1
|
Ai G, Zhou Y, Zhang H, Wei Q, Luo B, Xie Y, Wang C, Xue X, Li A. Ultrasensitive molecular imprinted electrochemical sensor for in vivo determination of glycine betaine in plants. Food Chem 2024; 435:137554. [PMID: 37774618 DOI: 10.1016/j.foodchem.2023.137554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Glycine betaine (GB) is a bioactive molecule protecting plants from abiotic stress. This study fabricated an ultrasensitive molecular imprinted polymer (MIP) electrochemical sensor to perform in vivo measurements of GB. Polydopamine (PDA) was formed on the carboxylated multi-walled carbon nanotubes (COOH-MWCNTs) by spontaneous polymerisation of dopamine (DA). Then MIP-coated MWCNTs were fabricated on a Au nanoparticles (NP) and thionine (Thi) modified screen-printed electrode (SPE). The MIP-COOH-MWCNTs/pThi/AuNPs/SPE exhibited an ultrasensitive GB detection response between 1 fmol/L and 10 mmol/L (R2 = 0.996) with a low detection limit (0.707 fmol/L, S/N = 3). In vivo measurement of GB in cucumber seedling leaves under different salinity stress conditions confirmed the practical applicability of the MIP sensor. Thus, this study proposed a novel and promising fabrication method for an electrochemical MIP sensor that has broad application prospects in precision agriculture.
Collapse
Affiliation(s)
- Geng Ai
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Zhou
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Heng Zhang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qian Wei
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bin Luo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yingge Xie
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cheng Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuzhang Xue
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Aixue Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Li L, Du L, Cao Q, Yang Z, Liu Y, Yang H, Duan X, Meng Z. Salt Tolerance Evaluation of Cucumber Germplasm under Sodium Chloride Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2927. [PMID: 37631139 PMCID: PMC10459999 DOI: 10.3390/plants12162927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop worldwide. Sodium (Na+) and chloride (Cl-) in the surface soil are the major limiting factors in coastal areas of Shandong Province in China. Therefore, to understand the mechanism used by cucumber to adapt to sodium chloride (NaCl), we analyzed the phenotypic and physiological indicators of eighteen cucumber germplasms after three days under 100 and 150 mM NaCl treatment. A cluster analysis revealed that eighteen germplasms could be divided into five groups based on their physiological indicators. The first three groups consisted of seven salt-tolerant and medium salt-tolerant germplasms, including HLT1128h, Zhenni, and MC2065. The two remaining groups consisted of five medium salt-sensitive germplasms, including DM26h and M1-2-h-10, and six salt-sensitive germplasms including M1XT and 228. A principal component analysis revealed that the trend of comprehensive scores was consistent with the segmental cluster analysis and survival rates of cucumber seedlings. Overall, the phenotype, comprehensive survival rate, cluster analysis, and principal component analysis revealed that the salt-tolerant and salt-sensitive germplasms were Zhenni, F11-15, MC2065, M1XT, M1-2-h-10, and DM26h. The results of this study will provide references to identify or screen salt-tolerant cucumber germplasms and lay a foundation for breeding salt-tolerant cucumber varieties.
Collapse
Affiliation(s)
- Libin Li
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Lianda Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qiwei Cao
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Zonghui Yang
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Yihan Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hua Yang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Duan
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Zhaojuan Meng
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| |
Collapse
|
3
|
Ost C, Cao HX, Nguyen TL, Himmelbach A, Mascher M, Stein N, Humbeck K. Drought-Stress-Related Reprogramming of Gene Expression in Barley Involves Differential Histone Modifications at ABA-Related Genes. Int J Mol Sci 2023; 24:12065. [PMID: 37569441 PMCID: PMC10418636 DOI: 10.3390/ijms241512065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Plants respond to drought by the major reprogramming of gene expression, enabling the plant to survive this threatening environmental condition. The phytohormone abscisic acid (ABA) serves as a crucial upstream signal, inducing this multifaceted process. This report investigated the drought response in barley plants (Hordeum vulgare, cv. Morex) at both the epigenome and transcriptome levels. After a ten-day drought period, during which the soil water content was reduced by about 35%, the relative chlorophyll content, as well as the photosystem II efficiency of the barley leaves, decreased by about 10%. Furthermore, drought-related genes such as HvS40 and HvA1 were already induced compared to the well-watered controls. Global ChIP-Seq analysis was performed to identify genes in which histones H3 were modified with euchromatic K4 trimethylation or K9 acetylation during drought. By applying stringent exclusion criteria, 129 genes loaded with H3K4me3 and 2008 genes loaded with H3K9ac in response to drought were identified, indicating that H3K9 acetylation reacts to drought more sensitively than H3K4 trimethylation. A comparison with differentially expressed genes enabled the identification of specific genes loaded with the euchromatic marks and induced in response to drought treatment. The results revealed that a major proportion of these genes are involved in ABA signaling and related pathways. Intriguingly, two members of the protein phosphatase 2C family (PP2Cs), which play a crucial role in the central regulatory machinery of ABA signaling, were also identified through this approach.
Collapse
Affiliation(s)
- Charlotte Ost
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Thuy Linh Nguyen
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
- Center of Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Klaus Humbeck
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| |
Collapse
|
4
|
Yang J, Song J, Jeong BR. Blue Light Supplemented at Intervals in Long-Day Conditions Intervenes in Photoperiodic Flowering, Photosynthesis, and Antioxidant Properties in Chrysanthemums. Antioxidants (Basel) 2022; 11:2310. [PMID: 36552519 PMCID: PMC9774458 DOI: 10.3390/antiox11122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The flowering of chrysanthemum (Chrysanthemum morifolium Ramat.), inhibited by long-day lighting, can be reversed with a short period of low supplemental blue light (S-BL). Both flowering and the reactive oxygen species (ROS) scavenging processes are primarily driven by sugars created by photosynthetic carbon assimilation. In addition, the antioxidant ability potentially affects flowering in photoperiod- and/or circadian rhythm-dependent manners. This indicates that there is an interactive relationship among blue (B) light, photosynthetic efficiency, sugar accumulation, and antioxidant ability in flowering regulation. Here, 4 h of 30 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) S-BL was applied at the end of a 13-h long-day period (LD13 + 4B) at different intervals during 60 days of experimental duration. The five experimental groups were named according to the actual number of days of S-BL and their intervals: applied once every day, "60 days-(LD13 + 4B) (100.0%)"; once every other day, "30 days-(LD13 + 4B) (50.0%)"; once every three days, "15 days-(LD13 + 4B) (25.0%)"; once every five days, "10 days-(LD13 + 4B) (16.7%)"; and once every seven days, "7 days-(LD13 + 4B) (11.7%)". Two non-S-BL control groups were also included: 60 10-h short days (60 days-SD10) and 13-h long days (60 days-LD13). At the harvest stage, varying degrees of flowering were observed except in "60 days-LD13" and "7 days-(LD13 + 4B) (11.7%)". The number of flowers increased and the flower buds appeared earlier as the proportion of S-BL days increased in LD13 conditions, although the "60 days-SD10" gave the earliest flowering. The proportion of initial, pivotal, and optimal flowering was 16.7% ("10 days-(LD13 + 4B)"), 50.0% ("30 days-(LD13 + 4B)"), and 100.0% ("60 days-(LD13 + 4B)"), respectively. Meanwhile, a series of physiological parameters such as the production of enzymatic or non-enzymatic antioxidants, chlorophyll content, photosynthetic efficiency, enzyme activities, and carbohydrate accumulation were significantly improved by "30 days-(LD13 + 4B) (50.0%)" as a turning point until the peaks appeared in "60 days-(LD13 + 4B) (100.0%)", as well as the expression of florigenic or anti-florigenic and some antioxidant-synthetic genes. Furthermore, the results of principal component analysis (PCA) indicated that S-BL days positively regulated flowering, photosynthesis, carbohydrate accumulation, and antioxidant production. In aggregate, the pivotal and optimal proportions of S-BL days to reconcile the relationship among flowering, photosynthetic carbon assimilation, and antioxidant ability were 50.0% and 100.0%, respectively. However, there are still significant gaps to be filled in order to determine the specific involvement of blue light and antioxidant abilities in flowering regulation.
Collapse
Affiliation(s)
- Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Angon PB, Tahjib-Ul-Arif M, Samin SI, Habiba U, Hossain MA, Brestic M. How Do Plants Respond to Combined Drought and Salinity Stress?-A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212884. [PMID: 36365335 PMCID: PMC9655390 DOI: 10.3390/plants11212884] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/12/2023]
Abstract
Plants are frequently exposed to one or more abiotic stresses, including combined salinity-drought, which significantly lowers plant growth. Many studies have been conducted to evaluate the responses of plants to combined salinity and drought stress. However, a meta-analysis-based systematic review has not been conducted yet. Therefore, this study analyzed how plants respond differently to combined salinity-drought stress compared to either stress alone. We initially retrieved 536 publications from databases and selected 30 research articles following a rigorous screening. Data on plant growth-related, physiological, and biochemical parameters were collected from these selected articles and analyzed. Overall, the combined salinity-drought stress has a greater negative impact on plant growth, photosynthesis, ionic balance, and oxidative balance than either stress alone. In some cases, salinity had a greater impact than drought stress and vice versa. Drought stress inhibited photosynthesis more than salinity, whereas salinity caused ionic imbalance more than drought stress. Single salinity and drought reduced shoot biomass equally, but salinity reduced root biomass more than drought. Plants experienced more oxidative stress under combined stress conditions because antioxidant levels did not increase in response to combined salinity-drought stress compared to individual salinity or drought stress. This study provided a comparative understanding of plants' responses to individual and combined salinity and drought stress, and identified several research gaps. More comprehensive genetic and physiological studies are needed to understand the intricate interplay between salinity and drought in plants.
