean difference (SMD) quantitative analysis was applied by using the Rev Man 5.3 software program. Adverse effects reported by the studies were also tabulated. The certainty of evidence was assessed by using the grading of recommendations assessment, development, and evaluation approach. RESULTS Six studies were included in the meta-analyses. BOP was higher in the control group than in the TCS toothpaste group at 3 months (SMD -0.59 [-1.11, -.07] P=.002, I2=77%) and 6 months (SMD -0.59 [-0.83, -0.34] P=.009, I2=79%). PD (SMD -0.04 [-0.08, -0.00] P=.04, I2=0%) was also deeper in the control group versus TCS toothpaste at 6 months (SMD -0.41 [-0.73, -0.10] P=.04, I2=77%). CAL, GI, and PI did not differ between groups (P>.05). Among the osteo-immunoinflammatory mediators, IL-10 levels increased, and IL-1β and osteoprotegerin levels decreased in the TCS toothpaste group (P<.05). Microbiological findings found that TCS toothpaste prevented the growth of periodontal pathogens, specifically in up to approximately 20% of the Prevotella intermedia. Adverse effects were not reported after toothbrushing in either group. However, most studies had "some" or "high" risk of bias, and the certainty of the evidence was considered to be "very low." CONCLUSIONS Most studies were short-term (3 and 6 months) analyses, and the results found that, although TCS-containing toothpaste had positive osteo-immunoinflammatory and microbiologic results, clinical parameters, including CAL, GI, and PI, were not influenced.
Collapse
Affiliation(s)
- Raphael Cavalcante Costa
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Guilherme Almeida Borges
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Caroline Dini
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Martinna Bertolini
- Assistant Professor, Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Joāo Gabriel S Souza
- Professor, Dental Research Division, Guarulhos University (UnG), Guarulhos, SP, Brazil
| | - Marcelo Ferraz Mesquita
- Full Professor, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Valentim Adelino Ricardo Barão
- Associate Professor, Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil..
| |
Collapse
|
17
|
Ramírez-Hernández M, Cox J, Thomas B, Asefa T. Nanomaterials for Removal of Phenolic Derivatives from Water Systems: Progress and Future Outlooks. Molecules 2023; 28:6568. [PMID: 37764344 PMCID: PMC10535519 DOI: 10.3390/molecules28186568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Environmental pollution remains one of the most challenging problems facing society worldwide. Much of the problem has been caused by human activities and increased usage of various useful chemical agents that inadvertently find their way into the environment. Triclosan (TCS) and related phenolic compounds and derivatives belong to one class of such chemical agents. In this work, we provide a mini review of these emerging pollutants and an outlook on the state-of-the-art in nanostructured adsorbents and photocatalysts, especially nanostructured materials, that are being developed to address the problems associated with these environmental pollutants worldwide. Of note, the unique properties, structures, and compositions of mesoporous nanomaterials for the removal and decontamination of phenolic compounds and derivatives are discussed. These materials have a great ability to scavenge, adsorb, and even photocatalyze the decomposition of these compounds to mitigate/prevent their possible harmful effects on the environment. By designing and synthesizing them using silica and titania, which are easier to produce, effective adsorbents and photocatalysts that can mitigate the problems caused by TCS and its related phenolic derivatives in the environment could be fabricated. These topics, along with the authors' remarks, are also discussed in this review.
Collapse
Affiliation(s)
- Maricely Ramírez-Hernández
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jordan Cox
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Belvin Thomas
- Department of Chemistry and Chemical Biology, Rutgers, New Brunswick, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Tewodros Asefa
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, New Brunswick, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Jabłońska-Trypuć A. A review on triclosan in wastewater: Mechanism of action, resistance phenomenon, environmental risks, and sustainable removal techniques. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10920. [PMID: 37610032 DOI: 10.1002/wer.10920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/24/2023]
Abstract
Triclosan, belonging to the bisphenols, is a known antiseptic broad-spectrum biocide. It has a very wide range of applications, both in health care and in the household. Triclosan enters the environment, both water bodies and soil, because of its high prevalence and the ability to accumulation. Excessive use of antimicrobial formulations may cause the generation of resistance among microorganisms. Reduced susceptibility to triclosan is observed more frequently and in an expanded group of microorganisms and is conditioned by a number of different mechanisms occurring on the molecular level. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Therefore, additional advanced treatment technologies are being considered in areas, where a triclosan contamination problem has been identified. Removal of triclosan from wastewater is carried out using different biological and chemical techniques; however, it should be pointed out that physico-chemical methods often generate toxic by-products. Toxicity of triclosan and its degradation products, bacterial resistance to this compound, and evident problems with triclosan elimination from wastewater are currently the main problems faced by companies creating products containing triclosan. PRACTITIONER POINTS: Triclosan is an emerging pollutant in the environment because of its ability to accumulation and high prevalence. Reduced susceptibility to triclosan is being observed more frequently. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Additional advanced treatment technologies should be implemented to remove triclosan from wastewater.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Białystok, Poland
| |
Collapse
|
19
|
S LK, Tetala KKR. Fabrication of a bi-metallic metal organic framework nanocomposite for selective and sensitive detection of triclosan. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2408-2416. [PMID: 37039570 DOI: 10.1039/d3ay00033h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transition metal-ion based nanocomposites are widely used owing to their ease of synthesis and cost-effectiveness in the sensor development. In this study, we have synthesized bi-metallic (iron and zinc) metal organic framework (MOF) nanorods-nanoparticles (denoted as Fe2Zn-MIL-88B) with a well-defined structure and characterized them. The bimetallic material nanocomposite (Fe2Zn-MIL-88B, nafion (Nf), and multiwalled carbon nanotube (MWCNT)) was fabricated on the electrode (glassy carbon electrode (GCE) or screen printed carbon electrode (SPCE)) surface within 10 min at room temperature. The Fe2Zn-MIL-88B/Nf/MWCNT@GCE showed an excellent electron transfer mechanism compared to a bare GCE and bare SPCE. The Fe2Zn-MIL-88B based nanocomposite electrode triggers the oxidation of the environmental carcinogenic molecule triclosan (TCS). Under optimized conditions, the sensor has a limit of detection of 0.31 nM and high selectivity to TCS in the presence of other interfering agents. The sensor has a good day-to-day TCS detection reproducibility. Fe2Zn-MIL-88B was stable even after 11 months of synthesis and detected TCS with similar sensitivity. The fabrication of the Fe2Zn-MIL-88B/Nf/MWCNT nanocomposite was successfully translated from the GCE to SPCE. TCS was detected in human plasma and commercial products such as soaps, skin care products, shampoos, and tooth pastes.
Collapse
Affiliation(s)
- Lokesh Kumar S
- Centre for Bioseparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu-632014, India.
| | - Kishore K R Tetala
- Centre for Bioseparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu-632014, India.
| |
Collapse
|
20
|
Karine Marcomini E, Negri M. Fungal quorum-sensing molecules and antiseptics: a promising strategy for biofilm modulation? Drug Discov Today 2023:103624. [PMID: 37224996 DOI: 10.1016/j.drudis.2023.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
New strategies to control fungal biofilms are essential, especially those that interfere in the biofilm organization process and cellular communication, known as quorum sensing. The effect of antiseptics and quorum-sensing molecules (QSMs) have been considered with regard to this; however, little has been elucidated, particularly because studies are often restricted to the action of antiseptics and QSMs against a few fungal genera. In this review, we discuss progress reported in the literature thus far and analyze, through in silico methods, 13 fungal QSMs with regard to their physicochemical, pharmacological, and toxicity properties, including their mutagenicity, tumorigenicity, hepatotoxicity, and nephrotoxicity. From these in silico analyses, we highlight 4-hydroxyphenylacetic acid and tryptophol as having satisfactory properties and, thus, propose that these should be investigated further as antifungal agents. We also recommend future in vitro approaches to determine the association of QSMs with commonly used antiseptics as potential antibiofilm agents.
