1
|
Gangadharan B, Schorsch F. Thyroid Hormone Imbalance in Pregnant Rats and its Impact on Neurodevelopment in Pups: A Minireview on Histopathological Endpoints. Toxicol Pathol 2025:1926233251335846. [PMID: 40448404 DOI: 10.1177/01926233251335846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Market authorization of a pesticide or biocide in Europe requires the hazard assessment of endocrine-disrupting properties, including the thyroid modality. Substances inducing thyroid histopathological and/or thyroid hormone effects in rodent studies need to be further investigated to rule out whether the substance can be considered as an endocrine disruptor for the thyroid pathway, including neurodevelopmental impact in pups and its relevance in humans. Histopathological assessment for identifying reliable biomarkers for assessing neurodevelopmental effects is an important aspect of this testing scheme in rats. Periventricular heterotopia in the corpus callosum and persistence of the external granular layer in the cerebellum have been proposed as potential histopathological biomarkers in the brain. The correlation in the cochlea for hearing impairment seen in rat pups derived from hypothyroid dams is another potential biomarker. Herein, we provide a brief overview of the histopathological endpoints. The technical challenges in correctly identifying these changes during brain development and their significance in detecting the impact of maternal hypothyroidism in rodents are discussed. This mini review is part of a scientific presentation by Dr Gangadharan during the developmental neurotoxicity (DNT) session at the 21st ESTP's Annual Congress (2024).
Collapse
|
2
|
Batistuzzo A, Zhang X, Bocco BMLC, McAninch EA, Salas-Lucia F, Ribeiro MO, Arvan P, Bianco AC, Fonseca TL. FVB But Not B6 Mice Carrying the Thr92Ala-Dio2 Polymorphism Have Impaired Thyroid Hormonogenesis and Goiter. Endocrinology 2025; 166:bqaf046. [PMID: 40085762 PMCID: PMC11932088 DOI: 10.1210/endocr/bqaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The Thr92Ala-Dio2 polymorphism is prevalent worldwide, with about 50% of the population carrying at least 1 allele. The Ala92-Dio2 allele encodes a less active type 2 deiodinase enzyme and has been associated with neurodegenerative diseases, hypertension, and insulin resistance. To understand why its phenotypic effects are variable across different populations, in this study we examined the impact of genetic background on the Thr92Ala-Dio2 polymorphism. We focused on the thyroid gland of 2 genetically distant mouse strains, the C57BL/6J (B6) and the FVB/N (FVB). While the B6-Ala92-Dio2 mice have no meaningful phenotype, the FVB-Ala92-Dio2 exhibit a goiter (about 2.3-fold heavier thyroid) with an about 1.7-fold enlarged thyroid follicular area and impaired hormonogenesis with reduced thyroglobulin content of T4 and T3, 35% to 50% lower serum T4, and about 3-fold elevated serum TSH levels. Notably, the FVB-Ala92-Dio2 thyroid glands showed transcriptional evidence of endoplasmic reticulum stress, unfolded protein response, autophagy, and apoptosis. Female FVB-Ala92-Dio2 mice exhibited a more pronounced thyroid phenotype than males. These findings underscore the critical role of genetic background in modulating the phenotype outcomes of the Thr92Ala-Dio2 polymorphism and highlight its potential implications for understanding variable disease susceptibility in human populations.
Collapse
Affiliation(s)
- Alice Batistuzzo
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA
| | - Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| | - Barbara M L C Bocco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA
| | - Elizabeth A McAninch
- Division of Endocrinology, Gerontology, and Metabolism, Department of Medicine, Stanford University Medical Center, Stanford, CA 94304, USA
| | - Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA
| | - Miriam O Ribeiro
- Human Developmental Sciences Graduate Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo, SP 01302-907, Brazil
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| | - Antonio C Bianco
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tatiana L Fonseca
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Ma X, Guo J, Tian M, Fu Y, Jiang P, Zhang Y, Chai R. Advance and Application of Single-cell Transcriptomics in Auditory Research. Neurosci Bull 2024; 40:963-980. [PMID: 38015350 PMCID: PMC11250760 DOI: 10.1007/s12264-023-01149-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 11/29/2023] Open
Abstract
Hearing loss and deafness, as a worldwide disability disease, have been troubling human beings. However, the auditory organ of the inner ear is highly heterogeneous and has a very limited number of cells, which are largely uncharacterized in depth. Recently, with the development and utilization of single-cell RNA sequencing (scRNA-seq), researchers have been able to unveil the complex and sophisticated biological mechanisms of various types of cells in the auditory organ at the single-cell level and address the challenges of cellular heterogeneity that are not resolved through by conventional bulk RNA sequencing (bulk RNA-seq). Herein, we reviewed the application of scRNA-seq technology in auditory research, with the aim of providing a reference for the development of auditory organs, the pathogenesis of hearing loss, and regenerative therapy. Prospects about spatial transcriptomic scRNA-seq, single-cell based genome, and Live-seq technology will also be discussed.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yaoyang Fu
- Department of Psychiatry, Affiliated Hangzhou First People's Hospital, Zhejiang University school of Medicine, Hangzhou, 310030, China
| | - Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 101408, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Wright DE, O’Donoghue P. Biosynthesis, Engineering, and Delivery of Selenoproteins. Int J Mol Sci 2023; 25:223. [PMID: 38203392 PMCID: PMC10778597 DOI: 10.3390/ijms25010223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology.
Collapse
Affiliation(s)
- David E. Wright
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
6
|
Hidalgo-Álvarez J, Salas-Lucia F, Vera Cruz D, Fonseca TL, Bianco AC. Localized T3 production modifies the transcriptome and promotes the hepatocyte-like lineage in iPSC-derived hepatic organoids. JCI Insight 2023; 8:e173780. [PMID: 37856222 PMCID: PMC10795825 DOI: 10.1172/jci.insight.173780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
Thyroid hormone (TH) levels are low during development, and the deiodinases control TH signaling through tissue-specific activation or inactivation of TH. Here, we studied human induced pluripotent stem cell-derived (iPSC-derived) hepatic organoids and identified a robust induction of DIO2 expression (the deiodinase that activates T4 to T3) that occurs in hepatoblasts. The surge in DIO2-T3 (the deiodinase that activates thyroxine [T4] to triiodothyronine [T3]) persists until the hepatoblasts differentiate into hepatocyte- or cholangiocyte-like cells, neither of which expresses DIO2. Preventing the induction of the DIO2-T3 signaling modified the expression of key transcription factors, decreased the number of hepatocyte-like cells by ~60%, and increased the number of cholangiocyte-like cells by ~55% without affecting the growth or the size of the mature liver organoid. Physiological levels of T3 could not fully restore the transition from hepatoblasts to mature cells. This indicates that the timed surge in DIO2-T3 signaling critically determines the fate of developing human hepatoblasts and the transcriptome of the maturing hepatocytes, with physiological and clinical implications for how the liver handles energy substrates.
Collapse
Affiliation(s)
| | | | - Diana Vera Cruz
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, USA
| | - Tatiana L. Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, and
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, and
| |
Collapse
|
7
|
Abstract
Iodine, through the thyroid hormones, is required for the development of the auditory cortex and cochlea (the sensory organ for hearing). Deafness is a well-documented feature of endemic cretinism resulting from severe iodine deficiency. However, the range of effects of suboptimal iodine intake during auditory development on the hearing ability of children is less clear. We therefore aimed to systematically review the evidence for the association between iodine exposure (i.e. intake/status/supplementation) during development (i.e. pregnancy and/or childhood) and hearing outcomes in children. We searched PubMed and Embase and identified 330 studies, of which thirteen were included in this review. Only three of the thirteen studies were of low risk of bias or of good quality, this therefore limited our ability to draw firm conclusions. Nine of the studies (69 %) were in children (one RCT, two non-RCT interventions and six cross-sectional studies) and four (31 %) were in pregnant women (one RCT, one cohort study and two case reports). The RCT of iodine supplementation in mildly iodine-deficient pregnant women found no effect on offspring hearing thresholds. However, hearing was a secondary outcome of the trial and not all women were from an iodine-deficient area. Iodine supplementation of severely iodine-deficient children (in both non-RCT interventions) resulted in improved hearing thresholds. Five of six cross-sectional studies (83 %) found that higher iodine status in children was associated with better hearing. The current evidence base for the association between iodine status and hearing outcomes is limited and further good-quality research on this topic is needed.
