1
|
Abstract
Systemic lupus erythematosus (SLE) is a typical autoimmune disease with a complex pathogenesis and genetic predisposition. With continued understanding of this disease, it was found that SLE is related to the interferon gene signature. Most studies have emphasized the important role of IFN-α in SLE, but our previous study suggested a nonnegligible role of IFN-γ in SLE. Some scholars previously found that IFN-γ is abnormally elevated as early as before the classification of SLE and before the emergence of autoantibodies and IFN-α. Due to the large overlap between IFN-α and IFN-γ, SLE is mostly characterized by expression of the IFN-α gene after onset. Therefore, the role of IFN-γ in SLE may be underestimated. This article mainly reviews the role of IFN-γ in SLE and focuses on the nonnegligible role of IFN-γ in SLE to gain a more comprehensive understanding of the disease.
Collapse
|
2
|
Devenish LP, Mhlanga MM, Negishi Y. Immune Regulation in Time and Space: The Role of Local- and Long-Range Genomic Interactions in Regulating Immune Responses. Front Immunol 2021; 12:662565. [PMID: 34046034 PMCID: PMC8144502 DOI: 10.3389/fimmu.2021.662565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Mammals face and overcome an onslaught of endogenous and exogenous challenges in order to survive. Typical immune cells and barrier cells, such as epithelia, must respond rapidly and effectively to encountered pathogens and aberrant cells to prevent invasion and eliminate pathogenic species before they become overgrown and cause harm. On the other hand, inappropriate initiation and failed termination of immune cell effector function in the absence of pathogens or aberrant tissue gives rise to a number of chronic, auto-immune, and neoplastic diseases. Therefore, the fine control of immune effector functions to provide for a rapid, robust response to challenge is essential. Importantly, immune cells are heterogeneous due to various factors relating to cytokine exposure and cell-cell interaction. For instance, tissue-resident macrophages and T cells are phenotypically, transcriptionally, and functionally distinct from their circulating counterparts. Indeed, even the same cell types in the same environment show distinct transcription patterns at the single cell level due to cellular noise, despite being robust in concert. Additionally, immune cells must remain quiescent in a naive state to avoid autoimmunity or chronic inflammatory states but must respond robustly upon activation regardless of their microenvironment or cellular noise. In recent years, accruing evidence from next-generation sequencing, chromatin capture techniques, and high-resolution imaging has shown that local- and long-range genome architecture plays an important role in coordinating rapid and robust transcriptional responses. Here, we discuss the local- and long-range genome architecture of immune cells and the resultant changes upon pathogen or antigen exposure. Furthermore, we argue that genome structures contribute functionally to rapid and robust responses under noisy and distinct cellular environments and propose a model to explain this phenomenon.
Collapse
Affiliation(s)
- Liam P Devenish
- Division of Chemical, Systems, and Synthetic Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Musa M Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands.,Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yutaka Negishi
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands.,Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
3
|
Loo Yau H, Ettayebi I, De Carvalho DD. The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy. Trends Cell Biol 2019; 29:31-43. [DOI: 10.1016/j.tcb.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
|
4
|
Haas R, Cucchi D, Smith J, Pucino V, Macdougall CE, Mauro C. Intermediates of Metabolism: From Bystanders to Signalling Molecules. Trends Biochem Sci 2016; 41:460-471. [PMID: 26935843 DOI: 10.1016/j.tibs.2016.02.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 11/18/2022]
Abstract
The integration of biochemistry into immune cell biology has contributed immensely to our understanding of immune cell function and the associated pathologies. So far, most studies have focused on the regulation of metabolic pathways during an immune response and their contribution to its success. More recently, novel signalling functions of metabolic intermediates are being discovered that might play important roles in the regulation of immunity. Here we describe the three long-known small metabolites lactate, acetyl-CoA, and succinate in the context of immunometabolic signalling. Functions of these ubiquitous molecules are largely dependent on their intra- and extracellular concentrations as well as their subcompartmental localisation. Importantly, the signalling functions of these metabolic intermediates extend beyond self-regulatory roles and include cell-to-cell communication and sensing of microenvironmental conditions to elicit stress responses and cellular adaptation.
Collapse
Affiliation(s)
- Robert Haas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Danilo Cucchi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK; Istituto Pasteur, Fondazione Cenci Bolognetti, Rome, Italy
| | - Joanne Smith
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Valentina Pucino
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK; Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | | | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
5
|
Gray SM, Kaech SM, Staron MM. The interface between transcriptional and epigenetic control of effector and memory CD8⁺ T-cell differentiation. Immunol Rev 2015; 261:157-68. [PMID: 25123283 DOI: 10.1111/imr.12205] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunity to many intracellular pathogens requires the proliferation, differentiation, and function of CD8(+) cytotoxic T lymphocytes (CTLs). While the majority of effector CTLs die upon clearance of the pathogen, a small proportion of them survive to become long-lived memory CTLs. Memory CTLs can provide protective immunity against re-exposure to the same pathogen and are the principle motivation behind T-cell- based vaccine design. While a large body of cellular immunologic research has proven invaluable to define effector and memory CTLs by their different phenotypes and functions, an emerging focus in the field has been to understand how environmental cues regulate CTL differentiation on a genomic level. Genome-wide studies to profile transcriptional and epigenetic changes during infection have revealed that dynamic changes in DNA methylation patterns and histone modifications accompany transcriptional signatures that define and regulate CTL differentiation states. In this review, we emphasize the importance of epigenetic regulation of CD8(+) T-cell differentiation and the likely role that transcription factors play in this process.
Collapse
Affiliation(s)
- Simon M Gray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
6
|
Panzeri I, Rossetti G, Abrignani S, Pagani M. Long Intergenic Non-Coding RNAs: Novel Drivers of Human Lymphocyte Differentiation. Front Immunol 2015; 6:175. [PMID: 25926836 PMCID: PMC4397839 DOI: 10.3389/fimmu.2015.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/28/2015] [Indexed: 12/29/2022] Open
Abstract
Upon recognition of a foreign antigen, CD4(+) naïve T lymphocytes proliferate and differentiate into subsets with distinct functions. This process is fundamental for the effective immune system function, as CD4(+) T cells orchestrate both the innate and adaptive immune response. Traditionally, this differentiation event has been regarded as the acquisition of an irreversible cell fate so that memory and effector CD4(+) T subsets were considered terminally differentiated cells or lineages. Consequently, these lineages are conventionally defined thanks to their prototypical set of cytokines and transcription factors. However, recent findings suggest that CD4(+) T lymphocytes possess a remarkable phenotypic plasticity, as they can often re-direct their functional program depending on the milieu they encounter. Therefore, new questions are now compelling such as which are the molecular determinants underlying plasticity and stability and how the balance between these two opposite forces drives the cell fate. As already mentioned, in some cases, the mere expression of cytokines and master regulators could not fully explain lymphocytes plasticity. We should consider other layers of regulation, including epigenetic factors such as the modulation of chromatin state or the transcription of non-coding RNAs, whose high cell-specificity give a hint on their involvement in cell fate determination. In this review, we will focus on the recent advances in understanding CD4(+) T lymphocytes subsets specification from an epigenetic point of view. In particular, we will emphasize the emerging importance of non-coding RNAs as key players in these differentiation events. We will also present here new data from our laboratory highlighting the contribution of long non-coding RNAs in driving human CD4(+) T lymphocytes differentiation.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Grazisa Rossetti
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Sergio Abrignani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Massimiliano Pagani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy ; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
7
|
Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol 2015; 36:81-91. [PMID: 25592731 DOI: 10.1016/j.it.2014.12.005] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022]
Abstract
The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes.