Collapse
|
21
|
Kavya B, King B, Rigsbee AS, Yang JG, Sprinkles W, Patel VM, McDonald AA, Amburn SK, Champlin FR. Influence of outer membrane permeabilization on intrinsic resistance to the hydrophobic biocide triclosan in opportunistic Serratia species. Heliyon 2023; 9:e15385. [PMID: 37101640 PMCID: PMC10123185 DOI: 10.1016/j.heliyon.2023.e15385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Triclosan is a hydrophobic antimicrobial agent commonly employed in health care settings. While it exhibits broad-spectrum antibacterial properties, the gram-negative nosocomial opportunists Pseudomonas aeruginosa and Serratia marcescens are atypically refractory. Intrinsic resistance to triclosan in P. aeruginosa is largely due to its outer membrane impermeability properties for hydrophobic and bulky substances. The present study was undertaken to determine the relationship between triclosan and the outer cell envelopes of thirteen strains of ten Serratia species reported to be opportunistic pathogens in humans. General intrinsic resistance to hydrophobic and other outer membrane impermeant compounds was assessed using cultural selection, disk agar diffusion, and macrobroth dilution bioassays. Uptake of the hydrophobic fluorescent probe 1-N-phenylnapthylamine was assessed in four disparate strains of S. marcescens. Batch culture kinetics in the presence of combinations of triclosan and outer membrane permeabilizer compound 48/80 allowed analysis of outer membrane involvement in intrinsic resistance. Aggregate results revealed that individual species ranged in response to hydrophobic and bulky molecules from generally refractory to extremely susceptible. Moreover, susceptivity to triclosan sensitization by chemical disruption of outer membrane exclusionary properties differed markedly among species which exhibited intrinsic resistance to triclosan. These data suggest that disparate opportunistic pathogens within the genus Serratia differ phenotypically regarding the degree to which outer membrane exclusion contributes to intrinsic resistance for impermeant molecules in general, and triclosan specifically. Ancillary resistance mechanisms appear to contribute in some species and may involve constitutive multi-drug efflux systems. Importance A paucity of knowledge exists regarding the cellular and molecular mechanisms by which opportunistically pathogenic members of the genus Serratia are able to infect immunocompromised and otherwise susceptible individuals, and then evade chemotherapy. This is especially true for species other than Serratia marcescens and Serratia liquefaciens, although much remains to be learned with regard to the nature of key virulence factors and infection mechanisms which allow for the typically nosocomial acquisition of even these species. The research described in the present study will provide a better understanding of the contribution of outer cell envelope permeability properties to the pathogenicity of these opportunistic species in an ever-increasing susceptible patient population. It is our hope that greater knowledge of the basic biology of these organisms will contribute to the mitigation of suffering they cause in patients with underlying diseases.
Collapse
Affiliation(s)
- Boyina Kavya
- Department of Biochemistry and Molecular Biology, College of Agriculture, Oklahoma State University, Stillwater, OK, USA
| | - Blake King
- Department of Natural Sciences, College of Science and Health Professions, Northeastern State University, Broken Arrow, OK, USA
| | - Abby S. Rigsbee
- Department of Biochemistry and Microbiology, School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Jennifer G. Yang
- Biotechnology Department, Tulsa Community College, Tulsa, OK, USA
| | - Wilson Sprinkles
- Department of Biochemistry and Microbiology, School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | | | - Allison A. McDonald
- Department of Biochemistry and Microbiology, School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Sue Katz Amburn
- Biology Department, Rogers State University, Claremore, OK, USA
| | - Franklin R. Champlin
- Department of Biochemistry and Microbiology, School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
- Corresponding author.
| |
Collapse
|
22
|
Diogo P, Amparo F Faustino M, Palma PJ, Rai A, Graça P M S Neves M, Miguel Santos J. May carriers at nanoscale improve the Endodontic's future? Adv Drug Deliv Rev 2023; 195:114731. [PMID: 36787865 DOI: 10.1016/j.addr.2023.114731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/29/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Nanocarriers (NCs) are dynamic nanovehicles used to transport bioactive derivatives like therapeutical formulations, drugs and/or dyes. The current review assists in understanding the mechanism of action of several recent developed NCs with antimicrobial purposes. Here, nine NCs varieties are portrayed with focus on nineteen approaches that are fulfil described based on outcomes obtained from in vitro antimicrobial assays. All approaches have previously been verified and we underline the biochemical challenges of all NCs, expecting that the present data may encourage the application of NCs in endodontic antimicrobial basic research. Methodological limitations and the evident base gaps made not possible to draw a definite conclusion about the best NCs for achieving efficient antimicrobial outcomes in endodontic studies. Due to the lack of pre-clinical trials and the scarce number of clinical trials in this emergent area, there is still much room for improvement on several fronts.
Collapse
Affiliation(s)
- Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
| | - M Amparo F Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo J Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Akhilesh Rai
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | | | - João Miguel Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine and Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
23
|
Effect on the reduction of bacterial load after surgical hand antisepsis with triclosan 0.5% compared to triclosan 0.5% followed by 70% alcoholic solution. Infect Control Hosp Epidemiol 2023; 44:517-519. [PMID: 34933701 DOI: 10.1017/ice.2021.506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Triclosan 0.5% by scrubbing does not meet the UNE-EN12791 criteria to be used in the surgical hand preparation (SHP). Triclosan 0.5% by scrubbing followed by ethanol 70% hand rubbing is suitable without the additional characteristic of sustained effect. This limited effectiveness implies that triclosan should be avoided in SHP given the restrictions on its use in consumer antiseptic products. The trial was registered at ClinicalTrials.gov (ID: NCT04538365).
Collapse
|
24
|
Suárez-García J, Cano-Herrera MA, María-Gaviria A, Osorio-Echeverri VM, Mendieta-Zerón H, Arias-Olivares D, Benavides-Melo J, García-Sánchez LC, García-Ortíz J, Becerra-Buitrago A, Valero-Rojas J, Rodríguez-González M, García-Eleno MA, Cuevas-Yañez E. Synthesis, characterization, in-vitro biological evaluation and theoretical studies of 1,2,3-triazoles derived from triclosan as Difenoconazole analogues. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Randhawa A, Dutta SD, Ganguly K, Patel DK, Patil TV, Lim KT. Recent Advances in 3D Printing of Photocurable Polymers: Types, Mechanism, and Tissue Engineering Application. Macromol Biosci 2023; 23:e2200278. [PMID: 36177687 DOI: 10.1002/mabi.202200278] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/09/2022] [Indexed: 01/19/2023]
Abstract
The conversion of liquid resin into solid structures upon exposure to light of a specific wavelength is known as photopolymerization. In recent years, photopolymerization-based 3D printing has gained enormous attention for constructing complex tissue-specific constructs. Due to the economic and environmental benefits of the biopolymers employed, photo-curable 3D printing is considered an alternative method for replacing damaged tissues. However, the lack of suitable bio-based photopolymers, their characterization, effective crosslinking strategies, and optimal printing conditions are hindering the extensive application of 3D printed materials in the global market. This review highlights the present status of various photopolymers, their synthesis, and their optimization parameters for biomedical applications. Moreover, a glimpse of various photopolymerization techniques currently employed for 3D printing is also discussed. Furthermore, various naturally derived nanomaterials reinforced polymerization and their influence on printability and shape fidelity are also reviewed. Finally, the ultimate use of those photopolymerized hydrogel scaffolds in tissue engineering is also discussed. Taken together, it is believed that photopolymerized 3D printing has a great future, whereas conventional 3D printing requires considerable sophistication, and this review can provide readers with a comprehensive approach to developing light-mediated 3D printing for tissue-engineering applications.
