1
|
Bian R, Shang Y, Xu N, Liu B, Ma Y, Li H, Chen J, Yao Q. HDAC inhibitor enhances ferroptosis susceptibility of AML cells by stimulating iron metabolism. Cell Signal 2025; 127:111583. [PMID: 39756501 DOI: 10.1016/j.cellsig.2024.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Acute Myeloid Leukemia (AML) are challenging blood cancers with limited long-term survival rates, necessitating novel therapeutic strategies. This study explored the role of Histone deacetylase (HDAC) inhibitors in enhancing ferroptosis in AML cells by modulating iron metabolism. We demonstrated that HDAC inhibitors (Entinostat and Vorinostat) sensitize AML cells to ferroptosis both in vitro and in vivo. Mechanistically, we show that HDAC inhibitor treatment upregulated the expression of iron metabolism genes that lead to increased labile iron pool. Notably, NCOA4, a ferritin degradation mediator, and HMOX1/2 proteins, involved in heme breakdown, were identified as critical contributors to this process. The functional role of these genes was confirmed through CRISPR-Cas9 mediated knockouts, which significantly rescued cells from HDAC-induced ferroptosis sensitivity. Our results suggest a novel therapeutic approach for AML, where combining HDAC inhibitors with ferroptosis inducers could exploit the disrupted iron metabolism in AML cells. This study highlights the potential of HDAC inhibitors to modulate iron metabolism pathways, offering new insights into the treatment of these malignancies.
Collapse
Affiliation(s)
- Ruipeng Bian
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Yingying Shang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Nahua Xu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Baiping Liu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Yanni Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Jieping Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Mao Z, Mu J, Gao Z, Huang S, Chen L. Biological Functions and Potential Therapeutic Significance of O-GlcNAcylation in Hepatic Cellular Stress and Liver Diseases. Cells 2024; 13:805. [PMID: 38786029 PMCID: PMC11119800 DOI: 10.3390/cells13100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
O-linked-β-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Junpeng Mu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China;
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| |
Collapse
|
3
|
Khvorost D, Kendall B, Jazirehi AR. Immunotherapy of Hematological Malignancies of Human B-Cell Origin with CD19 CAR T Lymphocytes. Cells 2024; 13:662. [PMID: 38667277 PMCID: PMC11048755 DOI: 10.3390/cells13080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL) are hematological malignancies with high incidence rates that respond relatively well to conventional therapies. However, a major issue is the clinical emergence of patients with relapsed or refractory (r/r) NHL or ALL. In such circumstances, opportunities for complete remission significantly decline and mortality rates increase. The recent FDA approval of multiple cell-based therapies, Kymriah (tisagenlecleucel), Yescarta (axicabtagene ciloleucel), Tecartus (Brexucabtagene autoleucel KTE-X19), and Breyanzi (Lisocabtagene Maraleucel), has provided hope for those with r/r NHL and ALL. These new cell-based immunotherapies use genetically engineered chimeric antigen receptor (CAR) T-cells, whose success can be attributed to CAR's high specificity in recognizing B-cell-specific CD19 surface markers present on various B-cell malignancies and the subsequent initiation of anti-tumor activity. The efficacy of these treatments has led to promising results in many clinical trials, but relapses and adverse reactions such as cytokine release syndrome (CRS) and neurotoxicity (NT) remain pervasive, leaving areas for improvement in current and subsequent trials. In this review, we highlight the current information on traditional treatments of NHL and ALL, the design and manufacturing of various generations of CAR T-cells, the FDA approval of Kymriah, Yescarta Tecartus, and Breyanzi, and a summary of prominent clinical trials and the notable disadvantages of treatments. We further discuss approaches to potentially enhance CAR T-cell therapy for these malignancies, such as the inclusion of a suicide gene and use of FDA-approved drugs.
Collapse
Affiliation(s)
- Darya Khvorost
- Department of Life Sciences, Los Angeles City College (LACC), 855 N. Vermont Ave., Los Angeles, CA 90029, USA or (B.K.)
| | - Brittany Kendall
- Department of Life Sciences, Los Angeles City College (LACC), 855 N. Vermont Ave., Los Angeles, CA 90029, USA or (B.K.)
| | - Ali R. Jazirehi
- Department of Life Sciences, Los Angeles City College (LACC), 855 N. Vermont Ave., Los Angeles, CA 90029, USA or (B.K.)
