1
|
Laule C, Rahmouni K. Leptin and Associated Neural Pathways Underlying Obesity-Induced Hypertension. Compr Physiol 2025; 15:e8. [PMID: 40293220 PMCID: PMC12038170 DOI: 10.1002/cph4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 04/30/2025]
Abstract
Obesity rates have surged to pandemic levels, placing tremendous burden on our society. This chronic and complex disease is related to the development of many life-threatening illnesses including cardiovascular diseases. Hypertension caused by obesity increases the risk for cardiovascular mortality and morbidity by promoting stroke, myocardial infarction, congestive heart failure, and end-stage renal disease. Overwhelming evidence supports neural origins for obesity-induced hypertension and pinpoints the adipose-derived hormone, leptin, and the sympathetic nervous system as major causal factors. Hyperleptinemia in obesity is associated with selective leptin resistance where leptin's renal sympathoexcitatory and pressor effects are preserved while the metabolic actions are impaired. Understanding the mechanisms driving this phenomenon is critical for developing effective therapeutics. This review describes the neural mechanisms of obesity-induced hypertension with a focus on the molecular and neuronal substrates of leptin action.
Collapse
Affiliation(s)
- Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
2
|
Darwish R, Alcibahy Y, Bucheeri S, Albishtawi A, Tama M, Shetty J, Butler AE. The Role of Hypothalamic Microglia in the Onset of Insulin Resistance and Type 2 Diabetes: A Neuro-Immune Perspective. Int J Mol Sci 2024; 25:13169. [PMID: 39684879 DOI: 10.3390/ijms252313169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Historically, microglial activation has been associated with diseases of a neurodegenerative and neuroinflammatory nature. Some, like Alzheimer's disease, Parkinson's disease, and multiple system atrophy, have been explored extensively, while others pertaining to metabolism not so much. However, emerging evidence points to hypothalamic inflammation mediated by microglia as a driver of metabolic dysregulations, particularly insulin resistance and type 2 diabetes mellitus. Here, we explore this connection further and examine pathways that underlie this relationship, including the IKKβ/NF-κβ, IRS-1/PI3K/Akt, mTOR-S6 Kinase, JAK/STAT, and PPAR-γ signaling pathways. We also investigate the role of non-coding RNAs, namely microRNAs and long non-coding RNAs, in insulin resistance related to neuroinflammation and their diagnostic and therapeutic potential. Finally, we explore therapeutics further, searching for both pharmacological and non-pharmacological interventions that can help mitigate microglial activation.
Collapse
Affiliation(s)
- Radwan Darwish
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Yasmine Alcibahy
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Shahd Bucheeri
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Ashraf Albishtawi
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Maya Tama
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Jeevan Shetty
- Department of Biochemistry, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Alexandra E Butler
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| |
Collapse
|
3
|
Newport-Ratiu PA, Hussein KA, Carter T, Panjarian S, Jonnalagadda SC, Pandey MK. Unveiling the intricate dance: Obesity and TNBC connection examined. Life Sci 2024; 357:123082. [PMID: 39332488 DOI: 10.1016/j.lfs.2024.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Amid the dynamic field of cancer research, various targeted therapies have proven crucial in combating breast cancer, the most prevalent cancer among women globally. Triple Negative Breast Cancer (TNBC) stands out from other types of breast cancer due to the absence of three key receptors on the cell surface (progesterone, estrogen, and HER2). Researchers are working on finding ways to address TNBC's elusive biomarkers and minimize the damage caused by the disease through treatments like chemotherapies and targeted pathway receptors. One connection that should receive more attention is the link between TNBC and obesity. Obesity is defined as consuming significantly more energy than is expended, resulting in a high BMI. Moreover, obesity fosters a cancer-friendly environment characterized by inflammation, elevated levels of hormones, proteins, and signaling that activate pathways promoting cancer. Non-Hispanic black women have experienced notable disparities in TNBC rates. Various factors have led to the higher incidence and poorer outcomes of TNBC in non-Hispanic black women. This detailed review explores the complex relationship between obesity and TNBC, examining how the two disorders are connected in terms of disparities and offering a glimpse into future research and interventions.
Collapse
Affiliation(s)
- Patrick A Newport-Ratiu
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Kamel Abou Hussein
- Departments of Hematology and Medical Oncology, Breast Cancer Center, Women's Cancer Program, Cooper University Health Care, Camden, NJ, USA; MD Anderson Cancer Center at Cooper, Camden, NJ, USA
| | - Teralyn Carter
- Department of Breast Surgery, Breast Cancer Center, Woman's Cancer Program, Cooper University Health Care, Camden, NJ, USA; MD Anderson Cancer Center at Cooper, Camden, NJ, USA
| | | | | | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
4
|
Valladolid-Acebes I. Hippocampal Leptin Resistance and Cognitive Decline: Mechanisms, Therapeutic Strategies and Clinical Implications. Biomedicines 2024; 12:2422. [PMID: 39594988 PMCID: PMC11591892 DOI: 10.3390/biomedicines12112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Leptin, an adipokine essential for regulating energy balance, exerts important effects on brain function, notably within the hippocampus, a region integral to learning and memory. Leptin resistance, characterized by diminished responsiveness to elevated leptin levels, disrupts hippocampal function and exacerbates both obesity and cognitive impairments. Scope: This review critically examines how leptin resistance impairs hippocampal synaptic plasticity processes, specifically affecting long-term potentiation (LTP) and long-term depression (LTD), which are crucial for cognitive performance. Findings: Recent research highlights that leptin resistance disrupts N-methyl-D-aspartate (NMDA) receptor dynamics and hippocampal structure, leading to deficits in spatial learning and memory. Additionally, high-fat diets (HFDs), which contribute to leptin resistance, further deteriorate hippocampal function. Potential therapeutic strategies, including leptin sensitizers, show promise in mitigating brain disorders associated with leptin resistance. Complementary interventions such as caloric restriction and physical exercise also enhance leptin sensitivity and offer potential benefits to alleviating cognitive impairments. Aims of the review: This review synthesizes recent findings on the molecular pathways underlying leptin resistance and its impact on synaptic transmission and plasticity in the hippocampus. By identifying potential therapeutic targets, this work aims to provide an integrated approach for addressing cognitive deficits in obesity, ultimately improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| |
Collapse
|
5
|
Rasic-Markovic A, Djuric E, Skrijelj D, Bjekic-Macut J, Ignjatovic Đ, Sutulovic N, Hrncic D, Mladenovic D, Marković A, Radenković S, Radić L, Radunovic N, Stanojlovic O. Neuroactive steroids in the neuroendocrine control of food intake, metabolism, and reproduction. Endocrine 2024; 85:1050-1057. [PMID: 38635064 DOI: 10.1007/s12020-024-03755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 04/19/2024]
Abstract
Neuroactive steroids are a type of steroid hormones produced within the nervous system or in peripheral glands and then transported to the brain to exert their neuromodulatory effects. Neuroactive steroids have pleiotropic effects, that include promoting myelination, neuroplasticity, and brain development. They also regulate important physiological functions, such as metabolism, feeding, reproduction, and stress response. The homoeostatic processes of metabolism and reproduction are closely linked and mutually dependent. Reproductive events, such as pregnancy, bring about significant changes in metabolism, and metabolic status may affect reproductive function in mammals. In females, the regulation of reproduction and energy balance is controlled by the fluctuations of oestradiol and progesterone throughout the menstrual cycle. Neurosteroids play a key role in the neuroendocrine control of reproduction. The synthesis of neuroestradiol and neuroprogesterone within the brain is a crucial process that facilitates the release of GnRH and LH, which in turn, regulate the transition from oestrogen-negative to oestrogen-positive feedback. In addition to their function in the reproductive system, oestrogen has a key role in the regulation of energy homoeostasis by acting at central and peripheral levels. The oestrogenic effects on body weight homoeostasis are primarily mediated by oestrogen receptors-α (ERα), which are abundantly expressed in multiple brain regions that are implicated in the regulation of food intake, basal metabolism, thermogenesis, and brown tissue distribution. The tight interplay between energy balance and reproductive physiology is facilitated by shared regulatory pathways, namely POMC, NPY and kisspeptin neurons, which are targets of oestrogen regulation and likely participate in different aspects of the joint control of energy balance and reproductive function. The aim of this review is to present a summary of the progress made in uncovering shared regulatory pathways that facilitate the tight coupling between energy balance and reproductive physiology, as well as their reciprocal interactions and the modulation induced by neurosteroids.