Collapse
Affiliation(s)
- Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.
| |
Collapse
|
8
|
Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. THE JOURNAL OF IMMUNOLOGY 2014; 193:3959-65. [PMID: 25225667 DOI: 10.4049/jimmunol.1401099] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs), critical regulators of protein-coding genes, are likely to be coexpressed with neighboring protein-coding genes in the genome. How the genome integrates signals to achieve coexpression of lncRNA genes and neighboring protein-coding genes is not well understood. The lncRNA Tmevpg1 (NeST, Ifng-AS1) is critical for Th1-lineage-specific expression of Ifng and is coexpressed with Ifng. In this study, we show that T-bet guides epigenetic remodeling of Tmevpg1 proximal and distal enhancers, leading to recruitment of stimulus-inducible transcription factors, NF-κB and Ets-1, to the locus. Activities of Tmevpg1-specific enhancers and Tmevpg1 transcription are dependent upon NF-κB. Thus, we propose that T-bet stimulates epigenetic remodeling of Tmevpg1-specific enhancers and Ifng-specific enhancers to achieve Th1-lineage-specific expression of Ifng.
Collapse
Affiliation(s)
- Sarah P Collier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Melodie A Henderson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thomas M Aune
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
9
|
Hosking MP, Flynn CT, Whitton JL. Antigen-specific naive CD8+ T cells produce a single pulse of IFN-γ in vivo within hours of infection, but without antiviral effect. THE JOURNAL OF IMMUNOLOGY 2014; 193:1873-85. [PMID: 25015828 DOI: 10.4049/jimmunol.1400348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In vitro studies have shown that naive CD8(+) T cells are unable to express most of their effector proteins until after at least one round of cell division has taken place. We have reassessed this issue in vivo and find that naive CD8(+) T cells mount Ag-specific responses within hours of infection, before proliferation has commenced. Newly activated naive Ag-specific CD8(+) T cells produce a rapid pulse of IFN-γ in vivo and begin to accumulate granzyme B and perforin. Later, in vivo cytolytic activity is detectable, coincident with the initiation of cell division. Despite the rapid development of these functional attributes, no antiviral effect was observed early during infection, even when the cells are present in numbers similar to those of virus-specific memory cells. The evolutionary reason for the pulse of IFN-γ synthesis by naive T cells is uncertain, but the lack of antiviral impact suggests that it may be regulatory.
Collapse
Affiliation(s)
- Martin P Hosking
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Claudia T Flynn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - J Lindsay Whitton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
10
|
Luetke-Eversloh M, Cicek BB, Siracusa F, Thom JT, Hamann A, Frischbutter S, Baumgrass R, Chang HD, Thiel A, Dong J, Romagnani C. NK cells gain higher IFN-γ competence during terminal differentiation. Eur J Immunol 2014; 44:2074-84. [DOI: 10.1002/eji.201344072] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/18/2014] [Accepted: 04/15/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Merlin Luetke-Eversloh
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Basak B. Cicek
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Francesco Siracusa
- Cell Biology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Jenny T. Thom
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Alf Hamann
- Experimental Rheumatology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Stefan Frischbutter
- Signal Transduction; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Ria Baumgrass
- Signal Transduction; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Hyun-Dong Chang
- Cell Biology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging; Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine; Berlin Germany
| | - Jun Dong
- Cell Biology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Chiara Romagnani
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| |
Collapse
|
11
|
Abstract
In higher eukaryotic organisms epigenetic modifications are crucial for proper chromatin folding and thereby proper regulation of gene expression. In the last years the involvement of aberrant epigenetic modifications in inflammatory and autoimmune diseases has been recognized and attracted significant interest. However, the epigenetic mechanisms underlying the different disease phenotypes are still poorly understood. As autoimmune and inflammatory diseases are at least partly T cell mediated, we will provide in this chapter an introduction to the epigenetics of T cell differentiation followed by a summary of the current knowledge on aberrant epigenetic modifications that dysfunctional T cells display in various diseases such as type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease, and asthma.
Collapse
|
12
|
Burlibaşa L, Zarnescu O. In vivo effects of Trichostatin A – A histone deacetylase inhibitor – On chromatin remodeling during Triturus cristatus spermatogenesis. Anim Reprod Sci 2013; 142:89-99. [DOI: 10.1016/j.anireprosci.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/20/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
|
13
|
Aune TM, Collins PL, Collier SP, Henderson MA, Chang S. Epigenetic Activation and Silencing of the Gene that Encodes IFN-γ. Front Immunol 2013; 4:112. [PMID: 23720660 PMCID: PMC3655339 DOI: 10.3389/fimmu.2013.00112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/28/2013] [Indexed: 12/24/2022] Open
Abstract
Transcriptional activation and repression of genes that are developmentally regulated or exhibit cell-type specific expression patterns is largely achieved by modifying the chromatin template at a gene locus. Complex formation of stable epigenetic histone marks, loss or gain of DNA methylation, alterations in chromosome conformation, and specific utilization of both proximal and distal transcriptional enhancers and repressors all contribute to this process. In addition, long non-coding RNAs are a new species of regulatory RNAs that either positively or negatively regulate transcription of target gene loci. IFN-γ is a pro-inflammatory cytokine with critical functions in both innate and adaptive arms of the immune system. This review focuses on our current understanding of how the chromatin template is modified at the IFNG locus during developmental processes leading to its transcriptional activation and silencing.
Collapse
Affiliation(s)
- Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA ; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine Nashville, TN, USA
| | | | | | | | | |
Collapse
|
14
|
Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 2013; 152:743-54. [PMID: 23415224 DOI: 10.1016/j.cell.2013.01.015] [Citation(s) in RCA: 543] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/28/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are increasingly appreciated as regulators of cell-specific gene expression. Here, an enhancer-like lncRNA termed NeST (nettoie Salmonella pas Theiler's [cleanup Salmonella not Theiler's]) is shown to be causal for all phenotypes conferred by murine viral susceptibility locus Tmevp3. This locus was defined by crosses between SJL/J and B10.S mice and contains several candidate genes, including NeST. The SJL/J-derived locus confers higher lncRNA expression, increased interferon-γ (IFN-γ) abundance in activated CD8(+) T cells, increased Theiler's virus persistence, and decreased Salmonella enterica pathogenesis. Transgenic expression of NeST lncRNA alone was sufficient to confer all phenotypes of the SJL/J locus. NeST RNA was found to bind WDR5, a component of the histone H3 lysine 4 methyltransferase complex, and to alter histone 3 methylation at the IFN-γ locus. Thus, this lncRNA regulates epigenetic marking of IFN-γ-encoding chromatin, expression of IFN-γ, and susceptibility to a viral and a bacterial pathogen.
Collapse
Affiliation(s)
- J Antonio Gomez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Collins PL, Henderson MA, Aune TM. Lineage-specific adjacent IFNG and IL26 genes share a common distal enhancer element. Genes Immun 2012; 13:481-8. [PMID: 22622197 PMCID: PMC4180225 DOI: 10.1038/gene.2012.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/23/2012] [Indexed: 12/24/2022]
Abstract
Certain groups of physically linked genes remain linked over long periods of evolutionary time. The general view is that such evolutionary conservation confers 'fitness' to the species. Why gene order confers 'fitness' to the species is incompletely understood. For example, linkage of IL26 and IFNG is preserved over evolutionary time yet Th17 lineages express IL26 and Th1 lineages express IFNG. We considered the hypothesis that distal enhancer elements may be shared between adjacent genes, which would require linkage be maintained in evolution. We test this hypothesis using a bacterial artificial chromosome transgenic model with deletions of specific conserved non-coding sequences. We identify one enhancer element uniquely required for IL26 expression but not for IFNG expression. We identify a second enhancer element positioned between IL26 and IFNG required for both IL26 and IFNG expression. One function of this enhancer is to facilitate recruitment of RNA polymerase II to promoters of both genes. Thus, sharing of distal enhancers between adjacent genes may contribute to evolutionary preservation of gene order.
