1
|
Lee M, Kim MJ, Oh J, Piao C, Park YW, Lee DY. Gene delivery to pancreatic islets for effective transplantation in diabetic animal. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Benson BA, Vercellotti GM, Dalmasso AP. IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay. Xenotransplantation 2015; 22:295-301. [PMID: 26031609 PMCID: PMC4519407 DOI: 10.1111/xen.12172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/06/2015] [Indexed: 11/30/2022]
Abstract
Endothelial cell activation and injury by the terminal pathway of complement is important in various pathobiological processes, including xenograft rejection. Protection against injury by human complement can be induced in porcine endothelial cells (ECs) with IL-4 and IL-13 through metabolic activation. However, despite this resistance, the complement-treated ECs were found to lose membrane permeability control assessed with the small molecule calcein. Therefore, to define the apparent discrepancy of permeability changes vis-à-vis the protection from killing, we now investigated whether IL-4 and IL-13 influence the release of the large cytoplasmic protein lactate dehydrogenase (LDH) in ECs incubated with complement or the pore-forming protein melittin. Primary cultures of ECs were pre-treated with IL-4 or IL-13 and then incubated with human serum as source of antibody and complement or melittin. Cell death was assessed using neutral red. Membrane permeability was quantitated measuring LDH release. We found that IL-4-/IL-13-induced protection of ECs from killing by complement or melittin despite loss of LDH in amounts similar to control ECs. However, the cytokine-treated ECs that were protected from killing rapidly regained effective control of membrane permeability. Moreover, the viability of the protected ECs was maintained for at least 2 days. We conclude that the protection induced by IL-4/IL-13 in ECs against lethal attack by complement or melittin is effective and durable despite severe initial impairment of membrane permeability. The metabolic changes responsible for protection allow the cells to repair the membrane injury caused by complement or melittin.
Collapse
Affiliation(s)
- Barbara A. Benson
- Departments of Surgery, Medical School, University of Minnesota, Minneapolis, MN, USA
| | | | - Agustin P. Dalmasso
- Departments of Surgery, Medical School, University of Minnesota, Minneapolis, MN, USA
- Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Immobilization of soluble complement receptor 1 on islets. Biomaterials 2011; 32:4539-45. [DOI: 10.1016/j.biomaterials.2011.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/06/2011] [Indexed: 11/21/2022]
|
4
|
Nafea EH, Marson A, Poole-Warren LA, Martens PJ. Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J Control Release 2011; 154:110-22. [PMID: 21575662 DOI: 10.1016/j.jconrel.2011.04.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/21/2011] [Indexed: 12/31/2022]
Abstract
Cell-based medicine has recently emerged as a promising cure for patients suffering from various diseases and disorders that cannot be cured/treated using technologies currently available. Encapsulation within semi-permeable membranes offers transplanted cell protection from the surrounding host environment to achieve successful therapeutic function following in vivo implantation. Apart from the immunoisolation requirements, the encapsulating material must allow for cell survival and differentiation while maintaining its physico-mechanical properties throughout the required implantation period. Here we review the progress made in the development of cell encapsulation technologies from the mass transport side, highlighting the essential requirements of materials comprising immunoisolating membranes. The review will focus on hydrogels, the most common polymers used in cell encapsulation, and discuss the advantages of these materials and the challenges faced in the modification of their immunoisolating and permeability characteristics in order to optimize their function.
Collapse
Affiliation(s)
- E H Nafea
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052 NSW, Australia
| | | | | | | |
Collapse
|
5
|
Zmuda EJ, Viapiano M, Grey ST, Hadley G, Garcia-Ocaña A, Hai T. Deficiency of Atf3, an adaptive-response gene, protects islets and ameliorates inflammation in a syngeneic mouse transplantation model. Diabetologia 2010; 53:1438-50. [PMID: 20349223 PMCID: PMC2877761 DOI: 10.1007/s00125-010-1696-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 01/04/2010] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Islet transplantation is a potential therapeutic option for type 1 diabetes. However, the need for multiple donors per patient and heavy immunosuppression of the recipients limit its use. The goal of this study was to test whether the gene encoding activating transcription factor 3 (ATF3), a stress-inducible pro-apoptotic gene, plays a role in graft rejection in islet transplantation. METHODS We compared wild-type (WT) and Atf3 knockout (KO) islets in vitro using stress paradigms relevant to islet transplantation: isolation, inflammation and hypoxia. We also compared the WT and KO islets in vivo using a syngeneic mouse transplantation model. RESULTS ATF3 was induced in all three stress paradigms and played a deleterious role in islet survival, as evidenced by the lower viability of WT islets compared with KO islets. ATF3 upregulated various downstream target genes in a stress-dependent manner. These target genes can be classified into two functional groups: (1) apoptosis (Noxa [also known as Pmaip1] and Bnip3), and (2) immunomodulation (Tnfalpha [also known as Tnf], Il-1beta [also known as Il1b], Il-6 [also known as Il6] and Ccl2 [also known as Mcp-1]). In vivo, Atf3 KO islets performed better than WT islets after transplantation, as evidenced by better glucose homeostasis in the recipients and the reduction of the following variables in the KO grafts: caspase 3 activation, macrophage infiltration and expression of the above apoptotic and immunomodulatory genes. CONCLUSIONS/INTERPRETATION ATF3 plays a role in islet graft rejection by contributing to islet cell death and inflammatory responses at the graft sites. Silencing the ATF3 gene may provide therapeutic benefits in islet transplantation.