Collapse
Affiliation(s)
- Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
26
|
Bharti B, Li H, Ren Z, Zhu R, Zhu Z. Recent advances in sterilization and disinfection technology: A review. CHEMOSPHERE 2022; 308:136404. [PMID: 36165840 DOI: 10.1016/j.chemosphere.2022.136404] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Sterilization and disinfection of pollutants and microorganisms have been extensively studied in order to address the problem of environmental contamination, which is a crucial issue for public health and economics. Various form of hazardous materials/pollutants including microorganisms and harmful gases are released into the environment that enter into the human body either through inhalation, adsorption or ingestion. The human death rate rises due to various respiratory ailments, strokes, lung cancer, and heart disorders related with these pollutants. Hence, it is essential to control the environmental pollution by applying economical and effective sterilization and disinfections techniques to save life. In general, numerous forms of traditional physical and chemical sterilization and disinfection treatments, such as dry and moist heat, radiation, filtration, ethylene oxide, ozone, hydrogen peroxide, etc. are known along with advanced techniques. In this review we summarized both advanced and conventional techniques of sterilization and disinfection along with their uses and mode of action. This review gives the knowledge about the advantages, disadvantages of both the methods comparatively. Despite, the effective solution given by the advanced sterilization and disinfection technology, joint technologies of sterilization and disinfection has proven to be more effective innovation to protect the indoor and outdoor environments.
Collapse
Affiliation(s)
- Bandna Bharti
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Hanliang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Zhenye Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
27
|
Zhang J, Wang Z, Dai Y, Zhang L, Guo J, Lv S, Qi X, Lu D, Liang W, Cao Y, Wu C, Chang X, Zhou Z. Multiple mediation effects on association between prenatal triclosan exposure and birth outcomes. ENVIRONMENTAL RESEARCH 2022; 215:114226. [PMID: 36049513 DOI: 10.1016/j.envres.2022.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triclosan is a broad-spectrum antimicrobial, and was thought to affect intrauterine development, but the mechanism remains unclear. OBJECTIVE To explore the association between prenatal triclosan exposure and birth outcomes. METHODS Based on 726 mother-child pairs from the Sheyang Mini Birth Cohort Study (SMBCS), we used the available (published) data of triclosan in maternal urines, the hormones including thyroid-related hormones, gonadal hormones in cord blood, and adipokines, trimethylamine-N-oxide (TMAO) and its precursors in cord blood to explore possible health effects of triclosan on birth outcomes through assessing different hormones and parameters, using Bayesian mediation analysis. RESULTS Maternal triclosan exposure was associated with ponderal index (β = 0.317) and head circumference (β = -0.172) in generalized linear models. In Bayesian mediation analysis of PI model, estradiol (β = 0.806) and trimethylamine (TMA, β = 0.164) showed positive mediation effects, while total thyroxine (TT4, β = -0.302), leptin (β = -2.023) and TMAO (β = -0.110) showed negative mediation effects. As for model of head circumference, positive mediation effects were observed in free thyroxine (FT4, β = 0.493), TMA (β = 0.178), and TMAO (β = 0.683), negative mediation effects were observed in TT4 (β = -0.231), testosterone (β = -0.331), estradiol (β = -1.153), leptin (β = -2.361), choline (β = -0.169), betaine (β = -0.104), acetyl-L-carnitine (β = -0.773). CONCLUSION The results indicated triclosan can affect intrauterine growth by interfering thyroid-related hormones, gonadal hormones, adipokines, TMAO and its precursors.
Collapse
Affiliation(s)
- Jiming Zhang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zheng Wang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Yiming Dai
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Lei Zhang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Jianqiu Guo
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Shenliang Lv
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Xiaojuan Qi
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou, 310051, China.
| | - Dasheng Lu
- Shanghai Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Shanghai, 200336, China.
| | - Weijiu Liang
- Changning Center for Disease Control and Prevention, No.39 Yunwushan Road, Shanghai, 200051, China.
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, 70182, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Chunhua Wu
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Xiuli Chang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
28
|
Viana AS, Botelho AMN, Feder A, Moustafa AM, Santos Silva DN, Martini CL, Ferreira ALP, Silva-Carvalho MC, Ferreira-Carvalho BT, Planet PJ, Sá Figueiredo AM. High frequency of increased triclosan MIC among CC5 MRSA and risk of misclassification of the SCCmec into types. J Antimicrob Chemother 2022; 77:3340-3348. [PMID: 36173394 PMCID: PMC9704425 DOI: 10.1093/jac/dkac322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Typing of staphylococcal cassette chromosome mec (SCCmec) elements is commonly used for studies on the molecular epidemiology of MRSA. OBJECTIVES To perform an investigation centred on uncovering the reasons for misclassification of MRSA clonal complex 5 (CC5) SCCmec type II clinical isolates in our laboratory. METHODS MRSA isolates from CC5 were subjected to WGS and SCCmec typing. RESULTS This investigation led to the discovery that the classification failure was due to an insertion of IS1272 carrying the fabI gene on a transposable element (TnSha1) that confers increased MIC to the biocide triclosan. Genomic analysis revealed that fabI was present in 25% of the CC5 MRSA isolates sampled. The frequency of TnSha1 in our collection was much higher than that observed among publicly available genomes (0.8%; n = 24/3142 CC5 genomes). Phylogenetic analyses revealed that genomes in different CC5 clades carry TnSha1 inserted in different integration sites, suggesting that this transposon has entered CC5 MRSA genomes on multiple occasions. In at least two genotypes, ST5-SCCmecII-t539 and ST5-SCCmecII-t2666, TnSha1 seems to have entered prior to their divergence. CONCLUSIONS Our work highlights an important misclassification problem of SCCmecII in isolates harbouring TnSha1 when Boye's method is used for typing, which could have important implications for molecular epidemiology of MRSA. The importance of increased-MIC phenotype is still a matter of controversy that deserves more study given the widespread use of triclosan in many countries. Our results suggest expanding prevalence that may indicate strong selection for this phenotype.
Collapse
Affiliation(s)
- Alice Slotfeldt Viana
- Department of Medical Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana Maria Nunes Botelho
- Department of Medical Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Andries Feder
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmed Magdi Moustafa
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19106, USA
| | | | - Caroline Lopes Martini
- Department of Medical Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Adriana Lucia Pires Ferreira
- Department of Medical Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Diagnósticos da América S.A., Duque de Caxias, RJ, 25085-007, Brazil
| | - Maria Cícera Silva-Carvalho
- Department of Medical Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Paul Joseph Planet
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19106, USA
| | - Agnes Marie Sá Figueiredo
- Department of Medical Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
29
|
Montagnin C, Cawthraw S, Ring I, Ostanello F, Smith RP, Davies R, Martelli F. Efficacy of Five Disinfectant Products Commonly Used in Pig Herds against a Panel of Bacteria Sensitive and Resistant to Selected Antimicrobials. Animals (Basel) 2022; 12:ani12202780. [PMID: 36290166 PMCID: PMC9597786 DOI: 10.3390/ani12202780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
The growing threat of antimicrobial resistance worldwide has led to an increasing concern in the human, veterinary, and environmental fields, highlighting the need for strategies to effectively control bacterial contamination. Correct biosecurity practices, including the appropriate use of disinfectants, play a crucial role in controlling bacterial contamination. This study aimed to verify whether the recommended concentrations defined according to the Defra General Orders concentration (GO, published by the UK Department for Environment, Food and Rural Affairs' disinfectant-approval scheme) of five commercial disinfectant preparations (peroxygen-based, phenol-based, two halogen-releasing agents, and glutaraldehyde/quaternary ammonium compound-based; disinfectants A to E, respectively) were sufficient to inhibit growth and inactivate selected bacterial strains, including some that carry known phenotypic patterns of multidrug resistance. The effectiveness of each disinfectant was expressed as the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, determined by the broth-microdilution method. The results indicate that the type of disinfectant and its concentration influence the inhibitory and bactericidal efficacy. The glutaraldehyde/quaternary ammonium compound-based (disinfectant D) and chlorocresol-based products (disinfectant B) were the most effective, and the GO concentration was bactericidal in all the strains tested. The efficacy of the other compounds varied, depending on the bacterial species tested. The GO concentrations were at least able to inhibit the bacterial growth in all the products and bacterial strains tested. A greater tolerance to the compounds was observed in the strains of E. coli with multidrug-resistance profiles compared to the strains that were sensitive to the same antimicrobials.