Collapse
Affiliation(s)
- P L Collins
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2681, USA
| | | | | |
Collapse
|
16
|
Hervas-Stubbs S, Mancheño U, Riezu-Boj JI, Larraga A, Ochoa MC, Alignani D, Alfaro C, Morales-Kastresana A, Gonzalez I, Larrea E, Pircher H, Le Bon A, Lopez-Picazo JM, Martín-Algarra S, Prieto J, Melero I. CD8 T cell priming in the presence of IFN-α renders CTLs with improved responsiveness to homeostatic cytokines and recall antigens: important traits for adoptive T cell therapy. THE JOURNAL OF IMMUNOLOGY 2012; 189:3299-310. [PMID: 22925929 DOI: 10.4049/jimmunol.1102495] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous mouse and human studies have demonstrated that direct IFN-α/β signaling on naive CD8 T cells is critical to support their expansion and acquisition of effector functions. In this study, we show that human naive CD8 T cells primed in the presence of IFN-α possess a heightened ability to respond to homeostatic cytokines and to secondary Ag stimulation, but rather than differentiating to effector or memory CTLs, they preserve nature-like phenotypic features. These are qualities associated with greater efficacy in adoptive immunotherapy. In a mouse model of adoptive transfer, CD8 T cells primed in the presence of IFN-α are able to persist and to mediate a robust recall response even after a long period of naturally driven homeostatic maintenance. The long-lasting persistence of IFN-α-primed CD8 T cells is favored by their enhanced responsiveness to IL-15 and IL-7, as demonstrated in IL-15(-/-) and IL-7(-/-) recipient mice. In humans, exposure to IFN-α during in vitro priming of naive HLA-A2(+) CD8 T cells with autologous dendritic cells loaded with MART1(26-35) peptide renders CD8 T cells with an improved capacity to respond to homeostatic cytokines and to specifically lyse MART1-expressing melanoma cells. Furthermore, in a mouse model of melanoma, adoptive transfer of tumor-specific CD8 T cells primed ex vivo in the presence of IFN-α exhibits an improved ability to contain tumor progression. Therefore, exposure to IFN-α during priming of naive CD8 T cells imprints decisive information on the expanded cells that can be exploited to improve the efficacy of adoptive T cell therapy.
Collapse
Affiliation(s)
- Sandra Hervas-Stubbs
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Curtsinger JM, Agarwal P, Lins DC, Mescher MF. Autocrine IFN-γ promotes naive CD8 T cell differentiation and synergizes with IFN-α to stimulate strong function. THE JOURNAL OF IMMUNOLOGY 2012; 189:659-68. [PMID: 22706089 DOI: 10.4049/jimmunol.1102727] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autocrine IFN-γ signaling is important for CD4 differentiation to Th1 effector cells, but it has been unclear whether it contributes to CD8 T cell differentiation. We show in this paper that naive murine CD8 T cells rapidly and transiently produce low levels of IFN-γ upon stimulation with Ag and B7-1, with production peaking at ∼8 h and declining by 24 h. The autocrine IFN-γ signals for upregulation of expression of T-bet and granzyme B and induces weak cytolytic activity and effector IFN-γ production. IFN-α acts synergistically with IFN-γ to support development of strong effector functions, whereas IL-12 induces high T-bet expression and strong function in the absence of IFN-γ signaling. Thus, IFN-γ is not only an important CD8 T cell effector cytokine, it is an autocrine/paracrine factor whose contributions to differentiation vary depending on whether the response is supported by IL-12 or type I IFN.
Collapse
|
18
|
Collins PL, Henderson MA, Aune TM. Diverse functions of distal regulatory elements at the IFNG locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:1726-33. [PMID: 22246629 DOI: 10.4049/jimmunol.1102879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous studies have identified multiple conserved noncoding sequences (CNS) at the mouse Ifng locus sufficient for enhancer activity in cell-based assays. These studies do not directly address biology of the human IFNG locus in a genomic setting. IFNG enhancers may be functionally redundant or each may be functionally unique. We test the hypothesis that each IFNG enhancer has a unique necessary function using a bacterial artificial chromosome transgenic model. We find that CNS-30, CNS-4, and CNS+20 are required at distinct stages of Th1 differentiation, whereas CNS-16 has a repressive role in Th1 and Th2 cells. CNS+20 is required for IFN-γ expression by memory Th1 cells and NKT cells. CNS-4 is required for IFN-γ expression by effector Th1 cells. In contrast, CNS-16, CNS-4, and CNS+20 are each partially required for human IFN-γ expression by NK cells. Thus, IFNG CNS enhancers have redundant necessary functions in NK cells but unique necessary functions in Th cells. These results also demonstrate that distinct CNSs are required to transcribe IFNG at each stage of the Th1 differentiation pathway.
Collapse
Affiliation(s)
- Patrick L Collins
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
19
|
Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr Opin Immunol 2012; 24:191-5. [PMID: 22240120 DOI: 10.1016/j.coi.2011.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 12/24/2022]
Abstract
Recent research has made great strides in uncovering the mechanisms by which the T helper 1 (Th1) cell gene expression program is established. In particular, studies examining the transcription factors T-bet, STAT1, and STAT4 have elucidated their roles in regulating Th1 signature genes, including Ifng, and have started to address their contributions to the epigenetic states in Th1 cells. Additionally, new findings have provided information about how the co-expression of T helper cell lineage-defining transcription factors impacts the phenotype of the cell. In this review, we will briefly highlight the research from the last few years examining the epigenetic states in T helper cells and the mechanisms by which they are established. We will then discuss how this new information contributes to our understanding of the flexibility of T helper cell genetic programs.
Collapse
|
20
|
McAlees JW, Smith LT, Erbe RS, Jarjoura D, Ponzio NM, Sanders VM. Epigenetic regulation of beta2-adrenergic receptor expression in T(H)1 and T(H)2 cells. Brain Behav Immun 2011; 25:408-15. [PMID: 21047549 PMCID: PMC3073579 DOI: 10.1016/j.bbi.2010.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 12/21/2022] Open
Abstract
We showed previously that murine naive CD4(+) T cells and T(H)1 cell clones express the beta2-adrenergic receptor (β(2)AR), while T(H)2 cell clones do not. We report here that naive CD4(+) T cells that differentiated for 1-5 days under T(H)1 driving conditions increased β(2)AR gene expression, while cells cultured under T(H)2 driving conditions decrease β(2)AR gene expression. Chromatin immunoprecipitation revealed that the increase in β(2)AR gene expression in T(H)1 cells is mediated by an increase in histone 3 (H3) and H4 acetylation, as well as an increase in histone 3 lysine 4 (H3K4) methylation. Conversely, the decrease in β(2)AR gene expression in T(H)2 cells is mediated by a decrease in H3 and H4 acetylation and a decrease in H3K4 methylation, as well as an increase H3K9 and H3K27 methylation. The histone changes could be detected as early as 3 days of differentiating conditions. Genomic bisulfite sequencing showed that the level of methylated CpG dinucleotides within the promoter of the β(2)AR gene was increased in T(H)2 cells as compared to naive and T(H)1 cells. Collectively, these results suggest that epigenetic mechanisms mediate maintenance and repression, respectively, of the β(2)AR gene expression in T(H)1- and T(H)2-driven cells, providing a potential mechanism by which the level of β(2)AR expression might be modulated pharmacologically within immune cells and other cell types in which the expression profile may change during a disease process.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Cells, Cultured
- Chromatin Immunoprecipitation
- DNA Methylation
- Epigenesis, Genetic
- Histones/genetics
- Histones/metabolism
- Mice
- Mice, Inbred BALB C
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Th1 Cells/metabolism
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Jaclyn W. McAlees
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
- Integrated Biological Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Laura T. Smith
- Division of Human Cancer Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert S. Erbe
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - David Jarjoura
- Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Nicholas M. Ponzio
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School and Graduate School Biomedical Sciences, Newark, NJ 07101, USA
| | - Virginia M. Sanders
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Encoding stability versus flexibility: lessons learned from examining epigenetics in T helper cell differentiation. Curr Top Microbiol Immunol 2011; 356:145-64. [PMID: 21748629 DOI: 10.1007/82_2011_141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is currently unclear whether our classifications for T helper cell subtypes truly define stable lineages or rather they represent cells with a more flexible phenotype. This distinction is important for predicting the behavior of T helper cells during normal immune responses as well as in pathogenic conditions. Determining the mechanisms by which T helper cell lineage-defining transcription factors are expressed and subsequently regulate epigenetic and downstream gene regulatory events will provide insight into this complex question. Importantly, lineage-defining transcription factors that regulate epigenetic events have the potential to redefine the fate of the cell when they are expressed. In contrast, factors that regulate the events downstream of a permissive epigenetic environment will only have the capacity to modulate the underlying gene expression profile that is already established in that cell. Finally, mechanisms related to the antagonism versus cooperation between the lineage-defining factors for opposing T helper cell subsets will influence the characteristics of the cell. Here, we provide an overview of these topics by discussing epigenetic states in T helper cell subtypes as well as the mechanisms by which lineage-defining factors, such as T-bet, regulate gene expression profiles at both the epigenetic and general transcription level. We also examine some of what is known about the interplay between the T helper cell lineage-defining transcription factors T-bet, GATA3, Foxp3, Rorγt, and Bcl-6 and how this relates to the proper functioning of T helper cell subsets. Defining the mechanisms by which these factors regulate gene expression profiles will aid in our ability to predict the functional capabilities of T helper cell subsets.