Collapse
Affiliation(s)
- Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samia Islam Samin
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ummya Habiba
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M. Afzal Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marian Brestic
- Institut of Plant and Environmental Sciences, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
6
|
Silicon Supplementation Alleviates the Salinity Stress in Wheat Plants by Enhancing the Plant Water Status, Photosynthetic Pigments, Proline Content and Antioxidant Enzyme Activities. PLANTS 2022; 11:plants11192525. [PMID: 36235391 PMCID: PMC9572231 DOI: 10.3390/plants11192525] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Silicon (Si) is the most abundant element on earth after oxygen and is very important for plant growth under stress conditions. In the present study, we inspected the role of Si in the mitigation of the negative effect of salt stress at three concentrations (40 mM, 80 mM, and 120 mM NaCl) in two wheat varieties (KRL-210 and WH-1105) with or without Si (0 mM and 2 mM) treatment. Our results showed that photosynthetic pigments, chlorophyll stability index, relative water content, protein content, and carbohydrate content were reduced at all three salt stress concentrations in both wheat varieties. Moreover, lipid peroxidation, proline content, phenol content, and electrolyte leakage significantly increased under salinity stress. The antioxidant enzyme activities, like catalase and peroxidase, were significantly enhanced under salinity in both leaves and roots; however, SOD activity was drastically decreased under salt stress in both leaves and roots. These negative effects of salinity were more pronounced in WH-1105, as KRL-210 is a salt-tolerant wheat variety. On the other hand, supplementation of Si improved the photosynthetic pigments, relative water, protein, and carbohydrate contents in both varieties. In addition, proline content, MDA content, and electrolyte leakage were shown to decline following Si application under salt stress. It was found that applying Si enhanced the antioxidant enzyme activities under stress conditions. Si showed better results in WH-1105 than in KRL-210. Furthermore, Si was found to be more effective at a salt concentration of 120 mM compared to low salt concentrations (40 mM, 80 mM), indicating that it significantly improved plant growth under stressed conditions. Our experimental findings will open a new area of research in Si application for the identification and implication of novel genes involved in enhancing salinity tolerance.
Collapse
|
7
|
Sheikhalipour M, Mohammadi SA, Esmaielpour B, Zareei E, Kulak M, Ali S, Nouraein M, Bahrami MK, Gohari G, Fotopoulos V. Exogenous melatonin increases salt tolerance in bitter melon by regulating ionic balance, antioxidant system and secondary metabolism-related genes. BMC PLANT BIOLOGY 2022; 22:380. [PMID: 35907823 PMCID: PMC9338570 DOI: 10.1186/s12870-022-03728-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Melatonin is a multi-functional molecule widely employed in order to mitigate abiotic stress factors, in general and salt stress in particular. Even though previous reports revealed that melatonin could exhibit roles in promoting seed germination and protecting plants during various developmental stages of several plant species under salt stress, no reports are available with respect to the regulatory acts of melatonin on the physiological and biochemical status as well as the expression levels of defense- and secondary metabolism-related related transcripts in bitter melon subjected to the salt stress. RESULTS Herewith the present study, we performed a comprehensive analysis of the physiological and ion balance, antioxidant system, as well as transcript analysis of defense-related genes (WRKY1, SOS1, PM H+-ATPase, SKOR, Mc5PTase7, and SOAR1) and secondary metabolism-related gene expression (MAP30, α-MMC, polypeptide-P, and PAL) in salt-stressed bitter melon (Momordica charantia L.) plants in response to melatonin treatment. In this regard, different levels of melatonin (0, 75 and 150 µM) were applied to mitigate salinity stress (0, 50 and 100 mM NaCl) in bitter melon. Accordingly, present findings revealed that 100 mM salinity stress decreased growth and photosynthesis parameters (SPAD, Fv/Fo, Y(II)), RWC, and some nutrient elements (K+, Ca2+, and P), while it increased Y(NO), Y(NPQ), proline, Na+, Cl-, H2O2, MDA, antioxidant enzyme activity, and lead to the induction of the examined genes. However, prsiming with 150 µM melatonin increased SPAD, Fv/Fo, Y(II)), RWC, and K+, Ca2+, and P concentration while decreased Y(NO), Y(NPQ), Na+, Cl-, H2O2, and MDA under salt stress. In addition, the antioxidant system and gene expression levels were increased by melatonin (150 µM). CONCLUSIONS Overall, it can be postulated that the application of melatonin (150 µM) has effective roles in alleviating the adverse impacts of salinity through critical modifications in plant metabolism.
Collapse
Affiliation(s)
- Morteza Sheikhalipour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardebili, Ardebil, Iran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
- Center for Cell Pathology, Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Behrooz Esmaielpour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardebili, Ardebil, Iran
| | - Elnaz Zareei
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Igdir, Türkiye
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Mojtaba Nouraein
- Department of Plant Genetics and Production, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Gholamreza Gohari
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Limassol, Cyprus
| |
Collapse
|
8
|
Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819658. [PMID: 35401625 PMCID: PMC8984490 DOI: 10.3389/fpls.2022.819658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Sustainable agricultural production is critically antagonistic by fluctuating unfavorable environmental conditions. The introduction of mineral elements emerged as the most exciting and magical aspect, apart from the novel intervention of traditional and applied strategies to defend the abiotic stress conditions. The silicon (Si) has ameliorating impacts by regulating diverse functionalities on enhancing the growth and development of crop plants. Si is categorized as a non-essential element since crop plants accumulate less during normal environmental conditions. Studies on the application of Si in plants highlight the beneficial role of Si during extreme stressful conditions through modulation of several metabolites during abiotic stress conditions. Phytohormones are primary plant metabolites positively regulated by Si during abiotic stress conditions. Phytohormones play a pivotal role in crop plants' broad-spectrum biochemical and physiological aspects during normal and extreme environmental conditions. Frontline phytohormones include auxin, cytokinin, ethylene, gibberellin, salicylic acid, abscisic acid, brassinosteroids, and jasmonic acid. These phytohormones are internally correlated with Si in regulating abiotic stress tolerance mechanisms. This review explores insights into the role of Si in enhancing the phytohormone metabolism and its role in maintaining the physiological and biochemical well-being of crop plants during diverse abiotic stresses. Moreover, in-depth information about Si's pivotal role in inducing abiotic stress tolerance in crop plants through metabolic and molecular modulations is elaborated. Furthermore, the potential of various high throughput technologies has also been discussed in improving Si-induced multiple stress tolerance. In addition, a special emphasis is engrossed in the role of Si in achieving sustainable agricultural growth and global food security.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Henan Yousuf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | | | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| |
Collapse
|
9
|
Hessini K. Nitrogen form differently modulates growth, metabolite profile, and antioxidant and nitrogen metabolism activities in roots of Spartina alterniflora in response to increasing salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:35-42. [PMID: 35121483 DOI: 10.1016/j.plaphy.2022.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Sodium tolerance and nitrogen-source preferences are two of the most fascinating and ecologically important areas in plant physiology. Spartina alterniflora is a highly salt-tolerant species and appears to prefer ammonium (NH4+) over nitrate (NO3-) as an inorganic N source, presenting a suite of aboveground physiological and biochemical mechanisms that allows growth in saline environments. Here, we tested the interactive effects of salinity (0, 200, 500 mM NaCl) and nitrogen source (NO3-, NH4+, NH4NO3) on some physiological and biochemical parameters of S. alterniflora at the root level. After three months of treatments, plants were harvested to determine root growth parameters and total amino acids, proline, total soluble sugars, sucrose, and root enzyme activity. The control (0 mM NaCl) had the highest root growth rate in the medium containing only ammonium and the lowest in the medium containing only nitrate. Except for NO3--fed plants, the 200 mM NaCl treatment generally had less root growth than the control. Under high salinity, NH4+-fed plants had better root growth than NO3--fed plants. In the absence of salinity, NH4+-fed plants had higher superoxide dismutase, ascorbate peroxidase, glutathione reductase, and guaiacol peroxidase activities than NO3--fed plants. Salinity generally promoted the activity of the principal antioxidant enzymes, more so in NH4+-fed plants. Nitrogen metabolism was characterized by higher constitutive levels of glutamate dehydrogenase (GDH) activity under ammonia nutrition, accompanied by elevated total amino acids levels in roots. The advantage of ammonium nutrition for S. alterniflora under salinity was connected to high amino acid accumulation and antioxidant enzyme activities, together with low H2O2 concentration and increased GDH activity. Ammonium improved root performance of S. alterniflora, especially under saline conditions, and may improve root antioxidant capacity and N-assimilating enzyme activities, and adjust osmotically to salinity by accumulating amino acids.
Collapse
Affiliation(s)
- Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
10
|
Ben Youssef R, Jelali N, Boukari N, Albacete A, Martinez C, Alfocea FP, Abdelly C. The Efficiency of Different Priming Agents for Improving Germination and Early Seedling Growth of Local Tunisian Barley under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112264. [PMID: 34834627 PMCID: PMC8623335 DOI: 10.3390/plants10112264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The current work aimed to investigate the effect of seed priming with different agents (CaCl2, KCl, and KNO3) on germination and seedling establishment in seeds of the barley species of both Hordeum vulgare (L. Manel) and Hordeum maritimum germinated with three salt concentrations (0, 100, and 200 mM NaCl). The results showed that under unprimed conditions, salt stress significantly reduced the final germination rate, the mean daily germination, and the seedling length and dry weight. It led to a decrease in the essential nutrient content (iron, calcium, magnesium, and potassium) against an increase in sodium level in both of the barley species. Moreover, this environmental constraint provoked a membrane injury caused by a considerable increase in electrolyte leakage and the malondialdehyde content (MDA). Data analysis proved that seed priming with CaCl2, KCl, and KNO3 was an effective method for alleviating barley seed germination caused by salt stress to varying degrees. Different priming treatments clearly stimulated germination parameters and the essential nutrient concentration, in addition to increasing the seedling growth rate. The application of seed priming reduced the accumulation of sodium ions and mitigated the oxidative stress of seeds caused by salt. This mitigation was traduced by the maintenance of low levels of MDA and electrolyte leakage. We conclude that the priming agents can be classed into three ranges based on their efficacy on the different parameters analyzed; CaCl2 was placed in the first range, followed closely by KNO3, while the least effective was KCl, which placed in the third range.