Collapse
|
8
|
Bai X, Xu K, Xie L, Qiu Y, Chen S, Sun Y. The Dual Roles of Triiodothyronine in Regulating the Morphology of Hair Cells and Supporting Cells during Critical Periods of Mouse Cochlear Development. Int J Mol Sci 2023; 24:ijms24054559. [PMID: 36901990 PMCID: PMC10003541 DOI: 10.3390/ijms24054559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Clinically, thyroid-related diseases such as endemic iodine deficiency and congenital hypothyroidism are associated with hearing loss, suggesting that thyroid hormones are essential for the development of normal hearing. Triiodothyronine (T3) is the main active form of thyroid hormone and its effect on the remodeling of the organ of Corti remain unclear. This study aims to explore the effect and mechanism of T3 on the remodeling of the organ of Corti and supporting cells development during early development. In this study, mice treated with T3 at postnatal (P) day 0 or P1 showed severe hearing loss with disordered stereocilia of the outer hair cells (OHCs) and impaired function of mechanoelectrical transduction of OHCs. In addition, we found that treatment with T3 at P0 or P1 resulted in the overproduction of Deiter-like cells. Compared with the control group, the transcription levels of Sox2 and notch pathway-related genes in the cochlea of the T3 group were significantly downregulated. Furthermore, Sox2-haploinsufficient mice treated with T3 not only showed excess numbers of Deiter-like cells but also a large number of ectopic outer pillar cells (OPCs). Our study provides new evidence for the dual roles of T3 in regulating both hair cells and supporting cell development, suggesting that it is possible to increase the reserve of supporting cells.
Collapse
Affiliation(s)
- Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (S.C.); (Y.S.); Tel.: +86-27-8535-1632 (Y.S.)
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Correspondence: (S.C.); (Y.S.); Tel.: +86-27-8535-1632 (Y.S.)
| |
Collapse
|
9
|
Abstract
In this article, starting with the recognition that iodine is essential for normal thyroid function and is a component of thyroid hormone (TH) molecules, we discuss the many seminal observations and discoveries that have led to identification of various pathways of TH metabolism and their potential roles in TH economy and action. We then recount evidence that TH metabolism participates in maintaining the appropriate content of active hormone in a TH-responsive tissue or cell. Thus, metabolism of the TH is not merely a means by which it is degraded and eliminated from the body, but an essential component of an intricate system by which the thyroid exerts its multiple regulatory effects on almost all organs and tissues. The article ends with a summary of the current concepts and some outstanding questions that are awaiting answers.
Collapse
Affiliation(s)
- Valerie Anne Galton
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| |
Collapse
|
10
|
Álvarez Montero OL, Rodríguez Valiente A, Górriz Gil C, García Berrocal JR. Audiological evaluation (128-20,000Hz) in women with autoimmune thyroiditis: The role of antibodies vs. l-thyroxine deficiency. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2023; 74:50-58. [PMID: 36709799 DOI: 10.1016/j.otoeng.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/29/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIM Although sensorineural hearing loss may have different aetiologies, we focused on autoimmune hearing loss since it may be reversible with corticosteroid therapy; this entity is sometimes associated with systemic autoimmune diseases. Hashimoto's thyroiditis or chronic autoimmune thyroiditis shows antibodies and may be harmful to hearing thresholds regardless of hypothyroidism effect. To date this effect has not been sufficiently studied and never with extended high frequencies. The aim of this work is to study by age groups whether hearing thresholds in the human auditory range (128-20,000Hz) are affected in Hashimoto's disease. MATERIALS AND METHODS Two groups of 128 patients affected by Hashimoto's thyroiditis were included. First group: patients with pathological antithyroid antibodies who do not need L-thyroxine treatment. Second group: patients controlled with L-thyroxine substitutive treatment. Audiometric threshold study comparing between the groups of patients and a group of 209 controls was performed. All patients underwent complete otorhinolaryngological examination, antithyroid antibodies, TSH, T3 and T4 blood levels, tympanometry, conventional pure-tone audiometry, and extended-high-frequency audiometry. RESULTS All patients were women. Both groups showed worst audiometric thresholds than the control group; both study groups showed worse hearing than controls, this difference was statistically significant in all frequencies. In the 8-20kHz frequency range, this difference was more than 10dB, and in the 9-16kHz and 20kHz range this difference was more than 20dB. When separated by age groups, in younger subjects (20-29 years) these differences were found in all frequencies, except for conversational frequencies (500-4,000Hz); between 30 and 49 years the difference is statistically significant in all frequencies; and from 50 to 69 years differences are found, especially in the conversational frequencies. CONCLUSIONS This first work studying the human auditory range in the chronic autoimmune thyroiditis or Hashimoto's thyroiditis confirms that hearing loss related to the autoimmune disorder predominates at extended-high-frequencies initially. But ends up involving all frequencies in pure-tone conventional audiometry, then it may be detected in routine clinical tests. These results support the role of extended-high-frequencies audiometry to diagnose subclinical hearing loss in patients affected by Hashimoto's thyroiditis.
Collapse
Affiliation(s)
| | | | - Carmen Górriz Gil
- Servicio de Otorrinolaringología, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | |
Collapse
|
11
|
Thakur PK, Nishad RK, Jain AK. Evaluation of Hearing Loss in Congenital Hypothyroid Children at a Tertiary Care Hospital in Central India. Indian J Otolaryngol Head Neck Surg 2022; 74:4393-4398. [PMID: 36742843 PMCID: PMC9895174 DOI: 10.1007/s12070-021-03063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hearing loss has long been associated with congenital hypothyroidism and, if not noticed and treated early, may result in delayed language acquisition and difficulties in comprehension. In light of the implications of congenital hypothyroidism and its associated hearing loss, we decided to conduct this study. The aim of this study was to identify the prevalence of hearing loss in congenital hypothyroidism and its relation to the severity of the disease and age of initiation of treatment. This study was conducted from July 2016 to June 2021 at a tertiary care hospital in Bhopal. The hearing status of congenital hypothyroid children and matched controls was assessed by pure tone audiometry or free field audiometry and, in selected cases, with brainstem evoked response audiometry. Eight children (25%) with congenital hypothyroidism had hearing loss, compared to one (3.12%) in the control group (p < 0.05). No statistically significant difference has been found in the gender, mean age of diagnosis, mean age of initiation of levothyroxine treatment, mean screening FT4 levels, and mean screening TSH levels between congenital hypothyroid children with and without hearing loss. Due to the high prevalence of hearing loss in congenital hypothyroidism and its impact on language and cognitive development, it is critical to create awareness among healthcare professionals that children diagnosed with congenital hypothyroidism must undergo audiological evaluation at the time of diagnosis and periodically thereafter. Alternatively, children with unexplained hearing loss must be screened for congenital hypothyroidism.
Collapse
Affiliation(s)
| | - Rajeev Kumar Nishad
- ENT Department, F H Medical College & Hospital, Etmadpur, Agra, 283202 India
| | - Anil Kumar Jain
- ENT Department, Chirayu Medical College & Hospital, Bhopal, India
| |
Collapse
|
12
|
Köhrle J, Frädrich C. Deiodinases control local cellular and systemic thyroid hormone availability. Free Radic Biol Med 2022; 193:59-79. [PMID: 36206932 DOI: 10.1016/j.freeradbiomed.2022.09.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Iodothyronine deiodinases (DIO) are a family of selenoproteins controlling systemic and local availability of the major thyroid hormone l-thyroxine (T4), a prohormone secreted by the thyroid gland. T4 is activated to the active 3,3'-5-triiodothyronine (T3) by two 5'-deiodinases, DIO1 and DIO2. DIO3, a 5-deiodinase selenoenzyme inactivates both the prohormone T4 and its active form T3. DIOs show species-specific different patterns of temporo-spatial expression, regulation and function and exhibit different mechanisms of reaction and inhibitor sensitivities. The main regulators of DIO expression and function are the thyroid hormone status, several growth factors, cytokines and altered pathophysiological conditions. Selenium (Se) status has a modest impact on DIO expression and translation. DIOs rank high in the priority of selenium supply to various selenoproteins; thus, their function is impaired only during severe selenium deficiency. DIO variants, polymorphisms, SNPs and rare mutations have been identified. Development of DIO isozyme selective drugs is ongoing. A first X-ray structure has been reported for DIO3. This review focusses on the biochemical characteristics and reaction mechanisms, the relationships between DIO selenoproteins and their importance for local and systemic provision of the active hormone T3. Nutritional, pharmacological, and environmental factors and inhibitors, such as endocrine disruptors, impact DIO functions.
