1
|
Shang J, Li F, Kong X, Ji Y, Li Y, Hussain S, Li X, Li L, Zhang X, Ahmed ZFR. Bioinformatics analysis of the tomato (Solanum lycopersicum) methylesterase gene family. BMC PLANT BIOLOGY 2025; 25:649. [PMID: 40380152 PMCID: PMC12083104 DOI: 10.1186/s12870-025-06625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/25/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Methylesterases (MESs) are a class of enzymes responsible for the demethylation of methylated compounds in plants, play a vital role in plant growth and development. However, studies on MES enzymes in tomato (Solanum lycopersicum) are limited. RESULTS This study systematically identified MES genes in tomatoes for the first time and studied their physicochemical properties, evolutionary relationships, and expression patterns. Sixteen Solanum lycopersicum methylesterase (SlMES) genes were identified through comprehensive bioinformatics analysis and were categorized into three subfamilies. Members of the same subfamily exhibited similar gene structures, structural domains, and conserved motifs. Chromosomal analysis revealed an uneven distribution of SlMESs across the five chromosomes, with evidence of gene duplication. Cis-acting element analyses suggested that the SlMES family may have important regulatory functions in tomato growth, development, and stress responses. Among them, Solyc02g065260 was further examined for its role in tomato fruit ripening and stress responses. Its tissue-specific expression patterns, dynamic expression during fruit ripening, and responses to pathogens, low temperatures, and hormones, such as methyl jasmonate (MeJA), methyl salicylate (MeSA), abscisic acid (ABA), and ethylene (ET), were analyzed. The results provided further evidence towards understanding the roles of the SlMES family in the tomatoes. CONCLUSIONS The results established a theoretical foundation for future investigations into the functional characterization of MES genes during tomato growth and development.
Collapse
Affiliation(s)
- Jing Shang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, PR China
| | - Fujun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, PR China
| | - Xiangrong Kong
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, PR China
| | - Yue Ji
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, PR China
| | - Yanan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, PR China
| | - Sarfaraz Hussain
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, PR China
| | - Xiaoan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, PR China
| | - Ling Li
- College of Food and Biological Engineering, Beijing Vocational College of Agriculture, Fangshan District, Beijing, 102442, PR China
| | - Xinhua Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, PR China.
| | - Zienab F R Ahmed
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, UAE.
| |
Collapse
|
2
|
Yan J, Li Q, Geng D, Wang Z, Zhao D, Zhang D, Wang J, Pan Y, Zhu J, Yang Z. The Potato StNAC2-StSABP2 Module Enhanced Resistance to Phytophthora infestans Through Activating the Salicylic Acid Pathway. MOLECULAR PLANT PATHOLOGY 2025; 26:e70081. [PMID: 40300849 PMCID: PMC12040442 DOI: 10.1111/mpp.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 05/01/2025]
Abstract
Potato late blight is an important disease in potato production, which causes serious damage. Salicylic acid (SA) is a plant hormone involved in the regulation of potato (Solanum tuberosum) resistance to Phytophthora infestans. In this study, it was found that exogenous methyl salicylate (MeSA) treatment could significantly enhance the resistance of potato to P. infestans. RNA-seq results confirmed that SA was important for potato resistance to P. infestans. Salicylic acid binding protein 2 (SABP2) is a member of α/β hydrolase family, which can convert MeSA into SA to regulate the steady state of SA in plants. StSABP2 protein was obtained through prokaryotic expression, and enzymatic analysis in vitro confirmed that StSABP2 could transform MeSA into SA. In order to explore the function of StSABP2 in the process of plant resistance to P. infestans, we carried out virus-mediated gene silencing of StSABP2 in potato and transiently expressed StSABP2 in tobacco. The results showed that StSABP2 positively regulated plant resistance to P. infestans, and this process was achieved by mediating the transcription of SA signal and defence-related genes. Then we screened for the upstream regulator of StSABP2. The results of double luciferase and yeast one-hybrid analysis showed that StNAC2 could activate the transcription of StSABP2. The StNAC2-StSABP2 module regulated potato resistance to P. infestans by positively mediating the SA pathway. This study provides a new idea for improving host resistance to potato late blight by regulating the SA signal in potato and provides germplasm resources for potato resistance breeding.
Collapse
Affiliation(s)
- Jie Yan
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Qian Li
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
| | - Deying Geng
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Zheng Wang
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Dongmei Zhao
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Dai Zhang
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Jinhui Wang
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Yang Pan
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Jiehua Zhu
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Zhihui Yang
- College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| |
Collapse
|
3
|
Feng B, Wang E, Zhang Y, Xu L, Xue Y, Chen Y. Short-Term Fertilization with the Nitrogen-Fixing Bacterium (NFB) Kosakonia radicincitans GXGL-4A Agent Can Modify the Transcriptome Expression Profiling of Cucumber ( Cucumis sativus L.) Root. Microorganisms 2025; 13:506. [PMID: 40142399 PMCID: PMC11945905 DOI: 10.3390/microorganisms13030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/28/2025] Open
Abstract
The application of nitrogen-fixing bacteria (NFB) as a biofertilizer can greatly reduce or even avoid environmental pollution caused by the excessive use of chemical nitrogen fertilizers. To explore the effect of short-term fertilization of GXGL-4A on the expression of functional genes in the roots of the cucumber (Cucumis sativus L.) cultivar "Xintaimici", this study used transcriptome sequencing technology combined with fluorescent quantitative RT-PCR (qRT-PCR) verification to compare the gene transcription profiles of GXGL-4A-treated and control (sterile-water-treated) groups. A total of 418 differentially expressed genes (DEGs) were detected. The transcription levels of genes Csa5G161290 and Csa3G027720, which encode nitrate transporters, showed significant up-regulation (3.04- and 2.27-fold, respectively) in roots inoculated with GXGL-4A. The genes CsaV3_5G006200, encoding cytokinin dehydrogenase involved in the biosynthesis of zeatin, CsaV3_1G011730, encoding a wound-responsive protein, and CsaV3_6G015610, encoding a heat stress transcription factor, were significantly up-regulated at the transcriptional level (p < 0.05). However, the transcription of nitrogen cycling functional genes CsaV3_3G036500, CsaV3_1g008910, and CsaV3_3G018610, which encode nitrate reductase, high-affinity nitrate transporter (NRT), and ferredoxin-nitrite reductase, respectively, showed significant down-regulation (p < 0.05). Only the KEGG pathway of phenylpropanoid biosynthesis reached a significant level (p < 0.05). This study contributes to a deeper understanding of the interaction between NFB and plants and provides theoretical guidance for the development of GXGL-4A as a mature biological agent for sustainable agricultural production under drought stress.
Collapse
Affiliation(s)
- Baoyun Feng
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (B.F.); (E.W.); (Y.Z.)
| | - Erxing Wang
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (B.F.); (E.W.); (Y.Z.)
| | - Yating Zhang
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (B.F.); (E.W.); (Y.Z.)
| | - Lurong Xu
- Asset Management and Shared Equipment’s Office, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.X.); (Y.X.)
| | - Yanwen Xue
- Asset Management and Shared Equipment’s Office, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.X.); (Y.X.)
| | - Yunpeng Chen
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (B.F.); (E.W.); (Y.Z.)
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station (Shanghai Urban Ecosystem Research Station), Ministry of Science and Technology, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| |
Collapse
|
4
|
Xiao YX, Xiao C, Tong Z, He XJ, Wang ZQ, Zhang HY, Qiu WM. Four MES genes from calamondin ( Citrofortunella microcarpa) regulated citrus bacterial canker resistance through the plant hormone pathway. FRONTIERS IN PLANT SCIENCE 2025; 15:1513430. [PMID: 39902200 PMCID: PMC11788333 DOI: 10.3389/fpls.2024.1513430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025]
Abstract
Citrus bacterial canker (CBC) disease, caused by Xanthomonas citri subsp. citri (Xcc), is one of the major diseases that seriously endanger citrus production. Citrus regulates the balance of endogenous plant hormones to resist CBC through multiple synthetic pathways, including the demethylation pathways of methyl salicylate (MeSA), methyl jasmonate (MeJA) and methyl indole-3-acetic acid (MeIAA). Here, four methylesterase (MES) genes, MES1.1, MES17.3, MES10.2, and MES1.5 were screened in the transcriptomes of CBC-resistant and CBC-susceptible varieties after Xcc inoculation. Among these MES genes, the expression levels of MES10.2, MES1.1, and MES1.5 were up-regulated in CBC-resistant varieties, while MES17.3 was down-regulated in both CBC-resistant and susceptible varieties. Subcellular localization analysis showed that the four MES-encoding proteins were localized in the cytoplasm. Overexpression of CmMES1.1 and CmMES1.5 from calamondin (Citrofortunella microcarpa) significantly enhanced CBC resistance and increased the salicylic acid (SA) content in calamondin. Conversely, overexpression of CmMES10.2 and CmMES17.3 significantly reduced CBC resistance and increased the contents of jasmonic acid (JA) and indole-3-acetic acid (IAA), respectively. We concluded that the resistant varieties confer CBC-resistance by regulating the expression of CmMES1.1 and CmMES1.5 to increase SA content, and regulating CmMES10.2 and CmMES17.3 to inhibit the synthesis of JA and IAA, respectively. Their ability to regulate the endogenous SA, JA and IAA content through the demethylation pathway was an attractive breeding target for conferring CBC resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen-Ming Qiu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Chaffin TA, Wang W, Chen JG, Chen F. Function and Evolution of the Plant MES Family of Methylesterases. PLANTS (BASEL, SWITZERLAND) 2024; 13:3364. [PMID: 39683156 DOI: 10.3390/plants13233364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Land plant evolution has been marked by numerous genetic innovations, including novel catalytic reactions. Plants produce various carboxyl methyl esters using carboxylic acids as substrates, both of which are involved in diverse biological processes. The biosynthesis of methyl esters is catalyzed by SABATH methyltransferases, and understanding of this family has broadened in recent years. Meanwhile, the enzymes catalyzing demethylation-known as methylesterases (MESs)-have received less attention. Here, we present a comprehensive review of the plant MES family, focusing on known biochemical and biological functions, and evolution in the plant kingdom. Thirty-two MES genes have been biochemically characterized, with substrates including methyl esters of plant hormones and several other specialized metabolites. One characterized member demonstrates non-esterase activity, indicating functional diversity in this family. MES genes regulate biological processes, including biotic and abiotic defense, as well as germination and root development. While MES genes are absent in green algae, they are ubiquitous among the land plants analyzed. Extant MES genes belong to three groups of deep origin, implying ancient gene duplication and functional divergence. Two of these groups have yet to have any characterized members. Much remains to be uncovered about the enzymatic functions, biological roles, and evolution of the MES family.