Collapse
|
22
|
Hedrich CM, Bream JH. Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol Res 2010; 47:185-206. [PMID: 20087682 DOI: 10.1007/s12026-009-8150-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IL-10 plays an essential part in controlling inflammation and instructing adaptive immune responses. Consequently, dysregulation of IL-10 is linked with susceptibility to numerous infectious and autoimmune diseases in mouse models and in humans. It has become increasingly clear that appropriate temporal/spatial expression of IL-10 may be the key to how IL-10 contributes to the delicate balance between inflammation and immunoregulation. The mechanisms that govern the cell type- and receptor-specific induction of IL-10, however, remain unclear. This is due largely to the wide distribution of cellular sources that express IL-10 under diverse stimulation conditions and in a variety of tissue compartments. Further complicating the issue is the fact that human IL-10 expression patterns appear to be under genetic influence resulting in differential expression and disease susceptibility. In this review, we discuss the cellular sources of IL-10, their link to disease phenotypes and the molecular mechanisms implicated in IL-10 regulation.
Collapse
Affiliation(s)
- Christian M Hedrich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Room E5624, Baltimore, MD 21205-1901, USA
| | | |
Collapse
|
23
|
Transcriptional regulation during CD8 T-cell immune responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:11-27. [PMID: 20795537 DOI: 10.1007/978-1-4419-6451-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Naïve CD8 T cells differentiate in response to antigen stimulation. They acquire the capacity to express multiple effector molecules and mediate effector functions that contribute to infection control. Once antigen loads are reduced they revert progressively to a less activated status and eventually reach a steady-state referred to as "memory" that is very different from that of naive cells. Indeed, these "memory" cells are "ready-to-go" populations that acquired the capacity to respond more efficiently to antigen stimulation. They modify their cell cycle machinery in order to divide faster; they likely improve DNA repair and other cell survival mechanisms in order to survive during division and thus to generate much larger clones of effector cells; finally, they also mediate effector functions much faster. These modifications are the consequence of changes in the expression of multiple genes, i.e., on the utilization of a new transcription program.
Collapse
|
24
|
Collins PL, Chang S, Henderson M, Soutto M, Davis GM, McLoed AG, Townsend MJ, Glimcher LH, Mortlock DP, Aune TM. Distal regions of the human IFNG locus direct cell type-specific expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1492-501. [PMID: 20574006 PMCID: PMC2923829 DOI: 10.4049/jimmunol.1000124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genes, such as IFNG, which are expressed in multiple cell lineages of the immune system, may employ a common set of regulatory elements to direct transcription in multiple cell types or individual regulatory elements to direct expression in individual cell lineages. By employing a bacterial artificial chromosome transgenic system, we demonstrate that IFNG employs unique regulatory elements to achieve lineage-specific transcriptional control. Specifically, a one 1-kb element 30 kb upstream of IFNG activates transcription in T cells and NKT cells but not in NK cells. This distal regulatory element is a Runx3 binding site in Th1 cells and is needed for RNA polymerase II recruitment to IFNG, but it is not absolutely required for histone acetylation of the IFNG locus. These results support a model whereby IFNG uses cis-regulatory elements with cell type-restricted function.
Collapse
Affiliation(s)
- Patrick L. Collins
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Shaojing Chang
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Melodie Henderson
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mohammed Soutto
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Georgia M. Davis
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Allyson G. McLoed
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Michael J. Townsend
- Department of Immunology and Infectious Diseases, Harvard School of Public Health and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Douglas P. Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thomas M. Aune
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
25
|
Curtsinger JM, Mescher MF. Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol 2010; 22:333-40. [PMID: 20363604 PMCID: PMC2891062 DOI: 10.1016/j.coi.2010.02.013] [Citation(s) in RCA: 412] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/11/2010] [Accepted: 02/25/2010] [Indexed: 01/03/2023]
Abstract
CD8 T cells require a third signal, along with Ag and costimulation, to make a productive response and avoid death and/or tolerance induction. Recent studies indicate that IL-12 and Type I IFN (IFNalpha/beta) are the major sources of signal 3 in a variety of responses, and that the two cytokines stimulate a common regulatory program involving altered expression of about 350 genes. Signal 3-driven chromatin remodeling is likely to play a major role in this regulation. Although less well studied, there is emerging evidence that CD4 T cells may also require a 'third signal' for a productive response and that IL-1 can provide this signal. Signal 3 cytokines can replace adjuvants in supporting in vivo T cell responses to peptide and protein antigens, and a better understanding of their activities and mechanisms should contribute to more rational design of vaccines.
Collapse
Affiliation(s)
- Julie M Curtsinger
- Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
26
|
Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 2009; 29:157-73. [DOI: 10.1038/onc.2009.334] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Agarwal P, Raghavan A, Nandiwada SL, Curtsinger JM, Bohjanen PR, Mueller DL, Mescher MF. Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1695-704. [PMID: 19592655 PMCID: PMC2893405 DOI: 10.4049/jimmunol.0900592] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A third signal that can be provided by IL-12 or type I IFN is required for differentiation of naive CD8 T cells responding to Ag and costimulation. The cytokines program development of function and memory within 3 days of initial stimulation, and we show here that programming involves regulation of a common set of approximately 355 genes including T-bet and eomesodermin. Much of the gene regulation program is initiated in response to Ag and costimulation within 24 h but is then extinguished unless a cytokine signal is available. Histone deacetylase inhibitors mimic the effects of IL-12 or type I IFN signaling, indicating that the cytokines relieve repression and allow continued gene expression by promoting increased histone acetylation. In support of this, increased association of acetylated histones with the promoter loci of granzyme B and eomesodermin is shown to occur in response to IL-12, IFN-alpha, or histone deacetylase inhibitors. Thus, IL-12 and IFN-alpha/beta enforce in common a complex gene regulation program that involves, at least in part, chromatin remodeling to allow sustained expression of a large number of genes critical for CD8 T cell function and memory.