Collapse
Affiliation(s)
- Rim Ben Youssef
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (N.B.); (C.A.)
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1060, Tunisia
- Centro de Edafología y Biología Aplicada del Segura, Spanish National Research Council (CEBAS-CSIC), Departameno Nutricion Vegetal, 30100 Murcia, Spain; (A.A.); (C.M.); (F.P.A.)
| | - Nahida Jelali
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (N.B.); (C.A.)
| | - Nadia Boukari
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (N.B.); (C.A.)
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1060, Tunisia
| | - Alfonso Albacete
- Centro de Edafología y Biología Aplicada del Segura, Spanish National Research Council (CEBAS-CSIC), Departameno Nutricion Vegetal, 30100 Murcia, Spain; (A.A.); (C.M.); (F.P.A.)
| | - Cristina Martinez
- Centro de Edafología y Biología Aplicada del Segura, Spanish National Research Council (CEBAS-CSIC), Departameno Nutricion Vegetal, 30100 Murcia, Spain; (A.A.); (C.M.); (F.P.A.)
| | - Francisco Perez Alfocea
- Centro de Edafología y Biología Aplicada del Segura, Spanish National Research Council (CEBAS-CSIC), Departameno Nutricion Vegetal, 30100 Murcia, Spain; (A.A.); (C.M.); (F.P.A.)
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia; (N.J.); (N.B.); (C.A.)
| |
Collapse
|
11
|
Kumar A, Anju T, Kumar S, Chhapekar SS, Sreedharan S, Singh S, Choi SR, Ramchiary N, Lim YP. Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security. Int J Mol Sci 2021; 22:8093. [PMID: 34360856 PMCID: PMC8348985 DOI: 10.3390/ijms22158093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Indigenous communities across the globe, especially in rural areas, consume locally available plants known as Traditional Food Plants (TFPs) for their nutritional and health-related needs. Recent research shows that many TFPs are highly nutritious as they contain health beneficial metabolites, vitamins, mineral elements and other nutrients. Excessive reliance on the mainstream staple crops has its own disadvantages. Traditional food plants are nowadays considered important crops of the future and can act as supplementary foods for the burgeoning global population. They can also act as emergency foods in situations such as COVID-19 and in times of other pandemics. The current situation necessitates locally available alternative nutritious TFPs for sustainable food production. To increase the cultivation or improve the traits in TFPs, it is essential to understand the molecular basis of the genes that regulate some important traits such as nutritional components and resilience to biotic and abiotic stresses. The integrated use of modern omics and gene editing technologies provide great opportunities to better understand the genetic and molecular basis of superior nutrient content, climate-resilient traits and adaptation to local agroclimatic zones. Recently, realizing the importance and benefits of TFPs, scientists have shown interest in the prospection and sequencing of TFPs for their improvements, cultivation and mainstreaming. Integrated omics such as genomics, transcriptomics, proteomics, metabolomics and ionomics are successfully used in plants and have provided a comprehensive understanding of gene-protein-metabolite networks. Combined use of omics and editing tools has led to successful editing of beneficial traits in several TFPs. This suggests that there is ample scope for improvement of TFPs for sustainable food production. In this article, we highlight the importance, scope and progress towards improvement of TFPs for valuable traits by integrated use of omics and gene editing techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Thattantavide Anju
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sushil Kumar
- Department of Botany, Govt. Degree College, Kishtwar 182204, Jammu and Kashmir, India;
| | - Sushil Satish Chhapekar
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Sajana Sreedharan
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sonam Singh
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Su Ryun Choi
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | - Yong Pyo Lim
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| |
Collapse
|
12
|
Biochemical, Physiological, and Molecular Aspects of Ornamental Plants Adaptation to Deficit Irrigation. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is increasing concern regarding global warming and its severe impact on the farming sector and food security. Incidences of extreme weather conditions are becoming more and more frequent, posing plants to stressful conditions, such as flooding, drought, heat, or frost etc. Especially for arid lands, there is a tug-of-war between keeping high crop yields and increasing water use efficiency of limited water resources. This difficult task can be achieved through the selection of tolerant water stress species or by increasing the tolerance of sensitive species. In this scenario, it is important to understand the response of plants to water stress. So far, the response of staple foods and vegetable crops to deficit irrigation is well studied. However, there is lack of literature regarding the responses of ornamental plants to water stress conditions. Considering the importance of this ever-growing sector for the agricultural sector, this review aims to reveal the defense mechanisms and the involved morpho-physiological, biochemical, and molecular changes in ornamental plant’s responses to deficit irrigation.
Collapse
|
13
|
Cirillo V, D’Amelia V, Esposito M, Amitrano C, Carillo P, Carputo D, Maggio A. Anthocyanins are Key Regulators of Drought Stress Tolerance in Tobacco. BIOLOGY 2021; 10:139. [PMID: 33578910 PMCID: PMC7916658 DOI: 10.3390/biology10020139] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Abiotic stresses will be one of the major challenges for worldwide food supply in the near future. Therefore, it is important to understand the physiological mechanisms that mediate plant responses to abiotic stresses. When subjected to UV, salinity or drought stress, plants accumulate specialized metabolites that are often correlated with their ability to cope with the stress. Among them, anthocyanins are the most studied intermediates of the phenylpropanoid pathway. However, their role in plant response to abiotic stresses is still under discussion. To better understand the effects of anthocyanins on plant physiology and morphogenesis, and their implications on drought stress tolerance, we used transgenic tobacco plants (AN1), which over-accumulated anthocyanins in all tissues. AN1 plants showed an altered phenotype in terms of leaf gas exchanges, leaf morphology, anatomy and metabolic profile, which conferred them with a higher drought tolerance compared to the wild-type plants. These results provide important insights for understanding the functional reason for anthocyanin accumulation in plants under stress.
Collapse
Affiliation(s)
- Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| | - Vincenzo D’Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy;
| | - Marco Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| | - Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| |
Collapse
|
14
|
Salinity Duration Differently Modulates Physiological Parameters and Metabolites Profile in Roots of Two Contrasting Barley Genotypes. PLANTS 2021; 10:plants10020307. [PMID: 33562862 PMCID: PMC7914899 DOI: 10.3390/plants10020307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Hordeum maritimum With. is a wild salt tolerant cereal present in the saline depressions of the Eastern Tunisia, where it significantly contributes to the annual biomass production. In a previous study on shoot tissues it was shown that this species withstands with high salinity at the seedling stage restricting the sodium entry into shoot and modulating over time the leaf synthesis of organic osmolytes for osmotic adjustment. However, the tolerance strategy mechanisms of this plant at root level have not yet been investigated. The current research aimed at elucidating the morphological, physiological and biochemical changes occurring at root level in H. maritimum and in the salt sensitive cultivar Hordeum vulgare L. cv. Lamsi during five-weeks extended salinity (200 mM NaCl), salt removal after two weeks of salinity and non-salt control. H. maritimum since the first phases of salinity was able to compartmentalize higher amounts of sodium in the roots compared to the other cultivar, avoiding transferring it to shoot and impairing photosynthetic metabolism. This allowed the roots of wild plants to receive recent photosynthates from leaves, gaining from them energy and carbon skeletons to compartmentalize toxic ions in the vacuoles, synthesize and accumulate organic osmolytes, control ion and water homeostasis and re-establish the ability of root to grow. H. vulgare was also able to accumulate compatible osmolytes but only in the first weeks of salinity, while soon after the roots stopped up taking potassium and growing. In the last week of salinity stress, the wild species further increased the root to shoot ratio to enhance the root retention of toxic ions and consequently delaying the damages both to shoot and root. This delay of few weeks in showing the symptoms of stress may be pivotal for enabling the survival of the wild species when soil salinity is transient and not permanent.
Collapse
|
15
|
Isayenkov S, Hilo A, Rizzo P, Tandron Moya YA, Rolletschek H, Borisjuk L, Radchuk V. Adaptation Strategies of Halophytic Barley Hordeum marinum ssp. marinum to High Salinity and Osmotic Stress. Int J Mol Sci 2020; 21:ijms21239019. [PMID: 33260985 PMCID: PMC7730945 DOI: 10.3390/ijms21239019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The adaptation strategies of halophytic seaside barley Hordeum marinum to high salinity and osmotic stress were investigated by nuclear magnetic resonance imaging, as well as ionomic, metabolomic, and transcriptomic approaches. When compared with cultivated barley, seaside barley exhibited a better plant growth rate, higher relative plant water content, lower osmotic pressure, and sustained photosynthetic activity under high salinity, but not under osmotic stress. As seaside barley is capable of controlling Na+ and Cl− concentrations in leaves at high salinity, the roots appear to play the central role in salinity adaptation, ensured by the development of thinner and likely lignified roots, as well as fine-tuning of membrane transport for effective management of restriction of ion entry and sequestration, accumulation of osmolytes, and minimization of energy costs. By contrast, more resources and energy are required to overcome the consequences of osmotic stress, particularly the severity of reactive oxygen species production and nutritional disbalance which affect plant growth. Our results have identified specific mechanisms for adaptation to salinity in seaside barley which differ from those activated in response to osmotic stress. Increased knowledge around salt tolerance in halophytic wild relatives will provide a basis for improved breeding of salt-tolerant crops.