- Department of Biological Sciences, College of Natural and Social Sciences, California State University, Los Angeles (CSULA), Los Angeles, CA 90032, USA
| |
Collapse
|
4
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
5
|
Laschuk Herlinger A, Lovatto Michaelsen G, Sinigaglia M, Fratini L, Nogueira Debom G, Braganhol E, Brunetto de Farias C, Lunardi Brunetto A, Tesainer Brunetto A, da Cunha Jaeger M, Roesler R. Modulation of Viability, Proliferation, and Stemness by Rosmarinic Acid in Medulloblastoma Cells: Involvement of HDACs and EGFR. Neuromolecular Med 2023; 25:573-585. [PMID: 37740824 DOI: 10.1007/s12017-023-08758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023]
Abstract
Medulloblastoma (MB) is a heterogeneous group of malignant pediatric brain tumors, divided into molecular groups with distinct biological features and prognoses. Currently available therapy often results in poor long-term quality of life for patients, which will be afflicted by neurological, neuropsychiatric, and emotional sequelae. Identifying novel therapeutic agents capable of targeting the tumors without jeopardizing patients' quality of life is imperative. Rosmarinic acid (RA) is a plant-derived compound whose action against a series of diseases including cancer has been investigated, with no side effects reported so far. Previous studies have not examined whether RA has effects in MB. Here, we show RA is cytotoxic against human Daoy (IC50 = 168 μM) and D283 (IC50 = 334 μM) MB cells. Exposure to RA for 48 h reduced histone deacetylase 1 (HDAC1) expression while increasing H3K9 hyperacetylation, reduced epidermal growth factor (EGFR) expression, and inhibited EGFR downstream targets extracellular-regulated kinase (ERK)1/2 and AKT in Daoy cells. These modifications were accompanied by increased expression of CDKN1A/p21, reduced expression of SOX2, and a decrease in proliferative rate. Treatment with RA also reduced cancer stem cell markers expression and neurosphere size. Taken together, our findings indicate that RA can reduce cell proliferation and stemness and induce cell cycle arrest in MB cells. Mechanisms mediating these effects may include targeting HDAC1, EGFR, and ERK signaling, and promoting p21 expression, possibly through an increase in H3K9ac and AKT deactivation. RA should be further investigated as a potential anticancer agent in experimental MB.
Collapse
Affiliation(s)
- Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil.
| | - Gustavo Lovatto Michaelsen
- Graduate Program in Bioinformatics, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-400, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Marialva Sinigaglia
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Graduate Program in Bioinformatics, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-400, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Gabriela Nogueira Debom
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir Lunardi Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS, 90035-003, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
6
|
Rajaselvi ND, Jida MD, Ajeeshkumar KK, Nair SN, John P, Aziz Z, Nisha AR. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 2023; 55:1803-1817. [PMID: 37389730 DOI: 10.1007/s00726-023-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.
Collapse
Affiliation(s)
- N Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - M D Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - K K Ajeeshkumar
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Suresh N Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - Preethy John
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, 673 576, India
| | - Zarina Aziz
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India.
| |
Collapse
|
7
|
Duan L, Tadi MJ, Maki CG. CSE1L is a negative regulator of the RB-DREAM pathway in p53 wild-type NSCLC and can be targeted using an HDAC1/2 inhibitor. Sci Rep 2023; 13:16271. [PMID: 37759078 PMCID: PMC10533896 DOI: 10.1038/s41598-023-43218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
P53 represses transcription by activating p21 expression and promoting formation of RB1-E2F1 and RBL1/RBL2-DREAM transcription repressor complexes. The DREAM complex is composed of DP1, RB-family proteins RBL1 or RBL2 (p107/p130), E2F4/5, and MuvB. We recently reported RBL2-DREAM contributes to improved therapy responses in p53 wild-type NSCLC cells and improved outcomes in NSCLC patients whose tumors express wild-type p53. In the current study we identified CSE1L as a novel inhibitor of the RBL2-DREAM pathway and target to activate RBL2-DREAM in NSCLC cells. CSE1L is an oncoprotein that maintains repression of genes that can be reactivated by HDAC inhibitors. Mocetinostat is a HDAC inhibitor in clinical trials with selectivity against HDACs 1 and 2. Knockdown of CSE1L in NSCLC cells or treatment with mocetinostat increased p21, activated RB1 and RBL2, repressed DREAM target genes, and induced toxicity in a manner that required wild-type p53. Lastly, we found high levels of CSE1L and specific DREAM-target genes are candidate markers to identify p53 wild-type NSCLCs most responsive to mocetinostat. Thus, we identified CSE1L as a critical negative regulator of the RB-DREAM pathway in p53 wild-type NSCLC that can be indirectly targeted with HDAC1/2 inhibitors (mocetinostat) in current clinical trials. High expression of CSE1L and DREAM target genes could serve as a biomarker to identify p53 wild-type NSCLCs most responsive to this HDAC1/2 inhibitor.