Collapse
Affiliation(s)
- E. J. Zmuda
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Center for Molecular Neurobiology, Ohio State University, Columbus, OH 43210, USA
| | - M. Viapiano
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Center for Molecular Neurobiology, Ohio State University, Columbus, OH 43210, USA
- Department of Neurological Surgery, Ohio State University, Columbus, OH 43210, USA
| | - S. T. Grey
- Gene Therapy and Autoimmunity Group, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - G. Hadley
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - A. Garcia-Ocaña
- Department of Medicine, Division of Endocrinology and Metabolism, and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - T. Hai
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Center for Molecular Neurobiology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Abstract
Apoptosis of beta cells is a feature of both type 1 and type 2 diabetes as well as loss of islets after transplantation. In type 1 diabetes, beta cells are destroyed by immunological mechanisms. In type 2 diabetes abnormal levels of metabolic factors contribute to beta cell failure and subsequent apoptosis. Loss of beta cells after islet transplantation is due to many factors including the stress associated with islet isolation, primary graft non-function and allogeneic graft rejection. Irrespective of the exact mediators, highly conserved intracellular pathways of apoptosis are triggered. This review will outline the molecular mediators of beta cell apoptosis and the intracellular pathways activated.
Collapse
Affiliation(s)
- Helen E Thomas
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, VIC 3065, Australia.
| | | | | | | | | |
Collapse
|
7
|
Gancz D, Fishelson Z. Cancer resistance to complement-dependent cytotoxicity (CDC): Problem-oriented research and development. Mol Immunol 2009; 46:2794-800. [DOI: 10.1016/j.molimm.2009.05.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/10/2009] [Indexed: 01/04/2023]
|
8
|
Qin J, Jiao Y, Chen X, Zhou S, Liang C, Zhong C. Overexpression of suppressor of cytokine signaling 1 in islet grafts results in anti-apoptotic effects and prolongs graft survival. Life Sci 2009; 84:810-6. [DOI: 10.1016/j.lfs.2009.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 10/21/2022]
|
9
|
Ah Kim H, Lee S, Park JH, Lee S, Lee BW, Hee Ihm S, Kim TI, Wan Kim S, Soo Ko K, Lee M. Enhanced protection of Ins-1 β cells from apoptosis under hypoxia by delivery of DNA encoding secretion signal peptide-linked exendin-4. J Drug Target 2009; 17:242-8. [DOI: 10.1080/10611860902718664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Adenovirus Infection Activates Akt1 and Induces Cell Proliferation in Pancreatic Islets1. Transplantation 2009; 87:821-4. [DOI: 10.1097/tp.0b013e318199c686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Kim HA, Lee BW, Kang D, Kim JH, Ihm SH, Lee M. Delivery of hypoxia-inducible VEGF gene to rat islets using polyethylenimine. J Drug Target 2009; 17:1-9. [DOI: 10.1080/10611860802392982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Ziporen L, Donin N, Shmushkovich T, Gross A, Fishelson Z. Programmed Necrotic Cell Death Induced by Complement Involves a Bid-Dependent Pathway. THE JOURNAL OF IMMUNOLOGY 2008; 182:515-21. [DOI: 10.4049/jimmunol.182.1.515] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Bosio E, Seveso M, Dedja A, Luca G, Calvitti M, Calafiore R, Rigotti P, Busetto R, Ancona E, Cozzi E. Cobalt Protoporpyhrin Reduces Caspase-3,-7 Enzyme Activity in Neonatal Porcine Islets, But Does Not Inhibit Cell Death Induced by TNF-α. Cell Transplant 2008; 17:587-98. [DOI: 10.3727/096368908786092784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Apoptotic phenomena observed in vitro following isolation and following transplantation contribute significantly to islet graft loss. Strategies to reduce apoptosis of islet tissue prior to and posttransplantation may improve graft survival and function and reduce the amount of tissue necessary to achieve insulin independence. The expression of cytoprotective proteins is one such strategy that may prolong islet survival. In this light, heme-oxygenase 1 (HO-1) upregulation has been studied in both allo- and xenotransplantation models. In this study, the effect of HO-1 on apoptosis in neonatal porcine islet-like cell clusters (NPICC) was assessed. In in vitro assessments of NPICC apoptosis, NPICC showed a high sensitivity to apoptotic stimulation using a combination of TNF-α and cycloheximide. Stimulation with TNF-α alone was sufficient to induce reproducible apoptotic responses as demonstrated by caspase-3,-7 activation and subdiploid DNA analysis. Dose-dependent, high-level HO-1 protein expression was achieved following culture of NPICC in medium containing either cobalt protoporphyrin (CoPP) or cobalt mesoporphyrin (CoMP). CoPP treatment resulted in the reduction of caspase-3,-7 enzyme activity following TNF-α stimulation. However, such an effect was not associated with a reduction in the levels of cell death. Indeed, the inhibition of caspase enzyme activity resulted in decreased PARP-1 cleavage, which may lead to heightened levels of necrosis in treated NPICC cultures, possibly explaining the observed commitment of NPICC to the death pathway.
Collapse
Affiliation(s)
- Erika Bosio
- CORIT (Consorzio per la Ricerca sul Trapianto d'Organi), Padua, Italy
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Michela Seveso
- CORIT (Consorzio per la Ricerca sul Trapianto d'Organi), Padua, Italy
| | - Arben Dedja
- CORIT (Consorzio per la Ricerca sul Trapianto d'Organi), Padua, Italy
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Giovanni Luca
- Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Paolo Rigotti
- CORIT (Consorzio per la Ricerca sul Trapianto d'Organi), Padua, Italy
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Roberto Busetto
- Department of Clinical Veterinary Science, University of Padua, Legnaro, Italy
| | - Ermanno Ancona
- CORIT (Consorzio per la Ricerca sul Trapianto d'Organi), Padua, Italy
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
- Direzione Sanitaria, Padua General Hospital, Padua, Italy
- Clinica Chirurgica III, Padua General Hospital, Padua, Italy
| | - Emanuele Cozzi
- CORIT (Consorzio per la Ricerca sul Trapianto d'Organi), Padua, Italy
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
- Direzione Sanitaria, Padua General Hospital, Padua, Italy
- Clinica Chirurgica III, Padua General Hospital, Padua, Italy
| |
Collapse
|
14
|
Lai Y, Drobinskaya I, Kolossov E, Chen C, Linn T. Genetic modification of cells for transplantation. Adv Drug Deliv Rev 2008; 60:146-59. [PMID: 18037530 DOI: 10.1016/j.addr.2007.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/02/2007] [Indexed: 01/16/2023]
Abstract
Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.