Collapse
Affiliation(s)
- Josef Köhrle
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Max Rubner Center (MRC) für Kardiovaskuläre-metabolische-renale Forschung in Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany.
| | - Caroline Frädrich
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Max Rubner Center (MRC) für Kardiovaskuläre-metabolische-renale Forschung in Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| |
Collapse
|
13
|
Martinez ME, Stohn JP, Mutina EM, Whitten RJ, Hernandez A. Thyroid hormone elicits intergenerational epigenetic effects on adult social behavior and fetal brain expression of autism susceptibility genes. Front Neurosci 2022; 16:1055116. [PMID: 36419462 PMCID: PMC9676973 DOI: 10.3389/fnins.2022.1055116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic mutations identified in genome-wide association studies can only explain a small percentage of the cases of complex, highly heritable human conditions, including neurological and neurodevelopmental disorders. This suggests that intergenerational epigenetic effects, possibly triggered by environmental circumstances, may contribute to their etiology. We previously described altered DNA methylation signatures in the sperm of mice that experienced developmental overexposure to thyroid hormones as a result of a genetic defect in hormone clearance (DIO3 deficiency). Here we studied fetal brain gene expression and adult social behavior in genetically normal F2 generation descendants of overexposed mice. The brain of F2 generation E13.5 fetuses exhibited abnormal expression of genes associated with autism in humans, including Auts2, Disc1, Ldlr, Per2, Shank3, Oxtr, Igf1, Foxg1, Cd38, Grid2, Nrxn3, and Reln. These abnormal gene expression profiles differed depending on the sex of the exposed ancestor. In the three-chamber social box test, adult F2 generation males manifested significantly decreased interest in social interaction and social novelty, as revealed by decrease total time, distance traveled and time immobile in the area of interaction with novel strangers. F1 generation mice, compared to appropriate controls also exhibited altered profiles in fetal brain gene expression, although these profiles were substantially different to those in the F2 generation. Likewise adult F1 generation mice showed some abnormalities in social behavior that were sexually dimorphic and milder than those in F2 generation mice. Our results indicate that developmental overexposure to thyroid hormone causes intergenerational epigenetic effects impacting social behavior and the expression of autism-related genes during early brain development. Our results open the possibility that altered thyroid hormone states, by eliciting changes in the epigenetic information of the germ line, contribute to the susceptibility and the missing-but heriTables-etiology of complex neurodevelopmental conditions characterized by social deficits, including autism and schizophrenia.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Julia Patrizia Stohn
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Elizabeth M. Mutina
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Rayne J. Whitten
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
14
|
Zhang H, Xie L, Chen S, Qiu Y, Sun Y, Kong W. Thyroxine Regulates the Opening of the Organ of Corti through Affecting P-Cadherin and Acetylated Microtubule. Int J Mol Sci 2022; 23:13339. [PMID: 36362134 PMCID: PMC9656988 DOI: 10.3390/ijms232113339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 10/10/2023] Open
Abstract
Different serum thyroxine levels may influence the morphology of the inner ear during development. A well-developed organ of Corti (OC) is considered to be critical to the function of hearing. In our study, we treated mice with triiodothyronine (T3) and found that the opening of the OC occurred sooner than in control mice. We also observed an increased formation of acetylated microtubules and a decrease in the adhesion junction molecule P-cadherin the during opening of the OC. Our investigation indicates that thyroxin affects P-cadherin expression and microtubule acetylation to influence the opening of the OC.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Valcárcel-Hernández V, Guillén-Yunta M, Bueno-Arribas M, Montero-Pedrazuela A, Grijota-Martínez C, Markossian S, García-Aldea Á, Flamant F, Bárez-López S, Guadaño-Ferraz A. A CRISPR/Cas9-engineered avatar mouse model of monocarboxylate transporter 8 deficiency displays distinct neurological alterations. Neurobiol Dis 2022; 174:105896. [DOI: 10.1016/j.nbd.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022] Open
|
16
|
Schweizer U, Fabiano M. Selenoproteins in brain development and function. Free Radic Biol Med 2022; 190:105-115. [PMID: 35961466 DOI: 10.1016/j.freeradbiomed.2022.07.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023]
Abstract
Expression of selenoproteins is widespread in neurons of the central nervous system. There is continuous evidence presented over decades that low levels of selenium or selenoproteins are linked to seizures and epilepsy indicating a failure of the inhibitory system. Many developmental processes in the brain depend on the thyroid hormone T3. T3 levels can be locally increased by the action of iodothyronine deiodinases on the prohormone T4. Since deiodinases are selenoproteins, it is expected that selenoprotein deficiency may affect development of the central nervous system. Studies in genetically modified mice or clinical observations of patients with rare diseases point to a role of selenoproteins in brain development and degeneration. In particular selenoprotein P is central to brain function by virtue of its selenium transport function into and within the brain. We summarize which selenoproteins are essential for the brain, which processes depend on selenoproteins, and what is known about genetic deficiencies of selenoproteins in humans. This review is not intended to cover the potential influence of selenium or selenoproteins on major neurodegenerative disorders in human.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany.
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115, Bonn, Germany
| |
Collapse
|
17
|
Fonseca TL, Russo SC, Luongo C, Salvatore D, Bianco AC. Inactivation of Type 3 Deiodinase Results in Life-long Changes in the Brown Adipose Tissue Transcriptome in the Male Mouse. Endocrinology 2022; 163:bqac026. [PMID: 35238380 PMCID: PMC8988869 DOI: 10.1210/endocr/bqac026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 11/19/2022]
Abstract
Adaptive thermogenesis in small mammals and infants takes place in brown adipose tissue (BAT). Heat is produced via uncoupling protein 1 (UCP1)-mediated uncoupling between oxidation of energy substrates and adenosine 5'-triphosphate synthesis. Thyroid hormone (TH) signaling plays a role in this process. The deiodinases activate thyroxine (T4) to 3,5,3'-triiodothyronine (T3) (D2) or inactivate T4 and T3 to 3,3,5'-triiodothyronine and T2 (D3), respectively. Using a mouse model with selective inactivation of Dio3 in BAT (flox-Dio3 × UCP1-cre = BAT-D3KO), we now show that knocking out D3 resulted in premature exposure of developing brown adipocytes (embryonic days 16.5-18.5) to T3 signaling, leading to an earlier expression of key BAT genes, including Cidea, Cox8b, Dio2, Ucp1, and Pgc1α. Adult BAT-D3KO mice exhibited increased expression of 1591 genes as assessed by RNA sequencing, including 19 gene sets related to mitochondria, 8 related to fat, and 8 related to glucose homeostasis. The expression of 243 genes was changed by more than 1.5-fold, 36 of which play a role in metabolic/thermogenic processes. BAT-D3KO mice weigh less and exhibit smaller white adipocyte area, but maintain normal energy expenditure at room temperature (22 °C) and in the cold (4 °C). They also defend their core temperature more effectively and do not lose as much body weight when exposed to cold. We conclude that the coordinated actions of Dio3 in the embryonic BAT define the timing and intensity of T3 signaling during brown adipogenesis. Enhanced T3 signaling during BAT embryogenesis (Dio3 inactivation) results in selective life-long modifications in the BAT transcriptome.
Collapse
Affiliation(s)
- Tatiana L Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| | - Samuel C Russo
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
18
|
Álvarez Montero OL, Rodríguez Valiente A, Górriz Gil C, García Berrocal JR. Estudio de la audición (128-20.000 Hz) en mujeres con tiroiditis autoinmune: papel de los anticuerpos frente al déficit de hormona tiroidea. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2022. [DOI: 10.1016/j.otorri.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Lee KW, Shin Y, Lee S, Lee S. Inherited Disorders of Thyroid Hormone Metabolism Defect Caused by the Dysregulation of Selenoprotein Expression. Front Endocrinol (Lausanne) 2022; 12:803024. [PMID: 35126314 PMCID: PMC8807339 DOI: 10.3389/fendo.2021.803024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Consistent activation and functioning of thyroid hormones are essential to the human body as a whole, especially in controlling the metabolic rate of all organs and systems. Impaired sensitivity to thyroid hormones describes any process that interferes with the effectiveness of thyroid hormones. The genetic origin of inherited thyroid hormone defects and the investigation of genetic defects upon the processing of thyroid hormones are of utmost importance. Impaired sensitivity to thyroid hormone can be categorized into three conditions: thyroid hormone cell membrane transport defect (THCMTD), thyroid hormone metabolism defect (THMD), and thyroid hormone action defect (THAD). THMD is caused by defects in the synthesis and processing of deiodinases that convert the prohormone thyroxine (T4) to the active hormone triiodothyronine (T3). Deiodinase, a selenoprotein, requires unique translation machinery that is collectively composed of the selenocysteine (Sec) insertion sequence (SECIS) elements, Sec-insertion sequence-binding protein 2 (SECISBP2), Sec-specific eukaryotic elongation factor (EEFSEC), and Sec-specific tRNA (TRU-TCA1-1), which leads to the recognition of the UGA codon as a Sec codon for translation into the growing polypeptide. In addition, THMD could be expanded to the defects of enzymes that are involved in thyroid hormone conjugation, such as glucuronidation and sulphation. Paucity of inherited disorders in this category leaves them beyond the scope of this review. This review attempts to specifically explore the genomic causes and effects that result in a significant deficiency of T3 hormones due to inadequate function of deiodinases. Moreover, along with SECISBP2, TRU-TCA1-1, and deiodinase type-1 (DIO1) mutations, this review describes the variants in DIO2 single nucleotide polymorphism (SNP) and thyroid stimulating hormone receptor (TSHR) that result in the reduced activity of DIO2 and subsequent abnormal conversion of T3 from T4. Finally, this review provides additional insight into the general functionality of selenium supplementation and T3/T4 combination treatment in patients with hypothyroidism, suggesting the steps that need to be taken in the future.