Collapse
Affiliation(s)
- Clara Montagnin
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - Shaun Cawthraw
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Isaac Ring
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy
- Correspondence:
| | - Richard P. Smith
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Rob Davies
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Francesca Martelli
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| |
Collapse
|
30
|
Ghosh S, Mukherjee R, Mahajan VS, Boucau J, Pillai S, Haldar J. Permanent, Antimicrobial Coating to Rapidly Kill and Prevent Transmission of Bacteria, Fungi, Influenza, and SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42483-42493. [PMID: 36073910 DOI: 10.1021/acsami.2c11915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial adhesion and contamination on shared surfaces can lead to life-threatening infections with serious impacts on public health, economy, and clinical practices. The traditional use of chemical disinfectants for sanitization of surfaces, however, comes with its share of health risks, such as hazardous effects on the eyes, skin, and respiratory tract, carcinogenicity, as well as environmental toxicity. To address this, we have developed a nonleaching quaternary small molecule (QSM)-based sprayable coating which can be fabricated on a wide range of surfaces such as nylon, polyethylene, surgical mask, paper, acrylate, and rubber in a one-step, photocuring technique. This contact-active coating killed pathogenic bacteria and fungi including drug-resistant strains of Staphylococcus aureus and Candida albicans within 15-30 min of contact. QSM coatings withstood multiple washes, highlighting their durability. Interestingly, the coated surfaces exhibited rapid killing of pathogens, leading to the prevention of their transmission upon contact. The coating showed membrane disruption of bacterial cells in fluorescence and electron microscopic investigations. Along with bacteria and fungi, QSM-coated surfaces also showed the complete killing of high loads of influenza (H1N1) and SARS-CoV-2 viruses within 30 min of exposure. To our knowledge, this is the first report of a coating for multipurpose materials applied in high-touch public places, hospital equipment, and clinical consumables, rapidly killing drug-resistant bacteria, fungi, influenza virus, and SARS-CoV-2.
Collapse
Affiliation(s)
- Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
31
|
Wormald JCR, Claireaux HA, Baldwin AJ, Chan JKK, Rodrigues JN, Cook JA, Prieto-Alhambra D, Clarke MJ, Costa ML. Antimicrobial sutures for the prevention of surgical site infection. Hippokratia 2022. [DOI: 10.1002/14651858.cd014719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justin CR Wormald
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford UK
| | - Henry A Claireaux
- Oxford Trauma, Nuffield Department of Orthopaedic Rheumatology and Musculoskeletal Sciences; University of Oxford; Oxford UK
| | - Alexander J Baldwin
- Oral and Maxillofacial Surgery; Oxford University Hospitals NHS Foundation Trust; Oxford UK
| | - James K-K Chan
- Department of Plastic Surgery; Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust; Aylesbury UK
| | - Jeremy N Rodrigues
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford UK
| | - Jonathan A Cook
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford UK
| | | | - Mike J Clarke
- Centre for Public Health; Queen's University Belfast; Belfast UK
| | - Matthew L Costa
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford UK
| |
Collapse
|
32
|
Cáceres-Hernández A, Torres-Torres JG, Silahua-Pavón A, Godavarthi S, García-Zaleta D, Saavedra-Díaz RO, Tavares-Figueiredo R, Cervantes-Uribe A. Facile Synthesis of ZnO-CeO 2 Heterojunction by Mixture Design and Its Application in Triclosan Degradation: Effect of Urea. NANOMATERIALS 2022; 12:nano12121969. [PMID: 35745314 PMCID: PMC9230812 DOI: 10.3390/nano12121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
In this study, simplex centroid mixture design was employed to determine the effect of urea on ZnO-CeO. The heterojunction materials were synthesized using a solid-state combustion method, and the physicochemical properties were evaluated using X-ray diffraction, nitrogen adsorption/desorption, and UV–Vis spectroscopy. Photocatalytic activity was determined by a triclosan degradation reaction under UV irradiation. According to the results, the crystal size of zinc oxide decreases in the presence of urea, whereas a reverse effect was observed for cerium oxide. A similar trend was observed for ternary samples, i.e., the higher the proportion of urea, the larger the crystallite cerium size. In brief, urea facilitated the co-existence of crystallites of CeO and ZnO. On the other hand, UV spectra indicate that urea shifts the absorption edge to a longer wavelength. Studies of the photocatalytic activity of TCS degradation show that the increase in the proportion of urea favorably influenced the percentage of mineralization.
Collapse
Affiliation(s)
- Antonia Cáceres-Hernández
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | - Jose Gilberto Torres-Torres
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | - Adib Silahua-Pavón
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | - Srinivas Godavarthi
- Investigadoras e Investigadores por México—División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa 86690, TB, Mexico;
| | - David García-Zaleta
- División Académica Multidisciplinaria de Jalpa de Méndez, Carretera Cunduacán–Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, km 1, Col. La Esmeralda, Villahermosa 86690, TB, Mexico;
| | - Rafael Omar Saavedra-Díaz
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | | | - Adrián Cervantes-Uribe
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
- Correspondence: ; Tel.: +52-553-143-9893
| |
Collapse
|
33
|
Sancéau JY, Bélanger P, Maltais R, Poirier D. An Improved Synthesis of Glucuronide Metabolites of Hindered Phenolic Xenoestrogens. Curr Org Synth 2022; 19:838-845. [PMID: 35473530 DOI: 10.2174/1570179419666220426104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE The syntheses of glucuronide metabolites of phenolic xenoestrogens triclosan and 2-phenylphenol, namely triclosan-O-glucuronide (TCS-G; 1), and 2-phenylphenol-O-glucuronide (OPP-G; 2), were achieved for use as analytical standards. METHODS Under classical conditions previously reported for glucuronide synthesis, the final basic hydrolysis of the peracylated ester intermediate leading to the free glucuronides is often a limiting step. Indeed, the presence of contaminating by-products resulting from ester elimination has often been observed during this step. This is particularly relevant when the sugar unit is close to a crowded environment as for triclosan and 2-phenylphenol. RESULTS To circumvent these problems, we proposed mild conditions for the deprotection of peracetylated glucuronate intermediates. CONCLUSION A new methodology using a key imidate following a two-step saponification protocol for acetates and methyl ester hydrolysis was successfully applied to the preparation of TCS-d3 (1) and OPP-G (2) as well as deuterated isotopomers TCS-d3-G (1-d3) and OPP-d5-G (2-d5).