Collapse
Affiliation(s)
- Aleksandra Rasic-Markovic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Emilija Djuric
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Daniel Skrijelj
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelica Bjekic-Macut
- Department of Endocrinology, UMC Bežanijska kosa, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Đurđica Ignjatovic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nikola Sutulovic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Hrncic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Mladenovic
- Institute of Pathophysiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Marković
- Department of Endocrinology, Internal Medicine Clinic, University Clinical Centre of the Republic of Srpska, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Saša Radenković
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Niš, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Lena Radić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Olivera Stanojlovic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Igoshin AV, Romashov GA, Yurchenko AA, Yudin NS, Larkin DM. Scans for Signatures of Selection in Genomes of Wagyu and Buryat Cattle Breeds Reveal Candidate Genes and Genetic Variants for Adaptive Phenotypes and Production Traits. Animals (Basel) 2024; 14:2059. [PMID: 39061521 PMCID: PMC11274160 DOI: 10.3390/ani14142059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Past and ongoing selection shapes the genomes of livestock breeds. Identifying such signatures of selection allows for uncovering the genetic bases of affected phenotypes, including economically important traits and environmental adaptations, for the further improvement of breed genetics to respond to climate and economic challenges. Turano-Mongolian cattle are a group of taurine breeds known for their adaptation to extreme environmental conditions and outstanding production performance. Buryat Turano-Mongolian cattle are among the few breeds adapted to cold climates and poor forage. Wagyu, on the other hand, is famous for high productivity and unique top-quality marbled meat. We used hapFLK, the de-correlated composite of multiple signals (DCMS), PBS, and FST methods to search for signatures of selection in their genomes. The scans revealed signals in genes related to cold adaptation (e.g., STAT3, DOCK5, GSTM3, and CXCL8) and food digestibility (SI) in the Buryat breed, and growth and development traits (e.g., RBFOX2 and SHOX2) and marbling (e.g., DGAT1, IQGAP2, RSRC1, and DIP2B) in Wagyu. Several putatively selected genes associated with reproduction, immunity, and resistance to pathogens were found in both breed genomes. The results of our work could be used for creating new productive adapted breeds or improving the extant breeds.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, 94800 Villejuif, France
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
7
|
Chen SM, Hsiao CW, Chen YJ, Hong CJ, Lin JC, Yang CP, Chang YH. Interleukin-4 inhibits the hypothalamic appetite control by modulating the insulin-AKT and JAK-STAT signaling in leptin mutant mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:3980-3990. [PMID: 38597583 DOI: 10.1002/tox.24264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Our previous research identified interleukin-4 (IL-4) as a key regulator of glucose/lipid metabolism, circulatory leptin levels, and insulin action, suggesting its potential as a therapeutic target for obesity and related complications. This study aimed to further elucidate the role of IL-4 in regulating hypothalamic appetite-controlling neuropeptides using leptin dysfunctional Leptin145E/145E mice as the experimental model. IL-4 significantly reduces body weight, food intake, and serum glucose levels. Our data demonstrated that IL-4 exhibits multiple functions in regulating hypothalamic appetite control, including downregulating orexigenic agouti-related peptide and neuropeptide Y levels, promoting expression of anorexigenic proopiomelanocortin, alleviating microenvironmental hypothalamic inflammation, enhancing leptin and insulin pathway, and attenuating insulin resistance. Furthermore, IL-4 promotes uncoupling protein 1 expression of white adipose tissue (WAT), suggesting its role in triggering WAT-beige switch. In summary, this study uncovers novel function of IL-4 in mediating food-intake behaviors and metabolic efficiency by regulating hypothalamic appetite-control and WAT browning activities. These findings support the therapeutic potential of targeting hypothalamic inflammation and reducing adiposity through IL-4 intervention for tackling the pandemic increasing prevalence of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chiao-Wan Hsiao
- Institute of Brain Science of National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Ju Chen
- Research Assistant Center, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
| | - Chen-Jee Hong
- Section of Psychosomatic Medicine, Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jung-Chun Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Ping Yang
- Department of Medical Technology, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Chandrasekaran P, Weiskirchen R. The signaling pathways in obesity-related complications. J Cell Commun Signal 2024; 18:e12039. [PMID: 38946722 PMCID: PMC11208128 DOI: 10.1002/ccs3.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Obesity, a rapidly expanding epidemic worldwide, is known to exacerbate many medical conditions, making it a significant factor in multiple diseases and their associated complications. This threatening epidemic is linked to various harmful conditions such as type 2 diabetes mellitus, hypertension, metabolic dysfunction-associated steatotic liver disease, polycystic ovary syndrome, cardiovascular diseases (CVDs), dyslipidemia, and cancer. The rise in urbanization and sedentary lifestyles creates an environment that fosters obesity, leading to both psychosocial and medical complications. To identify individuals at risk and ensure timely treatment, it is crucial to have a better understanding of the pathophysiology of obesity and its comorbidities. This comprehensive review highlights the relationship between obesity and obesity-associated complications, including type 2 diabetes, hypertension, (CVDs), dyslipidemia, polycystic ovary syndrome, metabolic dysfunction-associated steatotic liver disease, gastrointestinal complications, and obstructive sleep apnea. It also explores the potential mechanisms underlying these associations. A thorough analysis of the interplay between obesity and its associated complications is vital in developing effective therapeutic strategies to combat the exponential increase in global obesity rates and mitigate the deadly consequences of this polygenic condition.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical Chemistry (IFMPEGKC)RWTH University Hospital AachenAachenGermany
| |
Collapse
|
9
|
Heyward FD, Liu N, Jacobs C, Machado NLS, Ivison R, Uner A, Srinivasan H, Patel SJ, Gulko A, Sermersheim T, Tsai L, Rosen ED. AgRP neuron cis-regulatory analysis across hunger states reveals that IRF3 mediates leptin's acute effects. Nat Commun 2024; 15:4646. [PMID: 38821928 PMCID: PMC11143326 DOI: 10.1038/s41467-024-48885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.
Collapse
Affiliation(s)
- Frankie D Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Nan Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Natalia L S Machado
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachael Ivison
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aykut Uner
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Suraj J Patel
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology & Hepatology, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition and Department of Internal Medicine, UT Southwestern Medical, Center, Dallas, TX, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tyler Sermersheim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
He W, Loganathan N, Tran A, Belsham DD. Npy transcription is regulated by noncanonical STAT3 signaling in hypothalamic neurons: Implication with lipotoxicity and obesity. Mol Cell Endocrinol 2024; 586:112179. [PMID: 38387703 DOI: 10.1016/j.mce.2024.112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Neuropeptide Y (Npy) is an abundant neuropeptide expressed in the central and peripheral nervous systems. NPY-secreting neurons in the hypothalamic arcuate nucleus regulate energy homeostasis, and Npy mRNA expression is regulated by peripheral nutrient and hormonal signals like leptin, interleukin-6 (IL-6), and fatty acids. This study demonstrates that IL-6, which phosphorylates tyrosine 705 (Y705) of STAT3, decreased Npy mRNA in arcuate immortalized hypothalamic neurons. In parallel, inhibitors of STAT3-Y705 phosphorylation, stattic and cucurbitacin I, robustly upregulated Npy mRNA. Chromatin-immunoprecipitation showed high baseline total STAT3 binding to multiple regulatory regions of the Npy gene, which are decreased by IL-6 exposure. The STAT3-Npy interaction was further examined in obesity-related pathologies. Notably, in four different hypothalamic neuronal models where palmitate potently stimulated Npy mRNA, Socs3, a specific STAT3 activity marker, was downregulated and was negatively correlated with Npy mRNA levels (R2 = 0.40, p < 0.001), suggesting that disrupted STAT3 signaling is involved in lipotoxicity-mediated dysregulation of Npy. Finally, human NPY SNPs that map to human obesity or body mass index were investigated for potential STAT3 binding sites. Although none of the SNPs were linked to direct STAT3 binding, analysis show that rs17149106 (-602 G > T) is located on an upstream enhancer element of NPY, where the variant is predicted to disrupt validated binding of KLF4, a known inhibitory cofactor of STAT3 and downstream effector of leptin signaling. Collectively, this study demonstrates that STAT3 signaling negatively regulates Npy transcription, and that disruption of this interaction may contribute to metabolic disorders.
Collapse
Affiliation(s)
- Wenyuan He
- Departments of Physiology, University of Toronto, Ontario, Canada
| | | | - Andy Tran
- Departments of Physiology, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Departments of Physiology, University of Toronto, Ontario, Canada; Departments of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
11
|
LA Padula D, Zavaglia L, Hamad T, Nocito MC, Aquila S, Avena P, Rago V. Leptin effects: focusing on the relationship between obesity and male infertility. Minerva Endocrinol (Torino) 2024; 49:100-110. [PMID: 36251021 DOI: 10.23736/s2724-6507.22.03901-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The human male infertility has several causes interconnected to improper lifestyles such as smoking, sedentarism, environmental factors, toxins accumulation and energy imbalances. All these factors contribute to the obesity accompanied metabolic syndrome and hormonal alterations in the leptin-ghrelin axis. The leptin (Lep) has many pleiotropic effects in several biological systems, directly on the peripheral tissues or through the central nervous system. Many studies suggest that Lep is a key player in gonadal functions beside its documented role in reproductive regulation; however, further investigations are still necessary to elucidate all the molecular pathways involved in these mechanisms. Keeping into account that increased Lep levels in obese men are positively correlated with altered sperm parameters and testicular oxidative stress, evidence refers to Lep as a potential link between obesity and male infertility. This review represents an updated version on the concept of the Lep roles in mediating the male reproductive functions in obese patients.