Collapse
Affiliation(s)
- Kyu Won Lee
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Yoochan Shin
- Laboratory of Genomics and Translational Medicine, Department of Internal Medicine, Gachon University College of Medicine, Incheon, South Korea
| | - Sungahn Lee
- Laboratory of Genomics and Translational Medicine, Department of Internal Medicine, Gachon University College of Medicine, Incheon, South Korea
| | - Sihoon Lee
- Laboratory of Genomics and Translational Medicine, Department of Internal Medicine, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
20
|
The thyroid hormone converting enzyme human deiodinase 1 is inhibited by gold ions from inorganic salts, organic substances, and by small-size nanoparticles. Chem Biol Interact 2022; 351:109709. [PMID: 34662569 DOI: 10.1016/j.cbi.2021.109709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/03/2022]
Abstract
The selenocysteine-containing enzyme class deiodinases (DIO) consists of three isoforms. DIOs play a role in regulation of thyroid hormone (TH) signaling through the removal of iodide from TH leading to TH that interact with the hypothalamic-pituitary-thyroid (HPT) axis with differing potency. Some gold-containing organic substances are known to inhibit many selenoenzymes, including DIOs. It is, however, unclear whether the Au-containing substances or the Au ions are causing the inhibition. In this study, five organic and inorganic gold substances as well as three gold nanoparticles (AuNPs) were tested for their potential to inhibit DIO1. The enzyme activity was tested using human liver microsomes as an enzyme source and reverse T3 as a substrate; iodide release was measured by the Sandell-Kolthoff method. The three organic gold substances aurothioglucose, auranofin and sodium aurothiomalate inhibited DIO1 with IC50 between 0.38 and 0.75 μM while their structural analogues lacking the gold ion did not. Likewise, the two tested gold salts, Au(I) and Au(III) chloride, showed a concentration-dependent inhibition of the DIO1 with IC50 values of 0.95 and 0.57 μM. Further, AuNPs of different sizes (100, 30 and 5 nm diameter) were tested with only the 5 nm AuNPs leading to inhibition with an IC50 of 8 × 1014 AuNP/L. This inhibition was not caused by the Au ions released by the AuNP into the incubation media. The exact mechanism of inhibition of DIO1 by 5 nm AuNPs should be further examined. In conclusion, the microsomal DIO1 assay demonstrated the inhibition of DIO1 by gold ions originating from different gold-containing substances, but not by Au released from AuNPs; rather DIO1 is inhibited by 5 nm, but not larger, AuNPs.
Collapse
|
21
|
Ng L, Liu Y, Liu H, Forrest D. Cochlear Fibrocyte and Osteoblast Lineages Expressing Type 2 Deiodinase Identified with a Dio2CreERt2 Allele. Endocrinology 2021; 162:bqab179. [PMID: 34436572 PMCID: PMC8475715 DOI: 10.1210/endocr/bqab179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/16/2022]
Abstract
Type 2 deiodinase (Dio2) amplifies levels of 3,5,3'-L-triiodothyronine (T3), the active form of thyroid hormone, and is essential for cochlear maturation and auditory development. However, cellular routes for endocrine signaling in the compartmentalized, anatomically complex cochlea are little understood. Dio2 generates T3 from thyroxine (T4), a more abundant thyroid hormone precursor in the circulation, and is dramatically induced in the cochlea before the onset of hearing. The evidence implies that specific Dio2-expressing cell types critically mediate T3 signaling but these cell types are poorly defined because Dio2 is expressed transiently at low levels. Here, using a Dio2CreERt2 knockin that activates a fluorescent reporter, we define Dio2-expressing cochlear cell types at high resolution in male or female mice. Dio2-positive cells were detected in vascularized supporting tissues but not in avascular internal epithelia, indicating segregation of T3-generating and T3-responding tissues. In the spiral ligament and spiral limbus, Dio2-positive fibrocytes clustered around vascular networks that convey T4 into cochlear tissues. In the otic capsule, Dio2-positive osteoblasts localized at cartilage surfaces as the bony labyrinth matures. We corroborated the identities of Dio2-positive lineages by RNA-sequencing of individual cells. The results suggest a previously unrecognized role for fibrocytes in mediating hormonal signaling. We discuss a model whereby fibrocytes mediate paracrine-like control of T3 signaling to the organ of Corti and epithelial target tissues.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ye Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Schoenmakers E, Chatterjee K. Human Genetic Disorders Resulting in Systemic Selenoprotein Deficiency. Int J Mol Sci 2021; 22:12927. [PMID: 34884733 PMCID: PMC8658020 DOI: 10.3390/ijms222312927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/01/2023] Open
Abstract
Selenium, a trace element fundamental to human health, is incorporated as the amino acid selenocysteine (Sec) into more than 25 proteins, referred to as selenoproteins. Human mutations in SECISBP2, SEPSECS and TRU-TCA1-1, three genes essential in the selenocysteine incorporation pathway, affect the expression of most if not all selenoproteins. Systemic selenoprotein deficiency results in a complex, multifactorial disorder, reflecting loss of selenoprotein function in specific tissues and/or long-term impaired selenoenzyme-mediated defence against oxidative and endoplasmic reticulum stress. SEPSECS mutations are associated with a predominantly neurological phenotype with progressive cerebello-cerebral atrophy. Selenoprotein deficiency due to SECISBP2 and TRU-TCA1-1 defects are characterized by abnormal circulating thyroid hormones due to lack of Sec-containing deiodinases, low serum selenium levels (low SELENOP, GPX3), with additional features (myopathy due to low SELENON; photosensitivity, hearing loss, increased adipose mass and function due to reduced antioxidant and endoplasmic reticulum stress defence) in SECISBP2 cases. Antioxidant therapy ameliorates oxidative damage in cells and tissues of patients, but its longer term benefits remain undefined. Ongoing surveillance of patients enables ascertainment of additional phenotypes which may provide further insights into the role of selenoproteins in human biological processes.
Collapse
Affiliation(s)
| | - Krishna Chatterjee
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| |
Collapse
|
23
|
Zheng Z, Shen Y, Xia L, Xiao L, Sun Y, Wang H, Chen Z, Wu Y, Shi H, He J, Feng Y, Yin S. Thyroid-Related Hormone Levels in Clinical Patients With Moderately Severe-to-Profound Sudden Sensorineural Hearing Loss: A Prospective Study. Front Neurol 2021; 12:753270. [PMID: 34777223 PMCID: PMC8581239 DOI: 10.3389/fneur.2021.753270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives: Sudden sensorineural hearing loss (SSNHL) is a common otological emergency, causing a measure of hearing loss and affecting the quality of life. This study aims to investigate the association of thyroid-related hormone levels with moderately severe-to-profound SSNHL. Methods: The study included 70 patients with moderately severe-to-profound SSNHL and 100 age- and sex-matched healthy controls. Peripheral venous blood samples were taken from the participants, and their thyroid-related hormone levels were measured at admission and 1 week after treatment. Results: In moderately severe-to-profound SSNaHL patients, the concentrations of total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) (all P < 0.05) were significantly lower than in the control group. The TT3, TT4, FT3, and TSH levels were significantly higher in the effective group than in the ineffective group (all P < 0.05). Linear correlation analysis revealed that TSH level (R = 0.707, P < 0.05) elevation after treatment successfully predicted a favorable outcome of hearing recovery. Logistic regression analyses suggested low FT3 and TSH levels to be independent occurrence predictors, while the increase of TSH level may be an independent favorable outcome predictor. Conclusions: The results suggest that low FT3 and TSH levels are risk factors for moderately severe-to-profound SSNHL. By discovering the positive association between TSH elevation and hearing recovery, along with the potential novel predictors of FT3 and TSH, our study may contribute valuable insights to the research and treatment of moderately severe-to-profound SSNHL.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Shen
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Liang Xia
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Lili Xiao
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuanyuan Sun
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hui Wang
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhengnong Chen
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yaqin Wu
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Shi
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jingchun He
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Xinhua Hospital, Shanghai, China
| | - Yanmei Feng
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
24
|
Andrade CLO, Alves CDAD, Ramos HE. Congenital Hypothyroidism and the Deleterious Effects on Auditory Function and Language Skills: A Narrative Review. Front Endocrinol (Lausanne) 2021; 12:671784. [PMID: 34447350 PMCID: PMC8382885 DOI: 10.3389/fendo.2021.671784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
Congenital hypothyroidism (CH) is an endocrine disease commonly found in newborns and is related to the absence or reduction of thyroid hormones (THs), which are essential for development since intrauterine life. Children with CH can develop hearing problems as THs are crucial for the auditory pathway's development and maturation. Sensory deprivations, especially in hearing disorders at early ages of development, can impair language skills, literacy, and behavioral, cognitive, social, and psychosocial development. In this review we describe clinical and molecular aspects linking CH and hearing loss.