Collapse
|
15
|
van der Windt DJ, Bottino R, Casu A, Campanile N, Cooper DKC. Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 2007; 14:288-97. [PMID: 17669170 DOI: 10.1111/j.1399-3089.2007.00419.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Islets isolated from multiple pancreas donors are often necessary to achieve euglycemia in type 1 diabetic patients treated by islet allotransplantation. This increases the burden on the limited pool of donor organs. After infusion into the portal vein, a substantial percentage of islets are lost in the immediate post-transplant period through an inflammatory response termed the instant blood-mediated inflammatory reaction (IBMIR). IBMIR is equally, if not more of a problem after islet xenotransplantation, e.g., using pig islets in non-human primates. Coagulation, platelet aggregation, complement activation, and neutrophil and monocyte infiltration play roles in this reaction. IBMIR is potentially triggered by islet surface molecules, such as tissue factor and collagen residues that are normally not in direct contact with the blood. Also, stress during the islet isolation process results in the expression and production of several inflammatory mediators by the islets themselves. The potential mechanisms involved in this rapid graft loss and treatment options to reduce this loss are reviewed. Preventive strategies for IBMIR can include systemic treatment of the recipient, pre-conditioning of the isolated islets, or, in the case of xenotransplantation, genetic modification of the organ-source pig. Pre-conditioning of islets in culture by exposure to anti-inflammatory agents or by genetic modification harbors fewer risks of systemic complications in the recipient. The future of clinical islet transplantation will, at least in part, depend on the success of efforts made to reduce rapid graft loss, and thus allow islet transplantation to become a more efficient therapy by the use of single donors.
Collapse
Affiliation(s)
- Dirk J van der Windt
- Department of Pediatrics, Division of Immunogenetics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
16
|
Londrigan SL, Brady JL, Sutherland RM, Hawthorne WJ, Thomas HE, Jhala G, Cowan PJ, Kay TWH, O'Connell PJ, Lew AM. Evaluation of promoters for driving efficient transgene expression in neonatal porcine islets. Xenotransplantation 2007; 14:119-25. [PMID: 17381686 DOI: 10.1111/j.1399-3089.2007.00376.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is considerable interest in the viral modification of insulin-producing islets, including porcine islets, in the context of islet xenotransplantation to treat type 1 diabetes. Adenovirus (Adv) gene delivery offers the potential to modify pre-transplant islets for enhanced survival. Modifications include transfer of cytoprotective molecules to ensure islet survival immediately post-transplant, and molecules to dampen the immune system and prevent chronic islet graft rejection. In this study, we compared different promoters (three promiscuous and two tissue-specific promoters) for their efficiency in driving gene expression in neonatal pig islet tissue after Adv delivery. We also compared the efficiency of these promoters in adult islets from mouse and human pancreata. We observed that the promiscuous cytomegalovirus promoter was the most potent, eliciting high luciferase expression in neonatal pig islets, as well as in human and mouse islets. In contrast, the mammalian EF1-alpha promoter educed comparatively intermediate gene expression. The mouse major histocompatibility complex class I promoter H-2K(b) and the pancreatic-specific promoters insulin and human pdx-1 (area II) performed poorly in islets from all three species. This has important implications for the generation of modified neonatal pig islets for transplantation into humans.
Collapse
Affiliation(s)
- Sarah L Londrigan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Téllez N, Montolio M, Estil-les E, Escoriza J, Soler J, Montanya E. Adenoviral overproduction of interleukin-1 receptor antagonist increases beta cell replication and mass in syngeneically transplanted islets, and improves metabolic outcome. Diabetologia 2007; 50:602-11. [PMID: 17221214 DOI: 10.1007/s00125-006-0548-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/18/2006] [Indexed: 01/27/2023]
Abstract
AIMS/HYPOTHESIS Interleukin-1 receptor antagonist (IL1RN, also known as IL1RA) is a naturally occurring inhibitor of IL-1 action and its overproduction protects pancreatic islets from the deleterious effects of IL-1beta on beta cell replication, apoptosis and function. The aim of this study was to determine whether viral gene transfer of the Il1rn gene into rat islets ex vivo had a beneficial effect on the outcome of the graft. MATERIALS AND METHODS Streptozotocin-diabetic Lewis rats were syngeneically transplanted with 500 or 800 Ad-Il1rn-infected or uninfected islets. Islet grafts were collected on day 3, 10 or 28 after transplantation and beta cell apoptosis, replication, size and mass were determined. RESULTS Animals transplanted with 500 islets remained hyperglycaemic throughout the follow-up, as expected. Beta cell replication increased in the Ad-Il1rn group on days 3, 10 and 28 after transplantation compared with normal pancreas. In uninfected islets, by contrast, beta cell replication was increased only on day 10. Beta cell apoptosis was increased in all transplanted groups; it was 25% lower in the Ad-Il1rn than in uninfected groups, but differences were not statistically significant. The initially transplanted beta cell mass was reduced on day 3, increasing subsequently in Ad-Il1rn grafts, but not in uninfected grafts. When 800 islets were transplanted, all animals grafted with Ad-Il1rn-infected islets, but only 40% of those transplanted with uninfected islets, achieved normoglycaemia 14 days after transplantation. CONCLUSIONS/INTERPRETATION Overproduction of IL1RN increased beta cell replication and mass of islet grafts and reduced the beta cell number required to achieve normoglycaemia.
Collapse
Affiliation(s)
- N Téllez
- Laboratory of Diabetes and Experimental Endocrinology, Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Jindra PT, Zhang X, Mulder A, Claas F, Veale J, Jin YP, Reed EF. Anti-HLA Antibodies Can Induce Endothelial Cell Survival or Proliferation Depending on their Concentration. Transplantation 2006; 82:S33-5. [PMID: 16829793 DOI: 10.1097/01.tp.0000231447.34240.3c] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patients exhibiting a humoral immune response to the transplanted organ are at increased risk of antibody-mediated rejection and development of transplant vasculopathy. Historically, antibodies were thought to elicit transplant rejection through complement mediated damage of the endothelium of the graft. More recently, studies from our laboratory and others have shown that antibody ligation of class I molecules on the surface of endothelial cells transduces signals resulting in functional changes including expression of cell survival proteins and cell proliferation. The intracellular events initiated by antibody ligation are dependent upon the degree of molecular aggregation and influenced by the concentration of the antibody and level of human leukocyte antigen (HLA) expression. Herein we describe our recent findings on the effect of molecular aggregation on the class I signaling pathway in human endothelial cells.