Collapse
Affiliation(s)
- Davide LA Padula
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Lucia Zavaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Tarig Hamad
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Marta C Nocito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy -
| |
Collapse
|
12
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Smit RD, Ghosh B, Campion TJ, Stingel R, Lavell E, Hooper R, Fan X, Soboloff J, Smith GM. STAT3 protects dopaminergic neurons against degeneration in animal model of Parkinson's disease. Brain Res 2024; 1824:148691. [PMID: 38030102 PMCID: PMC10842767 DOI: 10.1016/j.brainres.2023.148691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is the most prevalent disorder of the basal ganglia, propagated by the degeneration of axon terminals within the striatum and subsequent loss of dopaminergic neurons in the substantia nigra (SN). Exposure of environmental neurotoxins and mutations of several mitochondrial and proteasomal genes are primarily responsible. METHODS To determine whether signal transducer and activator of transcription 3 (STAT3) could protect dopaminergic neurons against degeneration, we first screened it in the in vitro capacity using immortalized rat dopaminergic N27 cells under 6-OHDA neurotoxicity. We then evaluated the effectiveness of constitutively active (ca) STAT3 as a neuroprotective agent on N27 cells in a 6-hydroxydopamine (6-OHDA) induced rat model of PD and compared it to control animals or animals where AAV/caRheb was expressed in SN. Behavioral outcomes were assessed using rotational and cylinder assays and mitochondrial function using reactive oxygen species (ROS) levels. RESULTS Using flow cytometry, the in vitro analysis determined caSTAT3 significantly decreased dopaminergic neuronal death under 6-OHDA treatment conditions. Importantly, in vivo overexpression of caSTAT3 in SN dopaminergic neurons using AAV-mediated expression demonstrated significant neuroprotection of dopaminergic neurons following 6-OHDA. Both caSTAT3 and caRheb + caSTAT3 co-injection into substantia nigra reduced D-amphetamine-induced rotational behavior and increased ipsilateral forelimb function when compared to control animals. In addition, caSTAT3 decreased mitochondrial ROS production following 6-OHDA induced neurotoxicity. CONCLUSION caSTAT3 confers resistance against ROS production in mitochondria of susceptible SN dopaminergic neurons potentially offering a new avenue for treatment against PD.
Collapse
Affiliation(s)
- Rupert D Smit
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA.
| | - Biswarup Ghosh
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Thomas J Campion
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Rachel Stingel
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Emily Lavell
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Robert Hooper
- Fels Institute for Cancer Research & Molecular Biology, Temple University, USA
| | - Xiaoxuan Fan
- Flow Cytometry Core Facility, Temple University, USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research & Molecular Biology, Temple University, USA
| | - George M Smith
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| |
Collapse
|
14
|
Su H, Yuan Y, Tang J, Zhang Y, Wu H, Zhang Y, Liang J, Wang L, Zou X, Huang S, Zhang S, Lv Y. The ATR inhibitor VE-821 increases the sensitivity of gastric cancer cells to cisplatin. Transl Oncol 2023; 36:101743. [PMID: 37517142 PMCID: PMC10400920 DOI: 10.1016/j.tranon.2023.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Chemoresistance is a common event after cancer chemotherapy, including gastric cancer (GC). Cisplatin has been reported to induce the DNA damage response (DDR), thus leading to chemoresistance. VE-821, a specific inhibitor of ATR, has been proven to suppress a variety of solid malignancies effectively. Our study aimed to explore the effect of VE-821 on enhancing the chemical sensitivity to cisplatin and clarify the potential molecular mechanisms. METHODS Cell viability and apoptosis of MKN-45 and AGS were measured by CCK8 and flow cytometry assay respectively. Western blotting was used to detect the expression of target proteins. TCGA database was used to analyze the correlation between the ATR expression with the prognosis of GC patients. The viability of GC organoids was detected by Cell Titer Glo (CTG) through luminescence. RESULTS Cisplatin inhibited the proliferation and induced apoptosis of GC cells with a relatively high IC50 value, and increased the phosphorylation levels of ATR-CHK1 and H2AX. VE-821 achieved the same effects but by downregulating the phosphorylation levels of the ATR-CHK1 pathway. Besides, higher ATR expression in GC tissues was positively correlated with higher pathological stage in GC patients. Interestingly, ATR inhibition reversed cisplatin-induced STAT3 activation and enhanced H2AX levels. Moreover, VE-821 significantly sensitized GC cells to cisplatin, and these two drugs had synergistic effects in GC cell lines, organoids, and in vivo. CONCLUSION Our results suggested VE-821 sensitized GC cells to cisplatin via reversing DDR activation. And VE-821 treatment may be a promising therapeutic strategy for GC patients with cisplatin resistance.
Collapse
Affiliation(s)
- Haochen Su
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China; Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Yue Yuan
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, The Third People's Hospital of Yancheng, Yancheng, Jiangsu 224000, PR China
| | - Jiatong Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Yixuan Zhang
- Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China
| | - Hao Wu
- Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China
| | - Yin Zhang
- Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China
| | - Jiawei Liang
- Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China
| | - Lei Wang
- Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China
| | - Xiaoping Zou
- Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China
| | - Shuling Huang
- Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China; Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China; Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu 210008, PR China.
| |
Collapse
|
15
|
Talukdar A, Basumatary M. Rodent models to study type 1 and type 2 diabetes induced human diabetic nephropathy. Mol Biol Rep 2023; 50:7759-7782. [PMID: 37458869 DOI: 10.1007/s11033-023-08621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Diabetic nephropathy (DN), an outcome of prolonged diabetes, has affected millions of people worldwide and every year the incidence and prevalence increase substantially. The symptoms may start with mild manifestations of the disease such as increased albuminuria, serum creatinine levels, thickening of glomerular basement membrane, expansion of mesangial matrix to severe pathological symptoms such as glomerular lesions and tubulointerstitial fibrosis which may further proceed to cardiovascular dysfunction or end-stage renal disease. PERSPECTIVE Numerous therapeutic interventions are being explored for the management of DN, however, these interventions do not completely halt the progression of this disease and hence animal models are being explored to identify critical genetic and molecular parameters which could help in tackling the disease. Rodent models which mostly include mice and rats are commonly used experimental animals which provide a wide range of advantages in understanding the onset and progression of disease in humans and also their response to a wide range of interventions helps in the development of effective therapeutics. Rodent models of type 1 and type 2 diabetes induced DN have been developed utilizing different platforms and interventions during the last few decades some of which mimic various stages of diabetes ranging from early to later stages. However, a rodent model which replicates all the features of human DN is still lacking. This review tries to evaluate the rodent models that are currently available and understand their features and limitations which may help in further development of more robust models of human DN. CONCLUSION Using these rodent models can help to understand different aspects of human DN although further research is required to develop more robust models utilizing diverse genetic platforms which may, in turn, assist in developing effective interventions to target the disease at different levels.
Collapse
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India.
| | - Mandira Basumatary
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| |
Collapse
|
16
|
Ono G, Kobayakawa K, Saiwai H, Tamaru T, Iura H, Haruta Y, Kitade K, Iida K, Kawaguchi K, Matsumoto Y, Tsuda M, Tamura T, Ozato K, Inoue K, Konno DJ, Maeda T, Okada S, Nakashima Y. Macrophages play a leading role in determining the direction of astrocytic migration in spinal cord injury via ADP-P2Y1R axis. Sci Rep 2023; 13:11177. [PMID: 37429920 DOI: 10.1038/s41598-023-38301-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism through which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in the injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3-/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8-/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8-/- bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism through which migrating macrophages attract astrocytes and affect the pathophysiology and outcome after SCI.
Collapse
Affiliation(s)
- Gentaro Ono
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hirokazu Saiwai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Tamaru
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirotaka Iura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yohei Haruta
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuki Kitade
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keiichiro Iida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, Section on Molecular Genetics of Immunity, Division of Developmental Biology, NICHD, National Institutes of Health, Building 6A, Room 2A01, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Kazuhide Inoue
- Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
- Greenpharma Research Center for System Drug Discovery, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai-Jiro Konno
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka, 577-8502, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
17
|
González-García I, García-Clavé E, Cebrian-Serrano A, Le Thuc O, Contreras RE, Xu Y, Gruber T, Schriever SC, Legutko B, Lintelmann J, Adamski J, Wurst W, Müller TD, Woods SC, Pfluger PT, Tschöp MH, Fisette A, García-Cáceres C. Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 2023; 35:438-455.e7. [PMID: 36889283 PMCID: PMC10028007 DOI: 10.1016/j.cmet.2023.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clavé
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jutta Lintelmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive 8, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, LudwigMaximilians Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, 80333 Munich, Germany
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
18
|
Mousavi SN, Bahramfard T, Rad EY, Hosseinikia M, Saboori S. Association of Leptin and Retinol Binding Protein 4 with the Risk of Gestational Diabetes: A Systematic Review and Meta-Analysis of Observational Studies. Indian J Endocrinol Metab 2023; 27:96-104. [PMID: 37292076 PMCID: PMC10245309 DOI: 10.4103/ijem.ijem_385_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 06/10/2023] Open
Abstract
The positive correlation between serum levels of retinol binding protein 4 (RBP4) and gestational diabetes (GDM) has been proven in the previous meta-analysis on case-control studies. However, its association with serum levels of leptin is not studied in any meta-analysis. Therefore, we performed an updated systematic review of observational studies evaluating the association between serum RBP4 and leptin with the risk of GDM. A systematic search was performed on four databases, including PubMed, Scopus, Web of Science, and Google Scholar, up to March 2021. After screening and deleting duplicates, nine articles met our inclusion criteria. Studies had case-control and cohort design, and included 5074 participants with a mean age range between 18 and 32.65 years (2359 participants for RBP4 and 2715 participants for leptin). Interestingly, this meta-analysis revealed higher levels of RBP4 (OR=2.04; 95% CI: 1.37, 3.04) and leptin (OR=2.32; 95% CI: 1.39, 3.87) are significantly associated with the increased risk of overall GDM. The subgroup analysis approved the results based on the study design, trimester of pregnancy and serum/plasms to investigate the source of heterogeneity. The present meta-analysis determines serum leptin and RBP4 levels as predictors of GDM occurrence. However, studies included in this meta-analysis showed significant heterogeneity.