Collapse
Affiliation(s)
- Stanislav Isayenkov
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
- Institute of Food Biotechnology and Genomics NAS of Ukraine, Osipovskogo Street, 2a, 04123 Kyiv, Ukraine
- Correspondence: (S.I.); (V.R.)
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Paride Rizzo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Yudelsy Antonia Tandron Moya
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
- Correspondence: (S.I.); (V.R.)
| |
Collapse
|
16
|
Carillo P, Dell’Aversana E, Modarelli GC, Fusco GM, De Pascale S, Paradiso R. Metabolic Profile and Performance Responses of Ranunculus asiaticus L. Hybrids as Affected by Light Quality of Photoperiodic Lighting. FRONTIERS IN PLANT SCIENCE 2020; 11:597823. [PMID: 33324439 PMCID: PMC7727310 DOI: 10.3389/fpls.2020.597823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Ranunculus asiaticus is a quantitative long day plant grown for cut flowers and flowering potted plants production. We evaluated the influence of light spectrum of three light sources for end-of-day photoperiodic treatments, with different phytochrome photoequilibria (PPE) induced at plant level, on the metabolic profiling of two hybrids of R. asiaticus L., MBO and MDR, in plants from vernalized tuberous roots. The following treatments were compared with natural day length (NL): white fluorescence lamp (FL, PPE 0.84), light emitting diodes (LEDs) Red:Far Red light at 3:1 ratio (R:FR 3:1, PPE 0.84), and LEDs Red:Far Red light at 1:3 ratio (R:FR 1:3, PPE 0.63). Measurements were carried out to evaluate the time course of carbohydrate, amino acid, and protein levels throughout the growing cycle in tuberous roots and leaves, in relation to the different plant stages (pre-planting, vegetative phase, and flowering). The study of metabolic profiling suggested that the differences between the tuberous root reserves of the two R. asiaticus hybrids could be responsible for the capacity of MBO to exert an early flowering. In particular, the proton-consuming synthesis during the pre-planting of two amino acids, alanine and γ-aminobutyric acid (GABA), is able to buffer the cytoplasmic acidosis and pH altered by the vernalization process, and GABA itself can efficiently scavenge reactive oxygen species. This fast response to the stress caused by vernalization allows MBO plants to accelerate the process of vegetative development and flowering. Some other changes in metabolites profile were certainly related to the different responses to day length and photoperiodic light quality in the two hybrids, such as dose exerted by low R:FR lighting in both MBO and MDR. However, most of the responses are under a strict genetic control.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | | | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
17
|
Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM, Srivastava PK. Fascinating impact of silicon and silicon transporters in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110885. [PMID: 32650140 DOI: 10.1016/j.ecoenv.2020.110885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
Silicon (Si) is a metalloid which is gaining worldwide attention of plant scientists due to its ameliorating impact on plants' growth and development. The beneficial response of Si is observed predominantly under numerous abiotic and biotic stress conditions. However, under favorable conditions, most of the plant can grow without it. Therefore, Si has yet not been fully accepted as essential element rather it is being considered as quasi-essential for plants' growth. Si is also known to enhance resilience in plants by reducing the plant's stress. Besides its second most abundance on the earth crust, most of the soils lack plant available form of Si i.e. silicic acid. In this regard, understanding the role of Si in plant metabolism, its uptake from roots and transport to aerial tissues along with its ionomics and proteomics under different circumstances is of great concern. Plants have evolved a well-optimized Si-transport system including various transporter proteins like Low silicon1 (Lsi1), Low silicon2 (Lsi2), Low silicon3 (Lsi3) and Low silicon6 (Lsi6) at specific sub-cellular locations along with the expression profiling that creates precisely coordinated network among these transporters, which also facilitate uptake and accumulation of Si. Though, an ample amount of information is available pertinent to the solute specificity, active sites, transcriptional and post-transcriptional regulation of these transporter genes. Similarly, the information regarding transporters involved in Si accumulation in different organelles is also available particularly in silica cells occurred in poales. But in this review, we have attempted to compile studies related to plants vis à vis Si, its role in abiotic and biotic stress, its uptake in various parts of plants via different types of Si-transporters, expression pattern, localization and the solute specificity. Besides these, this review will also provide the compiled knowledge about the genetic variation among crop plants vis à vis enhanced Si uptake and related benefits.
Collapse
Affiliation(s)
- Shweta Gaur
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Institute of Engineering and Technology, Dr. Shakuntla Misra National Rehabilitation University, Mohaan Road, Lucknow, U.P, 226017, India.
| | - Dharmendra Kumar
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India
| | - Devendra Kumar Chauhan
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Prabhat Kumar Srivastava
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Department of Botany, KS Saket PG College, Ayodhya U.P, 224123., India.
| |
Collapse
|
18
|
Modarelli GC, Arena C, Pesce G, Dell'Aversana E, Fusco GM, Carillo P, De Pascale S, Paradiso R. The role of light quality of photoperiodic lighting on photosynthesis, flowering and metabolic profiling in Ranunculus asiaticus L. PHYSIOLOGIA PLANTARUM 2020; 170:187-201. [PMID: 32468630 DOI: 10.1111/ppl.13122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 05/23/2023]
Abstract
Photoperiodic light quality affects flowering of long day plants, by influencing the phytochrome photoequilibria (PPE) at plant level; however, the most effective light spectrum to promote flowering is still unknown for most of the flower crops. We evaluated the influence of light spectrum of three light sources, with different induced PPE, on photosynthesis, metabolic profiling, plant growth and flowering in two hybrids of Ranunculus asiaticus L., MBO (early flowering) and MDR (medium earliness). Three photoperiodic treatments were compared to natural day length (NL): white fluorescent light (PPE 0.84), light emitting diodes (LEDs) with red:far red (R:FR) light at 3:1 ratio (PPE, 0.84) and LEDs with R:FR light at 1:3 ratio (PPE 0.63). Under natural light, net photosynthesis was higher in MDR than in MBO, while photochemistry was similar in the hybrids. Compared to NL, photoperiodic treatments did not affect net photosynthesis, while they promoted the quantum yield of PSII and reduced the non-photochemical quenching. Under NL, plant growth was greater in MBO, while flowering started earlier in MDR and flowers characteristics were similar in the hybrids. Despite the greater sensitivity of MDR plants in terms of metabolism, photoperiodic lighting improved plant growth and reduced the flowering time only in MBO, with a stronger effect under R:FR 3:1 light. MDR plants were characterized by higher soluble sugars, polyphenols, photosynthetic pigments and proteins, while MBO plants by higher starch and amino acid content. The morphological effects of photoperiodic light quality and the hybrid-specific response should be taken into account to optimize lighting protocols in commercial farms.
Collapse
Affiliation(s)
- Giuseppe C Modarelli
- Department of Agricultural Sciences, University of Naples Federico II, Naples, 80055, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Giuseppe Pesce
- Department of Physics, University of Naples Federico II, Naples, 80126, Italy
| | - Emilia Dell'Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giovanna M Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, 80055, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, 80055, Italy
| |
Collapse
|
19
|
Roy R, Wang J, Mostofa MG, Fornara D, Sikdar A, Sarker T, Wang X, Jahan MS. Fine-tuning of soil water and nutrient fertilizer levels for the ecological restoration of coal-mined spoils using Elaeagnus angustifolia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110855. [PMID: 32501241 DOI: 10.1016/j.jenvman.2020.110855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 05/20/2023]
Abstract
Coal mining activities remain of great environmental concern because of several negative impacts on soil ecosystems. Appropriate revegetation interventions of coal-spoiled lands can provide environmental management solutions to restore soil degraded ecosystems. The present study addressed the potential of the pioneer woody species, Elaeagnus angustifolia, in the restoration of coal-mined spoils under a range of different water (W) levels and nitrogen (N) and phosphorus (P) applications. Our results show how moderate applications of N (N60 = 60 mg N kg-1 soil) and P (P90 = 90 mg P kg-1 soil) fertilizers led either to maximum or minimum growth performance of E. angustifolia depending on whether W was applied at very high (W80 = 80% field capacity) or very low (W40 = 40% field capacity) levels suggesting that W was the main limiting factor for plant growth. Very low-W regime (W40N60P90) also caused significant reduction of photosynthetic parameters, including net photosynthetic rate, transpiration rate and water use efficiency. The combination of high W-N doses with low P doses (W70N96P36) positively influenced gas-exchange parameters, chlorophyll and carotenoid contents. Seedlings treated with low-W and -N doses (W50N24P144) showed highest increases in malondialdehyde content and lowest levels of relative water content (RWC). Decreases in malondialdehyde content and increases in RWC were observed following a gradual increment of W and N doses, indicating that high W and N doses contributed to drought tolerance of E. angustifolia by protecting cell membranes and increasing water status. Low-W and -N applications considerably increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and the contents of proline and soluble sugars, suggesting that E. angustifolia developed defensive strategies to avoid damage induced by water scarcity. Results from heatmap and principal component analyses confirmed that W and N were the main clustering factors, and both N and P performed well at high-W dose. The optimum growth performance of E. angustifolia was found under a combination of W level at 66.0% of field capacity, N dose of 74.0 mg kg-1 soil, and P dose of 36.0 mg kg-1 soil. Our findings demonstrate how optimum growth performance of E. angustifolia can be achieved by fine-tuning doses of W, N, and P resources, and how this in turn could greatly support the ecological restoration of coal-mined degraded environments.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Dario Fornara
- Agri-Food & Biosciences Institute, Newforge Lane, BT9 5PX, Belfast, UK.
