1
|
Cirigliano SM, Fine HA. Bridging the gap between tumor and disease: Innovating cancer and glioma models. J Exp Med 2025; 222:e20220808. [PMID: 39626263 PMCID: PMC11614461 DOI: 10.1084/jem.20220808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Recent advances in cancer biology and therapeutics have underscored the importance of preclinical models in understanding and treating cancer. Nevertheless, current models often fail to capture the complexity and patient-specific nature of human tumors, particularly gliomas. This review examines the strengths and weaknesses of such models, highlighting the need for a new generation of models. Emphasizing the critical role of the tumor microenvironment, tumor, and patient heterogeneity, we propose integrating our advanced understanding of glioma biology with innovative bioengineering and AI technologies to create more clinically relevant, patient-specific models. These innovations are essential for improving therapeutic development and patient outcomes.
Collapse
Affiliation(s)
| | - Howard A. Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
3
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Prado MB, Coelho BP, Iglesia RP, Alves RN, Boccacino JM, Fernandes CFL, Melo-Escobar MI, Ayyadhury S, Cruz MC, Santos TG, Beraldo FH, Fan J, Ferreira FM, Nakaya HI, Prado MAM, Prado VF, Duennwald ML, Lopes MH. Prion protein regulates invasiveness in glioblastoma stem cells. BMC Cancer 2024; 24:1539. [PMID: 39695426 DOI: 10.1186/s12885-024-13285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive brain tumor driven by glioblastoma stem cells (GSCs), which represent an appealing target for therapeutic interventions. The cellular prion protein (PrPC), a scaffold protein involved in diverse cellular processes, interacts with various membrane and extracellular matrix molecules, influencing tumor biology. Herein, we investigate the impact of PrPC expression on GBM. METHODS To address this goal, we employed CRISPR-Cas9 technology to generate PrPC knockout (KO) glioblastoma cell lines, enabling detailed loss-of-function studies. Bulk RNA sequencing followed by differentially expressed gene and pathway enrichment analyses between U87 or U251 PrPC-wild-type (WT) cells and PrPC-knockout (KO) cells were used to identify pathways regulated by PrPC. Immunofluorescence assays were used to evaluate cellular morphology and protein distribution. For assessment of protein levels, Western blot and flow cytometry assays were employed. Transwell and growth curve assays were used to determine the impact of loss-of-PrPC in GBM invasiveness and proliferation, respectively. Single-cell RNA sequencing analysis of data from patient tumors from The Cancer Genome Atlas (TCGA) and the Broad Institute of Single-Cell Data Portal were used to evaluate the correspondence between our in vitro results and patient samples. RESULTS Transcriptome analysis of PrPC-KO GBM cell lines revealed altered expression of genes associated with crucial tumor progression pathways, including migration, proliferation, and stemness. These findings were corroborated by assays that revealed impaired invasion, migration, proliferation, and self-renewal in PrPC-KO GBM cells, highlighting its critical role in sustaining tumor growth. Notably, loss-of-PrPC disrupted the expression and localization of key stemness markers, particularly CD44. Additionally, the modulation of PrPC levels through CD44 overexpression further emphasizes their regulatory role in these processes. CONCLUSIONS These findings establish PrPC as a modulator of essential molecules on the cell surface of GSCs, highlighting its potential as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Mariana B Prado
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bárbara P Coelho
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rebeca P Iglesia
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rodrigo N Alves
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Jacqueline M Boccacino
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Camila F L Fernandes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Isabel Melo-Escobar
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mario C Cruz
- Core Facility to Support Research - Institute of Biomedical Sciences (CEFAP), Sao Paulo, Brazil
| | - Tiago G Santos
- Laboratory of Cell and Molecular Biology, International Research Center, A.C. Camargo Cancer Center, Sao Paulo, SP, Brazil
| | - Flávio H Beraldo
- Robarts Research Institute, Departments of Physiology and Pharmacology, Anatomy and Cell Biology, and Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine & Dentistry, Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Jue Fan
- Robarts Research Institute, Departments of Physiology and Pharmacology, Anatomy and Cell Biology, and Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Frederico M Ferreira
- LIM50, Division of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marco A M Prado
- Robarts Research Institute, Departments of Physiology and Pharmacology, Anatomy and Cell Biology, and Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine & Dentistry, Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Departments of Physiology and Pharmacology, Anatomy and Cell Biology, and Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine & Dentistry, Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Martin L Duennwald
- Schulich School of Medicine & Dentistry, Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Marilene H Lopes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
5
|
Camerino I, Franco P, Bajetto A, Thellung S, Florio T, Stoppelli MP, Colucci-D’Amato L. Ruta graveolens, but Not Rutin, Inhibits Survival, Migration, Invasion, and Vasculogenic Mimicry of Glioblastoma Cells. Int J Mol Sci 2024; 25:11789. [PMID: 39519339 PMCID: PMC11546663 DOI: 10.3390/ijms252111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor, characterized by poor outcome and limited therapeutic options. During tumor progression, GBM may undergo the process of vasculogenic mimicry (VM), consisting of the formation of vascular-like structures which further promote tumor aggressiveness and malignancy. The resulting resistance to anti-angiogenetic therapies urges the identification of new compounds targeting VM. Extracts of natural plants may represent potential therapeutic tools. Among these, components of Ruta graveolens water extract (RGWE) display a wide range of biological activities. To test the effect of RGWE on human GBM and rat glioma cell line VM, tube formation on a gelled matrix was monitored. Quantitative assessment of VM formation shows the clear-cut inhibitory activity of RGWE. Unlike rutin, one of the most abundant extract components, the whole RGWE strongly reduced the migration and invasion of GBM tumor cells. Moreover, RGWE induced cell death of GBM patient-derived cancer stem cells and impaired VM at sub-lethal doses. Overall, our data reveal a marked RGWE-dependent inhibition of GBM cell survival, migration, invasion, and VM formation. Thus, the clear-cut ability of RGWE to counteract GBM malignancy deserves attention, holding the promise to bring natural products to clinical use, thus uncovering new therapeutic opportunities.
Collapse
Affiliation(s)
- Iolanda Camerino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Paola Franco
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 16149 Naples, Italy; (P.F.); (M.P.S.)
| | - Adriana Bajetto
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (A.B.); (S.T.)
| | - Stefano Thellung
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (A.B.); (S.T.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (A.B.); (S.T.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 16149 Naples, Italy; (P.F.); (M.P.S.)
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- InterUniversity Center for Research in Neurosciences (CIRN), 80131 Naples, Italy
| |
Collapse
|
6
|
Panda SK, Robinson N, Desiderio V. Decoding secret role of mesenchymal stem cells in regulating cancer stem cells and drug resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189205. [PMID: 39481663 DOI: 10.1016/j.bbcan.2024.189205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Drug resistance caused by the efflux of chemotherapeutic drugs is one of the most challenging obstacles to successful cancer therapy. Several efflux transporters have been identified since the discovery of the P-gp/ABCB1 transporter in 1976. Over the last four decades, researchers have focused on developing efflux transporter inhibitors to overcome drug resistance. However, even with the third-generation inhibitors available, we are still far from effectively inhibiting the efflux transporters. Additionally, Cancer stem cells (CSCs) pose another significant challenge, contributing to cancer recurrence even after successful treatment. The ability of CSCs to enter dormancy and evade detection makes them almost invulnerable to chemotherapeutic drug treatment. In this review, we discuss how Mesenchymal stem cells (MSCs), one of the key components of the Tumor Microenvironment (TME), regulate both the CSCs and efflux transporters. We propose a new approach focusing on MSCs, which can be crucial to successfully address CSCs and efflux transporters.
Collapse
Affiliation(s)
- Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Nirmal Robinson
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
7
|
Trosko JE. From Radiation Genetics, Mutagenesis, Gap Junctions, Epigenetics, Stem Cells and an Integration of Radiation and Chemical Carcinogenesis. Radiat Res 2024; 202:408-419. [PMID: 38843877 DOI: 10.1667/rade-24-00009.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/09/2024] [Indexed: 08/07/2024]
Affiliation(s)
- James E Trosko
- Department of Pediatrics and Human Development, Institute of Global Health, Institute of Integrative Toxicology, Michigan State University Cancer Center, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
8
|
Pan Y, Yang X, Chen M, Shi K, Lyu Y, Meeson AP, Lash GE. Role of Cancer Side Population Stem Cells in Ovarian Cancer Angiogenesis. Med Princ Pract 2024; 33:403-413. [PMID: 39068919 PMCID: PMC11460956 DOI: 10.1159/000539642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Ovarian cancer is one of the most common gynecologic malignancies. Recurrence and metastasis often occur after treatment, and it has the highest mortality rate of all gynecological tumors. Cancer stem cells (CSCs) are a small population of cells with the ability of self-renewal, multidirectional differentiation, and infinite proliferation. They have been shown to play an important role in tumor growth, metastasis, drug resistance, and angiogenesis. Ovarian cancer side population (SP) cells, a type of CSC, have been shown to play roles in tumor formation, colony formation, xenograft tumor formation, ascites formation, and tumor metastasis. The rapid progression of tumor angiogenesis is necessary for tumor growth; however, many of the mechanisms driving this process are unclear as is the contribution of CSCs. The aim of this review was to document the current state of knowledge of the molecular mechanism of ovarian cancer stem cells (OCSCs) in regulating tumor angiogenesis.
Collapse
Affiliation(s)
- Yue Pan
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - XueFen Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaojuan Chen
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kun Shi
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | | | - Gendie E. Lash
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Third Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Feng S, Pan Y, Lu P, Li N, Zhu W, Hao Z. From bench to bedside: the application of cannabidiol in glioma. J Transl Med 2024; 22:648. [PMID: 38987805 PMCID: PMC11238413 DOI: 10.1186/s12967-024-05477-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Glioma is the most common malignant tumor in central nervous system, with significant health burdens to patients. Due to the intrinsic characteristics of glioma and the lack of breakthroughs in treatment modalities, the prognosis for most patients remains poor. This results in a heavy psychological and financial load worldwide. In recent years, cannabidiol (CBD) has garnered widespread attention and research due to its anti-tumoral, anti-inflammatory, and neuroprotective properties. This review comprehensively summarizes the preclinical and clinical research on the use of CBD in glioma therapy, as well as the current status of nanomedicine formulations of CBD, and discusses the potential and challenges of CBD in glioma therapy in the future.