Collapse
Affiliation(s)
- Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tooba Bahramfard
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeil Yousefi Rad
- Nutritional Health Research Centre, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahboobe Hosseinikia
- Department of Nutrition and Food Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Somayeh Saboori
- Nutritional Health Research Centre, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
19
|
Ono G, Kobayakawa K, Saiwai H, Tamaru T, lura H, Haruta Y, Kitade K, Iida KI, Kawaguchi KI, Matsumoto Y, Tsuda M, Tamura T, Ozato K, Inoue K, Konno DJ, Maeda T, Okada S, Nakashima Y. Macrophages play a leading role in determining the direction of astrocytic migration in spinal cord injury via ADP-P2Y1R axis. RESEARCH SQUARE 2023:rs.3.rs-2427082. [PMID: 36789440 PMCID: PMC9928047 DOI: 10.21203/rs.3.rs-2427082/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism by which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3 -/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8 -/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8 -/ bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism in which migrating macrophages attracted astrocytes and affected the pathophysiology and outcome after SCI.
Collapse
Affiliation(s)
- Gentaro Ono
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirokazu Saiwai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Tamaru
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirotaka lura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yohei Haruta
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuki Kitade
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kei-Ichiro Iida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka Nishi-ku Fukuoka-shi Fukuoka 819-0395, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama,236-0004, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, NICHD, National Institutes of Health, Section on Molecular Genetics of Immunity, Building 6A, Room 2A01, 6 Center Drive, Bethesda, MD 20892, USA
| | - Kazuhide Inoue
- Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka Nishi-ku Fukuoka-shi Fukuoka 819-0395, Japan; Greenpharma Research Center for System Drug Discovery, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai-Jiro Konno
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, Suita 565-0871, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
20
|
Homocysteine causes neuronal leptin resistance and endoplasmic reticulum stress. PLoS One 2022; 17:e0278965. [PMID: 36512575 PMCID: PMC9746958 DOI: 10.1371/journal.pone.0278965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Abnormally high serum homocysteine levels have been associated with several disorders, including obesity, cardiovascular diseases or neurological diseases. Leptin is an anti-obesity protein and its action is mainly mediated by the activation of its Ob-R receptor in neuronal cells. The inability of leptin to induce activation of its specific signaling pathways, especially under endoplasmic reticulum stress, leads to the leptin resistance observed in obesity. The present study examined the effect of homocysteine on leptin signaling in SH-SY5Y neuroblastoma cells expressing the leptin receptor Ob-Rb. Phosphorylation of the signal transducer and activator of transcription (STAT3) and leptin-induced STAT3 transcriptional activity were significantly inhibited by homocysteine treatment. These effects may be specific to homocysteine and to the leptin pathway, as other homocysteine-related compounds, namely methionine and cysteine, have weak effect on leptin-induced inhibition of STAT3 phosphorylation, and homocysteine has no impact on IL-6-induced activation of STAT3. The direct effect of homocysteine on leptin-induced Ob-R activation, analyzed by Ob-R BRET biosensor to monitor Ob-R oligomerization and conformational change, suggested that homocysteine treatment does not affect early events of leptin-induced Ob-R activation. Instead, we found that, unlike methionine or cysteine, homocysteine increases the expression of the endoplasmic reticulum (ER) stress response gene, a homocysteine-sensitive ER resident protein. These results suggest that homocysteine may induce neuronal resistance to leptin by suppressing STAT3 phosphorylation downstream of the leptin receptor via ER stress.
Collapse
|
21
|
Hypothalamic TTF-1 orchestrates the sensitivity of leptin. Mol Metab 2022; 66:101636. [PMID: 36375792 PMCID: PMC9700031 DOI: 10.1016/j.molmet.2022.101636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is predominantly expressed in discrete areas of the hypothalamus, which acts as the central unit for the regulation of whole-body energy homeostasis. Current study designed to identify the roles of TTF-1 on the responsiveness of the hypothalamic circuit activity to circulating leptin and the development of obesity linked to the insensitivity of leptin. METHODS We generated conditional knock-out mice by crossing TTF-1flox/flox mice with leptin receptor (ObRb)Cre or proopiomelanocortin (POMC)Cre transgenic mice to interrogate the contributions of TTF-1 in leptin signaling and activity. Changes of food intake, body weight and energy expenditure were evaluated in standard or high fat diet-treated transgenic mice by using an indirect calorimetry instrument. Molecular mechanism was elucidated with immunohistochemistry, immunoblotting, quantitative PCR, and promoter assays. RESULTS The selective deletion of TTF-1 gene expression in cells expressing the ObRb or POMC enhanced the anorexigenic effects of leptin as well as the leptin-induced phosphorylation of STAT3. We further determined that TTF-1 inhibited the transcriptional activity of the ObRb gene. In line with these findings, the selective deletion of the TTF-1 gene in ObRb-positive cells led to protective effects against diet-induced obesity via the amelioration of leptin resistance. CONCLUSIONS Collectively, these results suggest that hypothalamic TTF-1 participates in the development of obesity as a molecular component involved in the regulation of cellular leptin signaling and activity. Thus, TTF-1 may represent a therapeutic target for the treatment, prevention, and control of obesity.
Collapse
|
22
|
Jin K, Li T, Miao Z, Ran J, Chen L, Mou D, Wang C, Wu S, Yang H, Fu XY. Stat5 -/- CD4 + T cells elicit anti-melanoma effect by CD4 + T cell remolding and Notch1 activation. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1824-1839. [PMID: 35508790 DOI: 10.1007/s11427-021-2078-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Signal transducers and activators of transcription 5 (Stat5) is known to engage in regulating the differentiation and effector function of various subsets of T helper cells. However, how Stat5 regulates the antitumor activity of tumor-infiltrating CD4+ T cells is largely unknown. Here, we showed that mice with specific deletion of Stat5 in CD4+ T cells were less susceptible to developing subcutaneous and lung metastatic B16 melanoma with CD4+ tumor-infiltrating lymphocytes (TILs) remolding. Especially, we confirmed that Stat5-deficient CD4+ naïve T cells were prone to polarization of two subtypes of Th17 cells: IFN-γ+ and IFN-γ- Th17 cells, which exhibited increased anti-melanoma activity through enhanced activation of Notch1 pathway compared with wild type Th17 cells. Our study therefore revealed a novel function of Stat5 in regulating tumor-specific Th17 cell differentiation and function in melanoma. This study also provided a new possibility for targeting Stat5 and other Th17-associated pathways to develop novel immunotherapies for melanoma patients.
Collapse
Affiliation(s)
- Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhiyong Miao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingjing Ran
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luyu Chen
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dachao Mou
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Shasha Wu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xin-Yuan Fu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Generos BioPharma, Hangzhou, 310018, China.