| | - Ashim Sikdar
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Xiuqing Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Mohammad Shah Jahan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
20
|
Physiological and Nutraceutical Quality of Green and Red Pigmented Lettuce in Response to NaCl Concentration in Two Successive Harvests. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nutritional eustress such as salinity or nutrient stress applied in soilless systems, is a convenient pre-harvest factor efficient in modulating the phytochemical components of horticultural crops, by triggering defensive mechanisms and accumulating plant secondary metabolites in plants tissues. Nevertheless, genetic material (cultivars with different pigmentation) dictates lettuce metabolites and physiological response to extrinsic eustress, with red leaf cultivars being highly nutrient packed notwithstanding the stress. Product quality can be meliorated equally by applying several cuts, a practice proven to increase bioactive compounds accumulation. In this study, we analyzed the effects of four salinity levels (1, 10, 20 and 30 mM NaCl) on green and red pigmented Salad Bowl lettuce (Lactuca sativa L. var. acephala) in two successive harvests cultivated in a floating raft system. The morphological parameters, mineral composition, leaf gas exchanges, bioactive compounds, and antioxidant activity of both cultivars were assessed. The green cultivar exhibited superior crop productivity but was more prone to salinity effect than the red cultivar. Irrespective of cultivar and cut order, the net photosynthesis decreased with increasing salinity in the nutrient solution. The second cut incurred higher dry biomass, greater accumulation of most minerals and higher photosynthetic activity. In red lettuce, 20 mM NaCl proved adequate eustress to increase phytonutrients and beneficial minerals (K, Ca, and Mg) with minimal loss of yield. Mild salinity and sequential harvest have proven effective pre-harvest tools in positively modulating the quality of lettuce. Eustress interaction with genotype was demonstrated as a promising field for future breeding programs targeting select genotypes for agronomic application of eustress to improve the nutraceutical value of vegetable crops.
Collapse
|
21
|
Enhancing Sustainability by Improving Plant Salt Tolerance through Macro- and Micro-Algal Biostimulants. BIOLOGY 2020; 9:biology9090253. [PMID: 32872247 PMCID: PMC7564450 DOI: 10.3390/biology9090253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
Algal biomass, extracts, or derivatives have long been considered a valuable material to bring benefits to humans and cultivated plants. In the last decades, it became evident that algal formulations can induce multiple effects on crops (including an increase in biomass, yield, and quality), and that algal extracts contain a series of bioactive compounds and signaling molecules, in addition to mineral and organic nutrients. The need to reduce the non-renewable chemical input in agriculture has recently prompted an increase in the use of algal extracts as a plant biostimulant, also because of their ability to promote plant growth in suboptimal conditions such as saline environments is beneficial. In this article, we discuss some research areas that are critical for the implementation in agriculture of macro- and microalgae extracts as plant biostimulants. Specifically, we provide an overview of current knowledge and achievements about extraction methods, compositions, and action mechanisms of algal extracts, focusing on salt-stress tolerance. We also outline current limitations and possible research avenues. We conclude that the comparison and the integration of knowledge on the molecular and physiological response of plants to salt and to algal extracts should also guide the extraction procedures and application methods. The effects of algal biostimulants have been mainly investigated from an applied perspective, and the exploitation of different scientific disciplines is still much needed for the development of new sustainable strategies to increase crop tolerance to salt stress.
Collapse
|
22
|
Li L, Gu W, Zhang L, Li C, Chen X, Qian C, Wang Z, Li W, Zuo S, Wei S. Exogenous 2-(3,4-Dichlorophenoxy) triethylamine alleviates salinity stress in maize by enhancing photosynthetic capacity, improving water status and maintaining K +/Na + homeostasis. BMC PLANT BIOLOGY 2020; 20:348. [PMID: 32703161 PMCID: PMC7376668 DOI: 10.1186/s12870-020-02550-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/12/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Soil salinity restricts plant growth and productivity. 2-(3,4-dichlorophenoxy) triethylamine (DCPTA) can alleviate salinity stress in plants. However, the mechanism of DCPTA-mediated salinity tolerance has not been fully clarified. We aimed to investigate its role in enhancing photosynthetic capacity, improving water status, maintaining K+/Na+ homeostasis and alleviating salinity stress in maize (Zea mays L.). RESULTS In present study, maize seedlings were grown in nutrient solutions with a combination of NaCl (0, 150 mM) and DCPTA (0, 20, 100, and 400 μM). And photosynthesis, water status, ion homeostasis and the expression of genes involved in ion uptake and transport were evaluated in the maize seedlings. The results demonstrated that DCPTA alleviated the growth inhibition of maize seedlings exposed to salinity stress by increasing the net photosynthetic rate (Pn) and the quantum efficiency of photosystem II (PSII) photochemistry. DCPTA improved the root hydraulic conductivity, which help maintained the water status. A relatively high K+ concentration but a relatively low Na+ concentration and the Na+/K+ ratio were observed in the presence of DCPTA under salinity stress. Additionally, DCPTA altered the expression of four genes (ZmSOS1, ZmHKT1, ZmNHX1 and ZmSKOR) that encode membrane transport proteins responsible for K+/Na+ homeostasis. CONCLUSIONS DCPTA improved the salinity tolerance of maize may be associated with enhanced photosynthetic capacity, maintenance of water status and altered expression of genes involved in ion uptake and transport.
Collapse
Affiliation(s)
- Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 P. R. China
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453000 Henan P. R. China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 P. R. China
| | - Liguo Zhang
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150030 P. R. China
| | - Congfeng Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xichang Chen
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150030 P. R. China
| | - Chunrong Qian
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150030 P. R. China
| | - Zhenhua Wang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 P. R. China
| | - Wenhua Li
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150030 P. R. China
| | - Shiyu Zuo
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 P. R. China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 P. R. China
| |
Collapse
|
23
|
Cocozza C, Brilli F, Pignattelli S, Pollastri S, Brunetti C, Gonnelli C, Tognetti R, Centritto M, Loreto F. The excess of phosphorus in soil reduces physiological performances over time but enhances prompt recovery of salt-stressed Arundo donax plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:556-565. [PMID: 32315911 DOI: 10.1016/j.plaphy.2020.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 05/11/2023]
Abstract
Arundo donax L. is an invasive grass species with high tolerance to a wide range of environmental stresses. The response of potted A. donax plants to soil stress characterized by prolonged exposure (43 days) to salinity (+Na), to high concentration of phosphorus (+P), and to the combination of high Na and P (+NaP) followed by 14 days of recovery under optimal nutrient solution, was investigated along the entire time-course of the experiment. After an exposure of 43 days, salinity induced a progressive decline in stomatal conductance that hampered A. donax growth through diffusional limitations to photosynthesis and, when combined with high P, reduced the electron transport rate. Isoprene emission from A. donax leaves was stimulated as Na+ concentration raised in leaves. Prolonged growth in P-enriched substrate did not significantly affect A. donax performance, but decreased isoprene emission from leaves. Prolonged exposure of A. donax to + NaP increased the leaf level of H2O2, stimulated the production of carbohydrates, phenylpropanoids, zeaxanthin and increased the de-epoxidation state of the xanthophylls. This might have resulted in a higher stress tolerance that allowed a fast and full recovery following stress relief. Moreover, the high amount of ABA-glucose ester accumulated in leaves of A. donax exposed to + NaP might have favored stomata re-opening further sustaining the observed prompt recovery of photosynthesis. Therefore, prolonged exposure to high P exacerbated the negative effects of salt stress in A. donax plants photosynthetic performances, but enhanced activation of physiological mechanisms that allowed a prompt and full recovery after stress.
Collapse
Affiliation(s)
- Claudia Cocozza
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Via San Bonaventura 13, Florence, Italy.
| | - Federico Brilli
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP - CNR), Via Madonna del Piano 10, Sesto Fiorentino, FI, Italy.
| | - Sara Pignattelli
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP - CNR), Via Madonna del Piano 10, Sesto Fiorentino, FI, Italy
| | - Susanna Pollastri
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP - CNR), Via Madonna del Piano 10, Sesto Fiorentino, FI, Italy
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP - CNR), Via Madonna del Piano 10, Sesto Fiorentino, FI, Italy
| | - Cristina Gonnelli
- Department of Biology, University of Florence, Via Micheli 1, Florence, Italy
| | - Roberto Tognetti
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via Francesco De Sanctis 1, Campobasso, Italy
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP - CNR), Via Madonna del Piano 10, Sesto Fiorentino, FI, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (DISBA - CNR), Piazzale Aldo Moro 7, Roma, Italy
| |
Collapse
|
24
|
Al-Yasi H, Attia H, Alamer K, Hassan F, Ali E, Elshazly S, Siddique KHM, Hessini K. Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:133-139. [PMID: 32142986 DOI: 10.1016/j.plaphy.2020.02.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
The response of Damask rose to drought and the underlying mechanisms involved are not known. In this study, vegetative, propagated rose plants were grown under control and water-deficit conditions in a greenhouse at Taïf University, south-west of Saudi Arabia. Control plants were irrigated to field capacity (FC), while water-stressed plants were irrigated to either 50% FC (mild stress) or 25% FC (severe stress). After 60 days, leaf, stem and root fresh and dry weights (g plant-1), photosynthetic activity, leaf water potential (Ψw), leaf water content (WC), apoplastic water fraction (AWF), osmotic potential at full turgor (Ψs100) and turgor loss point (Ψs0), cell wall elasticity, osmotic adjustment (OA), and some solutes (K+, Ca2+, Cl-, proline and soluble carbohydrates) were evaluated. Water stress significantly decreased fresh and dry weights of R. damascena and all photosynthetic parameters, apart from leaf temperature, which increased. Severe water stress (25% FC) resulted in more negative Ψs100 and Ψs0 values than the mild water stress and control. The AWF did not significantly change in response to water stress. The leaf bulk modulus of elasticity (ε) increased from 2.5 MPa under well-watered conditions to 2.82 and 3.5 MPa under mild and severe water stress, respectively. R. damascena experienced OA in response to water stress, which was due to the active accumulation of soluble carbohydrates and, to a lesser degree, proline under mild stress, along with tissue dehydration (passive OA) under severe stress. Overall, we identified two important mechanisms of drought tolerance in R. damascena-osmotic and elastic adjustment-but they could not offer resistance to water stress beyond 25% FC.