Collapse
Affiliation(s)
- Shiying Feng
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China
- Central Clinical Medical School, Baotou Medical College, Baotou, 014040, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Pu Lu
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China
| | - Na Li
- Department of Gynecology, Baotou City Central Hospital, Baotou, 014040, China.
| | - Wei Zhu
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China.
| | - Zhiqiang Hao
- Department of Oncology, Baotou City Central Hospital, Baotou, 014040, China
| |
Collapse
|
10
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
11
|
Pournajaf S, Afsordeh N, Pourgholami MH. In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs. Rev Neurosci 2024; 35:183-195. [PMID: 37651618 DOI: 10.1515/revneuro-2023-0067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Glioblastoma multiform (GBM) is the most common primary brain tumor with a poor prognosis and few therapeutic choices. In vivo, tumor models are useful for enhancing knowledge of underlying GBM pathology and developing more effective therapies/agents at the preclinical level, as they recapitulate human brain tumors. The C6 glioma cell line has been one of the most widely used cell lines in neuro-oncology research as they produce tumors that share the most similarities with human GBM regarding genetic, invasion, and expansion profiles and characteristics. This review provides an overview of the distinctive features and the different animal models produced by the C6 cell line. We also highlight specific applications of various C6 in vivo models according to the purpose of the study and offer some technical notes for more convenient/repeatable modeling. This work also includes novel findings discovered in our laboratory, which would further enhance the feasibility of the model in preclinical GBM investigations.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | | |
Collapse
|
12
|
Yan Y, Cheng YY, Li YR, Jiao XW, Liu YM, Cai HY, Ding YX. Inhibitor of Wnt receptor 1 suppresses the effects of Wnt1, Wnt3a and β‑catenin on the proliferation and migration of C6 GSCs induced by low‑dose radiation. Oncol Rep 2024; 51:22. [PMID: 38099414 PMCID: PMC10777445 DOI: 10.3892/or.2023.8681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The radioresistance of glioma is an important cause of treatment failure and tumor aggressiveness. In the present study, under performed with linear accelerator, the effects of 0.3 and 3.0 Gy low‑dose radiation (LDR) on the proliferation and migration of C6 glioma stem cells in vitro were examined by flow cytometric analysis, immunocytochemistry and western blot analysis. It was found that low‑dose ionizing radiation (0.3 Gy) stimulated the proliferation and migration of these cells, while 3.0 Gy ionizing radiation inhibited the proliferation of C6 glioma stem cells, which was mediated through enhanced Wnt/β‑catenin signaling, which is associated with glioma tumor aggressiveness. LDR treatment increased the expression of the DNA damage marker γ‑H2AX but promoted cell survival with a significant reduction in apoptotic and necrotic cells. When LDR cells were also treated with an inhibitor of Wnt receptor 1 (IWR1), cell proliferation and migration were significantly reduced. IWR1 treatment significantly inhibited Wnt1, Wnt3a and β‑catenin protein expression. Collectively, the current results demonstrated that IWR1 treatment effectively radio‑sensitizes glioma stem cells and helps to overcome the survival advantages promoted by LDR, which has significant implications for targeted treatment in radioresistant gliomas.
Collapse
Affiliation(s)
- Yu Yan
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Ying-Ying Cheng
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yan-Ru Li
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Xu-Wen Jiao
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Yin-Ming Liu
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Hai-Yan Cai
- Department of Neurology, The People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Yin-Xiu Ding
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| |
Collapse
|
13
|
Gil-Gas C, Sánchez-Díez M, Honrubia-Gómez P, Sánchez-Sánchez JL, Alvarez-Simón CB, Sabater S, Sánchez-Sánchez F, Ramírez-Castillejo C. Self-Renewal Inhibition in Breast Cancer Stem Cells: Moonlight Role of PEDF in Breast Cancer. Cancers (Basel) 2023; 15:5422. [PMID: 38001682 PMCID: PMC10670784 DOI: 10.3390/cancers15225422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the leading cause of death among females in developed countries. Although the implementation of screening tests and the development of new therapies have increased the probability of remission, relapse rates remain high. Numerous studies have indicated the connection between cancer-initiating cells and slow cellular cycle cells, identified by their capacity to retain long labeling (LT+). In this study, we perform new assays showing how stem cell self-renewal modulating proteins, such as PEDF, can modify the properties, percentage of biomarker-expressing cells, and carcinogenicity of cancer stem cells. The PEDF signaling pathway could be a useful tool for controlling cancer stem cells' self-renewal and therefore control patient relapse, as PEDF enhances resistance in breast cancer patient cells' in vitro culture. We have designed a peptide consisting of the C-terminal part of this protein, which acts by blocking endogenous PEDF in cell culture assays. We demonstrate that it is possible to interfere with the self-renewal capacity of cancer stem cells, induce anoikis in vivo, and reduce resistance against docetaxel treatment in cancer patient cells in in vitro culture. We have also demonstrated that this modified PEDF protein produces a significant decrease in the percentage of expressed cancer stem cell markers.
Collapse
Affiliation(s)
- Carmen Gil-Gas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Marta Sánchez-Díez
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Paloma Honrubia-Gómez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Jose Luis Sánchez-Sánchez
- Oncology Unit, Hospital General de Almansa, 02640 Albacete, Spain;
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Carmen B. Alvarez-Simón
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Sebastia Sabater
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Francisco Sánchez-Sánchez
- Laboratory of Medical Genetic, Faculty of Medicine, Instituto de Investigaciones en Discapacidades Neurológicas (IDINE), University of Castilla La-Mancha, 02006 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Oncology Group, Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| |
Collapse
|
14
|
Ilkhanizadeh S, Gracias A, Åslund AK, Bäck M, Simon R, Kavanagh E, Migliori B, Neofytou C, Nelander S, Westermark B, Uhrbom L, Forsberg-Nilsson K, Konradsson P, Teixeira AI, Uhlén P, Joseph B, Hermanson O, Nilsson KPR. Live Detection of Neural Progenitors and Glioblastoma Cells by an Oligothiophene Derivative. ACS APPLIED BIO MATERIALS 2023; 6:3790-3797. [PMID: 37647213 PMCID: PMC10521023 DOI: 10.1021/acsabm.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
There is an urgent need for simple and non-invasive identification of live neural stem/progenitor cells (NSPCs) in the developing and adult brain as well as in disease, such as in brain tumors, due to the potential clinical importance in prognosis, diagnosis, and treatment of diseases of the nervous system. Here, we report a luminescent conjugated oligothiophene (LCO), named p-HTMI, for non-invasive and non-amplified real-time detection of live human patient-derived glioblastoma (GBM) stem cell-like cells and NSPCs. While p-HTMI stained only a small fraction of other cell types investigated, the mere addition of p-HTMI to the cell culture resulted in efficient detection of NSPCs or GBM cells from rodents and humans within minutes. p-HTMI is functionalized with a methylated imidazole moiety resembling the side chain of histidine/histamine, and non-methylated analogues were not functional. Cell sorting experiments of human GBM cells demonstrated that p-HTMI labeled the same cell population as CD271, a proposed marker for stem cell-like cells and rapidly migrating cells in glioblastoma. Our results suggest that the LCO p-HTMI is a versatile tool for immediate and selective detection of neural and glioma stem and progenitor cells.
Collapse
Affiliation(s)
| | - Aileen Gracias
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Andreas K.O. Åslund
- IFM,
Department of Chemistry, Linköping
University, Linköping 581 83, Sweden
| | - Marcus Bäck
- IFM,
Department of Chemistry, Linköping
University, Linköping 581 83, Sweden
| | - Rozalyn Simon
- IFM,
Department of Chemistry, Linköping
University, Linköping 581 83, Sweden
| | - Edel Kavanagh
- Institute
of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Bianca Migliori
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Christina Neofytou
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Sven Nelander
- Department
of Immunology, Genetics and Pathology, and Science for Life Laboratory,
Rudbeck Laboratory, Uppsala University, Uppsala 751 85, Sweden
| | - Bengt Westermark
- Department
of Immunology, Genetics and Pathology, and Science for Life Laboratory,
Rudbeck Laboratory, Uppsala University, Uppsala 751 85, Sweden
| | - Lene Uhrbom
- Department
of Immunology, Genetics and Pathology, and Science for Life Laboratory,
Rudbeck Laboratory, Uppsala University, Uppsala 751 85, Sweden
| | - Karin Forsberg-Nilsson
- Department
of Immunology, Genetics and Pathology, and Science for Life Laboratory,
Rudbeck Laboratory, Uppsala University, Uppsala 751 85, Sweden
| | - Peter Konradsson
- IFM,
Department of Chemistry, Linköping
University, Linköping 581 83, Sweden
| | - Ana I. Teixeira
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Per Uhlén
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Bertrand Joseph
- Institute
of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Ola Hermanson
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - K. Peter R. Nilsson
- IFM,
Department of Chemistry, Linköping
University, Linköping 581 83, Sweden
| |
Collapse
|
15
|
Qiu J, Li Z, An K, Niu L, Huang H, Xu F. Thermo-Chemical Resistance to Combination Therapy of Glioma Depends on Cellular Energy Level. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39053-39063. [PMID: 37552210 DOI: 10.1021/acsami.3c05683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Thermal therapy has been widely used in clinical tumor treatment and more recently in combination with chemotherapy, where the key challenge is the treatment resistance. The mechanism at the cellular level underlying the resistance to thermo-chemical combination therapy remains elusive. In this study, we constructed 3D culture models for glioma cells (i.e., 3D glioma spheres) as the model system to recapitulate the native tumor microenvironment and systematically investigated the thermal response of 3D glioma spheres at different hyperthermic temperatures. We found that 3D glioma spheres show high viability under hyperthermia, especially under high hyperthermic temperatures (42 °C). Further study revealed that the main mechanism lies in the high energy level of cells in 3D glioma spheres under hyperthermia, which enables the cells to respond promptly to thermal stimulation and maintain cellular viability by upregulating the chaperon protein Hsp70 and the anti-apoptotic pathway AKT. Besides, we also demonstrated that 3D glioma spheres show strong drug resistance to the thermo-chemical combination therapy. This study provides a new perspective on understanding the thermal response of combination therapy for tumor treatment.