Collapse
Affiliation(s)
- Timothy A Chaffin
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Weijiao Wang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Feng Chen
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Dong L, Chen S, Shang L, Du M, Mo K, Pang S, Zheng L, Xu L, Lei T, He Y, Zou X. Overexpressing CsSABP2 enhances tolerance to Huanglongbing and citrus canker in C. sinensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1472155. [PMID: 39439518 PMCID: PMC11493644 DOI: 10.3389/fpls.2024.1472155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Huanglongbing (HLB) and citrus canker, arising from Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. Citri (Xcc), respectively, have been imposing tremendous losses to the global citrus industry. Systemic acquired resistance (SAR) has been shown to be crucial for priming defense against pathogen in citrus. Salicylic acid (SA) binding protein 2 (SABP2), which is responsible for converting methyl salicylate (MeSA) to SA, is essential for full SAR establishment. Here, we characterized the functions of four citrus SABP2 genes (CsSABP2-1, CsSABP2-1V18A , CsSABP2-2 and CsSABP2-3) against HLB and citrus canker. In vitro enzymatic assay revealed that all four proteins had MeSA esterase activities, and CsSABP2-1 and CsSABP2-1V18A has the strongest activity. Their activities were inhibited by SA except for CsSABP2-1V18A. Four genes controlled by a strong promoter 35S were induced into Wanjincheng orange (Citrus sinensis Osbeck) to generate transgenic plants overexpressing CsSABP2. Overexpressing CsSABP2 increased SA and MeSA content and CsSABP2-1V18A had the strongest action on SA. Resistance evaluation demonstrated that only CsSABP2-1V18A had significantly enhanced tolerance to HLB, although all four CsSABP2s had increased tolerance to citrus canker. The data suggested the amino acid Val-18 in the active site of CsSABP2 plays a key role in protein function. Our study emphasized that balancing the levels of SA and MeSA is crucial for regulating SAR and conferring broad-spectrum resistance to HLB and citrus canker. This finding offers valuable insights for enhancing resistance through SAR engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiuping Zou
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
7
|
Li Q, Wang H, Wang X, Zhu J, Yao J. Computational and experimental identification of an exceptionally efficient ethyl ester synthetase with broad substrate specificity and high product yield, suggests potential for industrial biocatalysis. Int J Biol Macromol 2024; 280:135912. [PMID: 39322140 DOI: 10.1016/j.ijbiomac.2024.135912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Transesterification plays a crucial role in the synthesis of diverse esters in organic synthesis but is barely reported in biocatalysis. Here, we computationally identify the salicylic acid-binding protease 2 (SABP2) as an efficient ethyl ester bond synthetase by QM/MM MD and free energy simulations and present the practical and effective utilization of SABP2 as an eco-friendly biocatalyst for transesterification reactions by a series of experiments. Our findings demonstrate that SABP2 efficiently catalyzes the transesterification reaction between the carboxyl acid group of promiscuous aromatic substrates and ethanol to produce the corresponding ethyl esters. Notably, while SABP2 exhibits its native capability to catalyze the hydrolysis of the methyl salicylate (MeSA), the transesterification rate (producing ethyl salicylate, EtSA) is about 3500 times higher than the hydrolysis rate. Additionally, a range of aromatic methyl esters are employed in the transesterification process, resulting in high yields (up to 98.9 %) of the corresponding ethyl esters. These results indicate a broad substrate scope for SABP2-catalyzed transesterification reactions, demonstrating its potential as a valuable biocatalyst for ester synthesis in industry.
Collapse
Affiliation(s)
- Qingqing Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, China
| | - Haiwang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, China
| | - Xia Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, China.
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, China.
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, China.
| |
Collapse
|
8
|
Kopertekh L. Improving transient expression in N. benthamiana by suppression of the Nb-SABP2 and Nb-COI1 plant defence response related genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1453930. [PMID: 39315373 PMCID: PMC11416979 DOI: 10.3389/fpls.2024.1453930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Currently transient expression is one of the preferred plant-based technologies for recombinant protein manufacturing, particularly in respect to pharmaceutically relevant products. Modern hybrid transient expression systems combine the features of Agrobacterium tumefaciens and viral vectors. However, host plant reaction to Agrobacterium-mediated delivery of gene of interest can negatively affect foreign protein accumulation. In this study, we investigated whether the modulation of plant immune response through knockdown of the Nb-SABP2 and Nb-COI1 N. benthamiana genes could improve recombinant protein yield. In plants, the SABP2 and COI1 proteins are involved in the salicylic acid and jasmonic acid metabolism, respectively. We exemplified the utility of this approach with the green fluorescence (GFP) and β nerve growth factor (βNGF) proteins: compared to the tobacco mosaic virus (TMV)-based vector the Nb-SABP2 and Nb-COI1-suppressed plants provided an increased recombinant protein accumulation. We also show that this strategy is extendable to the expression systems utilizing potato virus X (PVX) as the vector backbone: the enhanced amounts of βNGF were detected in the Nb-SABP2 and Nb-COI1-depleted leaves co-infiltrated with the PVX-βNGF. These findings suggest that modulating host plant reaction to agrodelivery of expression vectors could be useful for improving transient foreign protein production in N. benthamiana.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
9
|
Zhao Z, Tu H, Wang Y, Yang J, Hao G, Wu J. Chemical Driving the Subtype Selectivity of Phytohormone Receptors Is Beneficial for Crop Productivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16583-16593. [PMID: 39013833 DOI: 10.1021/acs.jafc.4c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chemicals that modulate phytohormones serve as a research tool in plant science and as products to improve crop productivity. Subtype selectivity refers to a ligand to selectively bind to specific subtypes of a receptor rather than binding to all possible subtypes indiscriminately. It allows for precise and specific control of cellular functions and is widely used in medicine. However, subtype selectivity is rarely mentioned in the realm of plant science, and it requires integrated knowledge from chemistry and biology, including structural features of small molecules as ligands, the redundancy of target proteins, and the response of signaling factors. Here, we present a comprehensive review and evaluation of phytohormone receptor subtype selectivity, leveraging the chemical characteristics of phytohormones and their analogues as clues. This work endeavors to provide a valuable research strategy that integrates knowledge from chemistry and biology to advance research efforts geared toward enhancing crop productivity.
Collapse
Affiliation(s)
- Zhichao Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Tu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ya Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jianrong Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Jia R, Xing K, Tian L, Dong X, Yu L, Shen X, Wang Y. Analysis of Methylesterase Gene Family in Fragaria vesca Unveils Novel Insights into the Role of FvMES2 in Methyl Salicylate-Mediated Resistance against Strawberry Gray Mold. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11392-11404. [PMID: 38717972 DOI: 10.1021/acs.jafc.4c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.
Collapse
Affiliation(s)
- Ruimin Jia
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Keyan Xing
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Lin Tian
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xiaomin Dong
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Ligang Yu
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
11
|
Lin J, Wang W, Mazarei M, Zhao N, Chen X, Pantalone VR, Hewezi T, Stewart CN, Chen F. GmSABP2-1 encodes methyl salicylate esterase and functions in soybean defense against soybean cyst nematode. PLANT CELL REPORTS 2024; 43:138. [PMID: 38733408 DOI: 10.1007/s00299-024-03224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
KEY MESSAGE The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 μM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.
Collapse
Affiliation(s)
- Jingyu Lin
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Weijiao Wang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | - Nan Zhao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Charles Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
12
|
Calderón AA, Almagro L, Martínez-Calderón A, Ferrer MA. Transcriptional reprogramming in sound-treated Micro-Tom plants inoculated with Pseudomonas syringae pv. tomato DC3000. PHYSIOLOGIA PLANTARUM 2024; 176:e14335. [PMID: 38705728 DOI: 10.1111/ppl.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Sound vibrations (SV) are known to influence molecular and physiological processes that can improve crop performance and yield. In this study, the effects of three audible frequencies (100, 500 and 1000 Hz) at constant amplitude (90 dB) on tomato Micro-Tom physiological responses were evaluated 1 and 3 days post-treatment. Moreover, the potential use of SV treatment as priming agent for improved Micro-Tom resistance to Pseudomonas syringae pv. tomato DC3000 was tested by microarray. Results showed that the SV-induced physiological changes were frequency- and time-dependent, with the largest changes registered at 1000 Hz at day 3. SV treatments tended to alter the foliar content of photosynthetic pigments, soluble proteins, sugars, phenolic composition, and the enzymatic activity of polyphenol oxidase, peroxidase, superoxide dismutase and catalase. Microarray data revealed that 1000 Hz treatment is effective in eliciting transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after the infection with Pst DC3000. Broadly, in plants challenged with Pst DC3000, the 1000 Hz pretreatment provoked the up-regulation of unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins. In addition, in those plants, DEGs associated with enhancing plant basal immunity, such as proteinase inhibitors, pathogenesis-related proteins, and carbonic anhydrase 3, were notably up-regulated in comparison with non-SV pretreated, infected plants. These findings provide new insights into the modulation of Pst DC3000-tomato interaction by sound and open up prospects for further development of strategies for plant disease management through the reinforcement of defense mechanisms in Micro-Tom plants.
Collapse
Affiliation(s)
- Antonio A Calderón
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Lorena Almagro
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | | | - María A Ferrer
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
13
|
Zhao X, Yu J, Chanda B, Zhao J, Wu S, Zheng Y, Sun H, Levi A, Ling KS, Fei Z. Genomic and pangenomic analyses provide insights into the population history and genomic diversification of bottle gourd. THE NEW PHYTOLOGIST 2024. [PMID: 38503725 DOI: 10.1111/nph.19673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Bottle gourd (Lagenaria siceraria (Mol.) Strandl.) is an economically important vegetable crop and one of the earliest domesticated crops. However, the population history and genomic diversification of bottle gourd have not been extensively studied. We generated a comprehensive bottle gourd genome variation map from genome sequences of 197 world-wide representative accessions, which enables a genome-wide association study for identifying genomic loci associated with resistance to zucchini yellow mosaic virus, and constructed a bottle gourd pangenome that harbors 1534 protein-coding genes absent in the reference genome. Demographic analyses uncover that domesticated bottle gourd originated in Southern Africa c. 12 000 yr ago, and subsequently radiated to the New World via the Atlantic drift and to Eurasia through the efforts of early farmers in the initial Holocene. The identified highly differentiated genomic regions among different bottle gourd populations harbor many genes contributing to their local adaptations such as those related to disease resistance and stress tolerance. Presence/absence variation analysis of genes in the pangenome reveals numerous genes including those involved in abiotic/biotic stress responses that have been under selection during the world-wide expansion of bottle gourds. The bottle gourd variation map and pangenome provide valuable resources for future functional studies and genomics-assisted breeding.