Collapse
Affiliation(s)
- Hatim Al-Yasi
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia
| | - Houneida Attia
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia
| | - Khalid Alamer
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia; Biology Dep. Science and Arts College-Rabigh Campus, King Abdul-Aziz Univ, Jeddah, Saudi Arabia
| | - Fahmy Hassan
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia; Horticulture Dep., Faculty of Agric., Tanta University, Egypt
| | - Esmat Ali
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia
| | - Samir Elshazly
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia; Biotechnology Center of Borj-Cedria, The University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
25
|
Van Oosten MJ, Dell’Aversana E, Ruggiero A, Cirillo V, Gibon Y, Woodrow P, Maggio A, Carillo P. Omeprazole Treatment Enhances Nitrogen Use Efficiency Through Increased Nitrogen Uptake and Assimilation in Corn. FRONTIERS IN PLANT SCIENCE 2019; 10:1507. [PMID: 31867024 PMCID: PMC6904362 DOI: 10.3389/fpls.2019.01507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/30/2019] [Indexed: 05/28/2023]
Abstract
Omeprazole is a selective proton pump inhibitor in humans that inhibits the H+/K+-ATPase of gastric parietal cells. Omeprazole has been recently shown to act as a plant growth regulator and enhancer of salt stress tolerance. Here, we report that omeprazole treatment in hydroponically grown maize improves nitrogen uptake and assimilation. The presence of micromolar concentrations of omeprazole in the nutrient solution alleviates the chlorosis and growth inhibition induced by low nitrogen availability. Nitrate uptake and assimilation is enhanced in omeprazole treated plants through changes in nitrate reductase activity, primary metabolism, and gene expression. Omeprazole enhances nitrate assimilation through an interaction with nitrate reductase, altering its activation state and affinity for nitrate as a substrate. Omeprazole and its targets represent a novel method for enhancing nitrogen use efficiency in plants.
Collapse
Affiliation(s)
| | - Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Alessandra Ruggiero
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Yves Gibon
- UMR 1332 BFP, INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
26
|
Liu B, Soundararajan P, Manivannan A. Mechanisms of Silicon-Mediated Amelioration of Salt Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E307. [PMID: 31461994 PMCID: PMC6784176 DOI: 10.3390/plants8090307] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/17/2022]
Abstract
Silicon (Si), the second most predominant element in the earth crust consists of numerous benefits to plant. Beneficial effect of Si has been apparently visible under both abiotic and biotic stress conditions in plants. Supplementation of Si improved physiology and yield on several important agricultural and horticultural crops. Salinity is one of the major abiotic stresses that affect growth and yield. The presence of high concentration of salt in growing medium causes oxidative, osmotic, and ionic stresses to plants. In extreme conditions salinity affects soil, ground water, and limits agricultural production. Si ameliorates salt stress in several plants. The Si mediated stress mitigation involves various regulatory mechanisms such as photosynthesis, detoxification of harmful reactive oxygen species using antioxidant and non-antioxidants, and proper nutrient management. In the present review, Si mediated alleviation of salinity stress in plants through the regulation of photosynthesis, root developmental changes, redox homeostasis equilibrium, and regulation of nutrients have been dealt in detail.
Collapse
Affiliation(s)
- Boling Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Prabhakaran Soundararajan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea
| | - Abinaya Manivannan
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju-55365, Korea.
| |
Collapse
|
27
|
Morphological and Physiological Responses Induced by Protein Hydrolysate-Based Biostimulant and Nitrogen Rates in Greenhouse Spinach. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9080450] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant-derived protein hydrolysates (PHs) are gaining prominence as biostimulants due to their potential to improve yield and nutritional quality even under suboptimal nutrient regimens. In this study, we investigated the effects of foliar application of a legume-derived PH (0 or 4 mL L−1) on greenhouse baby spinach (Spinacia oleracea L.) under four nitrogen (N) fertilization levels (0, 15, 30, or 45 kg ha−1) by evaluating morphological and colorimetric parameters, mineral composition, carbohydrates, proteins, and amino acids. The fresh yield in untreated and biostimulant-treated spinach plants increased in response to an increase in N fertilization from 1 up to 30 kg ha−1, reaching a plateau thereafter indicating the luxury consumption of N at 45 kg ha−1. Increasing N fertilization rate, independently of PH, lead to a significant increase of all amino acids with the exception of alanine, GABA, leucine, lysine, methionine, and ornithine but decreased the polyphenols content. Interestingly, the fresh yield at 0 and 15 kg ha−1 was clearly greater in PH-treated plants compared to untreated plants by 33.3% and 24.9%, respectively. This was associated with the presence in of amino acids and small peptides PH ‘Trainer®’, which act as signaling molecules eliciting auxin- and/or gibberellin-like activities on both leaves and roots and thus inducing a “nutrient acquisition response” that enhances nutrients acquisition and assimilation (high P, Ca, and Mg accumulation) as well as an increase in the photochemical efficiency and activity of photosystem II (higher SPAD index). Foliar applications of the commercial PH decreased the polyphenols content, but on the other hand strongly increased total amino acid content (+45%, +82%, and +59% at 0, 15, and 30 kg ha−1, respectively) but not at a 45-kg ha−1-rate. Overall, the use of PH could represent a sustainable tool for boosting yield and nitrogen use efficiency and coping with soil fertility problems under low input regimens.
Collapse
|
28
|
Omeprazole Promotes Chloride Exclusion and Induces Salt Tolerance in Greenhouse Basil. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9070355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of small bioactive molecules (<500 Da) in mechanisms improving resource use efficiency in plants under stress conditions draws increasing interest. One such molecule is omeprazole (OMP), a benzimidazole derivative and inhibitor of animal proton pumps shown to improve nitrate uptake and exclusion of toxic ions, especially of chloride from the cytosol of salt-stressed leaves. Currently, OMP was applied as substrate drench at two rates (0 or 10 μM) on hydroponic basil (Ocimum basilicum L. cv. Genovese) grown under decreasing NO3−:Cl− ratio (80:20, 60:40, 40:60, or 20:80). Chloride concentration and stomatal resistance increased while transpiration, net CO2 assimilation rate and beneficial ions (NO3−, PO43−, and SO42−) decreased with reduced NO3−:Cl− ratio under the 0 μM OMP treatment. The negative effects of chloride were not only mitigated by the 10 μM OMP application in all treatments, with the exception of 20:80 NO3−:Cl−, but plant growth at 80:20, 60:40, and 40:60 NO3−:Cl− ratios receiving OMP application showed maximum fresh yield (+13%, 24%, and 22%, respectively), shoot (+10%, 25%, and 21%, respectively) and root (+32%, 76%, and 75%, respectively) biomass compared to the corresponding untreated treatments. OMP was not directly involved in ion homeostasis and compartmentalization of vacuolar or apoplastic chloride. However, it was active in limiting chloride loading into the shoot, as manifested by the lower chloride concentration in the 80:20, 60:40, and 40:60 NO3−:Cl− treatments compared to the respective controls (−41%, −37%, and −24%), favoring instead that of nitrate and potassium while also boosting photosynthetic activity. Despite its unequivocally beneficial effect on plants, the large-scale application of OMP is currently limited by the molecule’s high cost. However, further studies are warranted to unravel the molecular mechanisms of OMP-induced reduction of chloride loading to shoot and improved salt tolerance.
Collapse
|
29
|
Tang H, Niu L, Wei J, Chen X, Chen Y. Phosphorus Limitation Improved Salt Tolerance in Maize Through Tissue Mass Density Increase, Osmolytes Accumulation, and Na + Uptake Inhibition. FRONTIERS IN PLANT SCIENCE 2019; 10:856. [PMID: 31333699 PMCID: PMC6618052 DOI: 10.3389/fpls.2019.00856] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/14/2019] [Indexed: 05/03/2023]
Abstract
Low phosphorus (P) availability and salt stress are two major constraints for maize (Zea mays L.) growth in north China. A combination of salinity and high P rather than low P is more detrimental to the growth of maize. However, little is known about the mechanisms by which P nutrition modifies the salt tolerance and P uptake of maize. The present study aimed to investigate the combined effects of salinity and P on maize growth and P uptake, and to address the physiological mechanisms of salt tolerance influenced by P availability in maize. Seedlings of a local maize cultivar XY335 were grown hydroponically for 35 days under low (5 μM) or sufficient P supply (200 μM) with or without 100 mM NaCl. Root morphological traits, tissue mass density, leaf osmolytes (sugars and proline) accumulation, and Na+/K+ ratio were measured to allow evaluation of the combined effects of salinity and P on maize growth and P uptake. Both P deficiency and salinity markedly reduced the growth of maize. However, P deficiency had a more pronounced effect on shoot growth while salinity affected root growth more prominently. Combined effects of P deficiency and salinity on total root length, root surface area, and average root diameter were similar to that of plants grown under salt stress. The combination of P deficiency and salinity treatments had a more pronounced effect on tissue mass density, leaf proline and soluble sugars compared to individual treatment of either low P or NaCl. When exposed to salt stress, maize plants of sufficient P accumulated greater amount of Na+ than those under P deficit, but similar amounts of K+ were observed between the two P treatments. Salt stress significantly increased shoot P concentration of maize with sufficient P (P < 0.01), but not for P-deficient plants. In sum, shoots and roots of maize exhibited different responses to P deficiency and salinity, with more marked effect of P deficiency on shoots and of salinity on roots. P deficiency improved salt tolerance of maize plants, which was associated with the increase of tissue mass density, accumulation of osmolytes, reduction of Na+ accumulation, and selective absorption of K+ over Na+.