Collapse
Affiliation(s)
- Jinbin Qiu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhijie Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Keli An
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lele Niu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Haishui Huang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
16
|
Zhao HC, Chen CZ, Tian YZ, Song HQ, Wang XX, Li YJ, He JF, Zhao HL. CD168+ macrophages promote hepatocellular carcinoma tumor stemness and progression through TOP2A/β-catenin/ YAP1 axis. iScience 2023; 26:106862. [PMID: 37275516 PMCID: PMC10238939 DOI: 10.1016/j.isci.2023.106862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Liver cancer stem-like cells (LCSCs) are the main cause of heterogeneity and poor prognosis in hepatocellular carcinoma (HCC). In this study, we aimed to explore the origin of LCSCs and the role of the TOP2A/β-catenin/YAP1 axis in tumor stemness and progression. Using single-cell RNA-seq analysis, we identified TOP2A+CENPF+ LCSCs, which were mainly regulated by CD168+ M2-like macrophages. Furthermore, spatial location analysis and fluorescent staining confirmed that LCSCs were enriched at tumor margins, constituting the spatial heterogeneity of HCC. Mechanistically, TOP2A competitively binds to β-catenin, leading to disassociation of β-catenin from YAP1, promoting HCC stemness and overgrowth. Our study provides valuable insights into the spatial transcriptome heterogeneity of the HCC microenvironment and the critical role of TOP2A/β-catenin/YAP1 axis in HCC stemness and progression.
Collapse
Affiliation(s)
- Hai-Chao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang-Zhou Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Zhang Tian
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Huang-Qin Song
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Xiao-Xiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Yan-Jun Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Jie-Feng He
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Hao-Liang Zhao
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| |
Collapse
|
17
|
Morelli MB, Nabissi M, Amantini C, Maggi F, Ricci-Vitiani L, Pallini R, Santoni G. TRPML2 Mucolipin Channels Drive the Response of Glioma Stem Cells to Temozolomide and Affect the Overall Survival in Glioblastoma Patients. Int J Mol Sci 2022; 23:ijms232315356. [PMID: 36499683 PMCID: PMC9738251 DOI: 10.3390/ijms232315356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The survival of patients with glioblastoma (GBM) is poor. The main cause is the presence of glioma stem cells (GSCs), exceptionally resistant to temozolomide (TMZ) treatment. This last may be related to the heterogeneous expression of ion channels, among them TRPML2. Its mRNA expression was evaluated in two different neural stem cell (NS/PC) lines and sixteen GBM stem-like cells by qRT-PCR. The response to TMZ was evaluated in undifferentiated or differentiated GSCs, and in TRPML2-induced or silenced GSCs. The relationship between TRPML2 expression and responsiveness to TMZ treatment was evaluated by MTT assay showing that increased TRPML2 mRNA levels are associated with resistance to TMZ. This research was deepened by qRT-PCR and western blot analysis. PI3K/AKT and JAK/STAT pathways as well as ABC and SLC drug transporters were involved. Finally, the relationship between TRPML2 expression and overall survival (OS) and progression-free survival (PFS) in patient-derived GSCs was evaluated by Kaplan-Meier analysis. The expression of TRPML2 mRNA correlates with worse OS and PFS in GBM patients. Thus, the expression of TRPML2 in GSCs influences the responsiveness to TMZ in vitro and affects OS and PFS in GBM patients.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), 00168 Rome, Italy
- Institute of Neurosurgery, School of Medicine, Catholic University, 00168 Rome, Italy
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| |
Collapse
|
18
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
19
|
Li J, Ek F, Olsson R, Belting M, Bengzon J. Glioblastoma CD105 + cells define a SOX2 - cancer stem cell-like subpopulation in the pre-invasive niche. Acta Neuropathol Commun 2022; 10:126. [PMID: 36038950 PMCID: PMC9426031 DOI: 10.1186/s40478-022-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive primary brain tumor in adults. Glioma stem like cells (GSC) represent the highest cellular hierarchy in GBM and have a determining role in tumor growth, recurrence and patient prognosis. However, a better definition of GSC subpopulations, especially at the surgical resection margin, is warranted for improved oncological treatment options. The present study interrogated cells expressing CD105 (CD105+) specifically within the tumor front and the pre-invasive niche as a potential GSC subpopulation. GBM primary cell lines were generated from patients (n = 18) and CD105+ cells were isolated and assessed for stem-like characteristics. In vitro, CD105+ cells proliferated and enriched in serum-containing medium but not in serum-free conditions. CD105+ cells were characterized by Nestin+, Vimentin+ and SOX2-, clearly distinguishing them from SOX2+ GCS. GBM CD105+ cells differentiated into osteocytes and adipocytes but not chondrocytes. Exome sequencing revealed that GBM CD105+ cells matched 83% of somatic mutations in the Cancer cell line encyclopedia, indicating a malignant phenotype and in vivo xenotransplantation assays verified their tumorigenic potential. Cytokine assays showed that immunosuppressive and protumorigenic cytokines such as IL6, IL8, CCL2, CXCL-1 were produced by CD105+ cells. Finally, screening for 88 clinical drugs revealed that GBM CD105+ cells are resistant to most chemotherapeutics except Doxorubicin, Idarubicin, Fludarabine and ABT-751. Our study provides a rationale for targeting tumoral CD105+ cells in order to reshape the tumor microenvironment and block GBM progression.
Collapse
Affiliation(s)
- Jiaxin Li
- Stem Cell Center, Lund University, Lund, Sweden.
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mattias Belting
- Section of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiophysics, Skane University Hospital, Lund, Sweden
- Science for Life Laboratory, Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Bengzon
- Stem Cell Center, Lund University, Lund, Sweden
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurosurgery, Skane University Hospital, Lund, Sweden
| |
Collapse
|
20
|
Haddad G, Kebir A, Raissi N, Bouhali A, Miled SB. Optimal control model of tumor treatment in the context of cancer stem cell. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4627-4642. [PMID: 35430831 DOI: 10.3934/mbe.2022214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We consider cancer cytotoxic drugs as an optimal control problem to stabilize a heterogeneous tumor by attacking not the most abundant cancer cells, but those that are crucial in the tumor ecosystem. We propose a mathematical cancer stem cell model that translates the hierarchy and heterogeneity of cancer cell types by including highly structured tumorigenic cancer stem cells that yield low differentiated cancer cells. With respect to the optimal control problem, under a certain admissibility hypothesis, the optimal controls of our problem are bang-bang controls. These control treatments can retain the entire tumor in the neighborhood of an equilibrium. We simulate the bang-bang control numerically and demonstrate that the optimal drug scheduling should be administered continuously over long periods with short rest periods. Moreover, our simulations indicate that combining multidrug therapies and monotherapies is more efficient for heterogeneous tumors than using each one separately.
Collapse
Affiliation(s)
- Ghassen Haddad
- IPT-BIMSLab (LR16IPT09), Tunis El Manar University, 1002 Tunis, Tunisia
- Sorbonne Université, Laboratoire Jacques-Louis Lions, Paris, France
| | - Amira Kebir
- IPT-BIMSLab (LR16IPT09), Tunis El Manar University, 1002 Tunis, Tunisia
- IPEIT, Tunis University, Tunisia
| | - Nadia Raissi
- Mohammed V University of Rabat - um5a Department of Mathematics, Morocco
| | - Amira Bouhali
- IPT-BIMSLab (LR16IPT09), Tunis El Manar University, 1002 Tunis, Tunisia
| | - Slimane Ben Miled
- IPT-BIMSLab (LR16IPT09), Tunis El Manar University, 1002 Tunis, Tunisia
| |
Collapse
|
21
|
Li P, Qin Z, Zhong Y, Kang H, Zhang Z, Hu Y, Wen L, Wang L. Selective Single-Cell Expansion on a Microfluidic Chip for Studying Heterogeneity of Glioma Stem Cells. Anal Chem 2022; 94:3245-3253. [PMID: 35148070 DOI: 10.1021/acs.analchem.1c04959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Accumulating evidence suggests that a subpopulation of stem-cell-like tumor cells in glioma (GSCs) is the major factor accounting for intratumoral heterogeneity and acquired chemotherapeutic resistance. Therefore, understanding intratumoral heterogeneity of GSCs may help develop more effective treatments against this malignancy. However, the study of GSCs' heterogeneity is highly challenging because tumor stem cells are rare. To overcome the limitation, we employed a microfluidic single-cell culture approach to expand GSCs by taking advantage of the self-renewal property of stem cells. Stemness of the recovered cells was confirmed by immunofluorescence, RT-PCR, RNA-sequencing, and cell function assays. The recovered cells were classified into three groups based on their morphological characteristics, namely, the tight-format (TF), the loose-format (LF), and the limited-size group (LS). The serial passage assay showed that the LS group has a lower sphere-forming rate than the LF and TF group, and the invasion assay showed that the LF and TF cells migrated longer distances in Matrigel. The transcriptomic analysis also revealed differences in gene expression profiling among these GSC subtypes. The abovementioned results suggest that GSCs have transcriptional and functional heterogeneities that correlate with morphological differences. The presented microfluidic single-cell approach links morphology with function and thus can provide an enabling tool for studying tumor heterogeneity.
Collapse
Affiliation(s)
- Peiwen Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zixi Qin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zixuan Zhang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Hu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lintao Wen
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Pavlova GV, Golbin DA, Kubyshkina VE, Galkin MV, Pronin IN, Karandashov IV. [Cell cultures of human CNS tumors as in vitro model for individualized therapeutic approach]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:84-90. [PMID: 36534628 DOI: 10.17116/neiro20228606184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tumor cell lines and cultures are widely used in biomedical research. They are excellent model systems for analysis of oncological mechanisms and understanding the biology of tumor cells. Cell cultures are used to develop and test new anticancer drugs, radiosensitizers and radiotherapy methods. Clinical application of tumor cell cultures is directly related to development of personalized medicine. Using tumor cell culture in a particular patient, physicians can select treatment considering molecular genetic characteristics of patient and tumor. In addition, it is possible to choose the optimal drug or radiotherapy regimen with obvious effectiveness in certain cell culture. This review describes the advantages of such an approach.