Collapse
Affiliation(s)
- Pujya Agarwal
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Arvind Raghavan
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455 USA
| | | | - Julie M. Curtsinger
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Paul R. Bohjanen
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel L. Mueller
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455 USA
| | - Matthew F. Mescher
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
28
|
Abstract
Naïve T helper cells differentiate into two subsets, T helper 1 and 2, which either transcribe the Ifng gene and silence the Il4 gene or transcribe the Il4 gene and silence the Ifng gene, respectively. This process is an essential feature of the adaptive immune response to a pathogen and the development of long-lasting immunity. The 'histone code' hypothesis proposes that formation of stable epigenetic histone marks at a gene locus that activate or repress transcription is essential for cell fate determinations, such as T helper 1/T helper 2 cell fate decisions. Activation and silencing of the Ifng gene are achieved through the creation of stable epigenetic histone marks spanning a region of genomic DNA over 20 times greater than the gene itself. Key transcription factors that drive the T helper 1 lineage decision, signal transducer and activator 4 (STAT4) and T-box expressed in T cells (T-bet), play direct roles in the formation of activating histone marks at the Ifng locus. Conversely, STAT6 and GATA binding protein 3, transcription factors essential for the T helper 2 cell lineage decision, establish repressive histone marks at the Ifng locus. Functional studies demonstrate that multiple genomic elements up to 50 kilobases from Ifng play critical roles in its proper transcriptional regulation. Studies of three-dimensional chromatin conformation indicate that these distal regulatory elements may loop towards Ifng to regulate its transcription. We speculate that these complex mechanisms have evolved to tightly control levels of interferon-gamma production, given that too little or too much production would be very deleterious to the host.
Collapse
Affiliation(s)
- Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2068, USA.
| | | | | |
Collapse
|
29
|
Chang S, Collins PL, Aune TM. T-bet dependent removal of Sin3A-histone deacetylase complexes at the Ifng locus drives Th1 differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8372-81. [PMID: 19050254 PMCID: PMC2794428 DOI: 10.4049/jimmunol.181.12.8372] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Forming and removing epigenetic histone marks at gene loci are central processes in differentiation. Here, we explored mechanisms establishing long-range H4 acetylation marks at the Ifng locus during Th1 lineage commitment. In Th0 cells, histone deacetylase (HDAC)-Sin3A complexes recruited to the Ifng locus actively prevented accumulation of H4 acetylation marks. Th1 differentiation caused loss of HDAC-Sin3A complexes by T-bet-dependent mechanisms and accumulation of H4 acetylation marks. HDAC-Sin3A complexes were absent from the locus in NOD Th0 cells, obviating the need for Th1 differentiation signals to establish histone marks and Th1 differentiation. Thus, Ifng transcription is actively prevented in Th0 cells via epigenetic mechanisms and epigenetic defects allow unregulated Ifng transcription that may contribute to autoimmunity.
Collapse
Affiliation(s)
- Shaojing Chang
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Patrick L. Collins
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Thomas M. Aune
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Bandyopadhyay S, Long M, Qui HZ, Hagymasi AT, Slaiby AM, Mihalyo MA, Aguila HL, Mittler RS, Vella AT, Adler AJ. Self-antigen prevents CD8 T cell effector differentiation by CD134 and CD137 dual costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7728-37. [PMID: 19017962 PMCID: PMC2846364 DOI: 10.4049/jimmunol.181.11.7728] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We compared how CD4 vs CD8 cells attain the capacity to express the effector cytokine IFN-gamma under both immunogenic and tolerogenic conditions. Although the Ifng gene locus was epigenetically repressed in naive Ag-inexperienced CD4 cells, it had already undergone partial remodeling toward a transcriptionally competent configuration in naive CD8 cells. After TCR stimulation, CD8 cells fully remodeled the Ifng locus and gained the capacity to express high levels of IFN-gamma more rapidly than CD4 cells. Enforced dual costimulation through OX40 and 4-1BB redirected CD8 cells encountering soluble exogenous peptide to expand and differentiate into IFN-gamma and TNF-alpha double-producing effectors rather than becoming tolerant. Despite this and the stronger tendency of CD8 compared with CD4 cells to differentiate into IFN-gamma-expressing effectors, when parenchymal self-Ag was the source of tolerizing Ag, enforced dual costimulation selectively boosted expansion but did not push effector differentiation in CD8 cells while both expansion and effector differentiation were dramatically boosted in CD4 cells. Notably, enforced dual costimulation was able to push effector differentiation in CD8 cells encountering cognate parenchymal self-Ag when CD4 cells were simultaneously engaged. Thus, the ability of enforced OX40 plus 4-1BB dual costimulation to redirect CD8 cells to undergo effector differentiation was unexpectedly influenced by the source of tolerizing Ag and help was selectively required to facilitate CD8 cell effector differentiation when the tolerizing Ag derived from self.
Collapse
Affiliation(s)
- Suman Bandyopadhyay
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Meixiao Long
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Harry Z. Qui
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Adam T. Hagymasi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Aaron M. Slaiby
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Marianne A. Mihalyo
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Hector L. Aguila
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Robert S. Mittler
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Adam J. Adler
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
31
|
Hossain MB, Hosokawa H, Hasegawa A, Watarai H, Taniguchi M, Yamashita M, Nakayama T. Lymphoid enhancer factor interacts with GATA-3 and controls its function in T helper type 2 cells. Immunology 2008; 125:377-86. [PMID: 18445004 DOI: 10.1111/j.1365-2567.2008.02854.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
GATA-3 is the master transcription factor for T helper 2 (Th2) cell differentiation and is critical for the expression of Th2 cytokines. Little is known, however, about the nature of the functional molecular complexes of GATA-3. We identified a high-mobility group (HMG)-box type transcription factor, lymphoid enhancer factor 1 (LEF-1), in the GATA-3 complex present in Th2 cells using a Flag-calmodulin-binding peptide (CBP)-tag based proteomics method. The interaction between GATA-3 and LEF-1 was confirmed by co-immunoprecipitation experiments using LEF-1-introduced T-cell lineage TG40 cells. The HMG-box domain of LEF-1 and two zinc finger domains of GATA-3 were found to be important for the physical association. The introduction of LEF-1 into developing Th2 cells resulted in the suppression of Th2 cytokine production. The suppression was significantly lower in the cells into which a HMG-box-deleted LEF-1 mutant was introduced. Moreover, LEF-1 inhibited the binding activity of GATA-3 to the interleukin (IL)-5 promoter. These results suggest that LEF-1 is involved in the GATA-3 complex, while also regulating the GATA-3 function, such as the induction of Th2 cytokine expression via the inhibition of the DNA-binding activity of GATA-3.
Collapse
Affiliation(s)
- Mohammad B Hossain
- Department of Immunology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Interferon-gamma (IFN-gamma) is crucial for immunity against intracellular pathogens and for tumor control. However, aberrant IFN-gamma expression has been associated with a number of autoinflammatory and autoimmune diseases. This cytokine is produced predominantly by natural killer (NK) and natural killer T (NKT) cells as part of the innate immune response, and by Th1 CD4 and CD8 cytotoxic T lymphocyte (CTL) effector T cells once antigen-specific immunity develops. Herein, we briefly review the functions of IFN-gamma, the cells that produce it, the cell extrinsic signals that induce its production and influence the differentiation of naïve T cells into IFN-gamma-producing effector T cells, and the signaling pathways and transcription factors that facilitate, induce, or repress production of this cytokine. We then review and discuss recent insights regarding the molecular regulation of IFN-gamma, focusing on work that has led to the identification and characterization of distal regulatory elements and epigenetic modifications with the IFN-gamma locus (Ifng) that govern its expression. The epigenetic modifications and three-dimensional structure of the Ifng locus in naive CD4 T cells, and the modifications they undergo as these cells differentiate into effector T cells, suggest a model whereby the chromatin architecture of Ifng is poised to facilitate either rapid opening or silencing during Th1 or Th2 differentiation, respectively.