Collapse
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Street, AcFac 507, Chicago, IL, 60612, USA
| | - Mehrdad Jafari Tadi
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Street, AcFac 507, Chicago, IL, 60612, USA
| | - Carl G Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Street, AcFac 507, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Gao J, Han S, Gu J, Wu C, Mu X. The Prognostic and Therapeutic Role of Histone Acetylation Modification in LIHC Development and Progression. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1682. [PMID: 37763801 PMCID: PMC10536947 DOI: 10.3390/medicina59091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: The modification of histone acetylation plays a vital role in regulating tumor occurrence and development, but the interaction between histone acetylation modulator genes and the liver hepatocellular carcinoma (LIHC) microenvironment, as well as immunotherapy, has not been investigated. Materials and Methods: Analysis of all statistical data was carried out using R software (Version 4.2.0) and the online tool Sangerbox. Comprehensive bioinformatics analysis, including signature construction and validation, functional analyses, immune and genomic features analyses, and immunotherapy prediction analyses, were performed to explore the prognostic and therapeutic role of histone acetylation modulator genes in LIHC development and progression. Results: The LIHC cohort from The Cancer Genome Atlas (TCGA) database was selected as the training cohort; the GSE76427 cohort from the Gene Expression Omnibus (GEO) database and the LIRI-JP cohort from the International Cancer Genome Consortium (ICGC) database were selected as the validation cohorts. The histone acetylation modulator gene-based prognostic signature was constructed and validated successfully. Immune infiltration analysis showed that most immune cells and immune functions were enriched in patients with high histone acetylation risk scores (HARS). Additionally, high levels of checkpoint inhibitors (ICIs) and human leukocyte antigens (HLAs) were also observed in high HARS patients. Meanwhile, TIDE algorithm analysis was conducted to explore the relationship between HARS and immunotherapy response, and submap algorithm analysis was used for the verification of the results, from which we found that high HAPS patients were more likely to respond to immunotherapy. Conclusions: Our findings revealed that the histone acetylation modulator genes, particularly for KAT21, SIRT6, and HAT1, may have the potential to function as a new prognostic marker and therapeutic target for LIHC.
Collapse
Affiliation(s)
- Ji Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| | - Chen Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| | - Xiaoxin Mu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (J.G.)
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing 210029, China
| |
Collapse
|
9
|
Björnson Y, Huang CY, Rollins JL, Castañeda G, Kaur N, Yamamoto E, Johnston JM. The effect of histone deacetylase inhibitors on the efficiency of the CRISPR/Cas9 system. Biochem Biophys Rep 2023; 35:101513. [PMID: 37521376 PMCID: PMC10372373 DOI: 10.1016/j.bbrep.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
The CRISPR/Cas9 technology is a prominent genome-editing tool capable of producing a double-strand break in the genome. However, the modification of hematopoietic stem cells via the homology-directed repair pathway is still inefficient. Therefore, we hypothesize that histone deacetylase inhibitors, such as valproic acid (VPA) and sodium butyrate (NaB), could enhance HDR efficiency by increasing the accessibility of the genome-editing machinery. To address the potential utilization of HDAC inhibitors therapeutically, we began by assessing the effect of VPA and NaB on two cell lines representative of the two hematopoietic stem cell lineages. No statistically significant effect on cell growth or viability was observed at concentrations as high as 5 mM. At a concentration as low as 0.005 mM NaB, an enhancement in CRISPR cutting efficiency was evidenced in both cell lines. This enhancement did not appear to be locus-specific. However, an enhancement in cutting efficiency following VPA treatment does appear to be. HDR efficiency was enhanced greater than two-fold with the use of 0.005 mM VPA. These results are promising and suggest the consideration of treatment with an HDAC inhibitor in CRISPR/Cas9 genome editing protocols.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jennifer M. Johnston
- 1 Washington Square, Department of Biological Sciences, San José State University, San José, CA, 95112, USA
| |
Collapse
|
10
|
Li Z, Zou J, Chen X. In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209529. [PMID: 36445169 DOI: 10.1002/adma.202209529] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Emerging as a potent anticancer treatment, subcellular targeted cancer therapy has drawn increasing attention, bringing great opportunities for clinical application. Here, two targeting strategies for four main subcellular organelles (mitochondria, lysosome, endoplasmic reticulum, and nucleus), including molecule- and nanomaterial (inorganic nanoparticles, micelles, organic polymers, and others)-based targeted delivery or therapeutic strategies, are summarized. Phototherapy, chemotherapy, radiotherapy, immunotherapy, and "all-in-one" combination therapy are among the strategies covered in detail. Such materials are constructed based on the specific properties and relevant mechanisms of organelles, enabling the elimination of tumors by inducing dysfunction in the corresponding organelles or destroying specific structures. The challenges faced by organelle-targeting cancer therapies are also summarized. Looking forward, a paradigm for organelle-targeting therapy with enhanced therapeutic efficacy compared to current clinical approaches is envisioned.