Collapse
Affiliation(s)
- G V Pavlova
- Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Burdenko Neurosurgical Center, Moscow, Russia
| | - D A Golbin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - V E Kubyshkina
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - M V Galkin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I V Karandashov
- Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| |
Collapse
|
23
|
Aimaitijiang A, Tabu K, Wang W, Nobuhisa I, Taga T. Glioma cells remotely promote erythropoiesis as a self-expanding strategy of cancer stem cells. Genes Cells 2021; 27:25-42. [PMID: 34837452 DOI: 10.1111/gtc.12908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Cancer stem cells are a promising target for cancer eradication due to their responsibility for therapy-resistance and cancer recurrence. Previously, we have demonstrated that glioma stem cells (GSCs) recruit and induce the differentiation of bone marrow (BM) monocytes into tumor-infiltrating macrophages, which phagocytose hemorrhaged erythrocytes and store GSC-beneficial iron in mouse xenografts, suggesting a self-expanding strategy of GSCs that exploits host hematopoiesis of myeloid cells. However, it remains unclear whether a self-advantageous effect of GSCs also occurs on erythroid cells during glioma development. Here, we found that, in the primary cultures of mouse fetal liver proerythroblasts (proEs), conditioned media prepared from glioma cells including patient-derived glioblastoma (GBM) cells significantly facilitated the differentiation of proEs into erythroblasts. Importantly, in-vivo erythroid analysis in intracranially GSC-transplanted mice showed an enhanced erythropoiesis in the BM. In addition, the sphere forming ability of patient-derived GBM cells was significantly suppressed by hypoxia treatment and iron chelation, suggesting higher demands of GSCs for oxygen and iron, which may be supplied by GSCs- and their progeny-induced erythrocyte production. Our findings provide a new insight into survival and expanding strategies of GSCs that systemically exploit host erythropoiesis.
Collapse
Affiliation(s)
- Alapati Aimaitijiang
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Wenqian Wang
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
24
|
Targeting glioblastoma stem cells: The first step of photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102585. [PMID: 34687963 DOI: 10.1016/j.pdpdt.2021.102585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma is one of the most malignant types of brain cancer. Evidence suggests that within gliomas there is a small subpopulation of cells with the capacity for self-renewal, called glioma stem cells. These cells could be responsible for tumorigenesis, chemo and radioresistance, and finally for the recurrence of the tumor. Fluorescence-guided resection have improved the results of treatment against this disease, prolonging the survival of patients by a few months. Also, clinical trials have reported potential improvements in the therapeutic response after photodynamic therapy. Thus far, there are few published works that show the response of glioblastoma stem-like cells to photodynamic therapy. Here, we present a brief review exclusively commenting on the therapeutic approaches to eliminate glioblastoma stem cells and on the research publications about this topic of glioblastoma stem cells in relation to photodynamic therapy. It is our hope that this review will be useful to provide an overview about what is known to date on the topic and to promote the generation of new ideas for the eradication of glioblastoma stem cells by photodynamic treatment.
Collapse
|
25
|
Manju CA, Jeena K, Ramachandran R, Manohar M, Ambily AM, Sajesh KM, Gowd GS, Menon K, Pavithran K, Pillai A, Nair SV, Koyakutty M. Intracranially injectable multi-siRNA nanomedicine for the inhibition of glioma stem cells. Neurooncol Adv 2021; 3:vdab104. [PMID: 34604750 PMCID: PMC8482790 DOI: 10.1093/noajnl/vdab104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Nanoparticle siRNA-conjugates are promising clinical therapeutics as indicated by recent US-FDA approval. In glioma stem cells (GSC), multiple stemness associated genes were found aberrant. We report intracranially injectable, multi-gene-targeted siRNA nanoparticle gel (NPG) for the combinatorial silencing of 3 aberrant genes, thus inhibiting the tumorogenic potential of GSCs. Methods NPG loaded with siRNAs targeted against FAK, NOTCH-1, and SOX-2 were prepared by the self-assembly of siRNAs with protamine-hyaluronic acid combination. Electron microscopy, DLS, and agarose gel electrophoresis were used for the physicochemical characterization. Cell transfection and gene-silencing efficiency were studied using human mesenchymal stem cells and rat C6 glioma-derived GSCs. Neurosphere inhibition was tested in vitro using GSCs derived from C6 cell line and glioma patient samples. Patient-derived xenograft model and orthotopic rat glioma model were used to test the effect of NPG on in vivo tumorigenicity. Results The siRNA nanoparticles with an average size ~ 250 nm and ~ 95% loading efficiency showed cellular uptake in ~95.5% GSCs. Simultaneous gene silencing of FAK, NOTCH-1, and SOX-2 led to the inhibition of neurosphere formation by GSCs, whereas normal stem cells remained unaffected and retained neuronal differentiation capability. GBM PDX models manifested significant impairment in the tumorigenic potential of NPG treated GSCs. Intracranial injection of NPG inhibited tumor growth in orthotopic rat brain tumor model. Conclusion Intracranially injectable n-siRNA NPG targeted to multiple stem-cell signaling impairs glioma initiation capabilities of GSCs and inhibited tumor growth in vivo.
Collapse
Affiliation(s)
- Cheripelil Abraham Manju
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Kottarapat Jeena
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Ranjith Ramachandran
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Maneesh Manohar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Anna Mathew Ambily
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | | | - Krishnakumar Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Keechilat Pavithran
- Department of Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Ashok Pillai
- Department of Neurosurgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Shantikumar V Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Manzoor Koyakutty
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
26
|
Abou-Mrad Z, Bou Gharios J, Moubarak MM, Chalhoub A, Moussalem C, Bahmad HF, Abou-Kheir W. Central nervous system tumors and three-dimensional cell biology: Current and future perspectives in modeling. World J Stem Cells 2021; 13:1112-1126. [PMID: 34567429 PMCID: PMC8422930 DOI: 10.4252/wjsc.v13.i8.1112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Central nervous system (CNS) tumors are a variety of distinct neoplasms that present multiple challenges in terms of treatment and prognosis. Glioblastoma, the most common primary tumor in adults, is associated with poor survival and remains one of the least treatable neoplasms. These tumors are highly heterogenous and complex in their nature. Due to this complexity, traditional cell culturing techniques and methods do not provide an ideal recapitulating model for the study of these tumors' behavior in vivo. Two-dimensional models lack the spatial arrangement, the heterogeneity in cell types, and the microenvironment that play a large role in tumor cell behavior and response to treatment. Recently, scientists have turned towards three-dimensional culturing methods, namely spheroids and organoids, as they have been shown to recapitulate tumors in a more faithful manner to their in vivo counterparts. Moreover, tumor-on-a-chip systems have lately been employed in CNS tumor modeling and have shown great potential in both studying the pathophysiology and therapeutic testing. In this review, we will discuss the current available literature on in vitro three-dimensional culturing models in CNS tumors, in addition to presenting their advantages and current limitations. We will also elaborate on the future implications of these models and their benefit in the clinical setting.
Collapse
Affiliation(s)
- Zaki Abou-Mrad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jolie Bou Gharios
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Maya M Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Ahmad Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Charbel Moussalem
- Division of Neurosurgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
27
|
ERK Phosphorylation Regulates the Aml1/Runx1 Splice Variants and the TRP Channels Expression during the Differentiation of Glioma Stem Cell Lines. Cells 2021; 10:cells10082052. [PMID: 34440820 PMCID: PMC8391729 DOI: 10.3390/cells10082052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
The identification of cancer stem cells in brain tumors paved the way for new therapeutic approaches. Recently, a role for the transcriptional factor Runx1/Aml1 and the downstream ion channel genes in brain cancer development and progression has been suggested. This study aimed to explore the expression and the role of Runx1/Aml1, its Aml1b and Aml1c splice variants and the downstream TRPA1 and TRPV1 ion channels in undifferentiated and day-14 differentiated neural stem cells (NSCs and D-NSCs) and glioblastoma stem cells (GSCs and D-GSCs) lines with different proneural (PN) or mesenchymal (MES) phenotype. Gene and protein expression were evaluated by qRT-PCR, cytofluorimetric, western blot and confocal microscopy analyses. Moreover, by western blot, we observed that ERK phosphorylation enhances the Aml1b and Aml1c protein expression during glioma differentiation. Furthermore, the agonists of TRPA1 and TRPV1 channels stimulated apoptosis/necrosis in GSCs and D-GSCs as evaluated by Annexin V and PI staining and cytofluorimetric analysis. Finally, by qRT-PCR, the modulation of Wnt/β catenin, FGF, and TGFβ/SMAD signaling pathways in PN- and MES-GSCs was reported. Overall, our results provide new evidence regarding Runx1/Aml1 isoform overexpression and modulation in TRP channel expression during gliomagenesis, thus offering new directions for glioblastoma therapy.