Collapse
Affiliation(s)
- Peter T Jindra
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Emamaullee JA, Shapiro AMJ. Interventional strategies to prevent beta-cell apoptosis in islet transplantation. Diabetes 2006; 55:1907-14. [PMID: 16804057 DOI: 10.2337/db05-1254] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A substantial proportion of the transplanted islet mass fails to engraft due to death by apoptosis, and a number of strategies have been explored to inhibit beta-cell loss. Inhibition of extrinsic signals of apoptosis (i.e., cFLIP or A20) have been explored in experimental islet transplantation but have only shown limited impact. Similarly, strategies targeted at intrinsic signal inhibition (i.e., BCL-2) have not yet provided substantial improvement in islet engraftment. Recently, investigation of downstream apoptosis inhibitors that block the final common pathway (i.e., X-linked inhibitor of apoptosis protein [XIAP]) have demonstrated promise in both human and rodent models of engraftment. In addition, XIAP has enhanced long-term murine islet allograft survival. The complexities of both intrinsic and extrinsic apoptotic pathway inhibition are discussed in depth.
Collapse
Affiliation(s)
- Juliet A Emamaullee
- Surgical Medical Research Institute, University of Alberta, Edmonton, AB T6G 2N8.
| | | |
Collapse
|
20
|
Abstract
The most intensively studied autoimmune disorder, type 1 diabetes mellitus (DM1), has attracted perhaps the greatest interest for gene-based therapeutic and prophylactic interventions. The final clinical manifestation of this immunologically and genetically complex disease, the absence of insulin, is the major starting point for almost all the gene therapy modalities attempted to date. Insulin replacement by transplantation of islets of Langerhans or surrogate beta cells is the obvious choice, but the allogeneic nature of the transplants activates potent antidonor immunoreactivity necessitating gene and cell-based immunosuppressive strategies as an alternative to the toxic pharmacologic immunosuppressives indicated for classic solid organ transplants. Accumulating knowledge of the cellular mechanisms involved in onset, however, have yielded promising tolerance induction prophylactic approaches using genes and cells. Despite the early successes in a number of animal models, the true test of efficacy in humans remains to be demonstrated.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Diabetes Institute, Pediatric Research Section, Children's Hospital of Pittsburgh and University of Pittsburgh, Rangos Research Center, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
21
|
Xin ZL, Ge SL, Wu XK, Jia YJ, Hu HT. Intracerebral xenotransplantation of semipermeable membrane- encapsuled pancreatic islets. World J Gastroenterol 2005; 11:5714-7. [PMID: 16237772 PMCID: PMC4481495 DOI: 10.3748/wjg.v11.i36.5714] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the decreasing effect of xenotransplantion in combination with privileged sites on rejection and death of biological semipermeable membrane-(BSM) encapsulated implanted islets.
METHODS: After the BSM experiment in vitro, BSM-encapsulated SD rat’s islet-like cell clusters (ICCs) were xenotransplanted into normal dog’s brain. Morphological changes were observed under light and transmission electron microscope. The islets and apoptosis of implanted B cells were identified by insulin-TUNEL double staining.
RESULTS: The BSM used in our study had a favorable permeability, some degree of rigidity, lighter foreign body reaction and toxicity. The grafts consisted of epithelioid cells and loose connective tissue. Severe infiltration of inflammatory cells was not observed. The implanted ICCs were identified 2 mo later and showed typical apoptosis.
CONCLUSION: BSM xenotransplantation in combination with the privileged site can inhibit the rejection of implanted heterogeneous ICCs, and death of implanted heterogeneous B cells is associated with apoptosis.
Collapse
Affiliation(s)
- Zhao-Liang Xin
- Neurosurgery Department of Yiwu Central Hospital, 3rd Faculty of Medical College, Zhejiang University, Zhejiang Province, China.
| | | | | | | | | |
Collapse
|
22
|
Contreras JL, Smyth CA, Curiel DT, Eckhoff DE. Nonhuman primate models in type 1 diabetes research. ILAR J 2005; 45:334-42. [PMID: 15229380 DOI: 10.1093/ilar.45.3.334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recent success of "steroid-free" immunosuppressive protocols and improvements in islet preparation techniques have proven that pancreatic islet transplantation (PIT) is a valid therapeutic approach for patients with type 1 diabetes. However, there are major obstacles to overcome before PIT can become a routine therapeutic procedure, such as the need for chronic immunosuppression, the loss of functional islet mass after transplantation requiring multiple islet infusion to achieve euglycemia without exogenous administration of insulin, and the shortage of human tissue for transplantation. With reference to the first obstacle, stable islet allograft function without immunosuppressive therapy has been achieved after tolerance was induced in diabetic primates. With reference to the second obstacle, different strategies, including gene transfer of antiapoptotic genes, have been used to protect isolated islets before and after transplantation. With reference to the third obstacle, pigs are an attractive islet source because they breed rapidly, there is a long history of porcine insulin use in humans, and there is the potential for genetic engineering. To accomplish islet transplantation, experimental opportunities must be balanced by complementary characteristics of basic mouse and rat models and preclinical large animal models. Well-designed preclinical studies in primates can provide the quality of information required to translate islet transplant research safely into clinical transplantation.