| |
Collapse
|
23
|
Sahota JS, Sharma B, Guleria K, Sambyal V. Candidate genes for infertility: an in-silico study based on cytogenetic analysis. BMC Med Genomics 2022; 15:170. [PMID: 35918717 PMCID: PMC9347124 DOI: 10.1186/s12920-022-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background The cause of infertility remains unclear in a significant proportion of reproductive-age couples who fail to conceive naturally. Chromosomal aberrations have been identified as one of the main genetic causes of male and female infertility. Structural chromosomal aberrations may disrupt the functioning of various genes, some of which may be important for fertility. The present study aims to identify candidate genes and putative functional interaction networks involved in male and female infertility using cytogenetic data from cultured peripheral blood lymphocytes of infertile patients. Methods Karyotypic analyses was done in 201 infertile patients (100 males and 101 females) and 201 age and gender matched healthy controls (100 males and 101 females) after 72 h peripheral lymphocyte culturing and GTG banding, followed by bioinformatic analysis using Cytoscape v3.8.2 and Metascape. Results Several chromosomal regions with a significantly higher frequency of structural aberrations were identified in the infertile males (5q2, 10q2, and 17q2) and females (6q2, 16q2, and Xq2). Segregation of the patients based on type of infertility (primary v/s secondary infertility) led to the identification of chromosomal regions with a significantly higher frequency of structural aberrations exclusively within the infertile males (5q2, 17q2) and females (16q2) with primary infertility. Cytoscape identified two networks specific to these regions: a male specific network with 99 genes and a female specific network with 109 genes. The top enriched GO terms within the male and female infertility networks were “skeletal system morphogenesis” and “mRNA transport” respectively. PSME3, PSMD3, and CDC27 were the top 3 hub genes identified within the male infertility network. Similarly, UPF3B, IRF8, and PSMB1 were the top 3 hub genes identified with the female infertility network. Among the hub genes identified in the male- and female-specific networks, PSMB1, PSMD3, and PSME3 are functional components of the proteasome complex. These hub genes have a limited number of reports related to their respective roles in maintenance of fertility in mice model and humans and require validation in further studies. Conclusion The candidate genes predicted in the present study can serve as targets for future research on infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01320-x.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Bhavna Sharma
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Kamlesh Guleria
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Vasudha Sambyal
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
24
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
25
|
Adipose Tissue Dysfunction and Obesity-Related Male Hypogonadism. Int J Mol Sci 2022; 23:ijms23158194. [PMID: 35897769 PMCID: PMC9330735 DOI: 10.3390/ijms23158194] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a chronic illness associated with several metabolic derangements and comorbidities (i.e., insulin resistance, leptin resistance, diabetes, etc.) and often leads to impaired testicular function and male subfertility. Several mechanisms may indeed negatively affect the hypothalamic–pituitary–gonadal health, such as higher testosterone conversion to estradiol by aromatase activity in the adipose tissue, increased ROS production, and the release of several endocrine molecules affecting the hypothalamus–pituitary–testis axis by both direct and indirect mechanisms. In addition, androgen deficiency could further accelerate adipose tissue expansion and therefore exacerbate obesity, which in turn enhances hypogonadism, thus inducing a vicious cycle. Based on these considerations, we propose an overview on the relationship of adipose tissue dysfunction and male hypogonadism, highlighting the main biological pathways involved and the current therapeutic options to counteract this condition.
Collapse
|
26
|
Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23:e13430. [PMID: 35119166 PMCID: PMC9286785 DOI: 10.1111/obr.13430] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
Abstract
β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the β-secretase responsible for the production of β-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.
Collapse
Affiliation(s)
- Hannah A Taylor
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lena Przemylska
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eva M Clavane
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
27
|
Kaneko K, Takekuma Y, Goto T, Ohinata K. An orally active plant Rubisco-derived peptide increases neuronal leptin responsiveness. Sci Rep 2022; 12:8599. [PMID: 35597815 PMCID: PMC9124197 DOI: 10.1038/s41598-022-12595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Nutrient excess, such as the intake of a high-fat diet, reduces hypothalamic responses to exogenously administered leptin and induces dietary obesity; however, orally active components that attenuate neural leptin dysregulation have yet to be identified. We herein demonstrated that YHIEPV, derived from the pepsin-pancreatin digestion of the green leaf protein Rubisco, increased the leptin-induced phosphorylation of STAT3 in ex vivo hypothalamic slice cultures. We also showed that YHIEPV mitigated palmitic acid-induced decreases in leptin responsiveness. Furthermore, orally administered YHIEPV promoted leptin-induced reductions in body weight and food intake in obese mice. In addition, dietary-induced body weight gain was significantly less in mice orally or centrally administered YHIEPV daily than in saline-control mice. Cellular leptin sensitivity and the levels of proinflammatory-related factors, such as IL1β and Socs-3, in the hypothalamus of obese mice were also restored by YHIEPV. YHIEPV blocked cellular leptin resistance induced by forskolin, which activates Epac-Rap1 signaling, and reduced the level of the GTP-bound active form of Rap1 in the brains of obese mice. Collectively, the present results demonstrated that the orally active peptide YHIEPV derived from a major green leaf protein increased neural leptin responsiveness and reduced body weight gain in mice with dietary obesity.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan. .,Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan.
| | - Yukihiro Takekuma
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
28
|
Ross EM, Sanjana H, Nguyen LT, Cheng Y, Moore SS, Hayes BJ. Extensive Variation in Gene Expression is Revealed in 13 Fertility-Related Genes Using RNA-Seq, ISO-Seq, and CAGE-Seq From Brahman Cattle. Front Genet 2022; 13:784663. [PMID: 35401673 PMCID: PMC8990236 DOI: 10.3389/fgene.2022.784663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fertility is a key driver of economic profitability in cattle production. A number of studies have identified genes associated with fertility using genome wide association studies and differential gene expression analysis; however, the genes themselves are poorly characterized in cattle. Here, we selected 13 genes from the literature which have previously been shown to have strong evidence for an association with fertility in Brahman cattle (Bos taurus indicus) or closely related breeds. We examine the expression variation of the 13 genes that are associated with cattle fertility using RNA-seq, CAGE-seq, and ISO-seq data from 11 different tissue samples from an adult Brahman cow and a Brahman fetus. Tissues examined include blood, liver, lung, kidney, muscle, spleen, ovary, and uterus from the cow and liver and lung from the fetus. The analysis revealed several novel isoforms, including seven from SERPINA7. The use of three expression characterization methodologies (5′ cap selected ISO-seq, CAGE-seq, and RNA-seq) allowed the identification of isoforms that varied in their length of 5′ and 3′ untranslated regions, variation otherwise undetectable (collapsed as degraded RNA) in generic isoform identification pipelines. The combinations of different sequencing technologies allowed us to overcome the limitations of relatively low sequence depth in the ISO-seq data. The lower sequence depth of the ISO-seq data was also reflected in the lack of observed expression of some genes that were observed in the CAGE-seq and RNA-seq data from the same tissue. We identified allele specific expression that was tissue-specific in AR, IGF1, SOX9, STAT3, and TAF9B. Finally, we characterized an exon of TAF9B as partially nested within the neighboring gene phosphoglycerate kinase 1. As this study only examined two animals, even more transcriptional variation may be present in a genetically diverse population. This analysis reveals the large amount of transcriptional variation within mammalian fertility genes and illuminates the fact that the transcriptional landscape cannot be fully characterized using a single technology alone.
Collapse
Affiliation(s)
- Elizabeth M. Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Elizabeth M. Ross,
| | - Hari Sanjana
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Loan T. Nguyen
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - YuanYuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stephen S. Moore
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Ben J. Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
29
|
Topaloglu AK, Simsek E, Kocher MA, Mammadova J, Bober E, Kotan LD, Turan I, Celiloglu C, Gurbuz F, Yuksel B, Good DJ. Inactivating NHLH2 variants cause idiopathic hypogonadotropic hypogonadism and obesity in humans. Hum Genet 2022; 141:295-304. [PMID: 35066646 DOI: 10.1007/s00439-021-02422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Metabolism has a role in determining the time of pubertal development and fertility. Nonetheless, molecular/cellular pathways linking metabolism/body weight to puberty/reproduction are unknown. The KNDy (Kisspeptin/Neurokinin B/Dynorphin) neurons in the arcuate nucleus of the hypothalamus constitute the GnRH (gonadotropin-releasing hormone) pulse generator. We previously created a mouse model with a whole-body targeted deletion of nescient helix-loop-helix 2 (Nhlh2; N2KO), a class II member of the basic helix-loop-helix family of transcription factors. As this mouse model features pubertal failure and late-onset obesity, we wanted to study whether NHLH2 represents a candidate molecule to link metabolism and puberty in the hypothalamus. Exome sequencing of a large Idiopathic Hypogonadotropic Hypogonadism cohort revealed obese patients with rare sequence variants in NHLH2, which were characterized by in-silico protein analysis, chromatin immunoprecipitation, and luciferase reporter assays. In vitro heterologous expression studies demonstrated that the variant p.R79C impairs Nhlh2 binding to the Mc4r promoter. Furthermore, p.R79C and other variants show impaired transactivation of the human KISS1 promoter. These are the first inactivating human variants that support NHLH2's critical role in human puberty and body weight control. Failure to carry out this function results in the absence of pubertal development and late-onset obesity in humans.
Collapse
Affiliation(s)
- A Kemal Topaloglu
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Enver Simsek
- Division of Pediatric Endocrinology, Faculty of Medicine, Eskisehir Osman Gazi University, Eskisehir, Turkey
| | - Matthew A Kocher
- Translational Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Jamala Mammadova
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ece Bober
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Leman Damla Kotan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ihsan Turan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Can Celiloglu
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Gurbuz
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Bilgin Yuksel
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Deborah J Good
- Translational Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, USA
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
30
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
31
|
Kang N, Oh S, Kim SY, Ahn H, Son M, Heo SJ, Byun K, Jeon YJ. Anti-obesity effects of Ishophloroglucin A from the brown seaweed Ishige okamurae (Yendo) via regulation of leptin signal in ob/ob mice. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Animal models of diabetic microvascular complications: Relevance to clinical features. Biomed Pharmacother 2021; 145:112305. [PMID: 34872802 DOI: 10.1016/j.biopha.2021.112305] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes has become more common in recent years worldwide, and this growth is projected to continue in the future. The primary concern with diabetes is developing various complications, which significantly contribute to the disease's mortality and morbidity. Over time, the condition progresses from the pre-diabetic to the diabetic stage and then to the development of complications. Years and enormous resources are required to evaluate pharmacological interventions to prevent or delay the progression of disease or complications in humans. Appropriate screening models are required to gain a better understanding of both pathogenesis and potential therapeutic agents. Different species of animals are used to evaluate the pharmacological potentials and study the pathogenesis of the disease. Animal models are essential for research because they represent most of the structural, functional, and biochemical characteristics of human diseases. An ideal screening model should mimic the pathogenesis of the disease with identifiable characteristics. A thorough understanding of animal models is required for the experimental design to select an appropriate model. Each animal model has certain advantages and limitations. The present manuscript describes the animal models and their diagnostic characteristics to evaluate microvascular diabetic complications.