Collapse
|
28
|
Khan S, Suryavanshi M, Kaur J, Nayak D, Khurana A, Manchanda RK, Tandon C, Tandon S. Stem cell therapy: A paradigm shift in breast cancer treatment. World J Stem Cells 2021; 13:841-860. [PMID: 34367480 PMCID: PMC8316873 DOI: 10.4252/wjsc.v13.i7.841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
As per the latest Globocan statistics, the high prevalence rate of breast cancer in low- and middle-income countries has led to it becoming the most common cancer to be diagnosed, hence posing a major public health challenge. As per this data, more than 11.7% of the estimated new cancer cases in 2020 were due to breast cancer. A small but significant subpopulation of cells with self- renewing ability are present in the tumor stroma and have been given the nomenclature of cancer stem cells (CSCs). These cells display a high degree of plasticity owing to their ability to transition from the slowly cycling quiescent phase to the actively proliferating phenotype. This attribute of CSCs allows them to differentiate into various cell types having diverse functions. Breast CSCs have a pivotal role in development, metastasis, treatment resistance and relapse of breast cancers. This review focuses on the pathways regulating breast CSC maintenance and the current strategies that are being explored for directing the development of novel, targeted, therapeutic approaches for limiting and eradicating this aberrant stem cell population.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India
| | - Moushumi Suryavanshi
- Department of Pathology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Jasamrit Kaur
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh 160030, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy, New Delhi 110058, India
| | - Anil Khurana
- Central Council for Research in Homeopathy, New Delhi 110058, India
| | | | - Chanderdeep Tandon
- Amity Institute of Biotechnology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
29
|
Singh D, Dromel PC, Perepelkina T, Baranov P, Young M. C6 Cell Injection into the Optic Nerve of Long-Evans Rats: A Short-Term Model of Optic Pathway Gliomas. Cell Transplant 2021; 29:963689720964383. [PMID: 33356508 PMCID: PMC7873768 DOI: 10.1177/0963689720964383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The optic pathway glioma (OPG) is a slow-growing brain tumor that arises along the optic nerve or its downstream connections and causing vision to gradually worsen with time. This tumor forms in children with a genetic condition called neurofibromatosis type 1 (NF1), causing tumors to grow on nerves. In normal conditions, glial cells are there to support and protect nerve cells but, in NF1-OPG, glial cells have a genetic defect and grow out of control forming a tumor called a glioma. There are no rat models of NF1-OPG that can be used to explore various treatment options, and mouse models make interventional studies difficult due to their small eye size. We have created a model in which to study the progression of tumor growth in the optic nerve and establish the anatomical and functional consequences of the model and determine its suitability to serve as a surrogate for human disease. C6 rat glioma cells were injected into the optic nerve of Long-Evans rats and allowed to proliferate for 2 weeks. The eye clearly showed proptosis and lens opacity was observed, likely due to increased intraocular pressure caused by growing tumors. Hematoxylin–eosin staining showed marked cellularity, with hyperchromatism and pleomorphism. There was prominent area of necrosis with neoplastic cells palisading around the penumbra. Immunostaining with markers such as S100, β-tubulin III, Foxp3, CD45, Vimentin, and Ki67 confirmed low-grade tumor formation, with a mild immune response. Our results show the utility of a surgically induced rat model of OPG that may be used for exploring various treatment options for NF1 ocular tumors.
Collapse
Affiliation(s)
- Deepti Singh
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA
| | - Pierre C Dromel
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA.,Department of Material Science and Engineering, 2167 Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tatiana Perepelkina
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA
| | - Petr Baranov
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA
| | - Michael Young
- 20327Schepens Eye Research Institute of Massachusetts Ear and Eye, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Isolation and Establishment of a Highly Proliferative, Cancer Stem Cell-Like, and Naturally Immortalized Triple-Negative Breast Cancer Cell Line, KAIMRC2. Cells 2021; 10:cells10061303. [PMID: 34073849 PMCID: PMC8225085 DOI: 10.3390/cells10061303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
In vitro studies of a disease are key to any in vivo investigation in understanding the disease and developing new therapy regimens. Immortalized cancer cell lines are the best and easiest model for studying cancer in vitro. Here, we report the establishment of a naturally immortalized highly tumorigenic and triple-negative breast cancer cell line, KAIMRC2. This cell line is derived from a Saudi Arabian female breast cancer patient with invasive ductal carcinoma. Immunocytochemistry showed a significant ratio of the KAIMRC2 cells’ expressing key breast epithelial and cancer stem cells (CSCs) markers, including CD47, CD133, CD49f, CD44, and ALDH-1A1. Gene and protein expression analysis showed overexpression of ABC transporter and AKT-PI3Kinase as well as JAK/STAT signaling pathways. In contrast, the absence of the tumor suppressor genes p53 and p73 may explain their high proliferative index. The mice model also confirmed the tumorigenic potential of the KAIMRC2 cell line, and drug tolerance studies revealed few very potent candidates. Our results confirmed an aggressive phenotype with metastatic potential and cancer stem cell-like characteristics of the KAIMR2 cell line. Furthermore, we have also presented potent small molecule inhibitors, especially Ryuvidine, that can be further developed, alone or in synergy with other potent inhibitors, to target multiple cancer-related pathways.
Collapse
|
31
|
Maruyama M, Nakano Y, Nishimura T, Iwata R, Matsuda S, Hayashi M, Nakai Y, Nonaka M, Sugimoto T. PC3-Secreted Microprotein Is Expressed in Glioblastoma Stem-Like Cells and Human Glioma Tissues. Biol Pharm Bull 2021; 44:910-919. [PMID: 33896885 DOI: 10.1248/bpb.b20-00868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent malignant primary brain tumor with a high recurrence rate. Despite multimodal therapy including surgical resection, chemotherapy, and radiotherapy, the median survival time after the initial diagnosis of GBM is approximately 14 months. Since cancer stem cells (CSCs) are considered the leading cause of cancer recurrence, glioblastoma stem cell-targeted therapy is a promising strategy for the treatment of GBM. However, because CSC heterogeneity has been implicated in the difficulties of CSC-target therapy, more in-depth knowledge of CSC biology is still required to develop novel therapies. In this study, we established single cell-derived tumorspheres from human glioblastoma U87MG cells. One of these tumorspheres, P4E8 clone, showed CSC-like phenotypes, such as self-renewal capacity, expression of CSC markers, resistance to anti-cancer agents, and in vivo tumorigenicity. Therefore, we used P4E8 cells as a cell-based model of glioblastoma stem cells (GSCs). Gene expression analysis using microarray indicated that the most highly expressed genes in P4E8 cells compared to the parental U87MG were PC3-secreted microprotein (MSMP). Furthermore, MSMP was expressed in patient-derived GSCs and human glioma tissues at the protein level, implying that MSMP might contribute to glioma development and progression.
Collapse
Affiliation(s)
- Masato Maruyama
- Department of Anatomy and Brain Science, Kansai Medical University
| | - Yousuke Nakano
- Department of Anatomy and Brain Science, Kansai Medical University
| | - Takuya Nishimura
- Department of Anatomy and Brain Science, Kansai Medical University
| | - Ryoichi Iwata
- Department of Neurosurgery, Kansai Medical University
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University
| | | | - Yuki Nakai
- Department of Anatomy and Brain Science, Kansai Medical University
| | | | - Tetsuo Sugimoto
- Department of Anatomy and Brain Science, Kansai Medical University
| |
Collapse
|
32
|
Riedel A, Klumpp L, Menegakis A, De-Colle C, Huber SM, Schittenhelm J, Neumann M, Noell S, Tatagiba M, Zips D. γH2AX foci assay in glioblastoma: Surgical specimen versus corresponding stem cell culture. Radiother Oncol 2021; 159:119-125. [PMID: 33775712 DOI: 10.1016/j.radonc.2021.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/02/2020] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
AIM To assess radiation response using γH2AX assay in surgical specimens from glioblastoma (GB) patients and their corresponding primary gliosphere culture. To test the hypothesis that gliospheres (stem cell enriched) are more resistant than specimens (bulky cell dominated) but that the interpatient heterogeneity is similar. MATERIAL AND METHODS Ten pairs of specimens and corresponding gliospheres derived from patients with IDH-wildtype GB were studied. Specimens and gliospheres were irradiated with graded doses and after 24 h the number of residual γH2AX foci was counted. RESULTS Gliospheres showed a higher Nestin expression than specimens and exhibited two different phenotypes: free floating (n = 7) and attached (n = 3). Slope analysis revealed an interpatient heterogeneity with values between 0.15 and 1.30 residual γH2AX foci/Gy. Free-floating spheres were more resistant than their parental specimens (median slope 0.13 foci/Gy versus 0.53) as well as than the attached spheres (2.14). The slopes of free floating spheres did not correlate with their corresponding specimens while a trend for a positive correlation was found for the attached spheres and the respective specimens. Association with MGMT did not reach statistical significance. CONCLUSION Consistent with the clinical phenotype and our previous experiments, GB specimens show low radiation sensitivity. Stem-cell enriched free-floating gliospheres were more resistant than specimens supporting the concept of radioresistance in stem cell-like cells. The lack of correlation between specimens and their respective gliosphere cultures needs validation and may have a profound impact on future translational studies using γH2AX as a potential biomarker for personalized radiation therapy.
Collapse
Affiliation(s)
- Andreas Riedel
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany
| | - Lukas Klumpp
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany
| | - Apostolos Menegakis
- Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | - Chiara De-Colle
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany
| | - Stephan M Huber
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany
| | - Jens Schittenhelm
- Division of Neuropathology, Medical Faculty and University Hospital Tübingen, Germany
| | - Manuela Neumann
- Division of Neuropathology, Medical Faculty and University Hospital Tübingen, Germany
| | - Susan Noell
- Department of Neurosurgery, Medical Faculty and University Hospital Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Medical Faculty and University Hospital Tübingen, Germany
| | - Daniel Zips
- Radiation Oncology, Medical Faculty and University Hospital Tübingen, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
33
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
34
|
Suzuki I, Yoshida S, Tabu K, Kusunoki S, Matsumura Y, Izumi H, Asanoma K, Yagi H, Onoyama I, Sonoda K, Kohno K, Taga T, Itakura A, Takeda S, Kato K. YBX2 and cancer testis antigen 45 contribute to stemness, chemoresistance and a high degree of malignancy in human endometrial cancer. Sci Rep 2021; 11:4220. [PMID: 33602962 PMCID: PMC7893073 DOI: 10.1038/s41598-021-83200-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/28/2021] [Indexed: 01/06/2023] Open
Abstract
Y-box binding protein 2 (YBX2) has been associated with the properties of both germ cells and cancer cells. We hypothesized that YBX2 might contribute to the characteristics of cancer stem cells (CSCs). In this study, we clarified the function of YBX2 in endometrial cancer stem cells. We established a human YBX2-expressing Ishikawa (IK) cell line (IK-YBX2 cells). We analyzed gene expression associated with stemness and isolated SP cells from IK-YBX2 cells. The SP population of IK-YBX2 cells, the expression of ALDH1 and serial sphere-forming capacity were associated with levels of YBX2 expression. IK-YBX2 cells were resistant to anti-cancer drugs. In gene expression analysis, a gene for cancer testis antigen, CT45, was generally overexpressed in IK-YBX2 cells. YBX2-mediated CT45 expression was associated with increased levels of self-renewal capacity and paclitaxel resistance. The level of CT45 expression was enhanced in high-grade and/or advanced stages of human endometrial cancer tissues. We conclude that expression of YBX2 is essential for the stem cell-like phenotype. CT45 contributes to stemness associated with YBX2 and might be related to the progression of endometrial cancer.