Collapse
Affiliation(s)
- Jean-Yves Sancéau
- Organic Synthesis Service, Medicinal Chemistry Platform, Centre Hospitalier Universitaire (CHU) de Québec-Research Center, Québec, QC, G1V 4G2, Canada
| | - Patrick Bélanger
- Laboratoire du Centre de Toxicologie (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, QC, G1V 5B3, Canada
| | - René Maltais
- Organic Synthesis Service, Medicinal Chemistry Platform, Centre Hospitalier Universitaire (CHU) de Québec-Research Center, Québec, QC, G1V 4G2, Canada
| | - Donald Poirier
- Organic Synthesis Service, Medicinal Chemistry Platform, Centre Hospitalier Universitaire (CHU) de Québec-Research Center, Québec, QC, G1V 4G2, Canada.,Laboratoire du Centre de Toxicologie (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, QC, G1V 5B3, Canada
| |
Collapse
|
34
|
Triclosan targeting of gut microbiome ameliorates hepatic steatosis in high fat diet-fed mice. J Antibiot (Tokyo) 2022; 75:341-353. [PMID: 35440769 DOI: 10.1038/s41429-022-00522-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022]
Abstract
Antibiotic use provides a promising strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) by regulating the gut microbiota composition. Triclosan, a widely used antibiotic, may improve gut microbiome dysbiosis associated with NAFLD through the suppression of pathogenic gram-negative bacteria. However, the effects of triclosan on gut microbiota and hepatic steatosis and have not been explored in NAFLD mouse model. In this study, C57BL/6J mice were fed with high fat diet (HFD) for continuous 20 weeks and treated with triclosan at 400 mg/kg/d for 8 weeks from week 13. We explored the effects of triclosan on hepatic lipid accumulation and gut microbiome in HFD-fed mice by histological examination and 16 S ribosomal RNA sequencing, respectively. Analysis on the composition of gut microbiota indicated that triclosan suppressed pathogenic gram-negative bacteria, including Helicobacter, Erysipelatoclostridium and Citrobacter, and increased the ratio of Bacteroidetes/Firmicutes in HFD-fed mice. Meanwhile, triclosan increased the relative abundance of beneficial gut microbiomes including Lactobacillus, Bifidobacterium and Lachnospiraceae, which protected against metabolic abnormality. The results of alpha-diversity and beta-diversity also showed the improvement of triclosan on bacterial diversity and richness in HFD-fed mice. Pathway analysis further confirmed that triclosan can regulate nutrient and energy metabolism through the elimination of deleterious bacteria. As a result, triclosan intervention significantly reduced lipid accumulation and alleviated hepatic steatosis in HFD-fed mice. In conclusion, our results suggest that triclosan can alleviate liver steatosis in HFD-fed mice by targeting the gut microbiome.
Collapse
|
35
|
Petrova LS, Yaminzoda ZA, Odintsova OI, Vladimirtseva EL, Solov'eva AA, Smirnova AS. Promising Methods of Antibacterial Finishing of Textile Materials. RUSS J GEN CHEM+ 2022; 91:2758-2767. [PMID: 35068917 PMCID: PMC8763362 DOI: 10.1134/s1070363221120549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022]
Abstract
A review article, containing information on the options, possibilities, and prospects for the development of antibacterial finishing of textile materials, is presented. A wide range of products designed to impart antibacterial, antimicrobial, and antiviral properties to textile materials is considered. The main factors determining the appropriate decision on the technological and functional choice of the protective composition are presented, including the nature of the fiber-forming polymer, the tasks that the resulting material is designed to solve, and its application options. Compositions providing the required effect of destruction of the pathogenic flora and their application technologies are described. Special attention is paid to antimicrobial agents based on silver nanoparticles. Nanoparticles of this metal have a detrimental effect on antibiotic-resistant strains of bacteria; their effectiveness is higher as compared to a number of well-known antibiotics, for example, penicillin and its analogues. Silver nanoparticles are harmless to the human body. Acting as an inhibitor, they limit the activity of the enzyme responsible for oxygen consumption by single-cell bacteria, viruses, and fungi. In this case, silver ions bind to the outer and inner proteins of the bacterial cell membranes, blocking cellular respiration and reproduction. Various options to apply microencapsulation methods for the implementation of antibacterial finishing are considered, including: phase separation, suspension crosslinking, simple and complex coacervation, spray drying, crystallization from the melt, evaporation of the solvent, co-extrusion, layering, fluidized bed spraying, deposition, emulsion and interphase polymerization, layer-by-layer electrostatic self-assembly etc. All presented technologies are at various development stages-from the laboratory stage to production tests, they all have certain advantages and disadvantages. The accelerated development and implementation of the described methods in production of textile materials is relevant and is related to the existing complex epidemiological situation in the world.
Collapse
Affiliation(s)
- L S Petrova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - Z A Yaminzoda
- Tajikistan University of Technology, 734061 Dushanbe, Tajikistan
| | - O I Odintsova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - E L Vladimirtseva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - A A Solov'eva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - A S Smirnova
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| |
Collapse
|
36
|
Engineering surgical stitches to prevent bacterial infection. Sci Rep 2022; 12:834. [PMID: 35039588 PMCID: PMC8764053 DOI: 10.1038/s41598-022-04925-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
Surgical site infections (SSIs) account for a massive economic, physiological, and psychological burden on patients and health care providers. Sutures provide a surface to which bacteria can adhere, proliferate, and promote SSIs. Current methods for fighting SSIs involve the use of sutures coated with common antibiotics (triclosan). Unfortunately, these antibiotics have been rendered ineffective due to the increasing rate of antibiotic resistance. A promising new avenue involves the use of metallic nanoparticles (MNPs). MNPs exhibit low cytotoxicity and a strong propensity for killing bacteria while evading the typical antibiotic resistance mechanisms. In this work, we developed a novel MNPs dip-coating method for PDS-II sutures and explored the capabilities of a variety of MNPs in killing bacteria while retaining the cytocompatibility. Our findings indicated that our technique provided a homogeneous coating for PDS-II sutures, maintaining the strength, structural integrity, and degradability. The MNP coatings possess strong in vitro antibacterial properties against P aeruginosa and S. aureus—varying the %of dead bacteria from ~ 40% (for MgO NPs) to ~ 90% (for Fe2O3) compared to ~ 15% for uncoated PDS-II suture, after 7 days. All sutures demonstrated minimal cytotoxicity (cell viability > 70%) reinforcing the movement towards the use MNPs as a viable antibacterial technology.
Collapse
|
37
|
Antimicrobial Resistance Following Prolonged Use of Hand Hygiene Products: A Systematic Review. PHARMACY 2022; 10:pharmacy10010009. [PMID: 35076608 PMCID: PMC8788461 DOI: 10.3390/pharmacy10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
Background: This systematic review aimed to establish whether antimicrobial resistance (AMR) occurs following prolonged use of antimicrobial hand hygiene (HH) products, and, if so, in what magnitude. Methods: Key bibliographic databases were searched to locate items on HH use and AMR development from database inception to December 2020. Records were screened and full texts of all potentially eligible articles were retrieved and checked for inclusion. The following data from the included studies were abstracted: type of HH product used, including the name of antimicrobial agent, study setting, country, study year, duration of use and development of AMR including the organisms involved. Quality assessment was done using the Newcastle-Ottawa Scale (NOS). Results: Of 339 full-text articles assessed for eligibility, only four heterogeneous United States (US) studies conducted in the period between 1986 and 2015 were found eligible, and included. One hospital-based study showed evidence of AMR following long term use of HH products, two studies conducted in household settings showed no evidence of AMR, and another experimental study showed partial evidence of AMR. The overall certainty of the evidence was moderate. Conclusion: Prolonged use of HH products may cause AMR in health care settings, but perhaps not in other settings.