Collapse
|
33
|
Multiple Leptin Signalling Pathways in the Control of Metabolism and Fertility: A Means to Different Ends? Int J Mol Sci 2021; 22:ijms22179210. [PMID: 34502119 PMCID: PMC8430761 DOI: 10.3390/ijms22179210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
The adipocyte-derived ‘satiety promoting’ hormone, leptin, has been identified as a key central regulator of body weight and fertility, such that its absence leads to obesity and infertility. Plasma leptin levels reflect body adiposity, and therefore act as an ‘adipostat’, whereby low leptin levels reflect a state of low body adiposity (under-nutrition/starvation) and elevated leptin levels reflect a state of high body adiposity (over-nutrition/obesity). While genetic leptin deficiency is rare, obesity-related leptin resistance is becoming increasingly common. In the absence of adequate leptin sensitivity, leptin is unable to exert its ‘anti-obesity’ effects, thereby exacerbating obesity. Furthermore, extreme leptin resistance and consequent low or absent leptin signalling resembles a state of starvation and can thus lead to infertility. However, leptin resistance occurs on a spectrum, and it is possible to be resistant to leptin’s metabolic effects while retaining leptin’s permissive effects on fertility. This may be because leptin exerts its modulatory effects on energy homeostasis and reproductive function through discrete intracellular signalling pathways, and these pathways are differentially affected by the molecules that promote leptin resistance. This review discusses the potential mechanisms that enable leptin to exert differential control over metabolic and reproductive function in the contexts of healthy leptin signalling and of diet-induced leptin resistance.
Collapse
|
34
|
Seasonal and Nutritional Fluctuations in the mRNA Levels of the Short Form of the Leptin Receptor ( LRa) in the Hypothalamus and Anterior Pituitary in Resistin-Treated Sheep. Animals (Basel) 2021; 11:ani11082451. [PMID: 34438908 PMCID: PMC8388769 DOI: 10.3390/ani11082451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Research since the discovery of leptin has mainly focused on the long form of the leptin receptor. Currently, experiments on the short form of the leptin receptor have confirmed that not only is short form of leptin receptor present in the hypothalamus, but also expanded knowledge with information documenting the specific expression of that form of leptin receptor in selected areas of the hypothalamus and in the pituitary gland. In addition, we have shown that short form of leptin receptor expression levels are affected by day length, adiposity and resistin in sheep. Abstract The short form of the leptin receptor (LRa) plays a key role in the transport of leptin to the central nervous system (CNS). Here, the resistin (RSTN)-mediated expression of LRa in the preoptic area (POA), ventromedial and dorsomedial nuclei (VMH/DMH),arcuate nucleus (ARC) and the anterior pituitary gland (AP)was analyzed considering the photoperiodic (experiment 1) and nutritional status (experiment 2) of ewes. In experiment 1, 30 sheep were fed normally and received one injection of saline or two doses of RSTN one hour prior to euthanasia. RSTN increased LRa expression mainly in the ARC and AP during long days (LD) and only in the AP during short days (SD). In experiment 2, an altered diet for 5 months created lean or fat sheep. Twenty sheep were divided into four groups: the lean and fat groups were given saline, while the lean-R and fat-R groups received RSTN one hour prior to euthanasia. Changes in adiposity influenced the effect of RSTN on LRa mRNA transcript levels in the POA, ARC and AP and without detection of LRa in the VMH/DMH. Overall, both photoperiodic and nutritional signals influence the effects of RSTN on leptin transport to the CNS and are involved in the adaptive/pathological phenomenon of leptin resistance in sheep.
Collapse
|
35
|
Gonçalves GHM, Tristão SM, Volpi RE, Almeida-Pereira G, de Carvalho Borges B, Donato J, de Castro M, Antunes-Rodrigues J, Elias LLK. STAT3 but Not ERK2 Is a Crucial Mediator Against Diet-Induced Obesity via VMH Neurons. Diabetes 2021; 70:1498-1507. [PMID: 33883215 DOI: 10.2337/db20-0658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/18/2021] [Indexed: 11/13/2022]
Abstract
Leptin plays an important role in the protection against diet-induced obesity (DIO) by its actions in ventromedial hypothalamic (VMH) neurons. However, little is known about the intracellular mechanisms involved in these effects. To assess the role of the STAT3 and ERK2 signaling in neurons that express the steroidogenic factor 1 (SF1) in the VMH in energy homeostasis, we used cre-lox technology to generate male and female mice with specific disruption of STAT3 or ERK2 in SF1 neurons of the VMH. We demonstrated that the conditional knockout of STAT3 in SF1 neurons of the VMH did not affect body weight, food intake, energy expenditure, or glucose homeostasis in animals on regular chow. However, with high-fat diet (HFD) challenge, loss of STAT3 in SF1 neurons caused a significant increase in body weight, food intake, and energy efficiency that was more remarkable in females, which also showed a decrease in energy expenditure. In contrast, deletion of ERK2 in SF1 neurons of VMH did not have any impact on energy homeostasis in both regular diet and HFD conditions. In conclusion, STAT3 but not ERK2 signaling in SF1 neurons of VMH plays a crucial role in protection against DIO in a sex-specific pattern.
Collapse
Affiliation(s)
- Gabriel Henrique Marques Gonçalves
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sabrina Mara Tristão
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafaella Eduarda Volpi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gislaine Almeida-Pereira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Beatriz de Carvalho Borges
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Margaret de Castro
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
36
|
de Candia P, Prattichizzo F, Garavelli S, Alviggi C, La Cava A, Matarese G. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J Exp Med 2021; 218:211994. [PMID: 33857282 PMCID: PMC8056770 DOI: 10.1084/jem.20191593] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of the archetypal adipocytokine leptin and how it regulates energy homeostasis have represented breakthroughs in our understanding of the endocrine function of the adipose tissue and the biological determinants of human obesity. Investigations on leptin have also been instrumental in identifying physio-pathological connections between metabolic regulation and multiple immunological functions. For example, the description of the promoting activities of leptin on inflammation and cell proliferation have recognized the detrimental effects of leptin in connecting dysmetabolic conditions with cancer and with onset and/or progression of autoimmune disease. Here we review the multiple biological functions and complex framework of operations of leptin, discussing why and how the pleiotropic activities of this adipocytokine still pose major hurdles in the development of effective leptin-based therapeutic opportunities for different clinical conditions.
Collapse
Affiliation(s)
- Paola de Candia
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Carlo Alviggi
- Department of Neuroscience, Reproductive Science and Odontostomatology, Università di Napoli "Federico II," Naples, Italy
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy.,T reg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II," Naples, Italy
| |
Collapse
|
37
|
Liu H, Du T, Li C, Yang G. STAT3 phosphorylation in central leptin resistance. Nutr Metab (Lond) 2021; 18:39. [PMID: 33849593 PMCID: PMC8045279 DOI: 10.1186/s12986-021-00569-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanism exploitation of energy homeostasis is urgently required because of the worldwide prevailing of obesity-related metabolic disorders in human being. Although it is well known that leptin plays a central role in regulating energy balance by suppressing food intake and promoting energy expenditure, the existence of leptin resistance in majority of obese individuals hampers the utilization of leptin therapy against these disorders. However, the mechanism of leptin resistance is largely unknown in spite of the globally enormous endeavors. Current theories to interpret leptin resistance include the impairment of leptin transport, attenuation of leptin signaling, chronic inflammation, ER tress, deficiency of autophagy, as well as leptin itself. Leptin-activated leptin receptor (LepRb) signals in hypothalamus via several pathways, in which JAK2-STAT3 pathway, the most extensively investigated one, is considered to mediate the major action of leptin in energy regulation. Upon leptin stimulation the phosphorylation of STAT3 is one of the key events in JAK2-STAT3 pathway, followed by the dimerization and nuclear translocation of this molecule. Phosphorylated STAT3 (p-STAT3), as a transcription factor, binds to and regulates its target gene such as POMC gene, playing the physiological function of leptin. Regarding POMC gene in hypothalamus however little is known about the detail of its interaction with STAT3. Moreover the status of p-STAT3 and its significance in hypothalamus of DIO mice needs to be well elucidated. This review comprehends literatures on leptin and leptin resistance and especially discusses what STAT3 phosphorylation would contribute to central leptin resistance.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Tianxin Du
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Chen Li
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Guoqing Yang
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China.
| |
Collapse
|
38
|
Association between Single Nucleotide Polymorphism rs9891119 of STAT3 Gene and the Genetic Susceptibility to Type 2 Diabetes in Chinese Han Population from Guangdong. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6657324. [PMID: 33833859 PMCID: PMC8012137 DOI: 10.1155/2021/6657324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/06/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022]
Abstract
Background The aim of this study was to investigate the association between single nucleotide polymorphism (SNP) rs9891119 of the signal transducer and activator of the transcription 3 (STAT3) gene and genetic susceptibility to type 2 diabetes in Chinese Han population from the Guangdong province. Objective The aim of the present study was to explore the relationship between single nucleotide polymorphism rs9891119 of STAT3 gene and type 2 diabetes mellitus (T2DM), which provides a basis for molecular genetic research on the pathogenesis of T2DM in Chinese Han population. Methods In our case-control study, the SNP rs9891119 was picked out from the STAT3 gene and the SNP genotyping was performed by using the SNPscan™ kit in 1092 patients with type 2 diabetes as cases and 1092 normal persons as controls. The distributions of genotype and allele frequencies in two groups were analyzed by SPSS 20.0 software. Results Our results showed that the alleles of A and C of rs9891119 of the STAT3 gene were 54.3 and 45.7% in patients with type 2 diabetes, while 55.5% and 44.5% in the normal persons, which have no statistical significance (P > 0.05). There were also no significant differences in AA, AC, and CC genotype frequencies between type 2 diabetes patients and normal persons. There were no significant differences in codominant, dominant, recessive, and overdominant genetic models of SNP rs9891119 before and after adjusting the covariant factors (P > 0.05). Conclusions Therefore, genetic susceptibility to type 2 diabetes may be not associated with SNP rs9891119 of the STAT3 gene in Chinese Han population from the Guangdong province.