Collapse
Affiliation(s)
- Juan L Contreras
- Department of Surgery, Division of Transplantation, University of Alabama, Birmingham, AL, USA
| | | | | | | |
Collapse
|
23
|
Abstract
During the last decade significant advances in gene therapy have made it possible to treat various pancreatic disorders in both animal models and in humans. For example, insulin gene delivery to non-beta-cell tissues has been shown to reverse hyperglycemia in diabetic mice, and islet transplantation, based on in vitro differentiation of beta cells and concomitant gene targeting to prevent host autoimmune responses, has become more feasible. Additionally, introduction of the glucokinase regulatory protein and protein kinase C-zeta have been shown to improve glucose tolerance in non-insulin-dependent diabetes mellitus animal models. Pancreatic cancer studies utilize several DNA-based strategies for tumor treatment including introduction of tumor suppressor genes, suppression of oncogenes, suicide gene/prodrug therapy, and restricted replication-competent virus therapy. Tumor-specific targeting is an important part of suicide gene therapy, and tumor-specific promoters are used for cell-specific targeting. Tumor-specific suicide gene therapy directed by the rat insulin promoter has been used to eliminate insulinoma tumors in a mouse model. This review compiles a compendium of information related to the treatment of pancreatic disorders using gene therapy.
Collapse
Affiliation(s)
- Kiichi Tamada
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
24
|
Bloch K, Vardi P. Toxin-based selection of insulin-producing cells with improved defense properties for islet cell transplantation. Diabetes Metab Res Rev 2005; 21:253-61. [PMID: 15747390 DOI: 10.1002/dmrr.545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin-producing pancreatic beta-cells are known to be extremely susceptible to destruction, primarily by autoimmune mechanisms, infectious agents, and by chemical toxins that cause overt type I diabetes. As development of highly protected insulin-producing cells would be important for successful cell therapy of diabetic patients, gene transfection technique was utilized by several investigators in order to improve the defense properties of transplanted cells. In this article, we summarize other approaches based on a selection strategy that has been developed in our laboratory and by other research groups that engineer pancreatic beta-cells to provide protection against diabetogenic toxins (streptozotocin and alloxan), oxidative stress and cytokines. Selection strategies based on acute repeated or long-term continuous treatment of cell lines with cytotoxic agents have resulted in the selection of highly resistant cell subpopulations. We discuss possible involvement of different expression of cytoprotective genes in the selection of cell subpopulations, which demonstrate a broad spectrum of resistance. Importantly, toxin-based selection did not impair functional activity of the cells as it was shown in vitro. In addition, selected cells preserved their improved metabolic characteristics following encapsulation in alginate and subsequent implantation in diabetic animals. Identifying the mechanisms through which cell defense properties act will help clarify the process responsible for beta-cell regeneration in type I diabetes patients. Such knowledge might be useful in developing strategies focusing on the regeneration of beta-cell resistant populations.
Collapse
Affiliation(s)
- Konstantin Bloch
- Diabetes and Obesity Research Laboratory, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Petah Tikva, Israel.
| | | |
Collapse
|
25
|
Xie D, Smyth CA, Eckstein C, Bilbao G, Mays J, Eckhoff DE, Contreras JL. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation. Biomaterials 2005; 26:403-12. [PMID: 15275814 DOI: 10.1016/j.biomaterials.2004.02.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Functional poly(ethylene glycol) (PEG) derivatives, including monosuccinimidyl PEG (MSPEG) with molecular weight (MW) of 2000 (2 kDa) as well as 5 kDa and disuccinimidyl PEG (DSPEG) with MW of 3 and 6 kDa, were synthesized and characterized. They were used to modify the surface of adult porcine islets for cytoprotection. The islets were isolated, purified and modified with functional PEG. Untreated porcine islets were used as control. An in vitro human antibody/complement-mediated cytotoxicity test based on the release of intracellular lactate dehydrogenase was used to evaluate cytotoxicity of human serum to the modified islets. In vitro cell viability was assessed using membrane-integrity straining and islet metabolism in culture. In vitro islet functionality was evaluated by glucose-stimulated insulin release of islets in static incubation with human serum. In vivo islet functionality was evaluated by monitoring non-fasting blood glucose level in streptozotocin-induced diabetic (SCID) immunocompromized mice after intraportal transplantation of porcine islets. Results show that all the PEG derivatives used in the study showed significant in vitro and in vivo cytoprotections against cytotoxic effects elicited by human serum and diabetic SCID mice, respectively, to porcine islets. DSPEG derivatives combined with human albumin exhibited a better cytoprotection, as compared to MSPEG ones, due to the capacity of the succinimidyl groups to selectively react with amino groups of the albumin under physiological conditions. The effects of both MW and concentration of the PEG derivatives on cytoprotection were significant. It appears that this novel biotechnology will be an attractive approach for improved xenotransplantation of islets.
Collapse
Affiliation(s)
- Dong Xie
- Department of Biomedical Engineering, University of Alabama at Birmingham, 370 Hoehn Building, 1075 13th Street South, Birmingham, AL 35294-4440, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Jin YP, Fishbein MC, Said JW, Jindra PT, Rajalingam R, Rozengurt E, Reed EF. Anti-HLA class I antibody-mediated activation of the PI3K/Akt signaling pathway and induction of Bcl-2 and Bcl-xL expression in endothelial cells. Hum Immunol 2004; 65:291-302. [PMID: 15120184 DOI: 10.1016/j.humimm.2004.01.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 01/09/2004] [Accepted: 01/09/2004] [Indexed: 11/27/2022]
Abstract
Anti-human leukocyte antigen (HLA) antibodies (Ab) have long been implicated in the process of acute and chronic allograft rejection, yet their mechanism(s) of action is not well understood. The aim of this study was to determine whether ligation of HLA class I molecules by anti-HLA Ab on the surface of human endothelial cells (EC) activates the PI3 Kinase (PI3K)/Akt signaling pathway and downstream target proteins of the cell death apparatus. We report that Ab ligation of major histocompatibility complex (MHC) class I molecules on the surface of EC triggers phosphorylation of Akt, PI3K, and recruitment of PI3K and Akt into a signaling unit with focal adhesion kinase. Signaling through class I also stimulated phosphorylation of Bad and upregulated expression of Bcl-2 and Bcl-xL. Pretreatment of EC with the PI3K inhibitor wortmannin blocked class I-mediated expression of Bcl-2, but not Bcl-xL, suggesting a role for the PI3K/Akt signaling pathway in regulation of class I-induced Bcl-2 expression. The intracellular events initiated by class I ligation were influenced by the concentration of the anti-HLA Ab with the lowest tested concentrations of Ab stimulating the highest level of Akt phosphorylation, Bcl-xL and Bcl-2 expression. Consistent with the in vitro experiments, analysis of biopsy samples from heart transplant recipients with evidence of Ab-mediated rejection exhibited increased Bcl-2 expression on the vascular endothelium. These results suggest that exposure of the graft endothelium to low concentrations of anti-HLA Ab may promote cell survival by transducing signals resulting in upregulation of cell survival genes.