Collapse
Affiliation(s)
| | | | - Helton Estrela Ramos
- Post-Graduate Program in Medicine and Health, Medical School of Medicine, Federal University of Bahia, Salvador, Brazil
- Postgraduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Bioregulation Department, Health and Science Institute, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
25
|
Hernandez A, Martinez ME, Ng L, Forrest D. Thyroid Hormone Deiodinases: Dynamic Switches in Developmental Transitions. Endocrinology 2021; 162:bqab091. [PMID: 33963379 PMCID: PMC8248586 DOI: 10.1210/endocr/bqab091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Thyroid hormones exert pleiotropic, essential actions in mammalian, including human, development. These actions depend on provision of thyroid hormones in the circulation but also to a remarkable extent on deiodinase enzymes in target tissues that amplify or deplete the local concentration of the primary active form of the hormone T3 (3,5,3'-triiodothyronine), the high affinity ligand for thyroid hormone receptors. Genetic analyses in mice have revealed key roles for activating (DIO2) and inactivating (DIO3) deiodinases in cell differentiation fates and tissue maturation, ultimately promoting neonatal viability, growth, fertility, brain development, and behavior, as well as metabolic, endocrine, and sensory functions. An emerging paradigm is how the opposing activities of DIO2 and DIO3 are coordinated, providing a dynamic switch that controls the developmental timing of a tissue response, often during neonatal and maturational transitions. A second paradigm is how cell to cell communication within a tissue determines the response to T3. Deiodinases in specific cell types, often strategically located near to blood vessels that convey thyroid hormones into the tissue, can regulate neighboring cell types, suggesting a paracrine-like layer of control of T3 action. We discuss deiodinases as switches for developmental transitions and their potential to influence tissue dysfunction in human thyroid disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, USA
| | - M Elena Martinez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Fonseca TL, Garcia T, Fernandes GW, Nair TM, Bianco AC. Neonatal thyroxine activation modifies epigenetic programming of the liver. Nat Commun 2021; 12:4446. [PMID: 34290257 PMCID: PMC8295303 DOI: 10.1038/s41467-021-24748-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/24/2021] [Indexed: 12/28/2022] Open
Abstract
The type 2 deiodinase (D2) in the neonatal liver accelerates local thyroid hormone triiodothyronine (T3) production and expression of T3-responsive genes. Here we show that this surge in T3 permanently modifies hepatic gene expression. Liver-specific Dio2 inactivation (Alb-D2KO) transiently increases H3K9me3 levels during post-natal days 1-5 (P1-P5), and results in methylation of 1,508 DNA sites (H-sites) in the adult mouse liver. These sites are associated with 1,551 areas of reduced chromatin accessibility (RCA) within core promoters and 2,426 within intergenic regions, with reduction in the expression of 1,363 genes. There is strong spatial correlation between density of H-sites and RCA sites. Chromosome conformation capture (Hi-C) data reveals a set of 81 repressed genes with a promoter RCA in contact with an intergenic RCA ~300 Kbp apart, within the same topologically associating domain (χ2 = 777; p < 0.00001). These data explain how the systemic hormone T3 acts locally during development to define future expression of hepatic genes.
Collapse
Affiliation(s)
- Tatiana L Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, IL, USA
| | - Tzintzuni Garcia
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
| | - Gustavo W Fernandes
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, IL, USA
| | - T Murlidharan Nair
- Department of Biological Sciences and CS/Informatics, Indiana University South Bend, South Bend, IN, USA
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Almagor T, Rath S, Nachtigal D, Sharroni Z, Elias-Assad G, Hess O, Havazelet G, Zehavi Y, Spiegel R, Bercovich D, Almashanu S, Tenenbaum-Rakover Y. High Prevalence of Hearing Impairment in Primary Congenital Hypothyroidism. Eur Thyroid J 2021; 10:215-221. [PMID: 34178707 PMCID: PMC8216036 DOI: 10.1159/000509775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND An association between hearing impairment (HI) and congenital hypothyroidism (CH) has been reported previously. However, in general, studies were retrospective and had small sample sizes, and the results were variable and inconclusive. The aim of our study was to assess the prevalence of HI among patients with CH and to examine factors potentially predictive of HI including severity of CH, etiology of CH, and timing of treatment initiation. METHODS Audiometry was undertaken prospectively in 66 patients aged 3-21 years diagnosed with primary CH and 49 healthy matched controls. All patients with HI underwent examination by an otolaryngologist, and in patients with sensorineural loss, brainstem evoked response audiometry was performed. A next-generation sequencing (NGS) panel for genes involved in deafness was performed in patients with sensorineural HI to exclude additional genetic etiologies. RESULTS HI was found in 19 patients (28.7%). Among them, 5 (7.6%) had moderate to severe bilateral sensorineural impairment and 14 (21.2%) had mild conductive HI. Conductive HI was bilateral in 5 of these patients (36%). None of the controls had HI. No specific etiology was found in patients with HI, and no differences were identified in age at diagnosis, age at initiation of levothyroxine (LT4) therapy, gender, or ethnicity between patients with and without HI. A nonsignificant trend toward lower mean screening TT4 levels was found in patients with HI (compared to those without HI) (3.42 vs. 5.34 μg/dL, p = 0.095). No pathogenic variants in genes attributed to HI were identified by NGS in the 5 patients with sensorineural deafness, indicating that HI in these patients was likely attributable to CH rather than other genetic etiologies. CONCLUSIONS Our findings indicate a high prevalence of HI among patients with CH, predominantly of the conductive type. HI was not associated with the etiology of CH or with delayed initiation of LT4 therapy. Audiometry is recommended for children diagnosed with CH and repeat monitoring may be warranted to identify acquired HI and to prevent long-term sequelae of undiagnosed deafness.
Collapse
Affiliation(s)
- Tal Almagor
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
- Pediatric Department B, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa, Israel
| | - Shoshana Rath
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | - Dan Nachtigal
- Department of Otolaryngology, Head and Neck Surgery, Ha'Emek Medical Center, Afula, Israel
| | - Zohara Sharroni
- Department of Otolaryngology, Head and Neck Surgery, Ha'Emek Medical Center, Afula, Israel
| | - Ghadir Elias-Assad
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa, Israel
| | - Ora Hess
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | | | - Yoav Zehavi
- Pediatric Department B, Ha'Emek Medical Center, Afula, Israel
| | - Ronen Spiegel
- Pediatric Department B, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa, Israel
| | - Dani Bercovich
- Faculty of Medical Science, Tel Hai Academic College Upper Galilee, Tel Hai, Israel
- GGA − Galil Genetic Analysis Laboratory Ltd., Kazerin, Israel
| | - Shlomo Almashanu
- The National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel
| | - Yardena Tenenbaum-Rakover
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa, Israel
- *Yardena Tenenbaum-Rakover, Pediatric Endocrine Institute, Ha'Emek Medical Center, 24 Yitzhak Rabin Ave., Afula 1834111 (Israel),
| |
Collapse
|
28
|
McNerney C, Johnston RJ. Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: Insights from model organisms and human stem cell-derived retinal organoids. VITAMINS AND HORMONES 2021; 116:51-90. [PMID: 33752828 DOI: 10.1016/bs.vh.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cones are the color-detecting photoreceptors of the vertebrate eye. Cones are specialized into subtypes whose functions are determined by the expression of color-sensitive opsin proteins. Organisms differ greatly in the number and patterning of cone subtypes. Despite these differences, thyroid hormone is an important regulator of opsin expression in most vertebrates. In this chapter, we outline how the timing of thyroid hormone signaling controls cone subtype fates during retinal development. We first examine our current understanding of cone subtype specification in model organisms and then describe advances in human stem cell-derived organoid technology that identified mechanisms controlling development of the human retina.