Collapse
|
38
|
Tang N, Fan P, Chen L, Yu X, Wang W, Wang W, Ouyang F. The Effect of Early Life Exposure to Triclosan on Thyroid Follicles and Hormone Levels in Zebrafish. Front Endocrinol (Lausanne) 2022; 13:850231. [PMID: 35721760 PMCID: PMC9203717 DOI: 10.3389/fendo.2022.850231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Triclosan (TCS) is an antimicrobial chemical widely used in personal care products. Most of the TCS component is discharged and enters the aquatic ecosystem after usage. TCS has a similar structure as thyroid hormones that are synthesized by thyroid follicular epithelial cells, thus TCS has a potential endocrine disrupting effect. It is still not clear how the different levels of the environmental TCS would affect early development in vivo. This study examines the effects of TCS on thyroid hormone secretion and the early development of zebrafish. The fertilized zebrafish eggs were exposed to TCS at 0 (control), 3, 30, 100, 300, and 900 ng/mL, and the hatching rate and the larvae mortality were inspected within the first 14 days. The total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3), and free thyroxine (FT4) were measured at 7, 14, and 120 days post-fertilization (dpf). The histopathological examinations of thyroid follicles were conducted at 120 dpf. TCS exposure at 30-300 ng/mL reduced the hatching rate of larvae to 34.5% to 28.2 % in the first 48 hours and 93.8 .7 % to 86.8 % at 72 h. Extremely high TCS exposure (900 ng/mL) strongly inhibited the hatching rate, and all the larvae died within 1 day. Exposure to TCS from 3 to 300 ng/mL reduced the thyroid hormones production. The mean TT3 and FT3 levels of zebrafish decreased in 300 ng/mL TCS at 14 dpf (300 ng/mL TCS vs. control : TT3 , 0.19 ± 0.08 vs. 0.39 ± 0.06; FT3, 19.21 ± 3.13 vs. 28.53 ± 1.98 pg/mg), and the FT4 decreased at 120 dpf ( 0.09 ± 0.04 vs. 0.20 ± 0.14 pg/mg). At 120 dpf , in the 300 ng/mL TCS exposure group, the nuclear area and the height of thyroid follicular epithelial cells became greater, and the follicle cell layer got thicker. This happened along with follicle hyperplasia, nuclear hypertrophy, and angiogenesis in the thyroid. Our study demonstrated that early life exposure to high TCS levels reduces the rate and speed of embryos hatching, and induces the histopathological change of thyroid follicle, and decreases the TT3, FT3, and FT4 production in zebrafish.
Collapse
Affiliation(s)
- Ning Tang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pianpian Fan
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Xiaogang Yu
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Wang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiye Wang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Fengxiu Ouyang, ;
| |
Collapse
|
39
|
Mishra P, Kiran NS, Romanholo Ferreira LF, Mulla SI. Algae bioprocess to deal with cosmetic chemical pollutants in natural ecosystems: A comprehensive review. J Basic Microbiol 2021; 62:1083-1097. [PMID: 34913513 DOI: 10.1002/jobm.202100467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Elevated demand and extensive exploitation of cosmetics in day-to-day life have hiked up its industrial productions worldwide. Organic and inorganic chemicals like parabens, phthalates, sulfates, and so forth are being applied as constituents towards the formulations, which tend to be the mainspring ecological complication due to their enduring nature and accumulation properties in various sections of the ecosystem. These cosmetic chemicals get accrued into the terrestrial and aquatic systems on account of various anthropogenic activities involving agricultural runoff, industrial discharge, and domestic effluents. Recently, the use of microbes for remediating persistent cosmetic chemicals has gained immense interest. Among different forms of the microbial community being applied as an environmental beneficiary, algae play a vital role in both terrestrial and aquatic ecosystems by their biologically beneficial metabolites and molecules, resulting in the biobenign and efficacious consequences. The use of various bacterial, fungal, and higher plant species has been studied intensely for their bioremediation elements. The bioremediating property of the algal cells through biosorption, bioassimilation, biotransformation, and biodegradation has made it favorable for the removal of persistent and toxic pollutants from the environment. However, the research investigation concerned with the bioremediation potential of the algal kingdom is limited. This review summarizes and provides updated and comprehensive insights into the potential remediation capabilities of algal species against ecologically hazardous pollutants concerning cosmetic chemicals.
Collapse
Affiliation(s)
- Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - N S Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Aracaju, Sergipe, Brazil.,Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| |
Collapse
|
40
|
Yoon KS, Kwack SJ. In vitro and in vivo estrogenic activity of triclosan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:800-809. [PMID: 34193021 DOI: 10.1080/15287394.2021.1944940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is an antibacterial and antifungal agent used in many consumer products and exhibits a chemical structure similar to non-steroidal estrogen, which is known to induce endocrine disruption. Triclosan has been found in human plasma, urine, and breast milk, and the safety of TCS-containing products has been disputed. Although studies attempted to determine the estrogenic activity of TCS, no clear results have emerged. The aim of the present study was to examine estrogenic activity of TCS using an in vitro E-screen assay and an in vivo uterotrophic assay. The in vitro E-screen assay demonstrated that TCS significantly enhanced proliferation of MCF-7 breast cancer cells, although not in a concentration-dependent manner. The in vivo uterotrophic results showed no significant change in the weight of uteri obtained from TCS-administered Sprague-Dawley rats. Further, to understand the estrogenic activity attributed to TCS at the molecular level, gene-expression profiling of uterus samples was performed from both TCS- or estrogen-treated rats and the genes and cellular processes affected by TCS or estrogen were compared. Data demonstrated that both the genes and cellular processes affected by TCS or estrogen were significantly similar, indicating the possibility that TCS-mediated estrogenic activity occurred at the global transcriptome level. In conclusion, in vitro and gene-profiling results suggested that TCS exhibited estrogenic activity.
Collapse
Affiliation(s)
- Kyung Sik Yoon
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon Republic of Korea
| |
Collapse
|
41
|
Cobo-Golpe M, García-Martín J, Ramil M, Cela R, Rodríguez I. Assessment of direct analysis in real time accurate mass spectrometry for the determination of triclosan in complex matrices. Anal Bioanal Chem 2021; 413:6355-6364. [PMID: 34378070 PMCID: PMC8487875 DOI: 10.1007/s00216-021-03591-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
In this work, the applicability of direct analysis in real time coupled to accurate mass spectrometry (DART-MS) to the quantitative determination of triclosan (TCS) in samples with increasing complexity, from personal care products to extracts from sewage, is investigated. In the first term, DART-MS spectra of TCS as free phenol and as derivatized species are characterized; thereafter, the effects of several instrumental variables in the detectability of TCS (i.e., temperature, solvent, and compound holder) are discussed. Under final selected conditions, TCS was determined from its [M-H]- ions, without need of derivatization, attaining an instrumental limit of quantification of 5 ng mL-1, with a linear response range up to 1000 ng mL-1. Complex matrices, such as solid-phase extracts obtained from environmental water samples, moderately inhibited the ionization efficiency of TCS, with signal attenuation percentages in the range of 6 to 57%, depending on the sample type and on the concentration factor provided by the SPE procedure. The accuracy of results obtained by DART-MS was evaluated using liquid chromatography (LC) with MS detection; in both cases, a time-of-flight (TOF) MS instrument was employed for the selective determination of the [M-H]- ions of TCS (m/z values 286.9439 and 288.9410) using a mass window of 20 ppm. DART-MS did not only provide enough sensitivity to detect the presence of TCS in environmental samples (raw and treated wastewater as well as freeze-dried sludge), but also measured concentrations matched those determined by LC-ESI-TOF-MS, with only slightly higher standard deviations. During analysis of personal care products, containing much higher concentrations of TCS in a less complex matrix, both techniques were equivalent in terms of accuracy and precision. Graphical abstract.