Collapse
Affiliation(s)
- Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Contreras JL, Xie D, Mays J, Smyth CA, Eckstein C, Rahemtulla FG, Young CJ, Anthony Thompson J, Bilbao G, Curiel DT, Eckhoff DE. A novel approach to xenotransplantation combining surface engineering and genetic modification of isolated adult porcine islets. Surgery 2004; 136:537-47. [PMID: 15349100 DOI: 10.1016/j.surg.2004.05.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Effective cytoprotection to xenoislets would circumvent the major tissue limitation for pancreatic islet transplantation (PIT). Cell-surface engineering with poly[ethylene glycol] (PEG) derivatives can successfully prevent antibody binding to the surface antigens. Gene transfer of the antiapoptotic Bcl-2 gene has been shown to decrease cytotoxicity mediated by xenoreactive natural antibodies and complement. In this study, we assessed survival and function of surface-engineered porcine islets genetically modified to overexpress Bcl-2. METHODS Incorporation of PEG derivatives into the islet surface and adenovirus-mediated gene transfer of Bcl-2 (AdBcl-2) was accomplished within 24 hours post-isolation. Cytotoxicity induced by human xenoreactive natural antibodies was evaluated by islet intracellular lactate dehydrogenase release and microscopic analysis using membrane-integrity staining. Islet functionality was assessed by static incubation and after intraportal infusion (5000 IEQ) into diabetic NOD-SCID mice reconstituted with human lymphocytes (5 x 10 8 /intraperitoneally/15 days before PIT). RESULTS No significant change in islet viability, morphology, and functionality was demonstrated after the incorporation of PEG-mono-succimidyl-succinate (MSPEG), or PEG-di-succimidyl-succinate "end"-capped with albumin (DSPEG) with or without gene transfer of Bcl-2. Islets treated with MSPEG presented a significant reduction in lactate dehydrogenase release compared with controls (41.2 +/- 3 vs 72.1 +/- 7, respectively, P <.05). Further protection was accomplished by DSPEG or AdBcl-2. The maximal cytoprotection was achieved by DSPEG +AdBcl-2 (15.5 +/- 4.9%, P <.001). Nonfasting glucose >200 mg/dL was found in 100% of the animals given control islets (n = 6) within 48 hours post-transplant. In contrast, euglycemia was achieved in 100% of the animals given islets modified with DSPEG + AdBcl-2 during the observation time. CONCLUSIONS Surface-engineering with functionalized PEG derivatives in combination with genetic modification with Bcl-2 significantly reduced islet loss after PIT. Application of this novel technology may improve results in xenoislet transplantation.
Collapse
Affiliation(s)
- Juan L Contreras
- Department of Surgery, Division of Human Gene Therapy and Gene Therapy Center, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hui H, Dotta F, Di Mario U, Perfetti R. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol 2004; 200:177-200. [PMID: 15174089 DOI: 10.1002/jcp.20021] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The homeostatic control of beta-cell mass in normal and pathological conditions is based on the balance of proliferation, differentiation, and death of the insulin-secreting cells. A considerable body of evidence, accumulated during the last decade, has emphasized the significance of the disregulation of the mechanisms regulating the apoptosis of beta-cells in the sequence of events that lead to the development of diabetes. The identification of agents capable of interfering with this process needs to be based on a better understanding of the beta-cell specific pathways that are activated during apoptosis. The aim of this article is fivefold: (1) a review of the evidence for beta-cell apoptosis in Type I diabetes, Type II diabetes, and islet transplantation, (2) to review the common stimuli and their mechanisms in pancreatic beta-cell apoptosis, (3) to review the role of caspases and their activation pathway in beta-cell apoptosis, (4) to review the caspase cascade and morphological cellular changes in apoptotic beta-cells, and (5) to highlight the putative strategies for preventing pancreatic beta-cells from apoptosis.
Collapse
Affiliation(s)
- Hongxiang Hui
- Division of Diabetes, Endocrinology and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | |
Collapse
|
29
|
Ruggles JA, Kelemen D, Baron A. Emerging therapies: controlling glucose homeostasis, immunotherapy, islet transplantation, gene therapy, and islet cell neogenesis and regeneration. Endocrinol Metab Clin North Am 2004; 33:239-52, xii. [PMID: 15053905 DOI: 10.1016/s0889-8529(03)00098-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- James A Ruggles
- Amylin Pharmaceuticals, 9373 Towne Centre Drive, San Diego, CA 92121, USA
| | | | | |
Collapse
|
30
|
Complement-independent mechanisms of antigraft antibodies in transplant arteriosclerosis and accommodation. Curr Opin Organ Transplant 2004. [DOI: 10.1097/00075200-200403000-00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Giannoukakis N, Trucco M. Current status and prospects for gene and cell therapeutics for type 1 diabetes mellitus. Rev Endocr Metab Disord 2003; 4:369-80. [PMID: 14618022 DOI: 10.1023/a:1027306213563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology and Diabetes Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
32
|
Matsuda T, Suzuki Y, Tanioka Y, Toyama H, Kakinoki K, Hiraoka K, Fujino Y, Kuroda Y. Pancreas preservation by the 2-layer cold storage method before islet isolation protects isolated islets against apoptosis through the mitochondrial pathway. Surgery 2003; 134:437-445. [PMID: 14555931 DOI: 10.1067/s0039-6060(03)00165-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Apoptosis in isolated islets has been implicated in primary nonfunction or early graft failure after islet transplantation. Recently, pancreas preservation by the 2-layer method (TLM) before islet isolation has been proved to improve the islet yield, quality, and transplant results not only in experimental models, but also in clinical settings. We examined the influence of TLM on apoptosis of isolated islets. METHOD Rat islets freshly isolated and after pancreas preservation by TLM or conventional cold storage in University of Wisconsin solution (UW) were examined and compared. Islet apoptosis was assessed by TUNEL and annexin V assays. The apoptosis pathways involved were investigated by measurement of caspase 3, 8, and 9 activities and by immunoblotting for total and phosphorylated c-Jun NH2-terminal kinase (JNK) and p38. RESULTS Islet apoptosis in the UW group was significantly increased compared with the fresh and TLM groups. Both caspase 3 and 9 activities in the UW group were higher than in the fresh and TLM groups with an approximate increase of 2- to 3-fold. On the other hand, there was no significant difference in caspase 8 activity among these 3 groups. JNKs were strongly activated both in the TLM and UW groups; although they were not activated in the fresh group, p38 was activated to almost the same levels in these 3 groups. CONCLUSIONS Pancreas preservation by TLM before islet isolation protects isolated islets against apoptosis mainly through the mitochondrial pathway. Pancreas storage before islet isolation even with TLM triggers activation of JNKs in isolated islets.