Collapse
Affiliation(s)
- Christina McNerney
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
29
|
Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer's Disease. Front Neurosci 2021; 15:646518. [PMID: 33762907 PMCID: PMC7982578 DOI: 10.3389/fnins.2021.646518] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) and its compounds have been reported to have great potential in the prevention and treatment of Alzheimer's disease (AD). However, little is known about the functional mechanism of Se in these processes, limiting its further clinical application. Se exerts its biological functions mainly through selenoproteins, which play vital roles in maintaining optimal brain function. Therefore, selenoproteins, especially brain function-associated selenoproteins, may be involved in the pathogenesis of AD. Here, we analyze the expression and distribution of 25 selenoproteins in the brain and summarize the relationships between selenoproteins and brain function by reviewing recent literature and information contained in relevant databases to identify selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM, SELENOS, and SELENOW) that are highly expressed specifically in AD-related brain regions and closely associated with brain function. Finally, the potential functions of these selenoproteins in AD are discussed, for example, the function of GPX4 in ferroptosis and the effects of the endoplasmic reticulum (ER)-resident protein SELENOK on Ca2+ homeostasis and receptor-mediated synaptic functions. This review discusses selenoproteins that are closely associated with brain function and the relevant pathways of their involvement in AD pathology to provide new directions for research on the mechanism of Se in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
30
|
Bomann W, Tinwell H, Jenkinson P, Kluxen FM. Metribuzin-induced non-adverse liver changes result in rodent-specific non-adverse thyroid effects via uridine 5'-diphospho-glucuronosyltransferase (UDPGT, UGT) modulation. Regul Toxicol Pharmacol 2021; 122:104884. [PMID: 33596450 DOI: 10.1016/j.yrtph.2021.104884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 11/18/2022]
Abstract
Metribuzin is a herbicide that inhibits photosynthesis and has been used for over 40 years. Its main target organ is the liver and to some extent the kidney in rats, dogs, and rabbits. Metribuzin shows a specific thyroxine (T4) profile in rat studies with T4 increases at low doses and T4 decreases at higher doses. Only the T4 decreases occur together with histopathological changes in the thyroid and weight changes of liver and thyroid. A set of experiments was conducted to investigate metribuzin's endocrine disruptor potential according to European guidance and regulations. The results indicate that a liver enzyme modulation, i.e. of the uridine 5'-diphospho-glucuronosyltransferase (UDPGT, UGT), is most likely responsible for both increased and decreased plasma thyroxine level and for thyroid histopathological observations. Animals with high T4 levels show low UGT activity, while animals with low T4 levels show high UGT activity. A causal relationship was inferred, since other potentially human-relevant mode of action (MOA) pathways were excluded in dedicated studies, i.e. inhibition of deiodinases (DIO), inhibition of thyroid peroxidase (TPO) or of the sodium importer system (NIS). This liver metabolism-associated MOA is considered not relevant for human hazard assessment, due to species differences in thyroid homeostasis between humans and rats and, more importantly, based on experimental data showing that metribuzin affects UGT activity in rat but not in human hepatocytes. Further, we discuss whether or not increased T4 levels in the rat, in the absence of histopathological changes, should be considered as adverse and therefore used as an appropriate hazard model for humans. Based on a weight of evidence approach, metribuzin should not be classified as an endocrine disruptor with regard to the thyroid modality.
Collapse
Affiliation(s)
- Werner Bomann
- Toxconsult, 9393 W 110th Street, 51 Corporate Woods, Suite 500, Overland Park, KS, 66210, USA.
| | - Helen Tinwell
- Bayer.SAS, 16 rue Jean-Marie Leclair, 69009, Lyon, France
| | | | | |
Collapse
|
31
|
Santesmasses D, Mariotti M, Gladyshev VN. Tolerance to Selenoprotein Loss Differs between Human and Mouse. Mol Biol Evol 2020; 37:341-354. [PMID: 31560400 PMCID: PMC6993852 DOI: 10.1093/molbev/msz218] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse has emerged as the most common model organism in biomedicine. Here, we analyzed the tolerance to the loss-of-function (LoF) of selenoprotein genes, estimated from mouse knockouts and the frequency of LoF variants in humans. We found not only a general correspondence in tolerance (e.g., GPX1, GPX2) and intolerance (TXNRD1, SELENOT) to gene LoF between humans and mice but also important differences. Notably, humans are intolerant to the loss of iodothyronine deiodinases, whereas their deletion in mice leads to mild phenotypes, and this is consistent with phenotype differences in selenocysteine machinery loss between these species. In contrast, loss of TXNRD2 and GPX4 is lethal in mice but may be tolerated in humans. We further identified the first human SELENOP variants coding for proteins varying in selenocysteine content. Finally, our analyses suggested that premature termination codons in selenoprotein genes trigger nonsense-mediated decay, but do this inefficiently when UGA codon is gained. Overall, our study highlights differences in the physiological importance of selenoproteins between human and mouse.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
33
|
Kong SH, Kim JH, Park YJ, Lee JH, Hong AR, Shin CS, Cho NH. Low free T3 to free T4 ratio was associated with low muscle mass and impaired physical performance in community-dwelling aged population. Osteoporos Int 2020; 31:525-531. [PMID: 31784788 DOI: 10.1007/s00198-019-05137-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/16/2019] [Indexed: 10/25/2022]
Abstract
UNLABELLED In aged population, the association of thyroid hormones on physical performance, especially within their normal range, has yet to be elucidated. In this study, individuals with low serum free T3/free T4 were likely to have low muscle mass and impaired physical performance. PURPOSE We aimed to evaluate the associations of muscle mass, strength, and physical performance with thyroid hormone in an aged euthyroid population from a community-based cohort. METHODS We examined 918 men aged over 60 years and 1215 postmenopausal women from the Ansung cohort study. Appendicular skeletal muscle mass divided by square of height (ASM/ht2) was used as the muscle mass index. Hand grip strength was measured using a hydraulic dynamometer. Physical performance was assessed using the short physical performance battery (SPPB). RESULTS Participants with higher tertiles of free T3 and free T3/free T4 were younger and had higher ASM/ht2, stronger hand grip strength, and higher SPPB scores than those in the lower tertiles. In adjusted models, men within higher tertiles of free T3 had higher ASM/ht2 compared with those within lower tertiles (p = 0.033), whereas subjects with higher tertiles of free T4 had lower ASM/ht2 compared with those within lower tertiles (p = 0.043). Subjects within higher tertiles of free T3/free T4 had higher ASM/ht2 (p < 0.001) and better physical performance (p = 0.048) than those within lower tertiles after adjustments. However, free T3, free T4, or free T3/free T4 was not related to hand grip strength after adjustment for covariates. CONCLUSION Our results thus indicate that in an aged euthyroid population, low serum free T3/free T4 was a better index for low muscle mass and impaired physical performance than serum free T3 or free T4 alone.
Collapse
Affiliation(s)
- S H Kong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - J H Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Y J Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - J H Lee
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, South Korea
| | - A R Hong
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam, South Korea
| | - C S Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - N H Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea.
| |
Collapse
|
34
|
Hernandez A, Martinez ME. Thyroid hormone action in the developing testis: intergenerational epigenetics. J Endocrinol 2020; 244:R33-R46. [PMID: 31977317 PMCID: PMC7220832 DOI: 10.1530/joe-19-0550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
Male fertility involves the successful transmission of the genetic code to the next generation. It requires appropriately timed cellular processes during testis development, adequate support of spermatogenesis by hormonal cues from the reproductive axis and cellular cross-talk between germ and somatic cells. In addition to being the vessel of the father’s genome, increasing evidence shows that the mature sperm carries valuable epigenetic information – the epigenome – that, after fecundation, influences the development of the next generation, affecting biological traits and disease susceptibility. The epigenome of the germ line is susceptible to environmental factors, including exogenous chemicals and diet, but it is also affected by endogenous molecules and pathophysiological conditions. Factors affecting testis development and the epigenetic information of the germ line are critical for fertility and of relevance to the non-genetic but heritable component in the etiology of complex conditions. Thyroid hormones are one of those factors and their action, when untimely, produces profound effects on the developing testis, affecting spermatogenesis, steroidogenesis, testis size, reproductive hormones and fertility. Altered thyroid hormone states can also change the epigenetic information of the male germ line, with phenotypic consequences for future generations. In the context of past literature concerning the consequences of altered thyroid hormone action for testis development, here we review recent findings about the pathophysiological roles of the principal determinants of testicular thyroid hormone action. We also discuss limited work on the effects of thyroid hormone on the male germ line epigenome and the implications for the intergenerational transmission of phenotypes via epigenetic mechanisms.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - M. Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| |
Collapse
|
35
|
Leonardi A, Evke S, Lee M, Melendez JA, Begley TJ. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic Biol Med 2019; 143:573-593. [PMID: 31476365 PMCID: PMC7650020 DOI: 10.1016/j.freeradbiomed.2019.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Here we highlight the role of epitranscriptomic systems in post-transcriptional regulation, with a specific focus on RNA modifying writers required for the incorporation of the 21st amino acid selenocysteine during translation, and the pathologies linked to epitranscriptomic and selenoprotein defects. Epitranscriptomic marks in the form of enzyme-catalyzed modifications to RNA have been shown to be important signals regulating translation, with defects linked to altered development, intellectual impairment, and cancer. Modifications to rRNA, mRNA and tRNA can affect their structure and function, while the levels of these dynamic tRNA-specific epitranscriptomic marks are stress-regulated to control translation. The tRNA for selenocysteine contains five distinct epitranscriptomic marks and the ALKBH8 writer for the wobble uridine (U) has been shown to be vital for the translation of the glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) family of selenoproteins. The reactive oxygen species (ROS) detoxifying selenocysteine containing proteins are a prime examples of how specialized translation can be regulated by specific tRNA modifications working in conjunction with distinct codon usage patterns, RNA binding proteins and specific 3' untranslated region (UTR) signals. We highlight the important role of selenoproteins in detoxifying ROS and provide details on how epitranscriptomic marks and selenoproteins can play key roles in and maintaining mitochondrial function and preventing disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Colleges of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Sara Evke
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - May Lee
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA.