Collapse
Affiliation(s)
- M Cobo-Golpe
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| | - J García-Martín
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain.
| | - R Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| |
Collapse
|
42
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
43
|
Sun D, Zhao T, Long K, Wu M, Zhang Z. Triclosan down-regulates fatty acid synthase through microRNAs in HepG2 cells. Eur J Pharmacol 2021; 907:174261. [PMID: 34144025 DOI: 10.1016/j.ejphar.2021.174261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Triclosan is a promising candidate of fatty acid synthase (FASN) inhibitor by blocking FASN activity, but its effect on FASN expression and the underling epigenetic mechanism remain elusive. In this study, the effect of triclosan on FASN mRNA and protein expressions in human HepG2 cells and the regulatory role of microRNAs (miRNAs) in the downregulation of FASN induced by triclosan were explored through experiments and bioinformatics analysis. The results showed that triclosan not only directly inhibited FASN activity, but also significantly decreased FASN mRNA and protein levels in human liver HepG2 cells. Nine miRNAs targeting FASN mRNA degradation were identified by miRNA prediction tools, and the expression levels of these nine miRNAs were then detected by real-time quantitative PCR. Triclosan significantly increased the expressions of the six miRNAs, namely miR-15a, miR-107, miR-195, miR-424, miR-497 and miR-503, leading to the downregulation of FASN. Further investigation revealed that the six triclosan-upregulated miRNAs played an important regulatory role in lipid metabolism and cell cycle by gene ontology annotations and pathway analysis. Consistent with the results of bioinformatics analyses, triclosan significantly reduced the intracellular lipid content by triglyceride assay, oil red O, BODIPY 493/503 and Nile Red staining, thereby inhibiting the growth of HepG2 cells through apoptosis. Taken together, our study reveals that triclosan downregulates FASN expression through a variety of miRNAs, providing new insight for triclosan as a FASN inhibitor candidate to regulate lipid metabolism in human hepatoma cells.
Collapse
Affiliation(s)
- Donglei Sun
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Keyan Long
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Mei Wu
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
44
|
Baur R, Gandhi J, Marshall NB, Lukomska E, Weatherly LM, Shane HL, Hu G, Anderson SE. Dermal exposure to the immunomodulatory antimicrobial chemical triclosan alters the skin barrier integrity and microbiome in mice. Toxicol Sci 2021; 184:223-235. [PMID: 34515797 DOI: 10.1093/toxsci/kfab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Triclosan is an antimicrobial chemical used in healthcare settings that can be absorbed through the skin. Exposure to triclosan has been positively associated with food and aeroallergy and asthma exacerbation in humans and, although not directly sensitizing, has been demonstrated to augment the allergic response in a mouse model of asthma. The skin barrier and microbiome are thought to play important roles in regulating inflammation and allergy and disruptions may contribute to development of allergic disease. To investigate potential connections of the skin barrier and microbiome with immune responses to triclosan, SKH1 mice were exposed dermally to triclosan (0.5-2%) or vehicle for up to 7 consecutive days. Exposure to 2% triclosan for 5-7 days on the skin was shown to increase trans-epidermal water loss levels. Seven days of dermal exposure to triclosan decreased filaggrin 2 and keratin 10 expression, but increased filaggrin and keratin 14 protein along with the danger signal S100a8 and interleukin-4. Dermal exposure to triclosan for 7 days also altered the alpha and beta diversity of the skin and gut microbiome. Specifically, dermal triclosan exposure increased the relative abundance of the Firmicutes family, Lachnospiraceae on the skin but decreased the abundance of Firmicutes family, Ruminococcaceae in the gut. Collectively, these results demonstrate that repeated dermal exposure to the antimicrobial chemical triclosan alters the skin barrier integrity and microbiome in mice, suggesting that these changes may contribute to the increase in allergic immune responses following dermal exposure to triclosan.
Collapse
Affiliation(s)
- Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV.,Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV
| | - Jasleen Gandhi
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV
| | - Nikki B Marshall
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Lisa M Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Hillary L Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV.,WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Stacey E Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV
| |
Collapse
|
45
|
Ramires PF, Tavella RA, Escarrone AL, Volcão LM, Honscha LC, de Lima Brum R, da Silva AB, da Silva Júnior FMR. Ecotoxicity of triclosan in soil: an approach using different species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41233-41241. [PMID: 33782822 DOI: 10.1007/s11356-021-13633-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Triclosan is an antimicrobial agent widely used in personal care products and an emerging contaminant with potential to have harmful effects to edaphic organisms. This study aimed to evaluate the impacts of exposure to triclosan on the microbiota, plants, and edaphic animals using isolated bioassays and a microcosm scale representation (multispecies system). Among the isolated bioassays, the phytotoxicity test with Lactuca sativa, avoidance test with Eisenia andrei, and acute toxicity with E. andrei and Armadillidium vulgare were used. The multispecies system used seeds of L. sativa and Sinapis alba, together with earthworms and terrestrial isopods. This system also evaluated microbial activity through alkaline phosphatase and the metabolic profile using Ecoplate™, BIOLOG microplates. Exposure to triclosan impacted seedling growth in the isolated bioassay and germination and root growth in the microcosm scale assay; it also caused mortality in terrestrial isopods, earthworm avoidance and alteration of alkaline phosphatase, and the consumption profile of carbohydrates and carboxylic acids in the microbiota. The ecotoxicological effects evaluated in the multispecies system were perceived even in low concentrations of triclosan, indicating that the interaction of this xenobiotic with the environment and organisms in a more realistic scenario can compromise ecosystem services.
Collapse
Affiliation(s)
- Paula Florêncio Ramires
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Ronan Adler Tavella
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Ana Laura Escarrone
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Lisiane Martins Volcão
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Laiz Coutelle Honscha
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Rodrigo de Lima Brum
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Alícia Bonifácio da Silva
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Flávio Manoel Rodrigues da Silva Júnior
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
46
|
Raj S, Singh SS, Singh SP, Singh P. Evaluation of Triclosan-induced reproductive impairments in the accessory reproductive organs and sperm indices in the mice. Acta Histochem 2021; 123:151744. [PMID: 34166923 DOI: 10.1016/j.acthis.2021.151744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/23/2023]
Abstract
Highly effective antimicrobial properties of triclosan (TCS) make its use as a widely used preservative in different types of consumer products. TCS is reported as an emerging endocrine disruptor causing reproductive impairments in the males as well as in the females. The present study describes the adverse effects of various doses of TCS (40, 80, 160 and 320 mg/kg BW/day, for 42 consecutive days) on the weights and histopathology of the epididymis and seminal vesicle, sperm indices (motility, viability, count and morphology), concentrations of epididymal sialic acid and seminal vesicular fructose, along with TCS accumulated in these accessory reproductive organs of the laboratory mouse. TCS induced significant reductions in the weights of the epididymis and seminal vesicle along with noticeable histopathological alterations in these organs. TCS caused significant reductions in the count, percentage of motile and viable spermatozoa while a significant increase in the percentage of abnormal spermatozoa in the epididymis. Concentrations of epididymal sialic acid and seminal vesicular fructose declined significantly in the treated mice. A significant increase was noticed in the concentration of TCS, accumulated in the epididymis and seminal vesicle following TCS exposure at a high dose (320 mg/kg BW/day). The results thus suggest that the accessory sex organs are also affected deleteriously following TCS exposure, leading to impairment in the male reproductive health.