Collapse
Affiliation(s)
- Xuebo Zhao
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Jingyin Yu
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Bidisha Chanda
- USDA-ARS, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Jiantao Zhao
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Amnon Levi
- USDA-ARS, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Kai-Shu Ling
- USDA-ARS, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
14
|
Jia R, Yu L, Chen J, Hu L, Cao S, Dong X, Ma Q, Wang Y. Molecular evolution of methylesterase family genes and the BnMES34 is a positive regulator of Plasmodiophora brassicae stress response in Arabidopsis. Int J Biol Macromol 2024; 260:129333. [PMID: 38218279 DOI: 10.1016/j.ijbiomac.2024.129333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Methylesterases (MES) are involved in hydrolysis of carboxylic esters, which have substantial roles in plant metabolic activities and defense mechanisms. This study aimed to comprehensively investigate Brassica napus BnMESs and characterize their role in response to Plasmodiophora brassicae stress. Forty-four BnMES members were identified and categorized into three groups based on their phylogenetic relationships and structural similarities. Through functional predictions in the promoter regions and analysis of RNA-Seq data, BnMES emerged as pivotal in growth, development, and stress responses to B. napus, particularly BnMES34, was strongly induced in response to P. brassicae infection. Gene Ontology analyses highlighted BnMES34's role in regulation of plant disease resistance responses. Furthermore, overexpression of BnMES34 in A. thaliana exhibited milder clubroot symptoms, and reduced disease indices, suggesting positive regulatory role of BnMES34 in plant's response to P. brassicae stress. Molecular docking and enzyme activity verification indicated that BnMES34 has the ability to generate salicylic acid via methyl salicylate, and further experimentally validated in vivo. This discovery indicates that the overexpression of BnMES34 in Arabidopsis confers resistance against clubroot disease. Overall, our research suggests that BnMES34 has a beneficial regulatory role in enhancing stress resistance to P. brassicae in B. napus.
Collapse
Affiliation(s)
- Ruimin Jia
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ligang Yu
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jing Chen
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lifang Hu
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shang Cao
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaomin Dong
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qing Ma
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China..
| |
Collapse
|
15
|
Ding X, Miao C, Li R, He L, Zhang H, Jin H, Cui J, Wang H, Zhang Y, Lu P, Zou J, Yu J, Jiang Y, Zhou Q. Artificial Light for Improving Tomato Recovery Following Grafting: Transcriptome and Physiological Analyses. Int J Mol Sci 2023; 24:15928. [PMID: 37958910 PMCID: PMC10650788 DOI: 10.3390/ijms242115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Grafting is widely used to enhance the phenotypic traits of tomatoes, alleviate biotic and abiotic stresses, and control soil-borne diseases of the scion in greenhouse production. There are many factors that affect the healing and acclimatization stages of seedlings after grafting. However, the role of light has rarely been studied. In this study, we compared the effects of artificial light and traditional shading (under shaded plastic-covered tunnels) on the recovery of grafted tomato seedlings. The results show that the grafted tomato seedlings recovered using artificial light had a higher healthy index, leaf chlorophyll content, shoot dry weight, and net photosynthetic rate (Pn) and water use efficiency (WUE) compared with grafted seedling recovered using the traditional shading method. Transcriptome analysis showed that the differentially expressed genes (DEGs) of grafted seedlings restored using artificial light were mainly enriched in the pathways corresponding to plant hormone signal transduction. In addition, we measured the endogenous hormone content of grafted tomato seedlings. The results show that the contents of salicylic acid (SA) and kinetin (Kin) were significantly increased, and the contents of indoleacetic acid (IAA) and jasmonic acid (JA) were decreased in artificial-light-restored grafted tomato seedlings compared with those under shading treatments. Therefore, we suggest that artificial light affects the morphogenesis and photosynthetic efficiency of grafted tomato seedlings, and it can improve the performance of tomato seedlings during grafting recovery by regulating endogenous hormone levels.
Collapse
Affiliation(s)
- Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Chen Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Rongguang Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Lizhong He
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Haijun Jin
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Jiawei Cui
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Hong Wang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Panling Lu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Jun Zou
- College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jizhu Yu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Qiang Zhou
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| |
Collapse
|
16
|
Yang Q, Zhang X, Solairaj D, Lin R, Wang K, Zhang H. TMT-Based Proteomic Analysis of Hannaella sinensis-Induced Apple Resistance-Related Proteins. Foods 2023; 12:2637. [PMID: 37509729 PMCID: PMC10378395 DOI: 10.3390/foods12142637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Studies on the molecular mechanism of antagonistic yeasts to control apple postharvest diseases are not comprehensive enough. Our preliminary investigations screened the biocontrol effect of Hannaella sinensis, an antagonistic yeast, and discovered its control efficacy on apple blue mold decay. However, the molecular mechanism of H. sinensis-induced resistance in apple has not been studied. In this study, proteins from apple treated with H. sinensis and sterile saline were analyzed using TMT proteomics technology. It was found that H. sinensis treatment induced the expressions of apple resistance-related proteins. Among the proteins in H. sinensis-induced apple, proteins related to plant defense mechanisms, such as reactive oxygen species scavenging, improvement of plant resistance and synthesis of resistant substances, improvement of plant disease resistance, the degradation of the pathogen cell wall, cell signaling, antibacterial activity, transport of defense-related substances, and protein processing, were differentially regulated. The results of this study revealed the underlying molecular mechanisms of H. sinensis-induced apple resistance at the protein level; the results also provided a theoretical basis for the commercial application of H. sinensis.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dhanasekaran Solairaj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rouling Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
17
|
Wei Z, Yang L, Liu W, Xu X, Ran M, Jin Y, Sun X. MAP30 and luffin-α: Novel ribosome-inactivating proteins induce plant systemic resistance against plant viruses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105342. [PMID: 36963924 DOI: 10.1016/j.pestbp.2023.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosylase that act on eukaryotic and prokaryotic rRNAs, resulting in arrest protein synthesis. RIPs are widely found in higher plant species and display strong antiviral activity. Previous studies have shown that PAP and α-MMC have antiviral activity against TMV. However, the localization of RIPs in plant cells and the mechanism by which RIPs activate plant defense against several plant viruses remain unclear. In this study, we obtained four RIPs (the C-terminal deletion mutant of pokeweed antiviral proteins (PAP-c), alpha-momorcharin (α-MMC), momordica anti-HIV protein of 30 kDa (MAP30) and luffin-α). The subcellular localization results indicated that these four RIPs were located on the plant cell membrane. Heterologous expression of RIPs (PAP-c, α-MMC, MAP30, luffin-α) enhanced tobacco mosaic virus (TMV) resistance in N. benthamiana. Compared with the control treatment, these RIPs significantly reduced the TMV content (149-357 fold) and altered the movement of TMV in the leaves of N. benthamiana. At the same time, heterologous expression of RIPs (MAP30 and luffin-α) could relieve TMV-induced oxidative damage, significantly inducing the expression of plant defense genes including PR1 and PR2. Furthermore, application of these RIPs could inhibit the infection of turnip mosaic virus (TuMV) and potato virus x (PVX). Therefore, this study demonstrated that MAP30 and luffin-α could be considered as new, effective RIPs for controlling plant viruses by activating plant systemic defense.
Collapse
Affiliation(s)
- Zhouling Wei
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Liang Yang
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Weina Liu
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xiaohong Xu
- Chongqing Tobacco Science Research Institute, Chongqing 400715, China
| | - Mao Ran
- Chongqing Tobacco Science Research Institute, Chongqing 400715, China.
| | - Yabo Jin
- China Tobacco Guangxi Industry Corporation Limited, Nanning 530001, China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
18
|
Skodra C, Michailidis M, Moysiadis T, Stamatakis G, Ganopoulou M, Adamakis IDS, Angelis L, Ganopoulos I, Tanou G, Samiotaki M, Bazakos C, Molassiotis A. Disclosing the molecular basis of salinity priming in olive trees using proteogenomic model discovery. PLANT PHYSIOLOGY 2023; 191:1913-1933. [PMID: 36508356 PMCID: PMC10022641 DOI: 10.1093/plphys/kiac572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 11/11/2022] [Indexed: 05/13/2023]
Abstract
Plant responses to salinity are becoming increasingly understood, however, salt priming mechanisms remain unclear, especially in perennial fruit trees. Herein, we showed that low-salt pre-exposure primes olive (Olea europaea) plants against high salinity stress. We then performed a proteogenomic study to characterize priming responses in olive roots and leaves. Integration of transcriptomic and proteomic data along with metabolic data revealed robust salinity changes that exhibit distinct or overlapping patterns in olive tissues, among which we focused on sugar regulation. Using the multi-crossed -omics data set, we showed that major differences between primed and nonprimed tissues are mainly associated with hormone signaling and defense-related interactions. We identified multiple genes and proteins, including known and putative regulators, that reported significant proteomic and transcriptomic changes between primed and nonprimed plants. Evidence also supported the notion that protein post-translational modifications, notably phosphorylations, carbonylations and S-nitrosylations, promote salt priming. The proteome and transcriptome abundance atlas uncovered alterations between mRNA and protein quantities within tissues and salinity conditions. Proteogenomic-driven causal model discovery also unveiled key interaction networks involved in salt priming. Data generated in this study are important resources for understanding salt priming in olive tree and facilitating proteogenomic research in plant physiology.
Collapse
Affiliation(s)
- Christina Skodra
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Maria Ganopoulou
- School of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
- Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | | |
Collapse
|
19
|
Chen N, Shao Q, Xiong Z. Isolation and characterization of a pathogenesis-related protein 1 (SlPR1) gene with induced expression in tomato (Solanum lycopersicum) during Ralstonia solanacearum infection. Gene 2023; 855:147105. [PMID: 36513189 DOI: 10.1016/j.gene.2022.147105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
In order to explore the function of pathogenesis-related (PR) proteins in regulating tomato (Solanum lycopersicum) biological stress response, a PR protein gene (SlPR1) (Gen ID: Solyc01g106620.2) was isolated from tomato by RT-PCR. The full-length cDNA was 760 bp, which encoded a total of 179 amino acids. The cDNA contained a 42 bp 5' non-coding region, a 178 bp 3' non-coding region, and an open reading frame (ORF) of 540 bp. Homologous sequence alignment and phylogenetic analysis indicated that SlPR1 was highly homologous with a S. tuberosum PR1 protein, followed by S. pennellii. The predicted molecular weight of SlPR1 was 20,123.47 Da, the isoelectric point was 8.48, and the protein was found to be a secreted protein with a transmembrane structure. Quantitative real-time PCR (qRT-PCR) revealed that SlPR1 gene expression was highest in tomato stems, and could be induced by infection with Ralstonia solanacearum, and treatment with salicylic acid (SA) and methyl jasmonate acid (MeJA).Virus-induced gene silencing (VIGS) of SlPR1 decreased plant resistance to bacterial wilt, suggesting that SlPR1 positively regulates tomato resistance to this disease.This study provides a reference for the further exploration of the role of SlPR1 in the response of tomato to bacterial wilt and other stressors.