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA; RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
36
|
Sun LH, Huang JQ, Deng J, Lei XG. Avian selenogenome: response to dietary Se and vitamin E deficiency and supplementation. Poult Sci 2019; 98:4247-4254. [DOI: 10.3382/ps/pey408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
37
|
Sung CYW, Seleme MC, Payne S, Jonjic S, Hirose K, Britt W. Virus-induced cochlear inflammation in newborn mice alters auditory function. JCI Insight 2019; 4:128878. [PMID: 31484824 DOI: 10.1172/jci.insight.128878] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Although human cytomegalovirus (HCMV) is a known cause of sensorineural hearing loss in infants with congenital HCMV (cCMV) infections, mechanisms that contribute to sensorineural hearing loss (SNHL) in infants with cCMV infection are not well defined. Using a murine model of CMV infection during auditory development, we have shown that peripheral infection of newborn mice with murine CMV (MCMV) results in focal infection of the cochlea and virus-induced cochlear inflammation. Approximately 50%-60% of infected mice exhibited increased auditory brainstem response (ABR) thresholds across a range of sound frequencies. Histological analyses of the cochlea in MCMV-infected mice with elevated ABR thresholds revealed preservation of hair cell (HC) number and morphology in the organ of Corti. In contrast, the number of spiral ganglion neurons (SGN), synapses, and neurites connecting the cochlear HC and SGN nerve terminals were decreased. Decreasing cochlear inflammation by corticosteroid treatment of MCMV-infected mice resulted in preservation of SGN and improved auditory function. These findings show that virus-induced cochlear inflammation during early auditory development, rather than direct virus-mediated damage, could contribute to histopathology in the cochlea and altered auditory function without significant loss of HCs in the sensory epithelium.
Collapse
Affiliation(s)
| | - Maria C Seleme
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Shelby Payne
- Department of Otolaryngology, Washington University, St. Louis, Missouri, USA
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Keiko Hirose
- Department of Otolaryngology, Washington University, St. Louis, Missouri, USA
| | - William Britt
- Department of Microbiology and.,Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, USA.,Department of Neurobiology, University of Alabama School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
38
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
39
|
Carmody C, Ogawa-Wong AN, Martin C, Luongo C, Zuidwijk M, Sager B, Petersen T, Roginski Guetter A, Janssen R, Wu EY, Bogaards S, Neumann NM, Hau K, Marsili A, Boelen A, Silva JE, Dentice M, Salvatore D, Wagers AJ, Larsen PR, Simonides WS, Zavacki AM. A Global Loss of Dio2 Leads to Unexpected Changes in Function and Fiber Types of Slow Skeletal Muscle in Male Mice. Endocrinology 2019; 160:1205-1222. [PMID: 30951174 PMCID: PMC6482039 DOI: 10.1210/en.2019-00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
Abstract
The type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue. Immunostaining of D2KO soleus showed that these properties were associated with changes in muscle fiber type composition, including a marked increase in the number of fast, glycolytic type IIB fibers. D2KO soleus muscle fibers had a larger cross-sectional area, and this correlated with increased myonuclear accretion in myotubes formed from D2KO skeletal muscle precursor cells differentiated in vitro. Consistent with our functional findings, D2KO soleus gene expression was markedly different from that in hypothyroid wild-type (WT) mice. Comparison of gene expression between euthyroid WT and D2KO mice indicated that PGC-1α, a T3-dependent regulator of slow muscle fiber type, was decreased by ∼50% in D2KO soleus. Disruption of Dio2 in the C2C12 myoblast cell line led to a significant decrease in PGC-1α expression and a faster muscle phenotype upon differentiation. These results indicate that D2 loss leads to significant changes in soleus contractile function and fiber type composition that are inconsistent with local hypothyroidism and suggest that reduced levels of PCG-1α may contribute to the observed phenotypical changes.
Collapse
Affiliation(s)
| | | | | | - Cristina Luongo
- Brigham and Women’s Hospital, Boston, Massachusetts
- University of Naples “Federico II,” Napoli, Italy
| | - Marian Zuidwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Rob Janssen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Sylvia Bogaards
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Kaman Hau
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Anita Boelen
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J Enrique Silva
- Baystate Medical Center, Springfield, Massachusetts
- Tufts University School of Medicine, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
40
|
Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc Natl Acad Sci U S A 2019; 116:3614-3623. [PMID: 30755533 DOI: 10.1073/pnas.1803794116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite therapeutic advances, heart failure is the major cause of morbidity and mortality worldwide, but why cardiac regenerative capacity is lost in adult humans remains an enigma. Cardiac regenerative capacity widely varies across vertebrates. Zebrafish and newt hearts regenerate throughout life. In mice, this ability is lost in the first postnatal week, a period physiologically similar to thyroid hormone (TH)-regulated metamorphosis in anuran amphibians. We thus assessed heart regeneration in Xenopus laevis before, during, and after TH-dependent metamorphosis. We found that tadpoles display efficient cardiac regeneration, but this capacity is abrogated during the metamorphic larval-to-adult switch. Therefore, we examined the consequence of TH excess and deprivation on the efficiently regenerating tadpole heart. We found that either acute TH treatment or blocking TH production before resection significantly but differentially altered gene expression and kinetics of extracellular matrix components deposition, and negatively impacted myocardial wall closure, both resulting in an impeded regenerative process. However, neither treatment significantly influenced DNA synthesis or mitosis in cardiac tissue after amputation. Overall, our data highlight an unexplored role of TH availability in modulating the cardiac regenerative outcome, and present X. laevis as an alternative model to decipher the developmental switches underlying stage-dependent constraint on cardiac regeneration.
Collapse
|
41
|
Rurale G, Cicco ED, Dentice M, Salvatore D, Persani L, Marelli F, Luongo C. Thyroid Hormone Hyposensitivity: From Genotype to Phenotype and Back. Front Endocrinol (Lausanne) 2019; 10:912. [PMID: 32038483 PMCID: PMC6992580 DOI: 10.3389/fendo.2019.00912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
Thyroid hormone action defects (THADs) have been classically considered conditions of impaired sensitivity to thyroid hormone (TH). They were originally referring to alterations in TH receptor genes (THRA and THRB), but the discovery of genetic mutations and polymorphisms causing alterations in cell membrane transport (e.g., MCT8) and metabolism (e.g., SECISBP2, DIO2) led recently to a new and broader definition of TH hyposensitivity (THH), including not only THADs but all defects that could interfere with the activity of TH. Due to the different functions and tissue-specific expression of these genes, affected patients exhibit highly variable phenotypes. Some of them are characterized by a tissue hypothyroidism or well-recognizable alterations in the thyroid function tests (TFTs), whereas others display a combination of hypo- and hyperthyroid manifestations with normal or only subtle biochemical defects. The huge effort of basic research has greatly aided the comprehension of the molecular mechanisms underlying THADs, dissecting the morphological and functional alterations on target tissues, and defining the related-changes in the biochemical profile. In this review, we describe different pictures in which a specific alteration in the TFTs (TSH, T4, and T3 levels) is caused by defects in a specific gene. Altogether these findings can help clinicians to early recognize and diagnose THH and to perform a more precise genetic screening and therapeutic intervention. On the other hand, the identification of new genetic variants will allow the generation of cell-based and animal models to give novel insight into thyroid physiology and establish new therapeutic interventions.
Collapse
Affiliation(s)
- Giuditta Rurale
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine & Surgery, University of Naples Federico II, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine & Surgery, University of Naples Federico II, Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Persani
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Marelli
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Federica Marelli
| | - Cristina Luongo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
42
|
Fradejas-Villar N. Consequences of mutations and inborn errors of selenoprotein biosynthesis and functions. Free Radic Biol Med 2018; 127:206-214. [PMID: 29709707 DOI: 10.1016/j.freeradbiomed.2018.04.572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/23/2022]
Abstract
In its 200 years of history, selenium has been defined first as a toxic element and finally as a micronutrient. Selenium is incorporated into selenoproteins as selenocysteine (Sec), the 21st proteinogenic amino acid codified by a stop codon. Specific biosynthetic factors recode UGA stop codon as Sec. The significance of selenoproteins in human health is manifested through the identification of patients with inborn errors in selenoproteins or their biosynthetic factors. Selenoprotein N-related myopathy was the first disease identified due to mutations in a selenoprotein gene. Mutations in GPX4 were linked to Sedaghatian disease, characterized by bone and brain anomalies and cardiorespiratory failure. Mutations in TXNRD2 produced familial glucocorticoid deficiency (FGD) and dilated cardiomyopathy (DCM). Genetic generalized epilepsy was associated with mutations in TXNRD1 gene. Mutations in biosynthetic factors as SEPSECS, SECISBP2 and even tRNA[Ser]Sec, have been also related to diseases. Thus, SEPSECS mutations produce a neurodegenerative disease called now pontocerebellar hypoplasia type 2D (PCH2D). SECISBP2 syndrome, caused by SECISBP2 mutations, is a multifactorial disease affecting mainly thyroid metabolism, bone, inner ear and muscle. Similar symptoms were reproduced in a patient carrying a mutation in tRNA[Ser]Sec gene, TRU-TCA1-1. This review describes human genetic disorders caused by selenoprotein deficiency. Human phenotypes will be compared with mouse models to explain the pathologic mechanisms of lack of selenoproteins.