Collapse
|
33
|
Abstract
How signaling cascades influence gene regulation at the level of chromatin modification is not well understood. We studied this process using the Wingless/Wnt pathway in Drosophila. When cells sense Wingless ligand, Armadillo (the fly beta-catenin) becomes stabilized and translocates to the nucleus, where it binds to the sequence-specific DNA binding protein TCF to activate transcription of target genes. Here, we show that Wingless signaling induces TCF and Armadillo recruitment to a select subset of TCF binding site clusters that act as Wingless response elements. Despite this localized TCF/Armadillo recruitment, histones are acetylated over a wide region (up to 30 kb) surrounding the Wingless response elements in response to pathway activation. This widespread histone acetylation occurs independently of transcription. In contrast to Wingless targets, other active genes not regulated by the pathway display sharp acetylation peaks centered on their core promoters. Widespread acetylation of Wingless targets is dependent upon CBP, a histone acetyltransferase known to bind to Armadillo and is correlated with activation of target gene expression. These data suggest that pathway activation induces localized recruitment of TCF/Armadillo/CBP to Wingless response elements, leading to widespread histone acetylation of target loci prior to transcriptional activation.
Collapse
|
34
|
Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol 2007; 121:57-63.e3. [PMID: 17980413 DOI: 10.1016/j.jaci.2007.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 08/31/2007] [Accepted: 09/05/2007] [Indexed: 12/15/2022]
Abstract
BACKGROUND Multiple biologic factors influence maintenance of immunologic responsiveness. Here, we studied whether epigenetics has a regulatory function in maintaining pre-established T(H)1-like and T(H)2-like immunity in human beings. OBJECTIVE We focused on delineating the role of endogenous histone deacetylase (HDAC) activity in regulating cytokine recall responses. METHODS Using RT-PCR and ELISA, the effect of increasing cellular acetylation on T(H)1/T(H)2 cytokine expression was systematically examined in 58 children by inhibiting HDAC activity with trichostatin A. RESULTS Phytohemagglutinin activation selectively stimulates antigen-experienced CD45RO+ T cells, eliciting recall cytokine responses. Trichostatin A reduced HDAC activity by approximately 1/3. The resulting cellular hyperacetylation led to increased T(H)2-associated (IL-13, 139%; IL-5, 168%; P < .0001) and reduced T(H)1-associated recall responses (IFN-gamma, 76%; CXCL10, 47%; P < .0001). IL-2 and IL-10 production were reduced 25% to 55% (P < .0001). These alterations in T(H)2-associated and T(H)1-associated recall responses were associated with increased expression of Gata-3 and sphingosine kinase 1, a T(H)1-negative regulator, independent of T-bet expression. Overall, inhibition of endogenous HDAC activity shifted T(H)1:T(H)2 ratios by 3-fold to 8-fold (P < or = .0001), skewing recall responses toward a more T(H)2-like phenotype, independent of the stimulus used. CONCLUSION Endogenous HDAC activity plays a crucial role in maintaining the balance of pre-established T(H)1-like and T(H)2-like responses, inhibiting excessive T(H)2 immunity.
Collapse
Affiliation(s)
- Ruey-Chyi Su
- Canadian Institute for Health Research, National Training Program in Allergy and Asthma Research, Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
35
|
Hamalainen-Laanaya HK, Kobie JJ, Chang C, Zeng WP. Temporal and Spatial Changes of Histone 3 K4 Dimethylation at the IFN-γ Gene during Th1 and Th2 Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2007; 179:6410-5. [DOI: 10.4049/jimmunol.179.10.6410] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Chang S, Aune TM. Dynamic changes in histone-methylation 'marks' across the locus encoding interferon-γ during the differentiation of T helper type 2 cells. Nat Immunol 2007; 8:723-31. [PMID: 17546034 DOI: 10.1038/ni1473] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 04/25/2007] [Indexed: 02/03/2023]
Abstract
The 'histone-code' hypothesis proposes that cell fate 'decisions' are achieved through the creation of stable epigenetic histone 'marks' at gene loci. Here we explored the formation of marks of repressive methylation of histone 3 at lysine 9 (H3-K9) and of H3-K27 at the locus encoding interferon-gamma (Ifng locus) during the commitment of naive T cells to the T helper type 1 (TH1) and TH2 lineages. Methylation of H3-K9 across the Ifng locus was rapidly induced in differentiating TH1 and TH2 cells and was sustained in TH1 cells. In contrast, TH2 differentiation caused loss of methylation of H3-K9 and gain of methylation of H3-K27 by mechanisms dependent on the transcription factors GATA-3 and STAT6. Thus, histone-methylation marks at the Ifng locus are highly dynamic, which may ensure higher-order transcriptional regulation during early lineage commitment.
Collapse
Affiliation(s)
- Shaojing Chang
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
37
|
Eivazova ER, Markov SA, Pirozhkova I, Lipinski M, Vassetzky YS. Recruitment of RNA polymerase II in the Ifng gene promoter correlates with the nuclear matrix association in activated T helper cells. J Mol Biol 2007; 371:317-22. [PMID: 17583733 DOI: 10.1016/j.jmb.2007.04.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 11/25/2022]
Abstract
Recruitment of the RNA polymerase II transcription complex to the promoter of the Ifng gene has been studied by chromatin immunoprecipitation (ChIP) in activated functionally different CD4+ T helper (Th) cell subsets. In parallel, analysis of association of the nuclear scaffold/matrix with the Ifng gene promoter has been carried out. The RNA polymerase II (RNA pol II) interacted with the Ifng gene promoter in analyzed activated neutral Th cells, IFN-gamma producing Th1 cells and IFN-gamma silent Th2 cells. However, the interaction of the Ifng gene promoter with the nuclear matrix occurred differentially in a lineage-specific manner. The pattern of the nuclear matrix interaction correlated directly with the gene expression. Strong association of the promoter with the nuclear matrix was observed only in the Th1 cell subset where the Ifng gene was actively transcribed. We propose that it is the interaction of the Ifng gene promoter with the nuclear matrix that may set off transcription in activated Th cells by promoter-associated RNA pol II.
Collapse
Affiliation(s)
- Elvira R Eivazova
- Vanderbilt University School of Medicine, Department of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
38
|
Verdeil G, Chaix J, Schmitt-Verhulst AM, Auphan-Anezin N. Temporal cross-talk between TCR and STAT signals for CD8 T cell effector differentiation. Eur J Immunol 2007; 36:3090-100. [PMID: 17111352 DOI: 10.1002/eji.200636347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The strength and duration of signaling through surface receptors is a primary means of controlling cell fate decisions. In adaptive immunity, Ag-initiated T cell stimulation is secondarily regulated by cytokines. We here summarize evidence for temporal control of a gene expression program in naive CD8 T cells. It is initiated in response to TCR engagement but relies on secondary signaling from cytokine receptors to be sustained and to allow development of full effector capacity. This mechanism permits cytokine receptor signaling to rescue abortive TCR signaling, such as that induced in response to weak or partial TCR agonists. Indeed, limiting TCR-initiated signaling on the Ras/ERK pathway may be complemented by STAT activation. Thus, TCR- and cytokine-driven activation of transcription factors and epigenetic modifications may act in concert in a temporally staggered process to establish the functional program of effector CD8 T cells. Based on gene expression profiling, molecular targets whose activation or inactivation may boost or dampen CD8 T cell effectors are also identified. Manipulation of these targets may, respectively, increase anti-tumor responses or prevent graft-versus-host reactions.