Collapse
|
47
|
Anders B, Doll S, Spangenberg B. A validated quantification of triclosan in toothpaste using high-performance thin-layer chromatography and a 48-bit flatbed scanner. JPC-J PLANAR CHROMAT 2021. [DOI: 10.1007/s00764-021-00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractWe present a densitometric quantification method for triclosan in toothpaste, separated by high-performance thin-layer chromatography (HPTLC) and using a 48-bit flatbed scanner as the detection system. The sample was band-wise applied to HPTLC plates (10 × 20 cm), with fluorescent dye, Merck, Germany (1.05554). The plates were developed in a vertical developing chamber with 20 min of chamber saturation over 70 mm, using n-heptane–methyl tert-butyl ether–acetic acid (92:8:0.1, V/V) as solvent. The RF value of triclosan is hRF = 22.4, and quantification is based on direct measurements using an inexpensive 48-bit flatbed scanner for color measurements (in red, green, and blue) after plate staining with 2,6-dichloroquinone-4-chloroimide (Gibbs' reagent). Evaluation of the red channel makes the measurements of triclosan very specific. For linearization, an extended Kubelka–Munk expression was used for data transformation. The range of linearity covers more than two orders of magnitude and is between 91 and 1000 ng. The separation method is inexpensive, fast and reliable.
Collapse
|
48
|
Leyn SA, Zlamal JE, Kurnasov OV, Li X, Elane M, Myjak L, Godzik M, de Crecy A, Garcia-Alcalde F, Ebeling M, Osterman AL. Experimental evolution in morbidostat reveals converging genomic trajectories on the path to triclosan resistance. Microb Genom 2021; 7. [PMID: 33945454 PMCID: PMC8209735 DOI: 10.1099/mgen.0.000553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the dynamics and mechanisms of acquired drug resistance across major classes of antibiotics and bacterial pathogens is of critical importance for the optimization of current anti-infective therapies and the development of novel ones. To systematically address this challenge, we developed a workflow combining experimental evolution in a morbidostat continuous culturing device with deep genomic sequencing of population samples collected in time series. This approach was applied to the experimental evolution of six populations of Escherichia coli BW25113 towards acquiring resistance to triclosan (TCS), an antibacterial agent in various consumer products. This study revealed the rapid emergence and expansion (up to 100% in each culture within 4 days) of missense mutations in the fabI gene, encoding enoyl-acyl carrier protein reductase, the known TCS molecular target. A follow-up analysis of isolated clones showed that distinct amino acid substitutions increased the drug IC90 in a 3-16-fold range, reflecting their proximity to the TCS-binding site. In contrast to other antibiotics, efflux-upregulating mutations occurred only rarely and with low abundance. Mutations in several other genes were detected at an earlier stage of evolution. Most notably, three distinct amino acid substitutions were mapped in the C-terminal periplasmic domain of CadC protein, an acid stress-responsive transcriptional regulator. While these mutations do not confer robust TCS resistance, they appear to play a certain, yet unknown, role in adaptation to relatively low drug pressure. Overall, the observed evolutionary trajectories suggest that the FabI enzyme is the sole target of TCS (at least up to the ~50 µm level), and amino acid substitutions in the TCS-binding site represent the main mechanism of robust TCS resistance in E. coli. This model study illustrates the potential utility of the established morbidostat-based approach for uncovering resistance mechanisms and target identification for novel drug candidates with yet unknown mechanisms of action.
Collapse
Affiliation(s)
- Semen A Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jaime E Zlamal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Oleg V Kurnasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Xiaoqing Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Marinela Elane
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lourdes Myjak
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mikolaj Godzik
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Fernando Garcia-Alcalde
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
49
|
Jin L, Park K, Yoon Y, Kim HS, Kim HJ, Choi JW, Lee DY, Chun HJ, Yang DH. Visible Light-Cured Antibacterial Collagen Hydrogel Containing Water-Solubilized Triclosan for Improved Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2270. [PMID: 33925687 PMCID: PMC8125271 DOI: 10.3390/ma14092270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022]
Abstract
Infection is one of several factors that can delay normal wound healing. Antibacterial wound dressings can therefore promote normal wound healing. In this study, we prepared an antibacterial wound dressing, consisting of visible light-cured methacrylated collagen (ColMA) hydrogel and a 2-hydroxypropyl-beta-cyclodextrin (HP-β-CD)/triclosan (TCS) complex (CD-ic-TCS), and evaluated its wound healing effects in vivo. The 1H NMR spectra of ColMA and CD-ic-TCS revealed characteristic peaks at 1.73, 5.55, 5.94, 6.43, 6.64, 6.84, 6.95, 7.31, and 7.55 ppm, indicating successful preparation of the two material types. In addition, ultraviolet-visible (UV-vis) spectroscopy proved an inclusion complex formation between HP-β-CD and TCS, judging by a unique peak observed at 280 cm-1. Furthermore, ColMA/CD-ic-TCS exhibited an interconnected porous structure, controlled release of TCS, good biocompatibility, and antibacterial activity. By in vivo animal testing, we found that ColMA/CD-ic-TCS had a superior wound healing capacity, compared to the other hydrocolloids evaluated, due to synergistic interaction between ColMA and CD-ic-TCS. Together, our findings indicate that ColMA/CD-ic-TCS has a clinical potential as an antibacterial wound dressing.
Collapse
Affiliation(s)
- Longhao Jin
- Department of Orthopedic Surgery, Yanbian University Hospital, Yanji 133000, China;
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Gyeonggi, Korea; (K.P.); (H.J.K.)
| | - Yihyun Yoon
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.Y.); (H.S.K.); (H.J.C.)
| | - Hyeon Soo Kim
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.Y.); (H.S.K.); (H.J.C.)
| | - Hyeon Ji Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Gyeonggi, Korea; (K.P.); (H.J.K.)
| | | | - Deuk Yong Lee
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Gyeonggi, Korea;
| | - Heung Jae Chun
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.Y.); (H.S.K.); (H.J.C.)
- Department of Biomedical & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.Y.); (H.S.K.); (H.J.C.)
| |
Collapse
|
50
|
Osmanov A, Farooq Z, Richardson MD, Denning DW. The antiseptic Miramistin: a review of its comparative in vitro and clinical activity. FEMS Microbiol Rev 2021; 44:399-417. [PMID: 32386213 DOI: 10.1093/femsre/fuaa012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Miramistin is a topical antiseptic with broad antimicrobial action, including activity against biofilms and a clinical profile showing good tolerability. Miramistin was developed within a framework of the Soviet Union Cold War Space Program. It is available for clinical use in several prior Soviet bloc countries, but barely known outside of these countries and there is almost no mention of miramistin in the English literature. However, considering emerging antimicrobial resistance, the significant potential of miramistin justifies its re-evaluation for use in other geographical areas and conditions. The review consists of two parts: (i) a review of the existing literature on miramistin in English, Russian and Ukrainian languages; (ii) a summary of most commonly used antiseptics as comparators of miramistin. The oral LD50 was 1200 mg/kg, 1000 mg/kg and 100 g/L in rats, mice and fish, respectively. Based on the results of the review, we suggest possible applications of miramistin and potential benefits over currently used agents. Miramistin offers a novel, low toxicity antiseptic with many potential clinical uses that need better study which could address some of the negative impact of antimicrobial, antiseptic and disinfectant resistance.
Collapse
Affiliation(s)
- Ali Osmanov
- Next Level Diagnostics, Mikhailovsky lane 20,7, Kiev 01001, Ukraine
| | - Zara Farooq
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Malcolm D Richardson
- Mycology Reference Centre Manchester, University Hospital of South Manchester, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David W Denning
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,National Aspergillosis Centre, University Hospital of South Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Wythenshawe Hospital Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| |
Collapse
|