Collapse
Affiliation(s)
- Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Rheinischen Friedrich-Wilhelms-Universität, Nussallee 11, 53115 Bonn Germany.
| |
Collapse
|
43
|
Bradley D, Liu J, Blaszczak A, Wright V, Jalilvand A, Needleman B, Noria S, Renton D, Hsueh W. Adipocyte DIO2 Expression Increases in Human Obesity but Is Not Related to Systemic Insulin Sensitivity. J Diabetes Res 2018; 2018:2464652. [PMID: 30116736 PMCID: PMC6079440 DOI: 10.1155/2018/2464652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022] Open
Abstract
Deiodinase type II (D2), encoded by DIO2, catalyzes the conversion of T4 to bioactive T3. T3 not only stimulates adaptive thermogenesis but also affects adipose tissue (AT) lipid accumulation, mitochondrial function, inflammation, and potentially systemic metabolism. Although better defined in brown AT, the precise role of DIO2 expression in white AT remains largely unknown, with data derived only from whole fat. Therefore, the purpose of this study was to determine whether subcutaneous (SAT) and visceral (VAT) adipocyte-specific gene expression of DIO2 differs between obese and lean patients and whether these differences relate to alterations in mitochondrial function, fatty acid flux, inflammatory cytokines/adipokines, and ultimately insulin sensitivity. Accordingly, adipocytes of 73 obese and 21 lean subjects were isolated and subjected to gene expression analyses. Our results demonstrate that obese compared to lean human individuals have increased adipocyte-specific DIO2 expression in both SAT and VAT. Although higher DIO2 was strongly related to reduced fatty acid synthesis/oxidation and mitochondrial function, we found no relationship to proinflammatory cytokines or insulin resistance and no difference based on diabetic status. Our results suggest that adipocyte-derived DIO2 may play a role in weight maintenance but is likely not a major contributor to obesity-related insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Joey Liu
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Alecia Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Valerie Wright
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Anahita Jalilvand
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Bradley Needleman
- Center for Minimally Invasive Surgery, Department of General Surgery, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sabrena Noria
- Center for Minimally Invasive Surgery, Department of General Surgery, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - David Renton
- Center for Minimally Invasive Surgery, Department of General Surgery, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Willa Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| |
Collapse
|
44
|
Yang F, Ma H, Butler MR, Ding XQ. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J 2018; 32:fj201800484RR. [PMID: 29874126 PMCID: PMC6181634 DOI: 10.1096/fj.201800484rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormone (TH) signaling has been shown to regulate cone photoreceptor viability. Suppression of TH signaling with antithyroid drug treatment or by targeting iodothyronine deiodinases and TH receptors preserves cones in mouse models of retinal degeneration, including the Leber congenital amaurosis Rpe65-deficient mice. This work investigates the cellular mechanisms underlying how suppressing TH signaling preserves cones in Rpe65-deficient mice, using mice deficient in type 2 iodothyronine deiodinase (Dio2), the enzyme that converts the prohormone thyroxine to the active hormone triiodothyronine (T3). Deficiency of Dio2 improved cone survival and function in Rpe65-/- and Rpe65-deficiency on a cone dominant background ( Rpe65-/-/ Nrl-/-) mice. Analysis of cell death pathways revealed that receptor-interacting serine/threonine-protein kinase (RIPK)/necroptosis activity was increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency reversed the alterations. Cell-stress analysis showed that the cellular oxidative stress responses were increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency abolished the elevations. Similarly, antithyroid drug treatment resulted in reduced RIPK/necroptosis activity and oxidative stress responses in Rpe65-/-/ Nrl-/- retinas. Moreover, treatment with T3 significantly induced RIPK/necroptosis activity and oxidative stress responses in the retina. This work shows that suppression of TH signaling reduces cellular RIPK/necroptosis activity and oxidative stress responses in degenerating retinas, suggesting a mechanism underlying the observed cone preservation.-Yang, F., Ma, H., Butler, M. R., Ding, X.-Q. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R. Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
45
|
Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep 2018. [PMID: 29535325 PMCID: PMC5849681 DOI: 10.1038/s41598-018-22553-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transmembrane proteins that mediate the cellular uptake or efflux of thyroid hormone potentially provide a key level of control over neurodevelopment. In humans, defects in one such protein, solute carrier SLC16A2 (MCT8) are associated with psychomotor retardation. Other proteins that transport the active form of thyroid hormone triiodothyronine (T3) or its precursor thyroxine (T4) have been identified in vitro but the wider significance of such transporters in vivo is unclear. The development of the auditory system requires thyroid hormone and the cochlea is a primary target tissue. We have proposed that the compartmental anatomy of the cochlea would necessitate transport mechanisms to convey blood-borne hormone to target tissues. We report hearing loss in mice with mutations in Slc16a2 and a related gene Slc16a10 (Mct10, Tat1). Deficiency of both transporters results in retarded development of the sensory epithelium similar to impairment caused by hypothyroidism, compounded with a progressive degeneration of cochlear hair cells and loss of endocochlear potential. Administration of T3 largely restores the development of the sensory epithelium and limited auditory function, indicating the T3-sensitivity of defects in the sensory epithelium. The results indicate a necessity for thyroid hormone transporters in cochlear development and function.
Collapse
|
46
|
|
47
|
Abstract
Thyroid hormone signaling is customized in a time and cell-specific manner by the deiodinases, homodimeric thioredoxin fold containing selenoproteins. This ensures adequate T3 action in developing tissues, healthy adults and many disease states. D2 activates thyroid hormone by converting the pro-hormone T4 to T3, the biologically active thyroid hormone. D2 expression is tightly regulated by transcriptional mechanisms triggered by endogenous as well as environmental cues. There is also an on/off switch mechanism that controls D2 activity that is triggered by catalysis and functions via D2 ubiquitination/deubiquitination. D3 terminates thyroid hormone action by inactivation of both T4 and T3 molecules. Deiodinases play a role in thyroid hormone homeostasis, development, growth and metabolic control by affecting the intracellular levels of T3 and thus gene expression on a cell-specific basis. In many cases, tight control of these pathways by T3 is achieved with coordinated reciprocal changes in D2-mediated thyroid hormone activation D3-mediated thyroid hormone inactivation.
Collapse
|
48
|
Hernandez A. Thyroid Hormone Role and Economy in the Developing Testis. VITAMINS AND HORMONES 2018; 106:473-500. [DOI: 10.1016/bs.vh.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Wirth EK, Meyer F. Neuronal effects of thyroid hormone metabolites. Mol Cell Endocrinol 2017; 458:136-142. [PMID: 28088465 DOI: 10.1016/j.mce.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 12/19/2022]
Abstract
Thyroid hormones and their metabolites are active regulators of gene expression, mitochondrial function and various other physiological actions in different organs and tissues. These actions are mediated by a spatio-temporal regulation of thyroid hormones and metabolites within a target cell. This spatio-temporal resolution as well as classical and non-classical actions of thyroid hormones and metabolites is accomplished and regulated on multiple levels as uptake, local activation and signaling of thyroid hormones. In this review, we will give an overview of the systems involved in regulating the presence and activity of thyroid hormones and their metabolites within the brain, specifically in neurons. While a wealth of data on thyroxin (T4) and 3,5,3'-triiodothyronine (T3) in the brain has been generated, research into the presence of action of other thyroid hormone metabolites is still sparse and requires further investigations.
Collapse
Affiliation(s)
- Eva K Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Franziska Meyer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
50
|
Bárez-López S, Montero-Pedrazuela A, Bosch-García D, Venero C, Guadaño-Ferraz A. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase. Psychoneuroendocrinology 2017; 84:51-60. [PMID: 28654773 DOI: 10.1016/j.psyneuen.2017.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols'', Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier, 4, 28029, Madrid, Spain; Department of Endocrine, U-708, Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ana Montero-Pedrazuela
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols'', Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier, 4, 28029, Madrid, Spain.
| | - Daniel Bosch-García
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols'', Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier, 4, 28029, Madrid, Spain.
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Juan del Rosal 10, 28040, Madrid, Spain.
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols'', Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier, 4, 28029, Madrid, Spain; Department of Endocrine, U-708, Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|