Collapse
Affiliation(s)
- Na Chen
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China.
| | - Qin Shao
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China
| | - Zili Xiong
- Wenzhou Vocational College of Science and Technology, Wenzhou 325000, China.
| |
Collapse
|
20
|
Wang L, Xie X, Xu Y, Li Z, Xu G, Cheng L, Yang J, Li L, Pu W, Cao P. Comprehensive analysis of the carboxylesterase gene reveals that NtCXE22 regulates axillary bud growth through strigolactone metabolism in tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:1019538. [PMID: 36600915 PMCID: PMC9806860 DOI: 10.3389/fpls.2022.1019538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Carboxylesterases (CXE) are a class of hydrolytic enzymes with α/β-folding domains that play a vital role in plant growth, development, stress response, and activation of herbicide-active substances. In this study, 49 Nicotiana tabacum L. CXE genes (NtCXEs) were identified using a sequence homology search. The basic characteristics, phylogenetic evolution, gene structure, subcellular location, promoter cis-elements, and gene expression patterns of the CXE family were systematically analyzed. RNA-seq data and quantitative real-time PCR showed that the expression level of CXEs was associated with various stressors and hormones; gene expression levels were significantly different among the eight tissues examined and at different developmental periods. As a new class of hormones, strigolactones (SLs) are released from the roots of plants and can control the germination of axillary buds.NtCXE7, NtCXE9, NtCXE22, and NtCXE24 were homologous to Arabidopsis SLs hydrolase AtCXE15, and changes in their expression levels were induced by topping and by GR24 (a synthetic analogue of strigolactone). Further examination revealed that NtCXE22-mutant (ntcxe22) plants generated by CRISPR-Cas9 technology had shorter bud outgrowth with lower SLs content. Validation of NtCXE22 was also performed in NtCCD8-OE plants (with fewer axillary buds) and in ntccd8 mutant plants (with more axillary buds). The results suggest that NtCXE22 may act as an efficient SLs hydrolase and affects axillary bud development, thereby providing a feasible method for manipulating endogenous SLs in crops and ornamental plants.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
21
|
Soares JM, Weber KC, Qiu W, Mahmoud LM, Grosser JW, Dutt M. Overexpression of the salicylic acid binding protein 2 (SABP2) from tobacco enhances tolerance against Huanglongbing in transgenic citrus. PLANT CELL REPORTS 2022; 41:2305-2320. [PMID: 36107199 DOI: 10.1007/s00299-022-02922-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Overexpression of the salicylic acid binding protein 2 (SABP2) gene from Tobacco results in enhanced tolerance to Huanglongbing (HLB; citrus greening disease) in transgenic sweet oranges. Huanglongbing (HLB), the most destructive citrus disease, is caused by Candidatus Liberibacter asiaticus (CaLas). Currently, no cure for this disease exists, and all commercially planted cultivars are highly susceptible. Salicylic Acid Binding Protein 2 (SABP2) is a well-characterized protein essential for establishing systemic acquired resistance (SAR) in tobacco. The constitutive over expression of SABP2 from tobacco (NtSABP2) in 'Hamlin' sweet orange resulted in the production of several transgenic lines with variable transcript levels. Transient expression of the NtSABP2-EGFP fusion protein in Nicotiana benthamiana plants demonstrated that NtSABP2 was cytosolic in its subcellular localization. In a long-term field study, we identified a SABP2 transgenic line with significantly reduced HLB symptoms that maintained a consistently low CaLas titer. Transcriptome analysis of this selected transgenic line demonstrated upregulation of several genes related to plant defense and SAR pathways. Genes, such as NPR family genes and those coding for monooxygenases and lipoxygenases, were upregulated in the 35S-NtSABP2 overexpressing line and might be candidates for incorporation into our citrus improvement program.
Collapse
Affiliation(s)
- Juliana M Soares
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Kyle C Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Wenming Qiu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lamiaa M Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
22
|
Son S, Park SR. Climate change impedes plant immunity mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:1032820. [PMID: 36523631 PMCID: PMC9745204 DOI: 10.3389/fpls.2022.1032820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 06/02/2023]
Abstract
Rapid climate change caused by human activity is threatening global crop production and food security worldwide. In particular, the emergence of new infectious plant pathogens and the geographical expansion of plant disease incidence result in serious yield losses of major crops annually. Since climate change has accelerated recently and is expected to worsen in the future, we have reached an inflection point where comprehensive preparations to cope with the upcoming crisis can no longer be delayed. Development of new plant breeding technologies including site-directed nucleases offers the opportunity to mitigate the effects of the changing climate. Therefore, understanding the effects of climate change on plant innate immunity and identification of elite genes conferring disease resistance are crucial for the engineering of new crop cultivars and plant improvement strategies. Here, we summarize and discuss the effects of major environmental factors such as temperature, humidity, and carbon dioxide concentration on plant immunity systems. This review provides a strategy for securing crop-based nutrition against severe pathogen attacks in the era of climate change.
Collapse
|
23
|
Dong H, Zhang W, Li Y, Feng Y, Wang X, Liu Z, Li D, Wen X, Ma S, Zhang X. Overexpression of salicylic acid methyltransferase reduces salicylic acid-mediated pathogen resistance in poplar. FRONTIERS IN PLANT SCIENCE 2022; 13:973305. [PMID: 36388494 PMCID: PMC9660245 DOI: 10.3389/fpls.2022.973305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Salicylic acid (SA) is generally considered to be a critical signal transduction factor in plant defenses against pathogens. It could be converted to methyl salicylate (MeSA) for remote signals by salicylic acid methyltransferase (SAMT) and converted back to SA by SA-binding protein 2 (SABP2). In order to verify the function of SAMT in poplar plants, we isolated the full-length cDNA sequence of PagSAMT from 84K poplar and cultivated PagSAMT overexpression lines (OE-2 isolate) to test its role in SA-mediated defenses against the virulent fungal pathogen Botryosphaeria dothidea. Our results showed that after inoculation with B. dothidea, OE-2 significantly increased MeSA content and reduced SA content which is associated with increased expression of SAMT in both infected and uninfected leaves, when compared against the wild type (WT). Additionally, SAMT overexpression plant lines (OE-2) exhibited higher expression of pathogenesis-related genes PR-1 and PR-5, but were still susceptible to B. dothidea suggesting that in poplar SA might be responsible for resistance against this pathogen. This study expands the current understanding of joint regulation of SAMT and SABP2 and the balance between SA and MeSA in poplar responses to pathogen invasion.
Collapse
Affiliation(s)
- Huixia Dong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shuai Ma
- Resources Management, Chinese Academy of Forestry, Beijing, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
24
|
Gondor OK, Pál M, Janda T, Szalai G. The role of methyl salicylate in plant growth under stress conditions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153809. [PMID: 36099699 DOI: 10.1016/j.jplph.2022.153809] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Methyl salicylate is a volatile compound, the synthesis of which takes place via the salicylic acid pathway in plants. Both compounds can be involved in the development of systemic acquired resistance and they play their role partly independently. Salicylic acid transport has an important role in long-distance signalling, but methyl salicylate has also been suggested as a phloem-based mobile signal, which can be demethylated to form salicylic acid, inducing the de-novo synthesis of salicylic acid in distal tissue. Despite the fact that salicylic acid has a protective role in abiotic stress responses and tolerance, very few investigations have been reported on the similar effects of methyl salicylate. In addition, as salicylic acid and methyl salicylate are often treated simply as the volatile and non-volatile forms of the same compound, and in several cases they also act in the same way, it is hard to highlight the differences in their mode of action. The main aim of the present review is to reveal the individual role and action mechanism of methyl salicylate in systemic acquired resistance, plant-plant communication and various stress conditions in fruits and plants.
Collapse
Affiliation(s)
- Orsolya Kinga Gondor
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary.
| | - Magda Pál
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary
| | - Tibor Janda
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary
| | - Gabriella Szalai
- Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, H-2462, Hungary
| |
Collapse
|
25
|
Bi X, Guo H, Li X, Zheng L, An M, Xia Z, Wu Y. A novel strategy for improving watermelon resistance to cucumber green mottle mosaic virus by exogenous boron application. MOLECULAR PLANT PATHOLOGY 2022; 23:1361-1380. [PMID: 35671152 PMCID: PMC9366068 DOI: 10.1111/mpp.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The molecular mode controlling cucumber green mottle mosaic virus (CGMMV)-induced watermelon blood flesh disease (WBFD) is largely unknown. In this study, we have found that application of exogenous boron suppressed CGMMV infection in watermelon fruit and alleviated WBFD symptoms. Our transcriptome analysis showed that the most up-regulated differentially expressed genes (DEGs) were associated with polyamine and auxin biosynthesis, abscisic acid catabolism, defence-related pathways, cell wall modification, and energy and secondary metabolism, while the down-regulated DEGs were mostly involved in ethylene biosynthesis, cell wall catabolism, and plasma membrane functions. Our virus-induced gene silencing results showed that silencing of SPDS expression in watermelon resulted in a higher putrescine content and an inhibited CGMMV infection correlating with no WBFD symptoms. SBT and TUBB1 were also required for CGMMV infection. In contrast, silencing of XTH23 and PE/PEI7 (low-level lignin, cellulose and pectin) and ATPS1 (low-level glutathione) promoted CGMMV accumulation. Furthermore, RAP2-3, MYB6, WRKY12, H2A, and DnaJ11 are likely to participate in host antiviral resistance. In addition, a higher (spermidine + spermine):putrescine ratio, malondialdehyde content, and lactic acid content were responsible for fruit decay and acidification. Our results provide new knowledge on the roles of boron in watermelon resistance to CGMMV-induced WBFD. This new knowledge can be used to design better control methods for CGMMV in the field and to breed CGMMV resistant watermelon and other cucurbit crops.
Collapse
Affiliation(s)
- Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Xiaodong Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
- Centre for Biological Disaster Prevention and ControlNational Forestry and Grassland AdministrationShenyangChina
| | - Lijiao Zheng
- Xinmin City Agricultural Technology Extension CentreShenyangChina
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
26
|
Takagi K, Tasaki K, Komori H, Katou S. Hypersensitivity-Related Genes HSR201 and HSR203J Are Regulated by Calmodulin-Binding Protein 60-Type Transcription Factors and Required for Pathogen Signal-Induced Salicylic Acid Synthesis. PLANT & CELL PHYSIOLOGY 2022; 63:1008-1022. [PMID: 35671166 DOI: 10.1093/pcp/pcac074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Salicylic acid (SA) plays a key role in plant resistance to pathogens. In Arabidopsis, the isochorismate synthase pathway mainly contributes to pathogen-induced SA synthesis, and the expression of SA synthesis genes is activated by two calmodulin (CaM)-binding protein 60 (CBP60)-type transcription factors, CBP60g and SARD1. In tobacco, the mechanisms underlying SA synthesis remain largely unknown. SA production is induced by wounding in tobacco plants in which the expression of two stress-related mitogen-activated protein kinases is suppressed. Using this phenomenon, we identified genes whose expression is associated with SA synthesis. One of the genes, NtCBP60g, showed 23% amino acid sequence identity with CBP60g. Transient overexpression of NtCBP60g as well as NtSARD1, a tobacco homolog of SARD1, induced SA accumulation in Nicotiana benthamiana leaves. NtCBP60g and NtSARD1 bound CaM, and CaM enhanced SA accumulation induced by NtCBP60g and NtSARD1. Conversely, mutations in NtCBP60g and NtSARD1 that abolished CaM binding reduced their ability to induce SA. Expression profiling and promoter analysis identified two hypersensitivity-related genes, HSR201 and HSR203J as the targets of NtCBP60g and NtSARD1. Virus-induced gene silencing of both NtCBP60g and NtSARD1 homologs compromised SA accumulation and the expression of HSR201 and HSR203J homologs, which were induced by a pathogen-derived elicitor in N. benthamiana leaves. Moreover, elicitor-induced SA accumulation was compromised by silencing of the HSR201 homolog and the HSR203J homolog. These results suggested that HSR201 and HSR203J are regulated by NtCBP60g and NtSARD1 and are required for elicitor-induced SA synthesis.