Collapse
Affiliation(s)
- Izumi Suzuki
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sachiko Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Soshi Kusunoki
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenzo Sonoda
- Gynecology Service, National Kyushu Cancer Center, Fukuoka, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan
| | - Kimitoshi Kohno
- Kurate Hospital, 2425-9 Ooaza Nakayama, Kurate-chou, Kurate, Fukuoka, 807-1312, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
35
|
Regan JT, Mirczuk SM, Scudder CJ, Stacey E, Khan S, Worwood M, Powles T, Dennis-Beron JS, Ginley-Hidinger M, McGonnell IM, Volk HA, Strickland R, Tivers MS, Lawson C, Lipscomb VJ, Fowkes RC. Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells. Cells 2021; 10:cells10020398. [PMID: 33672024 PMCID: PMC7919485 DOI: 10.3390/cells10020398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
C-type natriuretic peptide (CNP) is the major natriuretic peptide of the central nervous system and acts via its selective guanylyl cyclase-B (GC-B) receptor to regulate cGMP production in neurons, astrocytes and endothelial cells. CNP is implicated in the regulation of neurogenesis, axonal bifurcation, as well as learning and memory. Several neurological disorders result in toxic concentrations of ammonia (hyperammonaemia), which can adversely affect astrocyte function. However, the relationship between CNP and hyperammonaemia is poorly understood. Here, we examine the molecular and pharmacological control of CNP in rat C6 glioma cells and rat GPNT brain endothelial cells, under conditions of hyperammonaemia. Concentration-dependent inhibition of C6 glioma cell proliferation by hyperammonaemia was unaffected by CNP co-treatment. Furthermore, hyperammonaemia pre-treatment (for 1 h and 24 h) caused a significant inhibition in subsequent CNP-stimulated cGMP accumulation in both C6 and GPNT cells, whereas nitric-oxide-dependent cGMP accumulation was not affected. CNP-stimulated cGMP efflux from C6 glioma cells was significantly reduced under conditions of hyperammonaemia, potentially via a mechanism involving changed in phosphodiesterase expression. Hyperammonaemia-stimulated ROS production was unaffected by CNP but enhanced by a nitric oxide donor in C6 cells. Extracellular vesicle production from C6 cells was enhanced by hyperammonaemia, and these vesicles caused impaired CNP-stimulated cGMP signalling in GPNT cells. Collectively, these data demonstrate functional interaction between CNP signalling and hyperammonaemia in C6 glioma and GPNT cells, but the exact mechanisms remain to be established.
Collapse
Affiliation(s)
- Jacob T. Regan
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Samantha M. Mirczuk
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
| | - Christopher J. Scudder
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
| | - Emily Stacey
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Sabah Khan
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Michael Worwood
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Torinn Powles
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - J. Sebastian Dennis-Beron
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Matthew Ginley-Hidinger
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
| | - Imelda M. McGonnell
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
| | - Holger A. Volk
- Stiftung Tierärztliche Hochschule Hannover, Klinik für Kleintiere, Bünteweg, 930559 Hannover, Germany;
| | - Rhiannon Strickland
- Clinical Sciences & Services, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (R.S.); (V.J.L.)
| | - Michael S. Tivers
- Paragon Veterinary Referrals, Paragon Business Village Paragon Way, Red Hall Cres, Wakefield WF1 2DF, UK;
| | - Charlotte Lawson
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
| | - Victoria J. Lipscomb
- Clinical Sciences & Services, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (R.S.); (V.J.L.)
| | - Robert C. Fowkes
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (J.T.R.); (S.M.M.); (C.J.S.); (E.S.); (S.K.); (M.W.); (T.P.); (J.S.D.-B.); (M.G.-H.)
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (I.M.M.); (C.L.)
- Correspondence: ; Tel.: +44-207-468-1215
| |
Collapse
|
36
|
Abstract
Although common cancer therapies, such as chemotherapy and radiation therapy, have recently improved and yielded good results, evaluated as tumor shrinkage, disease recurrence is still a common event for most cancer patients. This is termed refractory cancer. This tumor regrowth following therapy is generally thought to be caused by a small, specific population of tumor cells called cancer stem cells (CSCs). Similar to other stem cells, CSCs have the capacity for self-renewal and multipotent differentiation, and they have been identified in many tumor types based on cell surface protein expression. This specific cell population has stemness characteristics as examined by serial transplantation in animal models. Previous studies have developed a specific signature of cell surface markers and biological functions that can identify CSCs in many solid tumors. In this review, we summarize the characterization of CSCs using new techniques for identifying and quantifying them in situ. These techniques and concepts could be valuable for evaluating the effects of therapies on this cell population. Finally, we conclude by discussing several unique preclinical treatment strategies to targets CSCs, such as reprogramming CSCs or inducing attack by immune cells. Therapeutic and diagnostic methodologies that can target and quantify CSCs will be valuable tools for eradicating refractory cancer.
Collapse
|
37
|
Altanerova U, Jakubechova J, Benejova K, Priscakova P, Repiska V, Babelova A, Smolkova B, Altaner C. Intracellular prodrug gene therapy for cancer mediated by tumor cell suicide gene exosomes. Int J Cancer 2020; 148:128-139. [PMID: 32621791 DOI: 10.1002/ijc.33188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Recently, we reported about exosomes possessing messenger RNA (mRNA) of suicide gene secreted from mesenchymal stem/stromal cells (MSCs) engineered to express the suicide gene-fused yeast cytosine deaminase::uracil phosphoribosyltransferase (yCD::UPRT). The yCD::UPRT-MSC exosomes are internalized by tumor cells and intracellularly convert prodrug 5-fluorocytosine (5-FC) to cytotoxic drug 5-fluorouracil (5-FU). Human tumor cells with the potential to metastasize release exosomes involved in the creation of a premetastatic niche at the predicted organs. We found that cancer cells stably transduced with yCD::UPRT gene by retrovirus infection released exosomes acting similarly like yCD::UPRT-MSC exosomes. Different types of tumor cells were transduced with the yCD::UPRT gene. The homogenous cell population of yCD::UPRT-transduced tumor cells expressed the yCD::UPRT suicide gene and secreted continuously exosomes with suicide gene mRNA in their cargo. All tumor cell suicide gene exosomes upon internalization into the recipient tumor cells induced the cell death by intracellular conversion of 5-FC to 5-FU and to 5-FUMP in a dose-dependent manner. Most of tumor cell-derived suicide gene exosomes were tumor tropic, in 5-FC presence they killed tumor cells but did not inhibit the growth of human skin fibroblast as well as DP-MSCs. Tumor cell-derived suicide gene exosomes home to their cells of origin and hold an exciting potential to become innovative specific therapy for tumors and potentially for metastases.
Collapse
Affiliation(s)
- Ursula Altanerova
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Jana Jakubechova
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Katarina Benejova
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Petra Priscakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Andrea Babelova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Cestmir Altaner
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, Bratislava, Slovakia.,Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
38
|
Braun LM, Lagies S, Guenzle J, Fichtner-Feigl S, Wittel UA, Kammerer B. Metabolic Adaptation during nab-Paclitaxel Resistance in Pancreatic Cancer Cell Lines. Cells 2020; 9:cells9051251. [PMID: 32438599 PMCID: PMC7290296 DOI: 10.3390/cells9051251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) correlates with high mortality and is about to become one of the major reasons for cancer-related mortality in the next decades. One reason for that high mortality is the limited availability of effective chemotherapy as well as the intrinsic or acquired resistance against it. Here, we report the impact of nab-paclitaxel on the cellular metabolome of PDAC cell lines. After establishment of nab-paclitaxel resistant cell lines, comparison of parental and resistant PDAC cell lines by metabolomics and biochemical assessments revealed altered metabolism, enhanced viability and reduced apoptosis. The results unveiled that acute nab-paclitaxel treatment affected primary metabolism to a minor extent. However, acquisition of resistance led to altered metabolites in both cell lines tested. Specifically, aspartic acid and carbamoyl-aspartic acid were differentially abundant, which might indicate an increased de novo pyrimidine synthesis. This pathway has already shown a similar behavior in other cancerous entities and thus might serve in the future as vulnerable target fighting resistance acquisition occurring in common malignancies.
Collapse
Affiliation(s)
- Lukas M. Braun
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
| | - Simon Lagies
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Institute of Biology II, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jessica Guenzle
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
| | - Stefan Fichtner-Feigl
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
| | - Uwe A. Wittel
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
- Correspondence: (U.A.W.); (B.K.); Tel.: +49-761-270-25090 (U.A.W.); +49-761-203-97137 (B.K.)