Collapse
Affiliation(s)
- Takeru Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Markmann JF, Deng S, Huang X, Desai NM, Velidedeoglu EH, Lui C, Frank A, Markmann E, Palanjian M, Brayman K, Wolf B, Bell E, Vitamaniuk M, Doliba N, Matschinsky F, Barker CF, Naji A. Insulin independence following isolated islet transplantation and single islet infusions. Ann Surg 2003; 237:741-9; discussion 749-50. [PMID: 12796569 PMCID: PMC1514687 DOI: 10.1097/01.sla.0000072110.93780.52] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To restore islet function in patients whose labile diabetes subjected them to frequent dangerous episodes of hypoglycemic unawareness, and to determine whether multiple transplants are always required to achieve insulin independence. SUMMARY BACKGROUND DATA The recent report by the Edmonton group documenting restoration of insulin independence by islet transplantation in seven consecutive patients with type 1 diabetes differed from previous worldwide experience of only sporadic success. In the Edmonton patients, the transplanted islet mass critical for success was approximately more than 9,000 IEq/kg of recipient body weight and required two or three separate transplants of islets isolated from two to four cadaveric donors. Whether the success of the Edmonton group can be recapitulated by others, and whether repeated transplants using multiple donors will be a universal requirement for success have not been reported. METHODS The authors report their treatment with islet transplantation of nine patients whose labile type 1 diabetes was characterized by frequent episodes of dangerous hypoglycemia. RESULTS In each of the seven patients who have completed the treatment protocol (i.e., one or if necessary a second islet transplant), insulin independence has been achieved. In five of the seven patients only a single infusion of islets was required. To date, only one recipient has subsequently lost graft function, after an initially successful transplant. This patient suffered recurrent hyperglycemia 9 months after the transplant. CONCLUSIONS This report confirms the efficacy of the Edmonton immunosuppressive regimen and indicates that insulin independence can often be achieved by a single transplant of sufficient islet mass.
Collapse
Affiliation(s)
- James F Markmann
- Department of Surgery, University of Pennsylvania Health System, Hospital of the University of Pennsylvania, 4th Floor Silverstein, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Markmann JF, Deng S, Huang X, Desai NM, Velidedeoglu EH, Lui C, Frank A, Markmann E, Palanjian M, Brayman K, Wolf B, Bell E, Vitamaniuk M, Doliba N, Matschinsky F, Barker CF, Naji A. Insulin independence following isolated islet transplantation and single islet infusions. Ann Surg 2003; 237:741-750. [PMID: 12796569 DOI: 10.1097/00000658-200306000-00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To restore islet function in patients whose labile diabetes subjected them to frequent dangerous episodes of hypoglycemic unawareness, and to determine whether multiple transplants are always required to achieve insulin independence. SUMMARY BACKGROUND DATA The recent report by the Edmonton group documenting restoration of insulin independence by islet transplantation in seven consecutive patients with type 1 diabetes differed from previous worldwide experience of only sporadic success. In the Edmonton patients, the transplanted islet mass critical for success was approximately more than 9,000 IEq/kg of recipient body weight and required two or three separate transplants of islets isolated from two to four cadaveric donors. Whether the success of the Edmonton group can be recapitulated by others, and whether repeated transplants using multiple donors will be a universal requirement for success have not been reported. METHODS The authors report their treatment with islet transplantation of nine patients whose labile type 1 diabetes was characterized by frequent episodes of dangerous hypoglycemia. RESULTS In each of the seven patients who have completed the treatment protocol (i.e., one or if necessary a second islet transplant), insulin independence has been achieved. In five of the seven patients only a single infusion of islets was required. To date, only one recipient has subsequently lost graft function, after an initially successful transplant. This patient suffered recurrent hyperglycemia 9 months after the transplant. CONCLUSIONS This report confirms the efficacy of the Edmonton immunosuppressive regimen and indicates that insulin independence can often be achieved by a single transplant of sufficient islet mass.
Collapse
Affiliation(s)
- James F Markmann
- Department of Surgery, University of Pennsylvania Health System, Hospital of the University of Pennsylvania, 4th Floor Silverstein, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bottino R, Lemarchand P, Trucco M, Giannoukakis N. Gene- and cell-based therapeutics for type I diabetes mellitus. Gene Ther 2003; 10:875-89. [PMID: 12732873 DOI: 10.1038/sj.gt.3302015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes mellitus, an autoimmune disorder is an attractive candidate for gene and cell-based therapy. From the use of gene-engineered immune cells to induce hyporesponsiveness to autoantigens to islet and beta cell surrogate transplants expressing immunoregulatory genes to provide a local pocket of immune privilege, these strategies have demonstrated proof of concept to the point where translational studies can be initiated. Nonetheless, along with the proof of concept, a number of important issues have been raised by the choice of vector and expression system as well as the point of intervention; prophylactic or therapeutic. An assessment of the current state of the science and potential leads to the conclusion that some strategies are ready for safety trials while others require varying degrees of technical and conceptual refinement.