Collapse
Affiliation(s)
- Kumiko Takagi
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| | - Kosuke Tasaki
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| | - Hirotomo Komori
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| | - Shinpei Katou
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| |
Collapse
|
27
|
Xu XJ, Geng C, Jiang SY, Zhu Q, Yan ZY, Tian YP, Li XD. A maize triacylglycerol lipase inhibits sugarcane mosaic virus infection. PLANT PHYSIOLOGY 2022; 189:754-771. [PMID: 35294544 PMCID: PMC9157127 DOI: 10.1093/plphys/kiac126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 05/13/2023]
Abstract
Triacylglycerol lipase (TGL) plays critical roles in providing energy for seed germination and plant development. However, the role of TGL in regulating plant virus infection is largely unknown. In this study, we adopted affinity purification coupled with mass spectrometry and identified that a maize (Zea mays) pathogenesis-related lipase protein Z. mays TGL (ZmTGL) interacted with helper component-proteinase (HC-Pro) of sugarcane mosaic virus (SCMV). Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation assays confirmed that ZmTGL directly interacted with SCMV HC-Pro in vitro and in vivo. The 101-460 residues of SCMV HC-Pro were important for its interaction with ZmTGL. ZmTGL and SCMV HC-Pro co-localized at the mitochondria. Silencing of ZmTGL facilitated SCMV infection, and over-expression of ZmTGL reduced the RNA silencing suppression activity, most likely through reducing HC-Pro accumulation. Our results provided evidence that the lipase hydrolase activity of ZmTGL was associated with reducing HC-Pro accumulation, activation of salicylic acid (SA)-mediated defense response, and inhibition of SCMV infection. We show that ZmTGL inhibits SCMV infection by reducing HC-Pro accumulation and activating the SA pathway.
Collapse
Affiliation(s)
- Xiao-Jie Xu
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chao Geng
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Shao-Yan Jiang
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qing Zhu
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhi-Yong Yan
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Author for correspondence:
| | - Xiang-Dong Li
- Department of Plant Pathology, College of Plant Protection, Laboratory of Plant Virology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
28
|
Rui C, Peng F, Fan Y, Zhang Y, Zhang Z, Xu N, Zhang H, Wang J, Li S, Yang T, Malik WA, Lu X, Chen X, Wang D, Chen C, Gao W, Ye W. Genome-wide expression analysis of carboxylesterase (CXE) gene family implies GBCXE49 functional responding to alkaline stress in cotton. BMC PLANT BIOLOGY 2022; 22:194. [PMID: 35413814 PMCID: PMC9004025 DOI: 10.1186/s12870-022-03579-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Carboxylesterase (CXE) is a type of hydrolase with α/β sheet hydrolase activity widely found in animals, plants and microorganisms, which plays an important role in plant growth, development and resistance to stress. RESULTS A total of 72, 74, 39, 38 CXE genes were identified in Gossypium barbadense, Gossypium hirsutum, Gossypium raimondii and Gossypium arboreum, respectively. The gene structure and expression pattern were analyzed. The GBCXE genes were divided into 6 subgroups, and the chromosome distribution of members of the family were mapped. Analysis of promoter cis-acting elements showed that most GBCXE genes contain cis-elements related to plant hormones (GA, IAA) or abiotic stress. These 6 genes we screened out were expressed in the root, stem and leaf tissues. Combined with the heat map, GBCXE49 gene was selected for subcellular locate and confirmed that the protein was expressed in the cytoplasm. CONCLUSIONS The collinearity analysis of the CXE genes of the four cotton species in this family indicated that tandem replication played an indispensable role in the evolution of the CXE gene family. The expression patterns of GBCXE gene under different stress treatments indicated that GBCXE gene may significantly participate in the response to salt and alkaline stress through different mechanisms. Through the virus-induced gene silencing technology (VIGS), it was speculated that GBCXE49 gene was involved in the response to alkaline stress in G. barbadense.
Collapse
Affiliation(s)
- Cun Rui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, 3036 Shanjuan Road, Changde, 415101, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Zhigang Zhang
- Hunan Institute of Cotton Science, 3036 Shanjuan Road, Changde, 415101, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Hong Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Shengmei Li
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China
| | - Tao Yang
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Wenwei Gao
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China.
| |
Collapse
|
29
|
Xue R, Feng M, Chen J, Ge W, Blair MW. A methyl esterase 1 (PvMES1) promotes the salicylic acid pathway and enhances Fusarium wilt resistance in common beans. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2379-2398. [PMID: 34128089 DOI: 10.1007/s00122-021-03830-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Methyl esterase (MES), PvMES1, contributes to the defense response toward Fusarium wilt in common beans by regulating the salicylic acid (SA) mediated signaling pathway from phenylpropanoid synthesis and sugar metabolism as well as others. Common bean (Phaseolus vulgaris L.) is an important food legume. Fusarium wilt caused by Fusarium oxysporum f. sp. phaseoli is one of the most serious soil-borne diseases of common bean found throughout the world and affects the yield and quality of the crop. Few sources of Fusarium wilt resistance exist in legumes and most are of quantitative inheritance. In this study, we have identified a methyl esterase (MES), PvMES1, that contributes to plant defense response by regulating the salicylic acid (SA) mediated signaling pathway in response to Fusarium wilt in common beans. The result showed the role of PvMES1 in regulating SA levels in common bean and thus the SA signaling pathway and defense response mechanism in the plant. Overexpression of the PvMES1 gene enhanced Fusarium wilt resistance; while silencing of the gene caused susceptibility to the diseases. RNA-seq analysis with these transiently modified plants showed that genes related to SA level changes included the following gene ontologies: (a) phenylpropanoid synthesis; (b) sugar metabolism; and (c) interaction between host and pathogen as well as others. These key signal elements activated the defense response pathway in common bean to Fusarium wilt. Collectively, our findings indicate that PvMES1 plays a pivotal role in regulating SA biosynthesis and signaling, and increasing Fusarium wilt resistance in common bean, thus providing novel insight into the practical applications of both SA and MES genes and pathways they contribute to for developing elite crop varieties with enhanced broad-spectrum resistance to this critical disease.
Collapse
Affiliation(s)
- Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, LN, China.
| | - Ming Feng
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, LN, China
| | - Jian Chen
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, LN, China
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, LN, China
| | - Matthew W Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, 37209, USA
| |
Collapse
|
30
|
Chen J, Zhang J, Kong M, Freeman A, Chen H, Liu F. More stories to tell: NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1, a salicylic acid receptor. PLANT, CELL & ENVIRONMENT 2021; 44:1716-1727. [PMID: 33495996 DOI: 10.1111/pce.14003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) plays pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. Tremendous progress has been made in the field of SA biosynthesis and SA signaling pathways over the past three decades. Among the key immune players in SA signaling pathway, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) functions as a master regulator of SA-mediated plant defense. The function of NPR1 as an SA receptor has been controversial; however, after years of arguments among several laboratories, NPR1 has finally been proven as one of the SA receptors. The function of NPR1 is strictly regulated via post-translational modifications and transcriptional regulation that were recently found. More recent advances in NPR1 biology, including novel functions of NPR1 and the structure of SA receptor proteins, have brought this field forward immensely. Therefore, based on these recent discoveries, this review acts to provide a full picture of how NPR1 functions in plant immunity and how NPR1 gene and NPR1 protein are regulated at multiple levels. Finally, we also discuss potential challenges in future studies of SA signaling pathway.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Jingyi Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Mengmeng Kong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Lab of Biocontrol & Bacterial Molecular Biology, Nanjing, China
| | - Andrew Freeman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
31
|
Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, Sommer A, Chen Y, Wenig M, Nayem S. Systemic propagation of immunity in plants. THE NEW PHYTOLOGIST 2021; 229:1234-1250. [PMID: 32978988 DOI: 10.1111/nph.16953] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/08/2020] [Indexed: 05/03/2023]
Abstract
Systemic immunity triggered by local plant-microbe interactions is studied as systemic acquired resistance (SAR) or induced systemic resistance (ISR) depending on the site of induction and the lifestyle of the inducing microorganism. SAR is induced by pathogens interacting with leaves, whereas ISR is induced by beneficial microbes interacting with roots. Although salicylic acid (SA) is a central component of SAR, additional signals exclusively promote systemic and not local immunity. These signals cooperate in SAR- and possibly also ISR-associated signaling networks that regulate systemic immunity. The non-SA SAR pathway is driven by pipecolic acid or its presumed bioactive derivative N-hydroxy-pipecolic acid. This pathway further regulates inter-plant defense propagation through volatile organic compounds that are emitted by SAR-induced plants and recognized as defense cues by neighboring plants. Both SAR and ISR influence phytohormone crosstalk towards enhanced defense against pathogens, which at the same time affects the composition of the plant microbiome. This potentially leads to further changes in plant defense, plant-microbe, and plant-plant interactions. Therefore, we propose that such inter-organismic interactions could be combined in potentially highly effective plant protection strategies.
Collapse
Affiliation(s)
- A Corina Vlot
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Jennifer H Sales
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Miriam Lenk
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Kornelia Bauer
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Alessandro Brambilla
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Anna Sommer
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Yuanyuan Chen
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Marion Wenig
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Shahran Nayem
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| |
Collapse
|
32
|
Transcriptome Analysis Identified Coordinated Control of Key Pathways Regulating Cellular Physiology and Metabolism upon Aspergillus flavus Infection Resulting in Reduced Aflatoxin Production in Groundnut. J Fungi (Basel) 2020; 6:jof6040370. [PMID: 33339393 PMCID: PMC7767264 DOI: 10.3390/jof6040370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Aflatoxin-affected groundnut or peanut presents a major global health issue to both commercial and subsistence farming. Therefore, understanding the genetic and molecular mechanisms associated with resistance to aflatoxin production during host–pathogen interactions is crucial for breeding groundnut cultivars with minimal level of aflatoxin contamination. Here, we performed gene expression profiling to better understand the mechanisms involved in reduction and prevention of aflatoxin contamination resulting from Aspergillus flavus infection in groundnut seeds. RNA sequencing (RNA-Seq) of 16 samples from different time points during infection (24 h, 48 h, 72 h and the 7th day after inoculation) in U 4-7-5 (resistant) and JL 24 (susceptible) genotypes yielded 840.5 million raw reads with an average of 52.5 million reads per sample. A total of 1779 unique differentially expressed genes (DEGs) were identified. Furthermore, comprehensive analysis revealed several pathways, such as disease resistance, hormone biosynthetic signaling, flavonoid biosynthesis, reactive oxygen species (ROS) detoxifying, cell wall metabolism and catabolizing and seed germination. We also detected several highly upregulated transcription factors, such as ARF, DBB, MYB, NAC and C2H2 in the resistant genotype in comparison to the susceptible genotype after inoculation. Moreover, RNA-Seq analysis suggested the occurrence of coordinated control of key pathways controlling cellular physiology and metabolism upon A. flavus infection, resulting in reduced aflatoxin production.