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (U.A.W.); (B.K.); Tel.: +49-761-270-25090 (U.A.W.); +49-761-203-97137 (B.K.)
| |
Collapse
|
39
|
Luo W, Liu RS, E LL, Bai Y, Kong XP, Liu HW, Wu H, Liu HC. Identification, characterization and microRNA expression profiling of side population cells in human oral squamous cell carcinoma Tca8113 cell lines. Mol Med Rep 2020; 22:286-296. [PMID: 32319646 PMCID: PMC7248475 DOI: 10.3892/mmr.2020.11073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/22/2018] [Indexed: 11/15/2022] Open
Abstract
The present study aimed to evaluate the stem cell markers, characteristics and biological functions of cancer stem-like side population (SP) cells in human oral cancer. SP cells were isolated from the human oral squamous cell carcinoma Tca8113 cell line by Hoechst 33342 fluorescence dye and flow cytometry. The colony forming and proliferative capability of SP and non-SP cells were detected using a live-cell analysis system in vitro. The number of cells expressing stem cell markers was compared between SP cells and non-SP cells by flow cytometry. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels of stem cell genes, respectively. Differential expression of microRNAs (miRNAs) in SP and non-SP cells was determined by microarray hybridization and an miRNA regulation network was produced. With regard to the proliferation capability, SP cells reached 60.0% confluence after 40 h of growth compared with 35.1% confluence for non-SP cells (P<0.05). The number of colonies in SP cells was 43.1±9.2 compared with 33.0±8.2 of non-SP cells (P<0.05). The aldehyde dehydrogenase-1 (ALDH1)-positive cell number in the SP cells was increased by 10 times compared with the non-SP cells (P<0.01). The mRNA and protein expression levels of ALDH1, SRY-box 2, POU class 5 homeobox 1 and Nanog homeobox in SP cells were significantly higher compared with non-SP cells (P<0.05). Microarray hybridization demonstrated that 21 miRNAs were upregulated and 13 miRNAs were downregulated in SP cells compared with non-SP cells. SP cells in Tca8113 demonstrated greater capability of proliferation and colony formation compared with non-SP cells in vitro. Stem cell markers were overexpressed in SP cells compared with non-SP cells.
Collapse
Affiliation(s)
- Wei Luo
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Rong-Sen Liu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Ling-Ling E
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yang Bai
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xiang-Pan Kong
- Department of Oral and Maxillofacial‑Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hua-Wei Liu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hao Wu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hong-Chen Liu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
40
|
Liu BJ, Xu QY, Yu WD, Li N, Yao T, Zhao LJ, Wang JL, Wei LH, Li XP. Study of the Characterization of Side Population Cells in Endometrial Cancer Cell Lines: Chemoresistance, Progestin Resistance, and Radioresistance. Front Med (Lausanne) 2020; 7:70. [PMID: 32258043 PMCID: PMC7093373 DOI: 10.3389/fmed.2020.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/19/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction: Radiotherapy, combined regimens as platinum-paclitaxel chemotherapy and/or endocrine therapy is an important adjuvant treatment after surgery for endometrial cancer (EC). While, the resistance to them remain unclear. In our study, to separate the characteristics of side population (SP) cells from EC cell lines, study the mechanism of Taxol-resistance, progestin resistance and radioresistanc, and provide the basic for EC. Methods: SP cells from EC cell lines HEC-1A, Ishikawa and RL95-2 were separated by Hoechst 33342 staining and flow cytometry analysis. The expression of breast cancer resistance protein (BCRP) in SP cells and non-SP cells from HEC-1A was examined by immunocytochemistry, and the radiation-resistant and Taxol-resistant characteristics of SP cells and non-SP cells were compared by MTS. Ishikawa, Ishikawa-SP, and Ishikawa-non-SP cells incubated with MPA were selected for cell apoptosis assays by using flow cytometry. The expression of caspase-3 was examined by immunocytochemistry, and autophagy was detected by MDC staining. Results: Small proportions of SP cells, namely, 1.44 ± 0.93%, 2.86 ± 3.09%, and 2.87 ± 1.29%, were detected in HEC-1A, Ishikawa and RL95-2, respectively. There was a stronger clone formation efficiency for the SP cells than for non-SP cells in HEC-1A [(6.02 ± 1.17) vs. (0.53±0.20)%, P = 0.001], and there was a significant difference in the rate of tumourigenicity between the SP cells and non-SP cells in HEC-1A (87.5 vs. 12.5%). There were higher levels of BCRP expression (P = 0.001) and resistance to Taxol and radiation (P < 0.05) in the SP cells than in non-SP cells. After MPA treatment, the apoptosis rates were significantly different among the Ishikawa, Ishikawa-SP and Ishikawa-non-SP groups [(4.64 ± 0.18)%, (4.01 ± 0.43)%, and (9.3 ± 0.67)%; (P = 0.05)], and the expression of Caspase-3 in the Ishikawa group was higher than that in Ishikawa-SP group. The autophagic activity of the Ishikawa-SP cells was the strongest, while the autophagic activity of Ishikawa-non-SP was the weakest. Conclusions: There is a significant enrichment in SP cells among different EC cell lines, and these SP cells be more resistant to Taxol, MPA and radiation therapy. The overexpression of BCRP among SP cells may be the cause of resistance to Taxol, progestin and radiotherapy, which may be related to apoptosis and autophagic activity.
Collapse
Affiliation(s)
- Bing-jie Liu
- Department of Gynecology, Peking University People's Hospital, Beijing, China
| | - Qi-ying Xu
- Department of Gynecology, Peking University People's Hospital, Beijing, China
- Qinghai University Affiliated Hospital, Xining, China
| | - Wei-dong Yu
- Central Lab, Peking University People's Hospital, Beijing, China
| | - Na Li
- Department of Gynecology, Peking University People's Hospital, Beijing, China
| | - Tian Yao
- Department of Gynecology, Peking University People's Hospital, Beijing, China
| | - Li-jun Zhao
- Department of Gynecology, Peking University People's Hospital, Beijing, China
| | - Jian-liu Wang
- Department of Gynecology, Peking University People's Hospital, Beijing, China
| | - Li-hui Wei
- Department of Gynecology, Peking University People's Hospital, Beijing, China
| | - Xiao-ping Li
- Department of Gynecology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
41
|
Gor R, Ramalingam S. Controversies in Isolation and Characterization of Cancer Stem Cells. CANCER STEM CELLS: NEW HORIZONS IN CANCER THERAPIES 2020:257-272. [DOI: 10.1007/978-981-15-5120-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
Wu S, Gao F, Zheng S, Zhang C, Martinez-Ledesma E, Ezhilarasan R, Ding J, Li X, Feng N, Multani A, Sulman EP, Verhaak RG, de Groot JF, Heffernan TP, Yung WKA, Koul D. EGFR Amplification Induces Increased DNA Damage Response and Renders Selective Sensitivity to Talazoparib (PARP Inhibitor) in Glioblastoma. Clin Cancer Res 2019; 26:1395-1407. [PMID: 31852834 DOI: 10.1158/1078-0432.ccr-19-2549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/21/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Exploration of novel strategies to extend the benefit of PARP inhibitors beyond BRCA-mutant cancers is of great interest in personalized medicine. Here, we identified EGFR amplification as a potential biomarker to predict sensitivity to PARP inhibition, providing selection for the glioblastoma (GBM) patient population who will benefit from PARP inhibition therapy. EXPERIMENTAL DESIGN Selective sensitivity to the PARP inhibitor talazoparib was screened and validated in two sets [test set (n = 14) and validation set (n = 13)] of well-characterized patient-derived glioma sphere-forming cells (GSC). FISH was used to detect EGFR copy number. DNA damage response following talazoparib treatment was evaluated by γH2AX and 53BP1 staining and neutral comet assay. PARP-DNA trapping was analyzed by subcellular fractionation. The selective monotherapy of talazoparib was confirmed using in vivo glioma models. RESULTS EGFR-amplified GSCs showed remarkable sensitivity to talazoparib treatment. EGFR amplification was associated with increased reactive oxygen species (ROS) and subsequent increased basal expression of DNA-repair pathways to counterelevated oxidative stress, and thus rendered vulnerability to PARP inhibition. Following talazoparib treatment, EGFR-amplified GSCs showed enhanced DNA damage and increased PARP-DNA trapping, which augmented the cytotoxicity. EGFR amplification-associated selective sensitivity was further supported by the in vivo experimental results showing that talazoparib significantly suppressed tumor growth in EGFR-amplified subcutaneous models but not in nonamplified models. CONCLUSIONS EGFR-amplified cells are highly sensitive to talazoparib. Our data provide insight into the potential of using EGFR amplification as a selection biomarker for the development of personalized therapy.
Collapse
Affiliation(s)
- Shaofang Wu
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siyuan Zheng
- Department of Genomic Medicine, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chen Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jie Ding
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ningping Feng
- Applied Cancer Science Institute, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Asha Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roel G Verhaak
- Department of Genomic Medicine, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F de Groot
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tim P Heffernan
- Applied Cancer Science Institute, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - W K Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
43
|
Belousov A, Titov S, Shved N, Garbuz M, Malykin G, Gulaia V, Kagansky A, Kumeiko V. The Extracellular Matrix and Biocompatible Materials in Glioblastoma Treatment. Front Bioeng Biotechnol 2019; 7:341. [PMID: 31803736 PMCID: PMC6877546 DOI: 10.3389/fbioe.2019.00341] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
During cancer genesis, the extracellular matrix (ECM) in the human brain undergoes important transformations, starting to resemble embryonic brain cell milieu with a much denser structure. However, the stiffness of the tumor ECM does not preclude cancer cells from migration. The importance of the ECM role in normal brain tissue as well as in tumor homeostasis has engaged much effort in trials to implement ECM as a target and an instrument in the treatment of brain cancers. This review provides a detailed analysis of both experimental and applied approaches in combined therapy for gliomas in adults. In general, matrix materials for glioma treatment should have properties facilitating the simplest delivery into the body. Hence, to deliver an artificial implant directly into the operation cavity it should be packed into a gel form, while for bloodstream injections matrix needs to be in the form of polymer micelles, nanoparticles, etc. Furthermore, the delivered material should mimic biomechanical properties of the native tissue, support vital functions, and slow down or stop the proliferation of surrounding cells for a prolonged period. The authors propose a two-step approach aimed, on the one hand, at elimination of remaining cancer cells and on the other hand, at restoring normal brain tissue. Thereby, the first bioartificial matrix to be applied should have relatively low elastic modulus should be loaded with anticancer drugs, while the second material with a higher elastic modulus for neurite outgrowth support should contain specific factors stimulating neuroregeneration.