Collapse
Affiliation(s)
- Grégory Verdeil
- Centre d'Immunologie de Marseille-Luminy, INSERM U631, CNRS UMR 6102, Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|
39
|
Eivazova ER, Vassetzky YS, Aune TM. Selective matrix attachment regions in T helper cell subsets support loop conformation in the Ifng gene. Genes Immun 2006; 8:35-43. [PMID: 17093503 DOI: 10.1038/sj.gene.6364349] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytokine genes undergo progressive changes in chromatin organization when naïve CD4+ T helper (Th) cells differentiate into committed Th1 and Th2 lineages. Here, we analyzed nuclear matrix attachment regions (MARs) in the Ifng gene by DNA array technique in unactivated and activated CD4+ Th cells. This approach was combined with analysis of spatial organization of the Ifng gene by chromosome conformation capture approach to assess the relationship between the gene conformation and matrix attachment organization in functionally different cell subsets. We report that the Ifng gene in unactivated cells displays a linear conformation, but in T-cell receptor-activated cells, it adopts a loop conformation. The selective MARs support the spatial gene organization and characteristically define the Ifng gene in functionally different cell subsets. The pattern of interaction of the Ifng gene with the nuclear matrix dynamically changes in a lineage-specific manner in parallel with the changes in Ifng gene conformation. The data suggest that such structural dynamics provide the means for transcriptional regulation of the Ifng gene in the course of activation and differentiation of CD4+Th cells.
Collapse
Affiliation(s)
- E R Eivazova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
40
|
Chilton PM, Mitchell TC. CD8 T cells require Bcl-3 for maximal gamma interferon production upon secondary exposure to antigen. Infect Immun 2006; 74:4180-9. [PMID: 16790793 PMCID: PMC1489710 DOI: 10.1128/iai.01749-05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adjuvant-induced survival of T cells after antigen activation correlates with increased expression of Bcl-3. Bcl-3 is an NF-kappaB/IkappaB family member and has been implicated in transcriptional regulation in several cell types. We tested the ability of mice deficient in Bcl-3 (Bcl-3 KO) to exhibit T-cell adjuvant-induced survival after challenge with the superantigen staphylococcal enterotoxin B (SEB), using lipopolysaccharide (LPS) as a natural adjuvant. These studies showed that Bcl-3 is required for secondary gamma interferon (IFN-gamma) production by CD8 T cells but not for adjuvant-induced survival effects. Specifically, wild-type and Bcl-3 KO mice exhibited comparable long-term increases in the Vbeta8(+) T-cell populations, indicating no lack of survival in response to adjuvant stimulation in the Bcl-3 KO activated T cells. Ectopic expression of the Bcl-3-related molecules IkappaBalpha, IkappaBbeta, and IkappaBepsilon in SEB-activated T cells increased survival during in vitro culture in the absence of adjuvant, suggesting that these IkappaB molecules could exert a survival function in antigen-activated T cells in place of Bcl-3. However, Vbeta8(+) CD8 T cells from SEB- plus LPS-treated Bcl-3 KO mice produced less IFN-gamma upon in vitro restimulation than Vbeta8(+) CD8 T cells from wild-type mice. Therefore, Bcl-3 plays a unique role in the regulation of IFN-gamma production in this model system.
Collapse
Affiliation(s)
- Paula M Chilton
- Institute for Cellular Therapeutics, University of Louisville, 570 South Preston Street, Suite 404, Louisville, KY 40202-1760, USA
| | | |
Collapse
|
41
|
Calestagne-Morelli A, Ausió J. Long-range histone acetylation: biological significance, structural implications, and mechanismsThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:518-27. [PMID: 16936824 DOI: 10.1139/o06-067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genomic characterization of various euchromatic regions in higher eukaryotes has revealed that domain-wide hyperacetylation (over several kb) occurs at a range of loci, including individual genes, gene family clusters, compound clusters, and more general clusters of unrelated genes. Patterns of long-range histone hyperacetylation are strictly conserved within each unique cellular system studied and they reflect biological variability in gene regulation. Domain-wide histone acetylation consists generally of nonuniform peaks of enriched hyperacetylation of specific core histones, histone isoforms, and (or) histone variants against a backdrop of nonspecific acetylation across the domain in question. Here we review the characteristics of long-range histone acetylation in some higher eukaryotes and draw special attention to recent literature on the multiple effects that histone hyperacetylation has on chromatin’s structural integrity and how they affect transcription. These include the thermal, ionic, cumulative, and isoform-specific (H4 K16) consequences of acetylation that result in a more dynamic core complex and chromatin fiber.
Collapse
Affiliation(s)
- Alison Calestagne-Morelli
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 220, Victoria, BC V8W 3P6, Canada
| | | |
Collapse
|
42
|
Aung HT, Schroder K, Himes SR, Brion K, van Zuylen W, Trieu A, Suzuki H, Hayashizaki Y, Hume DA, Sweet MJ, Ravasi T. LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J 2006; 20:1315-27. [PMID: 16816106 DOI: 10.1096/fj.05-5360com] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial LPS triggers dramatic changes in gene expression in macrophages. We show here that LPS regulated several members of the histone deacetylase (HDAC) family at the mRNA level in murine bone marrow-derived macrophages (BMM). LPS transiently repressed, then induced a number of HDACs (Hdac-4, 5, 7) in BMM, whereas Hdac-1 mRNA was induced more rapidly. Treatment of BMM with trichostatin A (TSA), an inhibitor of HDACs, enhanced LPS-induced expression of the Cox-2, Cxcl2, and Ifit2 genes. In the case of Cox-2, this effect was also apparent at the promoter level. Overexpression of Hdac-8 in RAW264 murine macrophages blocked the ability of LPS to induce Cox-2 mRNA. Another class of LPS-inducible genes, which included Ccl2, Ccl7, and Edn1, was suppressed by TSA, an effect most likely mediated by PU.1 degradation. Hence, HDACs act as potent and selective negative regulators of proinflammatory gene expression and act to prevent excessive inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Hnin Thanda Aung
- Cooperative Research Centre for Chronic inflammatory Diseases, Institute for Molecular Bioscience, University of Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fann M, Godlove JM, Catalfamo M, Wood WH, Chrest FJ, Chun N, Granger L, Wersto R, Madara K, Becker K, Henkart PA, Weng NP. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8(+) T-cell response. Blood 2006; 108:3363-70. [PMID: 16868257 PMCID: PMC1895425 DOI: 10.1182/blood-2006-02-005520] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8(+) T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8(+) T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8(+) T-cell response.
Collapse
Affiliation(s)
- Monchou Fann
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hinrichs CS, Gattinoni L, Restifo NP. Programming CD8+ T cells for effective immunotherapy. Curr Opin Immunol 2006; 18:363-70. [PMID: 16616471 PMCID: PMC1540013 DOI: 10.1016/j.coi.2006.03.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 03/27/2006] [Indexed: 01/19/2023]
Abstract
The differentiation state of CD8+ T cells has emerged as a crucial determinant of their ability to respond to tumor and infection. Signals from T-cell receptors, co-stimulatory molecules and cytokine receptors direct the differentiation process. These signals 'program' sustained and heritable gene expression patterns that govern progressive differentiation and lineage commitment. The epigenetic mechanisms by which T cells are programmed are just beginning to be elucidated. Understanding the mechanisms that control CD8+ T-cell differentiation is important in the development of novel immunotherapy strategies.