Collapse
|
33
|
Singewar K, Moschner CR, Hartung E, Fladung M. Identification and analysis of key genes involved in methyl salicylate biosynthesis in different birch species. PLoS One 2020; 15:e0240246. [PMID: 33031447 PMCID: PMC7544025 DOI: 10.1371/journal.pone.0240246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Species of the perennial woody plant genus Betula dominate subalpine forests and play a significant role in preserving biological diversity. In addition to their conventional benefits, birches synthesize a wide range of secondary metabolites having pharmacological significance. Methyl salicylate (MeSA) is one of these naturally occurring compounds constitutively produced by different birch species. MeSA is therapeutically important in human medicine for muscle injuries and joint pain. However, MeSA is now mainly produced synthetically due to a lack of information relating to MeSA biosynthesis and regulation. In this study, we performed a comprehensive bioinformatics analysis of two candidate genes mediating MeSA biosynthesis, SALICYLIC ACID METHYLTRANSFERASE (SAMT) and SALICYLIC ACID-BINDING PROTEIN 2 (SABP2), of high (B. lenta, B. alleghaniensis, B. medwediewii, and B. grossa) and low (B. pendula, B. utilis, B. alnoides, and B. nana) MeSA-producing birch species. Phylogenetic analyses of SAMT and SABP2 genes and homologous genes from other plant species confirmed their evolutionary relationships. Multiple sequence alignments of the amino acid revealed the occurrence of important residues for substrate specificity in SAMT and SABP2. The analysis of cis elements in different birches indicated a functional multiplicity of SAMT and SABP2 and provided insights into the regulation of both genes. We successfully developed six prominent single nucleotide substitution markers that were validated with 38 additional birch individuals to differentiate high and low MeSA-producing birch species. Relative tissue-specific expression analysis of SAMT in leaf and bark tissue of two high and two low MeSA-synthesizing birches revealed a high expression in the bark of both high MeSA-synthesizing birches. In contrast, SABP2 expression in tissues revealed indifferent levels of expression between species belonging to the two groups. The comparative expression and bioinformatics analyses provided vital information that could be used to apply plant genetic engineering technology in the mass production of organic MeSA.
Collapse
Affiliation(s)
- Kiran Singewar
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
- Thünen Institute of Forest Genetics, Grosshansdorf, Schleswig-Holstein, Germany
| | - Christian R. Moschner
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Eberhard Hartung
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Grosshansdorf, Schleswig-Holstein, Germany
| |
Collapse
|
34
|
Zhu F, Zhu P, Xu F, Che Y, Ma Y, Ji Z. Alpha-momorcharin enhances Nicotiana benthamiana resistance to tobacco mosaic virus infection through modulation of reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2020; 21:1212-1226. [PMID: 32713165 PMCID: PMC7411664 DOI: 10.1111/mpp.12974] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 05/21/2023]
Abstract
Alpha-momorcharin (α-MMC), a member of the plant ribosomal inactivating proteins (RIPs) family, has been proven to exhibit important biological properties in animals, including antiviral, antimicrobial, and antitumour activities. However, the mechanism by which α-MMC increases plant resistance to viral infections remains unclear. To study the effect of α-MMC on plant viral defence and how α-MMC increases plant resistance to viruses, recombinant DNA and transgenic technologies were employed to investigate the role of α-MMC in Nicotiana benthamiana resistance to tobacco mosaic virus (TMV) infection. Treatment with α-MMC produced through DNA recombinant technology or overexpression of α-MMC mediated by transgenic technology alleviated TMV-induced oxidative damage and reduced the accumulation of reactive oxygen species (ROS) during TMV-green fluorescent protein infection of N. benthamiana. There was a significant decrease in TMV replication in the upper leaves following local α-MMC treatment and in α-MMC-overexpressing plants relative to control plants. These results suggest that application or overexpression of α-MMC in N. benthamiana increases resistance to TMV infection. Finally, our results showed that overexpression of α-MMC up-regulated the expression of ROS scavenging-related genes. α-MMC confers resistance to TMV infection by means of modulating ROS homeostasis through controlling the expression of antioxidant enzyme-encoding genes. Overall, our study revealed a new crosstalk mechanism between α-MMC and ROS during resistance to viral infection and provides a framework to understand the molecular mechanisms of α-MMC in plant defence against viral pathogens.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Fei Xu
- Applied Biotechnology CenterWuhan Institute of BioengineeringWuhanChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yi‐Ming Ma
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
35
|
Chen J, Clinton M, Qi G, Wang D, Liu F, Fu ZQ. Reprogramming and remodeling: transcriptional and epigenetic regulation of salicylic acid-mediated plant defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5256-5268. [PMID: 32060527 DOI: 10.1093/jxb/eraa072] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/11/2020] [Indexed: 05/13/2023]
Abstract
As a plant hormone, salicylic acid (SA) plays essential roles in plant defense against biotrophic and hemibiotrophic pathogens. Significant progress has been made in understanding the SA biosynthesis pathways and SA-mediated defense signaling networks in the past two decades. Plant defense responses involve rapid and massive transcriptional reprogramming upon the recognition of pathogens. Plant transcription factors and their co-regulators are critical players in establishing a transcription regulatory network and boosting plant immunity. A multitude of transcription factors and epigenetic regulators have been discovered, and their roles in SA-mediated defense responses have been reported. However, our understanding of plant transcriptional networks is still limited. As such, novel genomic tools and bioinformatic techniques will be necessary if we are to fully understand the mechanisms behind plant immunity. Here, we discuss current knowledge, provide an update on the SA biosynthesis pathway, and describe the transcriptional and epigenetic regulation of SA-mediated plant immune responses.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, P. R. China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Michael Clinton
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Guang Qi
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, P. R. China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, P. R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, P. R. China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
36
|
Zhao Y, Dong H, Ren J, Song J, Yao J, Gao J, Jiang CS, Wang X. One- and Two-Proton Transfer Mechanisms Coexist in One Active Site. J Phys Chem B 2020; 124:6699-6708. [PMID: 32663399 DOI: 10.1021/acs.jpcb.0c04445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acibenzolar-S-methyl (ASM) is one of the most successfully commercialized plant activators of the systemic acquired resistance (SAR). However, its activation (hydrolysis) mechanism catalyzed by the salicylic acid binding protein 2 (SABP2) remains elusive. The fundamental catalytic mechanism of the SABP2-catalyzed hydrolysis of the ASM had been investigated by extensive computational and experimental studies, including QM/MM simulations, charge transfer analysis, small-molecule synthesis, and biochemical assays. Here we report that the promiscuous SABP2 shows different catalytic mechanisms toward different substrates. To catalyze the ASM hydrolysis, the SABP2 uses a two-proton transfer mechanism, and the key intermediate is stabilized by the charge transfer effect; to catalyze the ethyl 1,2,3-benzothiadiazole-7-carboxylate (BTM, an ASM analogue) hydrolysis, the SABP2 applies the one-proton transfer mechanism, and the classic tetrahedral intermediate is stabilized by the electrostatic effect. The HPLC analyses of the SABP2 esterase activities toward the ASM and the BTM show comparable results with our computaional results, suggesting that the obtained computational mechanism insights are reasonable. The obtained mechanism is not only an important supplement to the theory of enzymes' catalytic promiscuity, but it also contributes a possible strategy for the design of next generation plant SAR activators.
Collapse
Affiliation(s)
- Yueqi Zhao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Huaikun Dong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jing Ren
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jiali Song
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xia Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
37
|
Jones BJ, Evans RL, Mylrea NJ, Chaudhury D, Luo C, Guan B, Pierce CT, Gordon WR, Wilmot CM, Kazlauskas RJ. Larger active site in an ancestral hydroxynitrile lyase increases catalytically promiscuous esterase activity. PLoS One 2020; 15:e0235341. [PMID: 32603354 PMCID: PMC7326234 DOI: 10.1371/journal.pone.0235341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/14/2020] [Indexed: 12/02/2022] Open
Abstract
Hydroxynitrile lyases (HNL's) belonging to the α/β-hydrolase-fold superfamily evolved from esterases approximately 100 million years ago. Reconstruction of an ancestral hydroxynitrile lyase in the α/β-hydrolase fold superfamily yielded a catalytically active hydroxynitrile lyase, HNL1. Several properties of HNL1 differ from the modern HNL from rubber tree (HbHNL). HNL1 favors larger substrates as compared to HbHNL, is two-fold more catalytically promiscuous for ester hydrolysis (p-nitrophenyl acetate) as compared to mandelonitrile cleavage, and resists irreversible heat inactivation to 35 °C higher than for HbHNL. We hypothesized that the x-ray crystal structure of HNL1 may reveal the molecular basis for the differences in these properties. The x-ray crystal structure solved to 1.96-Å resolution shows the expected α/β-hydrolase fold, but a 60% larger active site as compared to HbHNL. This larger active site echoes its evolution from esterases since related esterase SABP2 from tobacco also has a 38% larger active site than HbHNL. The larger active site in HNL1 likely accounts for its ability to accept larger hydroxynitrile substrates. Site-directed mutagenesis of HbHNL to expand the active site increased its promiscuous esterase activity 50-fold, consistent with the larger active site in HNL1 being the primary cause of its promiscuous esterase activity. Urea-induced unfolding of HNL1 indicates that it unfolds less completely than HbHNL (m-value = 0.63 for HNL1 vs 0.93 kcal/mol·M for HbHNL), which may account for the ability of HNL1 to better resist irreversible inactivation upon heating. The structure of HNL1 shows changes in hydrogen bond networks that may stabilize regions of the folded structure.
Collapse
Affiliation(s)
- Bryan J. Jones
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Robert L. Evans
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Nathan J. Mylrea
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Debayan Chaudhury
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Christine Luo
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Bo Guan
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Colin T. Pierce
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Wendy R. Gordon
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Romas J. Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
38
|
Wilkinson RC, Rahman Pour R, Jamshidi S, Fülöp V, Bugg TDH. Extracellular alpha/beta-hydrolase from Paenibacillus species shares structural and functional homology to tobacco salicylic acid binding protein 2. J Struct Biol 2020; 210:107496. [PMID: 32224091 DOI: 10.1016/j.jsb.2020.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
An alpha/ beta hydrolase annotated as a putative salicylate esterase within the genome of a species of Paenibacillus previously identified from differential and selective growth on Kraft lignin was structurally and functionally characterised. Feruloyl esterases are key to the degradation of lignin in several bacterial species and although this activity was investigated, no such activity was observed. The crystal structure of the Paenibacillus esterase, here denoted as PnbE, was determined at 1.32 Å resolution, showing high similarity to Nicotiana tabacum salicylic acid binding protein 2 from the protein database. Structural similarities between these two structures across the core domains and key catalytic residues were observed, with superposition of catalytic residues giving an RMSD of 0.5 Å across equivalent Cα atoms. Conversely, the cap domains of PnbE and Nicotiana tabacum SABP2 showed greater divergence with decreased flexibility in the PnbE cap structure. Activity of PnbE as a putative methyl salicylate esterase was supported with binding studies showing affinity for salicylic acid and functional studies showing methyl salicylate esterase activity. We hypothesise that this activity could enrich Paenibacillus sp. within the rhizosphere by increasing salicylic acid concentrations within the soil.