Collapse
Affiliation(s)
- Andrei Belousov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Sergei Titov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Nikita Shved
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Mikhail Garbuz
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Grigorii Malykin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Valeriia Gulaia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
44
|
d'Angelo M, Castelli V, Benedetti E, Antonosante A, Catanesi M, Dominguez-Benot R, Pitari G, Ippoliti R, Cimini A. Theranostic Nanomedicine for Malignant Gliomas. Front Bioeng Biotechnol 2019; 7:325. [PMID: 31799246 PMCID: PMC6868071 DOI: 10.3389/fbioe.2019.00325] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant gliomas represent an incurable disease; indeed, after surgery and chemotherapy, recurrence appears within a few months, and mortality has remained high in the last decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that a single therapy is not effective for all patients. In this regard, the advent of theranostic nanomedicine, a combination of imaging and therapeutic agents, represents a strategic tool for the management of malignant brain tumors, allowing for the detection of therapies that are specific to the single patient and avoiding overdosing the non-responders. Here, recent theranostic nanomedicine approaches for glioma therapy are described.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Reyes Dominguez-Benot
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
45
|
Yang S, Chen T, Huang L, Xu S, Cao Z, Zhang S, Xu J, Li Y, Yue Y, Lu W, Cheng X, Xie X. High-Risk Human Papillomavirus E7 Maintains Stemness Via APH1B In Cervical Cancer Stem-Cell Like Cells. Cancer Manag Res 2019; 11:9541-9552. [PMID: 31814758 PMCID: PMC6858839 DOI: 10.2147/cmar.s194239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose To determine whether early proteins from high-risk human papillomavirus (HPV) have the capacity to maintain cellular stemness. Patients and methods First, we isolated cancer stem cell like cells from two cervical cancer cell lines, SiHa and CaSki, using non-adhesive culture with serum-free medium. Second, we knocked down HPV16 E7 in SiHa sphere cells and overexpressed HPV16 E7 in U2OS sphere cells. Third, we used RNA-seq analysis and Western blotting to screen and identify the expression of differentially expressed genes in SiHa cells with HPV16 E7 knockdown. Results We found that both SiHa and CaSki cells grew as cell spheres (oncospheres) and shared the properties of cancer stem cells, including high expression of stem cell marker OCT4 and SOX2, self-renew, and resistance to chemotherapeutic drugs. The stem-like properties were deprived when HPV16 E7 was knocked down in SiHa sphere cells and maintained when HPV16 E7 was over-expressed in U2OS sphere cells. APH1B was up-regulated, among differential expression genes, in SiHa cells with HPV16 E7 knockdown and modulated cellular stemness and SiHa sphere cells with APH1B knockdown regained the stem-like properties deprived by E7 inhibition. Conclusion HPV16 E7 possesses the capacity to maintain cellular stemness and APH1B may participate in this process in cervical cancer sphere cells.
Collapse
Affiliation(s)
- Shizhou Yang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Tingting Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Lu Huang
- Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zhu Cao
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Songfa Zhang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yongfang Yue
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
46
|
Miyoshi N, Mizushima T, Doki Y, Mori M. Cancer stem cells in relation to treatment. Jpn J Clin Oncol 2019; 49:232-237. [PMID: 30541049 DOI: 10.1093/jjco/hyy186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/11/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022] Open
Abstract
The classical cancer therapies, including chemotherapy and radiation therapy, can initially show good results and tumor shrinkage; however, for most cancer patients disease recurrence is a common event. This tumor regrowth following therapy is now thought to depend on a small population of cancer stem cells (CSCs), which, similar to other stem cells, have the capacity for self-renewal and multipotent differentiation. Cancer stem cells have been identified based on cell surface protein expression in many tumor types, and for all diseases studied, this specific cell population is required for serial transplantation in animal models. However, a specific signature of cell surface proteins that can identify cancer stem cells has not been developed for many solid tumors. In this review, we summarize a new technique for identifying and quantifying cancer stem cells in situ, which could be a valuable technique for evaluating the effects of therapies on this cell population. Finally, we conclude by discussing several preclinical treatment strategies that either reprogram cancer stem cells or cause them to be specifically attacked by immune cells. In summary, therapeutic and diagnostic methodologies that can attack and quantify cancer stem cells, respectively, will be valuable tools for eradicating cancer.
Collapse
Affiliation(s)
- Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
47
|
Saito N, Hirai N, Aoki K, Sato S, Suzuki R, Hiramoto Y, Fujita S, Nakayama H, Hayashi M, Sakurai T, Iwabuchi S. Genetic and Lineage Classification of Glioma-Initiating Cells Identifies a Clinically Relevant Glioblastoma Model. Cancers (Basel) 2019; 11:cancers11101564. [PMID: 31618934 PMCID: PMC6826962 DOI: 10.3390/cancers11101564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
The Cancer Genome Atlas (TCGA) project described a robust gene expression-based molecular classification of glioblastoma (GBM), but the functional and biological significance of the subclasses has not been determined. The present comprehensive analysis of 25 glioma-initiating cell (GIC) lines classifies GIC lines into four subtypes (classical, mesenchymal, proneural, and neural) that are closely related to the TCGA GBM subclasses and display distinct lineage characteristics and differentiation behavior that recapitulate neural development. More importantly, the GIC subtypes exhibit distinct biological phenotypes in relation to self-renewal capacity, proliferation, invasiveness, and angiogenic potential in vitro and in vivo. In addition, the GIC subtypes exhibit divergent patterns of signaling pathway activation and deactivation of the Wnt, Notch, and TGF-β pathways. These results will improve drug discovery targeting certain genetic mutation in glioblastoma and improve the development of precision medicine.
Collapse
Affiliation(s)
- Norihiko Saito
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Nozomi Hirai
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Kazuya Aoki
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Sho Sato
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Ryo Suzuki
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Yu Hiramoto
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Satoshi Fujita
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Haruo Nakayama
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Morito Hayashi
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Takatoshi Sakurai
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Satoshi Iwabuchi
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| |
Collapse
|
48
|
Xu Y, Yang X, Mei S, Sun Y, Li J. Acquisition of temozolomide resistance by the rat C6 glioma cell line increases cell migration and side population phenotype. Oncol Rep 2019; 42:2355-2362. [PMID: 31578583 PMCID: PMC6826311 DOI: 10.3892/or.2019.7350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells are reportedly associated with drug resistance in glioma, but there are conflicting findings on the effects of cancer stem cells on drug resistance. The aim of the present study was to identify the underlying mechanisms of drug resistance in rat C6 glioma cells, through the use of Transwell invasion assays, flow cytometric and western blot analyses as well as immunohistochemical staining. The results revealed that acquisition of drug resistance by C6 cells enhanced migration ability in vivo and in vitro. Notably, drug resistance did not depend on the cancer stem cells of C6 cells, but on the increase of a side population phenotype. Blockade of the ABC transporter could increase sensitivity to temozolomide and temozolomide‑induced apoptosis in C6 cells. Collectively, these data indicated that drug resistance of C6 cells was mediated by the side population phenotype rather than by cancer stem cells.
Collapse
Affiliation(s)
- Ya Xu
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Xiangcai Yang
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Shuting Mei
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Yi Sun
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jiejing Li
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
49
|
Ishihara E, Takahashi S, Fukaya R, Ohta S, Yoshida K, Toda M. Identification of KLRC2 as a candidate marker for brain tumor-initiating cells. Neurol Res 2019; 41:1043-1049. [PMID: 31556357 DOI: 10.1080/01616412.2019.1672390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: Brain tumor-initiating cells are characterized by their features of self-renewal, multi-lineage differentiation, and tumorigenicity. We analyzed the gene expression of brain tumor-initiating cells to identify their novel cellular markers. Methods: We performed cDNA microarray, in silico expressed sequence tags (ESTs), RT-PCR, and q-PCR analyses. Results: We identified 10 genes that were more highly expressed in brain tumor-initiating cells than in neural stem cells. In addition, we identified 10 other genes that were more highly expressed in brain tumor-initiating cells than in glioma cell line cells from the cDNA microarray analysis. Using the EST database, we looked to see if the 20 genes were expressed more highly in gliomas, compared with normal adult brains. Among the 20 genes, five (KLRC2, HOXB2, KCNJ2, KLRC1, and COL20A1) were expressed more than twice in glioma samples, compared with normal adult brains, and, therefore, were referred for further evaluation. RT-PCR was conducted using cDNA samples obtained from neural stem cells, normal brain tissue, fetal brain tissue, glioma cell lines, and glioma tumor-initiating cell lines. KLRC2, a transmembrane activating receptor in natural killer cells, was expressed more highly in glioma-initiating cells than in neural stem cell lines or normal adult brain tissue. The q-PCR analysis revealed that expression of KLRC2 was significantly higher in brain tumor-initiating cells compared to normal brain controls. Conclusion: KLRC2 could be a novel cellular marker for brain tumor-initiating cells.
Collapse
Affiliation(s)
- Eriko Ishihara
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| | - Raita Fukaya
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| | - Shigeki Ohta
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine , Tokyo , Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine , Tokyo , Japan
| |
Collapse
|
50
|
Butturini E, Carcereri de Prati A, Boriero D, Mariotto S. Tumor Dormancy and Interplay with Hypoxic Tumor Microenvironment. Int J Mol Sci 2019; 20:ijms20174305. [PMID: 31484342 PMCID: PMC6747268 DOI: 10.3390/ijms20174305] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment is a key factor in disease progression, local resistance, immune-escaping, and metastasis. The rapid proliferation of tumor cells and the aberrant structure of the blood vessels within tumors result in a marked heterogeneity in the perfusion of the tumor tissue with regions of hypoxia. Although most of the tumor cells die in these hypoxic conditions, a part of them can adapt and survive for many days or months in a dormant state. Dormant tumor cells are characterized by cell cycle arrest in G0/G1 phase as well as a low metabolism, and are refractive to common chemotherapy, giving rise to metastasis. Despite these features, the cells retain their ability to proliferate when conditions improve. An understanding of the regulatory machinery of tumor dormancy is essential for identifying early cancer biomarkers and could provide a rationale for the development of novel agents to target dormant tumor cell populations. In this review, we examine the current knowledge of the mechanisms allowing tumor dormancy and discuss the crucial role of the hypoxic microenvironment in this process.
Collapse
Affiliation(s)
- Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| | - Diana Boriero
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| |
Collapse
|