Collapse
|
39
|
Campos AMP, Wasinski F, Klein MO, Bittencourt JC, Metzger M, Donato J. Fasting reduces the number of TRH immunoreactive neurons in the hypothalamic paraventricular nucleus of male rats, but not in mice. Neurosci Lett 2021; 752:135832. [PMID: 33746008 DOI: 10.1016/j.neulet.2021.135832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023]
Abstract
During fasting or weight loss, the fall in leptin levels leads to suppression of thyrotropin-releasing hormone (TRH) expression in the paraventricular nucleus of the hypothalamus (PVH) and, consequently, inhibition of the hypothalamic-pituitary-thyroid (HPT) axis. However, differently than rats, just few PVHTRH neurons express the leptin receptor in mice. In the present study, male adult rats and mice were submitted to 48 -h fasting to evaluate the consequences on proTRH peptide expression at the PVH level. Additionally, the proTRH peptide expression was also assessed in the brains of leptin-deficient (Lepob/ob) mice. We observed that approximately 50 % of PVHTRH neurons of leptin-injected rats exhibited phosphorylation of the signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin receptor activation. In contrast, very few PVHTRH neurons of leptin-injected mice exhibited pSTAT3. Rats submitted to 48 -h fasting showed a significant reduction in the number of PVHTRH immunoreactive neurons, as compared to fed rats. On the other hand, no changes in the number of PVHTRH immunoreactive neurons were observed between fasted and fed mice. Next, the number of TRH immunoreactive cells was determined in the PVH, dorsomedial nucleus of the hypothalamus and nucleus raphe pallidus of Lepob/ob and wild-type mice and no significant differences were observed, despite reduced plasma T4 levels in Lepob/ob mice. Taken together, these findings provide additional evidence of the important species-specific differences in the mechanisms used by fasting and/or leptin to regulate the HPT axis.
Collapse
Affiliation(s)
- Ana M P Campos
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Marianne O Klein
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, Sao Paulo, Brazil
| | - Jackson C Bittencourt
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, Sao Paulo, Brazil
| | - Martin Metzger
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil.
| |
Collapse
|
40
|
Wang J, Bao B, Feng J, Zhao Q, Dai H, Meng F, Deng S, Wang B, Li H. Effects of Diabetes Mellitus on Sperm Quality in the Db/Db Mouse Model and the Role of the FoxO1 Pathway. Med Sci Monit 2021; 27:e928232. [PMID: 33589581 PMCID: PMC7896429 DOI: 10.12659/msm.928232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Studies have shown that diabetes mellitus (DM) has a negative impact on male reproductive function, which may lead to changes in the testis and epididymis and a decline in semen quality. Material/Methods We performed animal experiments with 6 diabetic db/db mice as the model group (group B) and 6 C57BL/6J mice as the control group (group A). After adaptive feeding for 7 days, the sperm quality of each group was measured. Concurrently, the morphology of the mouse testis was observed by hematoxylin-eosin (H&E) staining. The expression of the PI3K, Akt, FoxO1, FasL, IL-6, and Stat3 proteins and mRNAs in the testicular tissue was detected by western blotting and RT-qPCR. Results The number of spermatozoa and sperm motility of group A was significantly higher than that of group B (P<0.05). H&E staining of the testicular tissue showed the seminiferous tubules in group B mice were damaged to varying degrees and the seminiferous tubules were sparsely arranged. Compared with those of group A, the expression levels of PI3K, Akt, and Stat3 proteins and mRNAs in group B were significantly lower (P<0.05), while the expression levels of FoxO1, FasL, and IL-6 proteins and mRNAs in group B mice were significantly higher (P<0.05). Conclusions This study demonstrated that DM inhibited the expression of PI3K, Akt, and Stat3 proteins and mRNAs in the FoxO1 pathway and promoted the expression of FoxO1, FasL, and IL-6 proteins and mRNAs, leading to abnormal apoptosis of testicular tissue cells and functional damage, and eventually spermatogenic dysfunction.
Collapse
Affiliation(s)
- Jisheng Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Binghao Bao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Junlong Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Qi Zhao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Hengheng Dai
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Fanchao Meng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Sheng Deng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Haisong Li
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
41
|
Abstract
A healthy nutritional state is required for all aspects of reproduction and is signaled by the adipokine leptin. Leptin acts in a relatively narrow concentration range: too much or too little will compromise fertility. The leptin signal timing is important to prepubertal development in both sexes. In the brain, leptin acts on ventral premammillary neurons which signal kisspeptin (Kiss1) neurons to stimulate gonadotropin releasing hormone (GnRH) neurons. Suppression of Kiss1 neurons occurs when agouti-related peptide neurons are activated by reduced leptin, because leptin normally suppresses these orexigenic neurons. In the pituitary, leptin stimulates production of GnRH receptors (GnRHRs) and follicle-stimulating hormone at midcycle, by activating pathways that derepress actions of the messenger ribonucleic acid translational regulatory protein Musashi. In females, rising estrogen stimulates a rise in serum leptin, which peaks at midcycle, synchronizing with nocturnal luteinizing hormone pulses. The normal range of serum leptin levels (10-20 ng/mL) along with gonadotropins and growth factors promote ovarian granulosa and theca cell functions and oocyte maturation. In males, the prepubertal rise in leptin promotes testicular development. However, a decline in leptin levels in prepubertal boys reflects inhibition of leptin secretion by rising androgens. In adult males, leptin levels are 10% to 50% of those in females, and high leptin inhibits testicular function. The obesity epidemic has elucidated leptin resistance pathways, with too much leptin in either sex leading to infertility. Under conditions of balanced nutrition, however, the secretion of leptin is timed and regulated within a narrow level range that optimizes its trophic effects.
Collapse
Affiliation(s)
- Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Correspondence: Gwen V. Childs, PhD, University of Arkansas for Medical Sciences, Little Rock, AR, USA. E-mail:
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
42
|
Chong Y, Liu G, Girmay S, Jiang X. Novel mutations in the signal transducer and activator of transcription 3 gene are associated with sheep body weight and fatness traits. Mamm Genome 2021; 32:38-49. [PMID: 33492461 DOI: 10.1007/s00335-020-09850-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022]
Abstract
The signal transducer and activator of transcription 3 (STAT3) gene plays a crucial role in leptin-mediated energy metabolism, upon which the growth and development of animals depend. Nevertheless, no studies have reported the effects of STAT3 gene polymorphisms on body weight and fatness modulation in sheep. This study aimed to illustrate STAT3 mRNA expression across tissues and various developmental stages of sheep and to highlight the association of STAT3 gene polymorphisms with body weight and fat-related traits in sheep, in order to identify a genetic marker that may conceivably be of value for marker-assisted selection (MAS). This study revealed that STAT3 was differentially expressed across age and sex (p < 0.05), with higher expression in the ram liver. The abundant expression of STAT3 in the liver of male sheep and increased expression in the hypothalamus and longissimus dorsi muscle from birth to six months of age may indicate the vital role of the STAT3 gene in animal growth and development. Moreover, SNP association analysis also revealed that the novel SNPs of the STAT3 gene detected in this study showed a significant association with body weight and fatness traits (p < 0.05). In conclusion, the significant genetic effects of the STAT3 gene polymorphisms on sheep growth and development revealed that STAT3 could be a marker gene for the selection of growth-related traits in sheep.