Collapse
Affiliation(s)
| | | | - Shirin Jamshidi
- School of Cancer and Pharmaceutical Sciences, King's College London, SE1 9NH, UK
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
39
|
Haq MI, Thakuri BKC, Hobbs T, Davenport ML, Kumar D. Tobacco SABP2-interacting protein SIP428 is a SIR2 type deacetylase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:72-80. [PMID: 32388422 DOI: 10.1016/j.plaphy.2020.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 05/25/2023]
Abstract
Salicylic acid is widely studied for its role in biotic stress signaling in plants. Several SA-binding proteins, including SABP2 (salicylic acid-binding protein 2) has been identified and characterized for their role in plant disease resistance. SABP2 is a 29 kDA tobacco protein that binds to salicylic acid with high affinity. It is a methylesterase enzyme that catalyzes the conversion of methyl salicylate into salicylic acid required for inducing a robust systemic acquired resistance (SAR) in plants. Methyl salicylic acid is one of the several mobile SAR signals identified in plants. SABP2-interacting protein 428 (SIP428) was identified in a yeast two-hybrid screen using tobacco SABP2 as a bait. In silico analysis shows that SIP428 possesses the SIR2 (silent information regulatory 2)-like conserved motifs. SIR2 enzymes are orthologs of sirtuin proteins that catalyze the NAD+-dependent deacetylation of Nε lysine-acetylated proteins. The recombinant SIP428 expressed in E. coli exhibits SIR2-like deacetylase activity. SIP428 shows homology to Arabidopsis AtSRT2 (67% identity), which is implicated in SA-mediated basal defenses. Immunoblot analysis using anti-acetylated lysine antibodies showed that the recombinant SIP428 is lysine acetylated. The expression of SIP428 transcripts was moderately downregulated upon infection by TMV. In the presence of SIP428, the esterase activity of SABP2 increased modestly. The interaction of SIP428 with SABP2, it's regulation upon pathogen infection, and similarity with AtSRT2 suggests that SIP428 is likely to play a role in stress signaling in plants.
Collapse
Affiliation(s)
- Md Imdadul Haq
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Bal Krishna Chand Thakuri
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Tazley Hobbs
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Mackenzie L Davenport
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Dhirendra Kumar
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
40
|
Jones BJ, Evans RL, Mylrea NJ, Chaudhury D, Luo C, Guan B, Pierce CT, Gordon WR, Wilmot CM, Kazlauskas RJ. Larger active site in an ancestral hydroxynitrile lyase increases catalytically promiscuous esterase activity.. [DOI: 10.1101/2020.04.06.027797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractHydroxynitrile lyases (HNL’s) belonging to the α/β-hydrolase-fold superfamily evolved from esterases approximately 100 million years ago. Reconstruction of an ancestral hydroxynitrile lyase in the α/β-hydrolase fold superfamily yielded a catalytically active hydroxynitrile lyase, HNL1. Several properties of HNL1 differ from the modern HNL from rubber tree (HbHNL). HNL1 favors larger substrates as compared to HbHNL, is two-fold more catalytically promiscuous for ester hydrolysis (p-nitrophenyl acetate) as compared to mandelonitrile cleavage, and resists irreversible heat inactivation to 35 °C higher than for HbHNL. We hypothesized that the x-ray crystal structure of HNL1 may reveal the molecular basis for the differences in these properties. The x-ray crystal structure solved to 1.96-Å resolution shows the expected α/β-hydrolase fold, but a 60% larger active site as compared to HbHNL. This larger active site echoes its evolution from esterases since related esterase SABP2 from tobacco also has a 38% larger active site than HbHNL. The larger active site in HNL1 likely accounts for its ability to accept larger hydroxynitrile substrates. Site-directed mutagenesis of HbHNL to expand the active site increased its promiscuous esterase activity 50-fold, consistent with the larger active site in HNL1 being the primary cause of its promiscuous esterase activity. Urea-induced unfolding of HNL1 indicates that it unfolds less completely than HbHNL (m-value = 0.63 for HNL1 vs 0.93 kcal/ mol·M for HbHNL), which may account for the ability of HNL1 to better resist irreversible inactivation upon heating. The structure of HNL1 shows changes in hydrogen bond networks that may stabilize regions of the folded structure.
Collapse
|
41
|
Cooper B, Beard HS, Garrett WM, Campbell KB. Benzothiadiazole Conditions the Bean Proteome for Immunity to Bean Rust. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:600-611. [PMID: 31999214 DOI: 10.1094/mpmi-09-19-0250-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The common bean rust fungus reduces harvests of the dry, edible common bean. Natural resistance genes in the plant can provide protection until a fungal strain that breaks resistance emerges. In this study, we demonstrate that benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) sprayed on susceptible beans induces resistance to common bean rust. Protection occurred as soon as 72 h after treatment and resulted in no signs of disease 10 days after inoculation with rust spores. By contrast, the susceptible control plants sustained heavy infections and died. To understand the effect BTH has on the bean proteome, we measured the changes of accumulation for 3,973 proteins using mass spectrometry. The set of 409 proteins with significantly increased accumulation in BTH-treated leaves included receptor-like kinases SOBIR1, CERK1, and LYK5, which perceive pathogens, and EDS1, a regulator of the salicylic acid defense pathway. Other proteins that likely contributed to resistance included pathogenesis-related proteins, a full complement of enzymes that catalyze phenylpropanoid biosynthesis, and protein receptors, transporters, and enzymes that modulate other defense responses controlled by jasmonic acid, ethylene, brassinosteroid, abscisic acid, and auxin. Increases in the accumulation of proteins required for vesicle-mediated protein secretion and RNA splicing occurred as well. By contrast, more than half of the 168 decreases belonged to chloroplast proteins and proteins involved in cell expansion. These results reveal a set of proteins needed for rust resistance and reaffirm the utility of BTH to control disease by amplifying the natural immune system of the bean plant.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Hunter S Beard
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| |
Collapse
|
42
|
Comparative Transcriptome Analysis Provides Molecular Insights into the Interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with Their Host Sugar Beet. Viruses 2020; 12:v12010076. [PMID: 31936258 PMCID: PMC7019549 DOI: 10.3390/v12010076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 01/10/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) are closely related species, but disease development induced in their host sugar beet displays striking differences. Beet necrotic yellow vein virus induces excessive lateral root (LR) formation, whereas BSBMV-infected roots appear asymptomatic. A comparative transcriptome analysis was performed to elucidate transcriptomic changes associated with disease development. Many differentially expressed genes (DEGs) were specific either to BNYVV or BSBMV, although both viruses shared a high number of DEGs. Auxin biosynthesis pathways displayed a stronger activation by BNYVV compared to BSBMV-infected plants. Several genes regulated by auxin signalling and required for LR formation were exclusively altered by BNYVV. Both viruses reprogrammed the transcriptional network, but a large number of transcription factors involved in plant defence were upregulated in BNYVV-infected plants. A strong activation of pathogenesis-related proteins by both viruses suggests a salicylic acid or jasmonic acid mediated-defence response, but the data also indicate that both viruses counteract the SA-mediated defence. The ethylene signal transduction pathway was strongly downregulated which probably increases the susceptibility of sugar beet to Benyvirus infection. Our study provides a deeper insight into the interaction of BNYVV and BSBMV with the economically important crop sugar beet.
Collapse
|
43
|
Khew CY, Mori IC, Matsuura T, Hirayama T, Harikrishna JA, Lau ET, Augustine Mercer ZJ, Hwang SS. Hormonal and transcriptional analyses of fruit development and ripening in different varieties of black pepper (Piper nigrum). JOURNAL OF PLANT RESEARCH 2020; 133:73-94. [PMID: 31853665 DOI: 10.1007/s10265-019-01156-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Black pepper (Piper nigrum L.) is one of the most popular and oldest spices in the world with culinary uses and various pharmacological properties. In order to satisfy the growing worldwide demand for black pepper, improved productivity of pepper is highly desirable. A primary constraint in black pepper production is the non-synchronous nature of flower development and non-uniform fruit ripening within a spike. The uneven ripening of pepper berries results in a high labour requirement for selective harvesting contributes to low productivity and affects the quality of the pepper products. In Malaysia, there are a few recommended varieties for black pepper planting, each having some limitations in addition to the useful characteristics. Therefore, a comparative study of different black pepper varieties will provide a better understanding of the mechanisms regulates fruit development and ripening. Plant hormones are known to influence the fruit development process and their roles in black pepper flower and fruit development were inferred based on the probe-based gene expression analysis and the quantification of the multiple plant hormones using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). In this study, jasmonic acid and salicylic acid were found to play roles in flowering and fruit setting, whereas auxin, gibberellin and cytokinins are important for fruit growth. Abscisic acid has positive role in fruit maturation and ripening in the development process. Distinct pattern of plant hormones related gene expression profiles with the hormones accumulation profiles suggested a complex network of regulation is involved in the signaling process and crosstalk between plant hormones was another layer of regulation in the black pepper fruit development mechanisms. The current study provides clues to help in elucidating the timing of the action of each specific plant hormone during fruit development and ripening which could be applied to enhance our ability to control the ripening process, leading to improving procedures for the production and post-harvest handling of pepper fruits.
Collapse
Affiliation(s)
- Choy-Yuen Khew
- Department of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93450, Kuching, Sarawak, Malaysia.
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia.
| | - Izumi C Mori
- Group of Environmental Response Systems, Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan
| | - Takakazu Matsuura
- Group of Environmental Response Systems, Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan
| | - Takashi Hirayama
- Group of Environmental Response Systems, Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan
| | - Jennifer Ann Harikrishna
- Institute of Biological Sciences, Faculty of Science and Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Ee-Tiing Lau
- Department of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93450, Kuching, Sarawak, Malaysia
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| | - Zehnder Jarroop Augustine Mercer
- Department of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93450, Kuching, Sarawak, Malaysia
| | - Siaw-San Hwang
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| |
Collapse
|
44
|
Volk J, Sarafeddinov A, Unver T, Marx S, Tretzel J, Zotzel J, Warzecha H. Two novel methylesterases from Olea europaea contribute to the catabolism of oleoside-type secoiridoid esters. PLANTA 2019; 250:2083-2097. [PMID: 31578603 DOI: 10.1007/s00425-019-03286-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Two newly identified phytohormone cleaving esterases from Olea europaea are responsible for the glucosidase-initiated activation of the specialized metabolites ligstroside and oleuropein. Biosynthetic routes leading to the formation of plant natural products are tightly orchestrated enzymatic sequences usually involving numerous specialized catalysts. After their accumulation in plant cells and tissues, otherwise non-reactive compounds can be enzymatically activated, e.g., in response to environmental threats, like pathogen attack. In olive (Olea europaea), secoiridoid-derived phenolics, such as oleuropein or ligstroside, can be converted by glucosidases and as yet unidentified esterases to oleoside aldehydes. These are not only involved in pathogen defense, but also bear considerable promise as pharmaceuticals or neutraceuticals. Making use of the available olive genomic data, we have identified four novel methylesterases that showed significant homology to the polyneuridine aldehyde esterase (PNAE) from Rauvolfia serpentina, an enzyme acting on a distantly related metabolite group (monoterpenoid indole alkaloids, MIAs) also featuring a secoiridoid structural component. The four olive enzymes belong to the α/ß-hydrolase fold family and showed variable in vitro activity against methyl esters of selected plant hormones, namely jasmonic acid (MeJA), indole acetic acid (MeIAA), as well as salicylic acid (MeSA). None of the identified catalysts were directly active against the olive metabolites oleuropein, ligstroside, or oleoside 11-methyl ester. When employed in a sequential reaction with an appropriate glucosidase, however, two were capable of hydrolyzing these specialized compounds yielding reactive dialdehydes. This suggests that the esterases play a pivotal role in the activation of the olive secoiridoid polyphenols. Finally, we show that several of the investigated methylesterases exhibit a concomitant in vitro transesterification capacity-a novel feature, yielding ethyl esters of jasmonic acid (JA) or indole-3-acetic acid (IAA).