Collapse
Affiliation(s)
- R Bottino
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
36
|
Thomas FT, Hutchings A, Contreras J, Wu J, Jiang XL, Eckhoff D, Thomas JM. Islet transplantation in the twenty-first century. Immunol Res 2003; 26:289-96. [PMID: 12403366 DOI: 10.1385/ir:26:1-3:289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Isolated islet transplantation is poised for clinical application to treat insulin-dependent diabetes. Unlike exogenous insulin therapy, islet transplantation has promise for preventing and/or reversing the dismal secondary complications of diabetes. Islet transplants are arguably the most unique type of allografts, and we discuss their properties, limitations, and potential in this overview. The induction of immunologic tolerance to allow islet grafts to endure and prevail, without the hardship of chronic immunosuppressive therapy, is a major goal in this field. In this context, we discuss our successful results in preclinical models of primate allogeneic and xenogeneic islet graft tolerance.
Collapse
Affiliation(s)
- Frank T Thomas
- Department of Surgery, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
One major complication facing organ transplant recipients is the requirement for life-long systemic immunosuppression to prevent rejection, which is associated with an increased incidence of malignancy and susceptibility to opportunistic infections. Gene therapy has the potential to eliminate problems associated with immunosuppression by allowing the production of immunomodulatory proteins in the donor grafts resulting in local rather than systemic immunosuppression. Alternatively, gene therapy approaches could eliminate the requirement for general immunosuppression by allowing the induction of donor-specific tolerance. Gene therapy interventions may also be able to prevent graft damage owing to nonimmune-mediated graft loss or injury and prevent chronic rejection. This review will focus on recent progress in preventing transplant rejection by gene therapy.
Collapse
Affiliation(s)
- J Bagley
- Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
38
|
Bottino R, Balamurugan AN, Giannoukakis N, Trucco M. Islet/pancreas transplantation: challenges for pediatrics. Pediatr Diabetes 2002; 3:210-23. [PMID: 15016150 DOI: 10.1034/j.1399-5448.2002.30408.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beta cell replacement is a valid alternative to exogenous insulin injections to treat type 1 diabetic patients. The rate of success obtained after whole-pancreas transplantation, performed alone or in combination with kidney, and, as shown recently, by islet transplantation, justifies optimism and sets the stage for a larger clinical application of these approaches. Lifetime immunosuppression, however, required to protect the graft against recurrent autoimmune destruction and allorejection, raises serious doubts about the safety of its employment in children. While it is evident that children may be helped even more than adults by the possibility to correct diabetic metabolic disorders without exogenous insulin, and to lower in a more effective way the chance to develop secondary complications, the drawbacks of the currently used immunosuppressive drugs largely overcome the potential benefits. A great step forward for immediate applicability of transplantation to children involves the optimization of tolerogenic protocols and a better understanding of the concept of immune ignorance. Functional tolerance should be sufficient to entail the absence of immune reactivity against self- and graft antigens, while maintaining immune reactivity against other non-self, non-donor antigens. In addition, novel strategies aimed at utilizing surrogate beta cells obtained from non-islet cells, or by genetic manipulation of beta-cell precursors merit consideration as the use of xenogeneic donors. However, much work is still needed for their safe clinical implementation.
Collapse
Affiliation(s)
- Rita Bottino
- Diabetes Institute, Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
39
|
Adenoviral-Induced Islet Cell Cytotoxicity Is Not Counteracted by Bcl-2 Overexpression. Mol Med 2002. [DOI: 10.1007/bf03402037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Li B, Desai SA, MacCorkle-Chosnek RA, Fan L, Spencer DM. A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis. Gene Ther 2002; 9:233-44. [PMID: 11896462 DOI: 10.1038/sj.gt.3301641] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Accepted: 11/29/2001] [Indexed: 11/09/2022]
Abstract
The anti-apoptotic Akt kinase is commonly activated by survival factors following plasma membrane relocalization attributable to the interaction of its pleckstrin homology (PH) domain with phosphatidylinositol 3-kinase (PI3K)-generated PI3,4-P(2) and PI3,4,5-P(3). Once activated, Akt can prevent or delay apoptosis by phosphorylation-dependent inhibition or activation of multiple signaling molecules involved in apoptosis, such as BAD, caspase-9, GSK3, and NF-kappaB and forkhead family transcription factors. Here, we describe and characterize a novel, conditional Akt controlled by chemically induced dimerization (CID). In this approach, the Akt PH domain has been replaced with the rapamycin (and FK506)-binding domain, FKBP12, to make F3-DeltaPH.Akt. To effect membrane recruitment, a myristoylated rapamycin-binding domain from FRAP/mTOR, called M-FRB, binds to lipid permeable rapamycin (and non-bioactive synthetic 'rapalogs'), leading to reversible heterodimerization of M-FRB with FKBP-DeltaPH.Akt. Like endogenous c-Akt, we show that the kinase activity of membrane-localized F3-DeltaPH.Akt correlates strongly with phosphorylation at T308 and S473; however, unlike c-Akt, phosphorylation and activation of inducible Akt (iAkt) is largely PI3K independent. CID-mediated activation of iAkt results in phosphorylation of GSK3, and contributes to NF-kappaB activation in vivo in a dose-sensitive manner. Finally, in Jurkat T cells stably expressing iAkt, CID-induced Akt activation rescued cells from apoptosis triggered by multiple apoptotic stimuli, including staurosporine, anti-Fas antibodies, PI3K inhibitors and the DNA damaging agent, etoposide. This novel inducible Akt should be useful for identifying new Akt substrates and for reversibly protecting tissue from apoptosis due to ischemic injury or immunological attack.
Collapse
Affiliation(s)
- B Li
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|