Collapse
Affiliation(s)
- Yuqing Chong
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shishay Girmay
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
43
|
Plows JF, Vickers MH, Ganapathy TP, Bridge-Comer PE, Stanley JL, Reynolds CM. Interleukin-1 Receptor-1 Deficiency Impairs Metabolic Function in Pregnant and Non-Pregnant Female Mice. Mol Nutr Food Res 2021; 65:e1900770. [PMID: 31738006 DOI: 10.1002/mnfr.201900770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/03/2019] [Indexed: 01/02/2023]
Abstract
SCOPE Glucose intolerance during pregnancy is associated with short- and long-term maternal and offspring health consequences. In young male mice, knockout of the major pro-inflammatory mediator interleukin-1-receptor-1 (IL1R1) protects against high-fat diet (HFD)-induced glucose intolerance and metabolic dysfunction. This phenotype has not been examined during pregnancy. The hypothesis that IL1R1 depletion will protect females against HFD-induced glucose intolerance and metabolic dysfunction before, during, and post pregnancy is tested. METHODS AND RESULTS C57BL/6J control and IL1R1 knockout (IL1R1-/- ) mice are randomized to either a control diet (10% kcal from fat) or HFD (45% kcal from fat), and three distinct cohorts are established: nulliparous, pregnant, and postpartum females. Contrary to the authors' hypothesis, it is found that IL1R1-/- does not protect against glucose intolerance in nulliparous or pregnant females, and while control HFD animals see a resolution of glucose tolerance postpartum, IL-1R1-/- mice remain impaired. These effects are accompanied by adipocyte hypertrophy, hyperleptinemia, and increased adipose tissue inflammatory gene expression. Maternal genotype differentially affects fetal growth in male and female fetuses, demonstrating sexual dimorphism in this genotype prior to birth. CONCLUSIONS These findings suggest that IL1R1 signaling is important for normal metabolic functioning in females, during and outside of pregnancy.
Collapse
Affiliation(s)
- Jasmine F Plows
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
- Children's Hospital Los Angeles, Saban Research Institute, 4641 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - Mark H Vickers
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Thashma P Ganapathy
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Pania E Bridge-Comer
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Joanna L Stanley
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Clare M Reynolds
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| |
Collapse
|
44
|
Maftei D, Lattanzi R, Vincenzi M, Squillace S, Fullone MR, Miele R. The balance of concentration between Prokineticin 2β and Prokineticin 2 modulates the food intake by STAT3 signaling. BBA ADVANCES 2021; 1:100028. [PMID: 37082024 PMCID: PMC10074905 DOI: 10.1016/j.bbadva.2021.100028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
The secreted bioactive peptide prokineticin 2 (PK2) is a potent adipokine and its central and peripheral administration reduces food intake in rodents. The pk2 gene has two splice variants, PK2 and PK2L (PK2 long form), which is cleaved into an active peptide, PK2β, that preferentially binds prokineticin receptor 1 (PKR1). We investigated the role of PK2β in the regulation of food intake. We demonstrated that intraperitoneal injection of PK2β, in contrast to PK2, did not reduce food intake in mice. Exposure of hypotalamic explants to PK2, but not PK2β, induced phosphorylation of STAT3 and ERK. We also evidenced that in adipocytes from PKR1 knock-out mice, a model of obesity, there were higher PK2β levels than PK2 inducing a decreased activation of STAT3 and ERK. Our results suggest that variations in PK2 and PK2β levels, due to modulation of pk2 gene splicing processes, affect food intake in mice.
Collapse
Affiliation(s)
- Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
- Corresponding author: Roberta Lattanzi, Department of Physiology and Pharmacology “Vittorio Erspamer” Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| | - Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Silvia Squillace
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences “A. Rossi Fanelli” and CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli” and CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
45
|
Ferrer B, Prince LM, Tinkov AA, Santamaria A, Farina M, Rocha JB, Bowman AB, Aschner M. Chronic exposure to methylmercury enhances the anorexigenic effects of leptin in C57BL/6J male mice. Food Chem Toxicol 2020; 147:111924. [PMID: 33338554 DOI: 10.1016/j.fct.2020.111924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Several studies have demonstrated that heavy metals disrupt energy homeostasis. Leptin inhibits food intake and decreases body weight through activation of its receptor in the hypothalamus. The impact of heavy metals on leptin signaling in the hypothalamus is unclear. Here, we show that the environmental pollutant, methylmercury (MeHg), favors an anorexigenic profile in wild-type males. C57BL/6J mice were exposed to MeHg via drinking water (5 ppm) up to 30 days. Our data shows that MeHg exposure was associated with changes in leptin induced activation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the hypothalamus. In males, the activation of JAK2/STAT3 signaling pathway was sustained by an increase in SOCS3 protein levels. In females, MeHg-activated STAT3 was inhibited by a concomitant increase in PTP1B. Taken together, our data suggest that MeHg enhanced leptin effects in males, favoring an anorexigenic profile in males, which notably, have been shown to be more sensitive to the neurological effects of this organometal than females. A better understanding of MeHg-induced molecular mechanism alterations in the hypothalamus advances the understanding of its neurotoxicity and provides molecular sites for novel therapies.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| | - Marcelo Farina
- Department of Biochemistry, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - João Batista Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
46
|
Sergi D, Williams LM. Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity. Nutr Rev 2020; 78:261-277. [PMID: 31532491 DOI: 10.1093/nutrit/nuz056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diet-induced hypothalamic inflammation, which leads to hypothalamic dysfunction and a loss of regulation of energy balance, is emerging as a potential driver of obesity. Excessive intake of long-chain saturated fatty acids is held to be the causative dietary component in hypothalamic inflammation. This review summarizes current evidence on the role of long-chain saturated fatty acids in promoting hypothalamic inflammation and the related induction of central insulin and leptin insensitivity. Particularly, the present review focuses on the molecular mechanisms linking long-chain saturated fatty acids and hypothalamic inflammation, emphasizing the metabolic fate of fatty acids and the resulting lipotoxicity, which is a key driver of hypothalamic dysfunction. In conclusion, long-chain saturated fatty acids are key nutrients that promote hypothalamic inflammation and dysfunction by fostering the build-up of lipotoxic lipid species, such as ceramide. Furthermore, when long-chain saturated fatty acids are consumed in combination with high levels of refined carbohydrates, the proinflammatory effects are exacerbated via a mechanism that relies on the formation of advanced glycation end products.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
47
|
Macchi C, Greco MF, Botta M, Sperandeo P, Dongiovanni P, Valenti L, Cicero AFG, Borghi C, Lupo MG, Romeo S, Corsini A, Magni P, Ferri N, Ruscica M. Leptin, Resistin, and Proprotein Convertase Subtilisin/Kexin Type 9: The Role of STAT3. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2226-2236. [PMID: 32798443 DOI: 10.1016/j.ajpath.2020.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023]
Abstract
In a condition of dysfunctional visceral fat depots, as in the case of obesity, alterations in adipokine levels may be detrimental for the cardiovascular system. The proinflammatory leptin and resistin adipokines have been described as possible links between obesity and atherosclerosis. The present study was aimed at evaluating whether proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of low-density lipoprotein metabolism, is induced by leptin and resistin through the involvement of the inflammatory pathway of STAT3. In HepG2 cells, leptin and resistin up-regulated PCSK9 gene and protein expression, as well as the phosphorylation of STAT3. Upon STAT3 silencing, leptin and resistin lost their ability to activate PCSK9. The knockdown of STAT3 did not affect the expression of leptin and resistin receptors or that of PCSK9. The analysis of the human PCSK9 promoter region showed that the two adipokines raised PCSK9 promoter activity via the involvement of a sterol regulatory element motif. In healthy males, a positive association between circulating leptin and PCSK9 levels was found only when the body mass index was <25 kg/m2. In conclusion, this study identified STAT3 as one of the molecular regulators of leptin- and resistin-mediated transcriptional induction of PCSK9.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Maria Francesca Greco
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Margherita Botta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine, Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Claudio Borghi
- Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy; Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
48
|
Roles of Gangliosides in Hypothalamic Control of Energy Balance: New Insights. Int J Mol Sci 2020; 21:ijms21155349. [PMID: 32731387 PMCID: PMC7432706 DOI: 10.3390/ijms21155349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Gangliosides are essential components of cell membranes and are involved in a variety of physiological processes, including cell growth, differentiation, and receptor-mediated signal transduction. They regulate functions of proteins in membrane microdomains, notably receptor tyrosine kinases such as insulin receptor (InsR) and epidermal growth factor receptor (EGFR), through lateral association. Studies during the past two decades using knockout (KO) or pharmacologically inhibited cells, or KO mouse models for glucosylceramide synthase (GCS; Ugcg), GM3 synthase (GM3S; St3gal5), and GD3 synthase (GD3S; St8sia1) have revealed essential roles of gangliosides in hypothalamic control of energy balance. The a-series gangliosides GM1 and GD1a interact with leptin receptor (LepR) and promote LepR signaling through activation of the JAK2/STAT3 pathway. Studies of GM3S KO cells have shown that the extracellular signal-regulated kinase (ERK) pathway, downstream of the LepR signaling pathway, is also modulated by gangliosides. Recent studies have revealed crosstalk between the LepR signaling pathway and other receptor signaling pathways (e.g., InsR and EGFR pathways). Gangliosides thus have the ability to modulate the effects of leptin by regulating functions of such receptors, and by direct interaction with LepR to control signaling.
Collapse
|
49
|
Glial Endozepines Reverse High-Fat Diet-Induced Obesity by Enhancing Hypothalamic Response to Peripheral Leptin. Mol Neurobiol 2020; 57:3307-3333. [DOI: 10.1007/s12035-020-01944-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/13/2020] [Indexed: 12/23/2022]
|
50
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|