Collapse
Affiliation(s)
- Jascha Volk
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287, Darmstadt, Germany
| | - Alla Sarafeddinov
- N-Zyme BioTec GmbH, Riedstrasse, 64295, Darmstadt, Germany
- Döhler GmbH, Riedstrasse, 64295, Darmstadt, Germany
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Yenimahalle, 06378, Ankara, Turkey
| | - Stefan Marx
- N-Zyme BioTec GmbH, Riedstrasse, 64295, Darmstadt, Germany
- Stabizym GmbH, Bruchwiesenstrasse 49, 64380, Roßdorf, Germany
| | | | - Jens Zotzel
- N-Zyme BioTec GmbH, Riedstrasse, 64295, Darmstadt, Germany
- Döhler GmbH, Riedstrasse, 64295, Darmstadt, Germany
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287, Darmstadt, Germany.
| |
Collapse
|
45
|
Pokotylo I, Kravets V, Ruelland E. Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling. Int J Mol Sci 2019; 20:E4377. [PMID: 31489905 PMCID: PMC6769663 DOI: 10.3390/ijms20184377] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Salicylic acid (SA) is a phytohormone that plays important roles in many aspects of plant life, notably in plant defenses against pathogens. Key mechanisms of SA signal transduction pathways have now been uncovered. Even though details are still missing, we understand how SA production is regulated and which molecular machinery is implicated in the control of downstream transcriptional responses. The NPR1 pathway has been described to play the main role in SA transduction. However, the mode of SA perception is unclear. NPR1 protein has been shown to bind SA. Nevertheless, NPR1 action requires upstream regulatory events (such as a change in cell redox status). Besides, a number of SA-induced responses are independent from NPR1. This shows that there is more than one way for plants to perceive SA. Indeed, multiple SA-binding proteins of contrasting structures and functions have now been identified. Yet, all of these proteins can be considered as candidate SA receptors and might have a role in multinodal (decentralized) SA input. This phenomenon is unprecedented for other plant hormones and is a point of discussion of this review.
Collapse
Affiliation(s)
- Igor Pokotylo
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
- Université Paris-Est, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 94010 Créteil, France
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Eric Ruelland
- Université Paris-Est, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 94010 Créteil, France.
- CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, 94010 Créteil, France.
| |
Collapse
|
46
|
Zhu F, Che Y, Xu F, Zhou Y, Qian K, Liao Y, Ji Z. Simultaneous silencing of two target genes using virus-induced gene silencing technology in Nicotiana benthamiana. Z NATURFORSCH C 2019; 74:151-159. [PMID: 30667369 DOI: 10.1515/znc-2018-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/30/2018] [Indexed: 11/15/2022]
Abstract
Virus-induced gene silencing (VIGS) is an effective strategy for rapid gene function analysis. It is well established that the NAC transcription factor and salicylic acid (SA) signal pathway play essential roles in response to biotic stresses. However, simultaneous silencing of two target genes using VIGS in plants has been rarely reported. Therefore, in this report, we performed VIGS to silence simultaneously the SA-binding protein 2 (NbSABP2) and NbNAC1 in Nicotiana benthamiana to investigate the gene silencing efficiency of simultaneous silencing of two genes. We first cloned the full-length NbNAC1 gene, and the characterization of NbNAC1 was also analysed. Overlap extension polymerase chain reaction (PCR) analysis showed that the combination of NbSABP2 and NbNAC1 was successfully amplified. Bacteria liquid PCR confirmed that the combination of NbSABP2 and NbNAC1 was successfully inserted into the tobacco rattle virus vector. The results showed that the leaves from the NbSABP2 and NbNAC1 gene-silenced plants collapsed slightly, with browning at the base of petiole or veina. Quantitative real-time PCR results showed that the expression of NbSABP2 and NbNAC1 were significantly reduced in 12 days post silenced plants after tobacco rattle virus infiltration compared with the control plants. Overall, our results suggest that VIGS can be used to silence simultaneously two target genes.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanping Che
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Xu
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan 430415, China
| | - Yangkai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yonghui Liao
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhaolin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
47
|
Huang D, Huo J, Zhang J, Wang C, Wang B, Fang H, Liao W. Protein S-nitrosylation in programmed cell death in plants. Cell Mol Life Sci 2019; 76:1877-1887. [PMID: 30783684 PMCID: PMC11105606 DOI: 10.1007/s00018-019-03045-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
Abstract
Programmed cell death (PCD) is associated with different phases of plant life and provides resistance to different kinds of biotic or abiotic stress. The redox molecule nitric oxide (NO) is usually produced during the stress response and exerts dual effects on PCD regulation. S-nitrosylation, which NO attaches to the cysteine thiol of proteins, is a vital posttranslational modification and is considered as an essential way for NO to regulate cellular redox signaling. In recent years, a great number of proteins have been identified as targets of S-nitrosylation in plants, especially during PCD. S-nitrosylation can directly affect plant PCD positively or negatively, mainly by regulating the activity of cell death-related enzymes or reconstructing the conformation of several functional proteins. Here, we summarized S-nitrosylated proteins that are involved in PCD and provide insight into how S-nitrosylation can regulate plant PCD. In addition, both the importance and challenges of future works on S-nitrosylation in plant PCD are highlighted.
Collapse
Affiliation(s)
- Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Jianqiang Huo
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Bo Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China.
| |
Collapse
|
48
|
Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. Intra and Extracellular Journey of the Phytohormone Salicylic Acid. FRONTIERS IN PLANT SCIENCE 2019; 10:423. [PMID: 31057566 DOI: 10.3389/fpls.2019.00423.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) is a plant hormone that has been described to play an essential role in the activation and regulation of multiple responses to biotic and to abiotic stresses. In particular, during plant-microbe interactions, as part of the defense mechanisms, SA is initially accumulated at the local infected tissue and then spread all over the plant to induce systemic acquired resistance at non-infected distal parts of the plant. SA can be produced by either the phenylalanine or isochorismate biosynthetic pathways. The first, takes place in the cytosol, while the second occurs in the chloroplasts. Once synthesized, free SA levels are regulated by a number of chemical modifications that produce inactive forms, including glycosylation, methylation and hydroxylation to dihydroxybenzoic acids. Glycosylated SA is stored in the vacuole, until required to activate SA-triggered responses. All this information suggests that SA levels are under a strict control, including its intra and extracellular movement that should be coordinated by the action of transporters. However, our knowledge on this matter is still very limited. In this review, we describe the most significant efforts made to date to identify the molecular mechanisms involved in SA transport throughout the plant. Additionally, we propose new alternatives that might help to understand the journey of this important phytohormone in the future.
Collapse
Affiliation(s)
- Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Norma Yaniri Aviles-Baltazar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Antony Buchala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
49
|
Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. Intra and Extracellular Journey of the Phytohormone Salicylic Acid. FRONTIERS IN PLANT SCIENCE 2019; 10:423. [PMID: 31057566 PMCID: PMC6477076 DOI: 10.3389/fpls.2019.00423] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) is a plant hormone that has been described to play an essential role in the activation and regulation of multiple responses to biotic and to abiotic stresses. In particular, during plant-microbe interactions, as part of the defense mechanisms, SA is initially accumulated at the local infected tissue and then spread all over the plant to induce systemic acquired resistance at non-infected distal parts of the plant. SA can be produced by either the phenylalanine or isochorismate biosynthetic pathways. The first, takes place in the cytosol, while the second occurs in the chloroplasts. Once synthesized, free SA levels are regulated by a number of chemical modifications that produce inactive forms, including glycosylation, methylation and hydroxylation to dihydroxybenzoic acids. Glycosylated SA is stored in the vacuole, until required to activate SA-triggered responses. All this information suggests that SA levels are under a strict control, including its intra and extracellular movement that should be coordinated by the action of transporters. However, our knowledge on this matter is still very limited. In this review, we describe the most significant efforts made to date to identify the molecular mechanisms involved in SA transport throughout the plant. Additionally, we propose new alternatives that might help to understand the journey of this important phytohormone in the future.
Collapse
Affiliation(s)
- Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Norma Yaniri Aviles-Baltazar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Antony Buchala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
50
|
Lima Silva CCD, Shimo HM, de Felício R, Mercaldi GF, Rocco SA, Benedetti CE. Structure-function relationship of a citrus salicylate methylesterase and role of salicylic acid in citrus canker resistance. Sci Rep 2019; 9:3901. [PMID: 30846791 PMCID: PMC6405950 DOI: 10.1038/s41598-019-40552-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/18/2019] [Indexed: 11/09/2022] Open
Abstract
Salicylic acid (SA) and its methyl ester, methyl salicylate (MeSA) are well known inducers of local and systemic plant defense responses, respectively. MeSA is a major mediator of systemic acquired resistance (SAR) and its conversion back into SA is thought to be required for SAR. In many plant species, conversion of MeSA into SA is mediated by MeSA esterases of the SABP2 family. Here we show that the Citrus sinensis SABP2 homologue protein CsMES1 catalyzes the hydrolysis of MeSA into SA. Molecular modeling studies suggest that CsMES1 shares the same structure and SA-binding mode with tobacco SABP2. However, an amino acid polymorphism in the active site of CsMES1-related proteins suggested an important role in enzyme regulation. We present evidence that the side chain of this polymorphic residue directly influences enzyme activity and SA binding affinity in CsMES proteins. We also show that SA and CsMES1 transcripts preferentially accumulate during the incompatible interaction between Xanthomonas aurantifolii pathotype C and sweet orange plants. Moreover, we demonstrate that SA and MeSA inhibited citrus canker caused by Xanthomonas citri, whereas an inhibitor of CsMES1 enhanced canker formation, suggesting that CsMES1 and SA play a role in the local defense against citrus canker bacteria.
Collapse
Affiliation(s)
- Caio Cesar de Lima Silva
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP, 13083-100, Campinas, SP, Brazil
| | - Hugo Massayoshi Shimo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP, 13083-100, Campinas, SP, Brazil
| | - Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP, 13083-100, Campinas, SP, Brazil
| | - Gustavo Fernando Mercaldi
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP, 13083-100, Campinas, SP, Brazil
| | - Silvana Aparecida Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP, 13083-100, Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP, 13083-100, Campinas, SP, Brazil.
| |
Collapse
|