Collapse
Affiliation(s)
- Christian S Hinrichs
- National Cancer Institute, Surgery Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luca Gattinoni
- National Cancer Institute, Surgery Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas P Restifo
- National Cancer Institute, Surgery Branch, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Gonsky R, Deem RL, Bream JH, Young HA, Targan SR. An IFNG SNP with an estrogen-like response element selectively enhances promoter expression in peripheral but not lamina propria T cells. Genes Immun 2006; 7:342-51. [PMID: 16724074 DOI: 10.1038/sj.gene.6364305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study examines mucosa-specific regulatory pathways involved in modulation of interferon-gamma (IFN-gamma) in lamina propria T cells. Previous studies identified mucosa-specific CD2 cis-elements within the -204 to -108 bp IFNG promoter. Within this region, a single-site nucleotide polymorphism, -179G/T, imparts tumor necrosis factor-alpha stimulation of IFNG in peripheral blood lymphocytes, and is linked with accelerated AIDS progression. We discovered a putative estrogen response element (ERE) introduced by the -179T, which displays selective activation in peripheral blood mononuclear cells (PBMC) vs lamina propria mononuclear cells (LPMC). Transfection of PBMC with constructs containing the -179G or -179T site revealed CD2-mediated enhancement of the -179T compared to -179G allele, although, in LPMC, a similar level of expression was detected. Electrophoretic mobility shift assay (EMSA) analysis demonstrated CD2-mediated nucleoprotein binding to the -179T but not the -179G in PBMC. In LPMC, binding is constitutive to both -179G and -179T regions. Sequence and EMSA analysis suggests that the -179T allele creates an ERE-like binding site capable of binding recombinant estrogen receptor. Estrogen response element transactivation is enhanced by CD2 signaling, but inhibited by estrogen in PBMC but not in LPMC, although expression of estrogen receptor was similar. This is the first report to describe a potential molecular mechanism responsible for selectively controlling IFN-gamma production in LPMC.
Collapse
Affiliation(s)
- R Gonsky
- Inflammatory Bowel Disease Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
46
|
Kersh EN, Fitzpatrick DR, Murali-Krishna K, Shires J, Speck SH, Boss JM, Ahmed R. Rapid Demethylation of the IFN-γ Gene Occurs in Memory but Not Naive CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:4083-93. [PMID: 16547244 DOI: 10.4049/jimmunol.176.7.4083] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA methylation is an epigenetic mechanism of gene regulation. We have determined that specific modifications in DNA methylation at the IFN-gamma locus occur during memory CD8 T cell differentiation in vivo. Expression of the antiviral cytokine IFN-gamma in CD8 T cells is highly developmental stage specific. Most naive cells must divide before they express IFN-gamma, while memory cells vigorously express IFN-gamma before cell division. Ag-specific CD8 T cells were obtained during viral infection of mice and examined directly ex vivo. Naive cells had an IFN-gamma locus with extensive methylation at three specific CpG sites. An inhibitor of methylation increased the amount of IFN-gamma in naive cells, indicating that methylation contributes to the slow and meager production of IFN-gamma. Effectors were unmethylated and produced large amounts of IFN-gamma. Interestingly, while memory cells were also able to produce large amounts of IFN-gamma, the gene was partially methylated at the three CpG sites. Within 5 h of antigenic stimulation, however, the gene was rapidly demethylated in memory cells. This was independent of DNA synthesis and cell division, suggesting a yet unidentified demethylase. Rapid demethylation of the IFN-gamma promoter by an enzymatic factor only in memory cells would be a novel mechanism of differential gene regulation. This differentiation stage-specific mechanism reflects a basic immunologic principle: naive cells need to expand before becoming an effective defense factor, whereas memory cells with already increased precursor frequency can rapidly mount effector functions to eliminate reinfecting pathogens in a strictly Ag-dependent fashion.
Collapse
Affiliation(s)
- Ellen N Kersh
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Histone hyperacetylated domains across the Ifng gene region in natural killer cells and T cells. Proc Natl Acad Sci U S A 2005. [PMID: 16286661 DOI: 10.1073/pnas.0502129102.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Local histone acetylation of promoters precedes transcription of many genes. Extended histone hyperacetylation at great distances from coding regions of genes also occurs during active transcription of gene families or individual genes and may reflect developmental processes that mark genes destined for cell-specific transcription, nuclear signaling processes that are required for active transcription, or both. To distinguish between these, we compared long-range histone acetylation patterns across the Ifng gene region in natural killer (NK) cells and T cells that were or were not actively transcribing the Ifng gene. In T cells, long-range histone acetylation depended on stimulation that drives both T helper (Th) 1 differentiation and active transcription, and it depended completely or partially on the presence of Stat4 or T-bet, respectively, two transcription factors that are required for Th1 lineage commitment. In contrast, in the absence of stimulation and active transcription, similar histone hyperacetylated domains were found in NK cells. Additional proximal domains were hyperacetylated after stimulation of transcription. We hypothesize that formation of extended histone hyperacetylated domains across the Ifng gene region represents a developmental mechanism that marks this gene for cell- or stimulus-specific transcription.
Collapse
|
48
|
Chang S, Aune TM. Histone hyperacetylated domains across the Ifng gene region in natural killer cells and T cells. Proc Natl Acad Sci U S A 2005; 102:17095-100. [PMID: 16286661 PMCID: PMC1283154 DOI: 10.1073/pnas.0502129102] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 10/06/2005] [Indexed: 01/04/2023] Open
Abstract
Local histone acetylation of promoters precedes transcription of many genes. Extended histone hyperacetylation at great distances from coding regions of genes also occurs during active transcription of gene families or individual genes and may reflect developmental processes that mark genes destined for cell-specific transcription, nuclear signaling processes that are required for active transcription, or both. To distinguish between these, we compared long-range histone acetylation patterns across the Ifng gene region in natural killer (NK) cells and T cells that were or were not actively transcribing the Ifng gene. In T cells, long-range histone acetylation depended on stimulation that drives both T helper (Th) 1 differentiation and active transcription, and it depended completely or partially on the presence of Stat4 or T-bet, respectively, two transcription factors that are required for Th1 lineage commitment. In contrast, in the absence of stimulation and active transcription, similar histone hyperacetylated domains were found in NK cells. Additional proximal domains were hyperacetylated after stimulation of transcription. We hypothesize that formation of extended histone hyperacetylated domains across the Ifng gene region represents a developmental mechanism that marks this gene for cell- or stimulus-specific transcription.
Collapse
Affiliation(s)
- Shaojing Chang
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| | | |
Collapse
|
49
|
Wilson CB, Makar KW, Shnyreva M, Fitzpatrick DR. DNA methylation and the expanding epigenetics of T cell lineage commitment. Semin Immunol 2005; 17:105-19. [PMID: 15737572 DOI: 10.1016/j.smim.2005.01.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During their development from progenitors, lymphocytes make a series of cell fate decisions. These decisions reflect and require changes in overall programs of gene expression. To maintain cellular identity, programs of gene expression must be iterated through mitosis in a heritable manner by epigenetic processes, which include DNA methylation, methyl-CpG-binding proteins, histone modifications, transcription factors and higher order chromatin structure. Current evidence is consistent with the notion that DNA methylation acts in concert with other epigenetic processes to limit the probability of aberrant gene expression and to stabilize, rather than to initiate, cell fate decisions. In particular, DNA methylation appears to be a non-redundant repressor of CD8 expression in TCR-gammadelta T cells and Th2 cytokine expression in Th1 and CD8 T cells, and is required to enforce clonally restricted Ly49 and KIR gene expression in NK cells. However, most of our knowledge is derived from in vitro studies, and the importance of DNA methylation in memory cell lineage fidelity in vivo remains to be shown convincingly.
Collapse
|
50
|
Abstract
A small but growing number of loci that exhibit covalent histone modifications, such as hyperacetylation, over broad regions of 10 kb or more have been characterized. These hyperacetylated domains occur exclusively at loci containing highly expressed, tissue-specific genes, and the available evidence suggests that they are involved in the activation of these genes. Although to date little is known concerning the formation or function of these domains, rather more is known concerning repressive, heterochromatic domains, and the example provided by heterochromatin may be instructive in considering mechanisms of active domain formation.
Collapse
Affiliation(s)
- Michael Bulger
- Center for Pediatric Biomedical Research and Department of Biochemistry and Biophysics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|