Collapse
Affiliation(s)
- Zheng Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
11
|
Chen J, Guanizo AC, Jakasekara WSN, Inampudi C, Luong Q, Garama DJ, Alamgeer M, Thakur N, DeVeer M, Ganju V, Watkins DN, Cain JE, Gough DJ. MYC drives platinum resistant SCLC that is overcome by the dual PI3K-HDAC inhibitor fimepinostat. J Exp Clin Cancer Res 2023; 42:100. [PMID: 37098540 PMCID: PMC10131464 DOI: 10.1186/s13046-023-02678-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer with an appalling overall survival of less than 5% (Zimmerman et al. J Thor Oncol 14:768-83, 2019). Patients typically respond to front line platinum-based doublet chemotherapy, but almost universally relapse with drug resistant disease. Elevated MYC expression is common in SCLC and has been associated with platinum resistance. This study evaluates the capacity of MYC to drive platinum resistance and through screening identifies a drug capable of reducing MYC expression and overcoming resistance. METHODS Elevated MYC expression following the acquisition of platinum resistance in vitro and in vivo was assessed. Moreover, the capacity of enforced MYC expression to drive platinum resistance was defined in SCLC cell lines and in a genetically engineered mouse model that expresses MYC specifically in lung tumors. High throughput drug screening was used to identify drugs able to kill MYC-expressing, platinum resistant cell lines. The capacity of this drug to treat SCLC was defined in vivo in both transplant models using cell lines and patient derived xenografts and in combination with platinum and etoposide chemotherapy in an autochthonous mouse model of platinum resistant SCLC. RESULTS MYC expression is elevated following the acquisition of platinum resistance and constitutively high MYC expression drives platinum resistance in vitro and in vivo. We show that fimepinostat decreases MYC expression and that it is an effective single agent treatment for SCLC in vitro and in vivo. Indeed, fimepinostat is as effective as platinum-etoposide treatment in vivo. Importantly, when combined with platinum and etoposide, fimepinostat achieves a significant increase in survival. CONCLUSIONS MYC is a potent driver of platinum resistance in SCLC that is effectively treated with fimepinostat.
Collapse
Affiliation(s)
- Jasmine Chen
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia
| | - Aleks C Guanizo
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia
| | - W Samantha N Jakasekara
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia
| | - Chaitanya Inampudi
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia
| | - Quinton Luong
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia
| | - Daniel J Garama
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia
| | - Muhammad Alamgeer
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Medical Oncology, Monash Health, Clayton, Australia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Nishant Thakur
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia
| | - Michael DeVeer
- Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Vinod Ganju
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB, R3E 0V9, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia
| | - Daniel J Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Vic, 3168, Australia.