Collapse
Affiliation(s)
- Hongliang Tang
- College of Life Science, Hebei University, Baoding, China
| | - Le Niu
- College of Life Science, Hebei University, Baoding, China
| | - Jing Wei
- College of Life Science, Hebei University, Baoding, China
| | - Xinying Chen
- College of Life Science, Hebei University, Baoding, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, China
- UWA School of Agriculture and Environment, The Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
30
|
Tian S, Guo R, Zou X, Zhang X, Yu X, Zhan Y, Ci D, Wang M, Wang Y, Si T. Priming With the Green Leaf Volatile (Z)-3-Hexeny-1-yl Acetate Enhances Salinity Stress Tolerance in Peanut ( Arachis hypogaea L.) Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:785. [PMID: 31333683 PMCID: PMC6621544 DOI: 10.3389/fpls.2019.00785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 05/17/2023]
Abstract
Green leaf volatiles play vital roles in plant biotic stress; however, their functions in plant responses to abiotic stress have not been determined. The aim of this study was to investigate the possible role of (Z)-3-hexeny-1-yl acetate (Z-3-HAC), a kind of green leaf volatile, in alleviating the salinity stress of peanut (Arachis hypogaea L.) seedlings and the underlying physiological mechanisms governing this effect. One salt-sensitive and one salt-tolerant peanut genotype were primed with 200 μM Z-3-HAC at the 4-week-old stage before they were exposed to salinity stress. Physiological measurements showed that the primed seedlings possessed higher relative water content, net photosynthetic rate, maximal photochemical efficiency of photosystem II, activities of the antioxidant enzymes, and osmolyte accumulation under salinity conditions. Furthermore, the reactive oxygen species, electrolyte leakage, and malondialdehyde content in the third fully expanded leaves were significantly lower than in nonprimed plants. Additionally, we found that application of Z-3-HAC increased the total length, surface area, and volume of the peanut roots under salinity stress. These results indicated that the green leaf volatile Z-3-HAC protects peanut seedlings against damage from salinity stress through priming for modifications of photosynthetic apparatus, antioxidant systems, osmoregulation, and root morphology.
Collapse
Affiliation(s)
- Shufei Tian
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Runze Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yuan Zhan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dunwei Ci
- Shandong Peanut Research Institute, Qingdao, China
| | - Minglun Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yuefu Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
31
|
Cirillo C, De Micco V, Arena C, Carillo P, Pannico A, De Pascale S, Rouphael Y. Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl 2 Salinization. FRONTIERS IN PLANT SCIENCE 2019; 10:742. [PMID: 31214238 PMCID: PMC6558163 DOI: 10.3389/fpls.2019.00742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/20/2019] [Indexed: 05/22/2023]
Abstract
Callistemon citrinus and Viburnum lucidum are appreciated and widespread ornamental shrubs for their abundant flowering and/or brilliant foliage. The intrinsic tolerance to drought/salinity supports their use in urban areas and in xeriscaping. Despite adaptive responses of these ornamental species to sodium chloride (NaCl) have been extensively explored, little is known on the effects of other salt solution, yet iso-osmotic, on their growth, mineral composition and metabolism. The present research was aimed to assess responses at the biochemical, physiological and anatomical levels to iso-osmotic salt solutions of NaCl and CaCl2 to discriminate the effects of osmotic stress and ion toxicity. The two ornamental species developed different salt-tolerance mechanisms depending on the salinity sources. The growth parameters and biomass production decreased under salinization in both ornamental species, independently of the type of salt, with a detrimental effect of CaCl2 on C. citrinus. The adaptive mechanisms adopted by the two ornamental species to counteract the NaCl salinity were similar, and the decline in growth was mostly related to stomatal limitations of net CO2 assimilation rate, together with the reduction in leaf chlorophyll content (SPAD index). The stronger reduction of C. citrinus growth compared to V. lucidum, was due to an exacerbated reduction in net photosynthetic rate, driven by both stomatal and non stomatal limitations. In similar conditions, V. lucidum exhibited other additional adaptive response, such as modification in leaf functional anatomical traits, mostly related to the reduction in the stomata size allowing plants a better control of stomata opening than in C. citrinus. However, C. citrinus plants displayed an increased ability to retain higher Cl- levels in leaves than in roots under CaCl2 salinity compared to V. lucidum, thus, indicating a further attempt to counteract chloride toxicity through an increased vacuolar compartmentalization and to take advantages of them as chip osmotica.
Collapse
Affiliation(s)
- Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Hessini K, Issaoui K, Ferchichi S, Saif T, Abdelly C, Siddique KHM, Cruz C. Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:171-178. [PMID: 30897508 DOI: 10.1016/j.plaphy.2019.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 05/22/2023]
Abstract
To enhance crop productivity and minimize the harmful effects of various environmental stresses, such as salinity and drought, farmers often use mineral fertilizers. However, inadequate or excessive fertilization can reduce plant growth and nutritive quality and contribute to soil degradation and environmental pollution. This study investigated the effects of salinity (0, 100 or 150 mM NaCl) and nitrogen form (sole NO3- or NH4+, or combined NO3-:NH4+ at 25:75 or 50:50) on growth, photosynthesis, and water and ion status of a commercial variety of maize (Zea mays SY Sincero). In the absence of NaCl, the media containing ammonium only or both nitrogen forms had higher aboveground growth rates than that containing nitrate only. Indeed, the maize growth, expressed as leaf dry matter, seen on NH4+ in the absence of salinity, was nearly double the biomass compared to that with NO3-treatment. Irrespective of N form, the presence of NaCl severely reduced leaf and roots growth; the presence of ammonium in the nutrient solution diminished these negative effects. Compared to the NH4+ only and combined treatments, the leaves of plants in the NO3--only medium showed signs of nitrogen deficiency (general chlorosis), which was more pronounced in the lower than upper leaves, indicating that nitrate is partly replaced by chloride during root uptake. NH4+ favored maize growth more than NO3-, especially when exposed to saline conditions, and may improve the plant's capacity to osmotically adjust to salinity by accumulating inorganic solutes.
Collapse
Affiliation(s)
- Kamel Hessini
- Department of Biology, College of Sciences, Taif University, 21974, Taif, PO Box 888, Saudi Arabia; Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia.
| | - Khawla Issaoui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Selma Ferchichi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Tarek Saif
- Department of Biology, College of Sciences, Taif University, 21974, Taif, PO Box 888, Saudi Arabia; National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Cristina Cruz
- Departamento de Biologia Vegetal, Faculdade de Ciencias de Lisboa, Centro de Ecologia, Evolução e Alterações Ambientais - cE3c, Campo Grande, Lisboa, Portugal
| |
Collapse
|
33
|
Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B. Ascophyllum nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. FRONTIERS IN PLANT SCIENCE 2019; 10:655. [PMID: 31191576 PMCID: PMC6548832 DOI: 10.3389/fpls.2019.00655] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/01/2019] [Indexed: 05/06/2023]
Abstract
Abiotic and biotic stresses limit the growth and productivity of plants. In the current global scenario, in order to meet the requirements of the ever-increasing world population, chemical pesticides and synthetic fertilizers are used to boost agricultural production. These harmful chemicals pose a serious threat to the health of humans, animals, plants, and the entire biosphere. To minimize the agricultural chemical footprint, extracts of Ascophyllum nodosum (ANE) have been explored for their ability to improve plant growth and agricultural productivity. The scientific literature reviewed in this article attempts to explain how certain bioactive compounds present in extracts aid to improve plant tolerances to abiotic and/or biotic stresses, plant growth promotion, and their effects on root/microbe interactions. These reports have highlighted the use of various seaweed extracts in improving nutrient use efficiency in treated plants. These studies include investigations of physiological, biochemical, and molecular mechanisms as evidenced using model plants. However, the various modes of action of A. nodosum extracts have not been previously reviewed. The information presented in this review depicts the multiple, beneficial effects of A. nodosum-based biostimulant extracts on plant growth and their defense responses and suggests new opportunities for further applications for marked benefits in production and quality in the agriculture and horticultural sectors.
Collapse
Affiliation(s)
- Pushp Sheel Shukla
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Emily Grace Mantin
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Mohd Adil
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Sruti Bajpai
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Alan T. Critchley
- Research & Development, Acadian Seaplants Limited, Dartmouth, NS, Canada
| | - Balakrishnan Prithiviraj
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
34
|
Liu DD, Sun XS, Liu L, Shi HD, Chen SY, Zhao DK. Overexpression of the Melatonin Synthesis-Related Gene SlCOMT1 Improves the Resistance of Tomato to Salt Stress. Molecules 2019; 24:E1514. [PMID: 30999664 PMCID: PMC6515010 DOI: 10.3390/molecules24081514] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin can increase plant resistance to stress, and exogenous melatonin has been reported to promote stress resistance in plants. In this study, a melatonin biosynthesis-related SlCOMT1 gene was cloned from tomato (Solanum lycopersicum Mill. cv. Ailsa Craig), which is highly expressed in fruits compared with other organs. The protein was found to locate in the cytoplasm. Melatonin content in SlCOMT1 overexpression transgenic tomato plants was significantly higher than that in wild-type plants. Under 800 mM NaCl stress, the transcript level of SlCOMT1 in tomato leaf was positively related to the melatonin contents. Furthermore, compared with that in wild-type plants, levels of superoxide and hydrogen peroxide were lower while the content of proline was higher in SlCOMT1 transgenic tomatoes. Therefore, SlCOMT1 was closely associated with melatonin biosynthesis confers the significant salt tolerance, providing a clue to cope with the growing global problem of salination in agricultural production.
Collapse
Affiliation(s)
- Dan-Dan Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xiao-Shuai Sun
- School of Agriculture, Yunnan University, Kunming, Yunnan 650091, China.
| | - Lin Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan 650091, China.
| | - Hong-Di Shi
- School of Agriculture, Yunnan University, Kunming, Yunnan 650091, China.
| | - Sui-Yun Chen
- Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650504, China.
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming 650504, China.
- School of Life Science, Yunnan University, Kunming 650504, China.
| | - Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650504, China.
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming 650504, China.
- School of Life Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
35
|
Johansen K, Morton MJL, Malbeteau YM, Aragon B, Al-Mashharawi SK, Ziliani MG, Angel Y, Fiene GM, Negrão SSC, Mousa MAA, Tester MA, McCabe MF. Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:370. [PMID: 30984222 PMCID: PMC6449481 DOI: 10.3389/fpls.2019.00370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/11/2019] [Indexed: 05/19/2023]
Abstract
With salt stress presenting a major threat to global food production, attention has turned to the identification and breeding of crop cultivars with improved salt tolerance. For instance, some accessions of wild species with higher salt tolerance than commercial varieties are being investigated for their potential to expand food production into marginal areas or to use brackish waters for irrigation. However, assessment of individual plant responses to salt stress in field trials is time-consuming, limiting, for example, longitudinal assessment of large numbers of plants. Developments in Unmanned Aerial Vehicle (UAV) sensing technologies provide a means for extensive, repeated and consistent phenotyping and have significant advantages over standard approaches. In this study, 199 accessions of the wild tomato species, Solanum pimpinellifolium, were evaluated through a field assessment of 600 control and 600 salt-treated plants. UAV imagery was used to: (1) delineate tomato plants from a time-series of eight RGB and two multi-spectral datasets, using an automated object-based image analysis approach; (2) assess four traits, i.e., plant area, growth rates, condition and Plant Projective Cover (PPC) over the growing season; and (3) use the mapped traits to identify the best-performing accessions in terms of yield and salt tolerance. For the first five campaigns, >99% of all tomato plants were automatically detected. The omission rate increased to 2-5% for the last three campaigns because of the presence of dead and senescent plants. Salt-treated plants exhibited a significantly smaller plant area (average control and salt-treated plant areas of 0.55 and 0.29 m2, respectively), maximum growth rate (daily maximum growth rate of control and salt-treated plant of 0.034 and 0.013 m2, respectively) and PPC (5-16% difference) relative to control plants. Using mapped plant condition, area, growth rate and PPC, we show that it was possible to identify eight out of the top 10 highest yielding accessions and that only five accessions produced high yield under both treatments. Apart from showcasing multi-temporal UAV-based phenotyping capabilities for the assessment of plant performance, this research has implications for agronomic studies of plant salt tolerance and for optimizing agricultural production under saline conditions.
Collapse
Affiliation(s)
- Kasper Johansen
- Hydrology, Agriculture and Land Observation, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mitchell J. L. Morton
- Center for Desert Agriculture, The Salt Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yoann M. Malbeteau
- Hydrology, Agriculture and Land Observation, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Bruno Aragon
- Hydrology, Agriculture and Land Observation, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samir K. Al-Mashharawi
- Hydrology, Agriculture and Land Observation, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Matteo G. Ziliani
- Hydrology, Agriculture and Land Observation, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yoseline Angel
- Hydrology, Agriculture and Land Observation, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gabriele M. Fiene
- Center for Desert Agriculture, The Salt Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sónia S. C. Negrão
- Center for Desert Agriculture, The Salt Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Biology and Environmental Science, University College Dublin, Belfield, Ireland
| | - Magdi A. A. Mousa
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Vegetables, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Mark A. Tester
- Center for Desert Agriculture, The Salt Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Matthew F. McCabe
- Hydrology, Agriculture and Land Observation, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
36
|
Carillo P, Arena C, Modarelli GC, De Pascale S, Paradiso R. Photosynthesis in Ranunculus asiaticus L.: The Influence of the Hybrid and the Preparation Procedure of Tuberous Roots. FRONTIERS IN PLANT SCIENCE 2019; 10:241. [PMID: 30915088 PMCID: PMC6423076 DOI: 10.3389/fpls.2019.00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/13/2019] [Indexed: 05/07/2023]
Abstract
Ranunculus asiaticus L. is a quantitative long-day geophyte, grown in a cold greenhouse for cut flowers and potted plants. Flowering in ranunculus is a complex process, strongly steered by temperature and photoperiodism. Vernalization of rehydrated tuberous roots anticipate sprouting and leaf rosette formation and flowering. It is known that the time for flowering and the sensitivity to cold treatment, in terms of flowering anticipation, varies in numerous hybrids, while no information seems to be available on the influence of hybrids and on the vernalization on the photosynthetic process and primary metabolite profiling. We investigated the influence of two ranunculus hybrids, MDR and MBO, and two preparation procedures of tuberous roots, only rehydration (Control, C) and rehydration followed by vernalization (V), on the photosynthesis and photochemistry of plants grown in a climatic chamber, under a controlled environment. In addition, in MBO plants, in which the vernalization showed the main effects, carbohydrate, amino acid and protein levels were also investigated. In control plants, the response of leaf photosynthesis, to increasing white light, revealed higher photosynthetic activity in MDR than in MBO. The quantum yield of PSII (ϕPSII), electron transport rate (ETR) and non-photochemical quenching (NPQ) did not differ between the two hybrids. The maximal photochemical efficiency (Fv/Fm) was higher in MBO than in MDR and showed a decrease in both hybrids after vernalization. The preparation treatment of propagation material affected the light response of photosynthesis in the two hybrids differently, which increased in plants from vernalized tuberous roots, compared to those from only rehydrated in MBO and decreased in MDR, in accordance to the effects of vernalization observed in leaf photosynthetic pigments. In MBO vernalized tuberous roots, starch was rapidly degraded, and the carbon skeletons used to synthesize amino acids. Control plants of MBO, developed more leaves than those of MDR and a consequent larger plant leaf area. Compared to only rehydration, vernalization of rehydrated tuberous roots increased the plant leaf area in both the hybrids. Compared to the control, vernalized tuberous roots of MBO showed higher concentrations of sucrose and free amino acids, which could act as a long-distance signal promoting floral transition in young leaf primordia.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
37
|
Annunziata MG, Ciarmiello LF, Woodrow P, Dell’Aversana E, Carillo P. Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:230. [PMID: 30899269 PMCID: PMC6416205 DOI: 10.3389/fpls.2019.00230] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.
Collapse
Affiliation(s)
- Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Loredana Filomena Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Emilia Dell’Aversana
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
38
|
Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA. Exogenous Melatonin Counteracts NaCl-Induced Damage by Regulating the Antioxidant System, Proline and Carbohydrates Metabolism in Tomato Seedlings. Int J Mol Sci 2019; 20:E353. [PMID: 30654468 PMCID: PMC6358940 DOI: 10.3390/ijms20020353] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Melatonin, a natural agent, has multiple functions in animals as well as in plants. However, its possible roles in plants under abiotic stress are not clear. Nowadays, soil salinity is a major threat to global agriculture because a high soil salt content causes multiple stresses (hyperosmotic, ionic, and oxidative). Therefore, the aim of the present study was to explore: (1) the involvement of melatonin in biosynthesis of photosynthetic pigments and in regulation of photosynthetic enzymes, such as carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco); (2) the role of melatonin in osmoregulation by proline and carbohydrate metabolism; and (3) the function of melatonin in the antioxidant defense system under salinity. Outcomes of the study reveal that under non-saline conditions, application of melatonin (20 and 50 µM) improved plant growth, viz. shoot length, root length, shoot fresh weight (FW), root FW, shoot dry weight (DW), root DW and leaf area and physio-biochemical parameters [chlorophyll (Chl) a and b, proline (Pro) and total soluble carbohydrates (TSC) content, and increased the activity of CA and Rubisco]. However, tomato seedlings treated with NaCl exhibited enhanced Chl degradation, electrolyte leakage (EL), malondialdehyde (MDA) and reactive oxygen species (ROS; superoxide and hydrogen peroxide). ROS were detected in leaf and root. Interestingly, application of melatonin improved plant growth and reduced EL, MDA and ROS levels through upregulation of photosynthesis enzymes (CA, Rubisco), antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase and ascorbate reductase) and levels of non-enzymatic antioxidants [ascorbate (ASC) and reduced glutathione (GSH)], as well as by affecting the ASC-GSH cycle. Additionally, exogenous melatonin also improved osmoregulation by increasing the content of TSC, Pro and Δ¹-pyrroline-5-carboxylate synthetase activity. These results suggest that melatonin has beneficial effects on tomato seedlings growth under both stress and non-stress conditions. Melatonin's role in tolerance to salt stress may be associated with the regulation of enzymes involved in photosynthesis, the antioxidant system, metabolism of proline and carbohydrate, and the ASC-GSH cycle. Also, melatonin could be responsible for maintaining the high ratios of GSH/GSSG and ASC/DHA.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Mutahhar Y Al-Khaishany
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - M Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Abdullah Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Abdulaziz A Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| |
Collapse
|