| |
Collapse
|
12
|
Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98:193-209. [PMID: 36226409 PMCID: PMC9772153 DOI: 10.1002/ajh.26760] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 02/04/2023]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or the blood involvement are generally approached with systemic therapies, including biologic-response modifiers, histone deacetylase inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Alexandra C. Hristov
- Departments of Pathology and Dermatology, 2800 Plymouth Road, Building 35, Ann Arbor, MI 48109-2800
| | - Trilokraj Tejasvi
- Department of Dermatology, 1910 Taubman Center, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Ryan A. Wilcox
- Correspondence to: Ryan Wilcox, MD, PhD, Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, 1500 E. Medical Center Drive, Room 4310 CC, Ann Arbor, MI 48109-5948, Phone: (734) 615-9799, Fax: (734) 936-7376,
| |
Collapse
|
13
|
Dual LSD1 and HDAC6 Inhibition Induces Doxorubicin Sensitivity in Acute Myeloid Leukemia Cells. Cancers (Basel) 2022; 14:cancers14236014. [PMID: 36497494 PMCID: PMC9737972 DOI: 10.3390/cancers14236014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Defects in epigenetic pathways are key drivers of oncogenic cell proliferation. We developed a LSD1/HDAC6 multitargeting inhibitor (iDual), a hydroxamic acid analogue of the clinical candidate LSD1 inhibitor GSK2879552. iDual inhibits both targets with IC50 values of 540, 110, and 290 nM, respectively, against LSD1, HDAC6, and HDAC8. We compared its activity to structurally similar control probes that act by HDAC or LSD1 inhibition alone, as well as an inactive null compound. iDual inhibited the growth of leukemia cell lines at a higher level than GSK2879552 with micromolar IC50 values. Dual engagement with LSD1 and HDAC6 was supported by dose dependent increases in substrate levels, biomarkers, and cellular thermal shift assay. Both histone methylation and acetylation of tubulin were increased, while acetylated histone levels were only mildly affected, indicating selectivity for HDAC6. Downstream gene expression (CD11b, CD86, p21) was also elevated in response to iDual treatment. Remarkably, iDual synergized with doxorubicin, triggering significant levels of apoptosis with a sublethal concentration of the drug. While mechanistic studies did not reveal changes in DNA repair or drug efflux pathways, the expression of AGPAT9, ALOX5, BTG1, HIPK2, IFI44L, and LRP1, previously implicated in doxorubicin sensitivity, was significantly elevated.
Collapse
|
14
|
Bollmann LM, Skerhut AJ, Asfaha Y, Horstick N, Hanenberg H, Hamacher A, Kurz T, Kassack MU. The Novel Class IIa Selective Histone Deacetylase Inhibitor YAK540 Is Synergistic with Bortezomib in Leukemia Cell Lines. Int J Mol Sci 2022; 23:13398. [PMID: 36362189 PMCID: PMC9656955 DOI: 10.3390/ijms232113398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/30/2023] Open
Abstract
The treatment of leukemias, especially acute myeloid leukemia (AML), is still a challenge as can be seen by poor 5-year survival of AML. Therefore, new therapeutic approaches are needed to increase the treatment success. Epigenetic aberrations play a role in pathogenesis and resistance of leukemia. Histone deacetylase (HDAC) inhibitors (HDACIs) can normalize epigenetic disbalance by affecting gene expression. In order to decrease side effects of so far mainly used pan-HDACIs, this paper introduces the novel highly selective class IIa HDACI YAK540. A synergistic cytotoxic effect was observed between YAK540 and the proteasome inhibitor bortezomib (BTZ) as analyzed by the Chou-Talalay method. The combination of YAK540 and BTZ showed generally increased proapoptotic gene expression, increased p21 expression, and synergistic, caspase 3/7-mediated apoptosis. Notably, the cytotoxicity of YAK540 is much lower than that of pan-HDACIs. Further, combinations of YAK540 and BTZ are clearly less toxic in non-cancer HEK293 compared to HL-60 leukemia cells. Thus, the synergistic combination of class IIa selective HDACIs such as YAK540 and proteasome inhibitors represents a promising approach against leukemias to increase the anticancer effect and to reduce the general toxicity of HDACIs.
Collapse
Affiliation(s)
- Lukas M. Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Alexander J. Skerhut
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Nadine Horstick
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany (T.K.)
| |
Collapse
|
15
|
Haritwal T, Kalra N, Agrawala PK. Mitigation of radiation injury to reproductive system of male mice by Trichostatin A. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503522. [PMID: 36031339 DOI: 10.1016/j.mrgentox.2022.503522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Trichostatin A (TSA), derived from the bacteria Streptomyces hygroscopicus, is a hydroxamic acid having various biological properties such as histone deacetylase inhibition, anticancer and radiomitigative action. However the mitigative activity of TSA against radiation-induced damages in the mouse reproductive system has not yet been elucidated. The present study unraveled the effects of 2 Gy whole body irradiation (60Co γ- radiation) on C57BL/6 mice male reproductive system including structural damages to testes, increase in apoptosis and reduction in germ cell viability, reduced fertility as well as increased genomic instability in the next generation. Moreover, hematological study and micronuclei assay were used to record chances of radiation-induced hematologic cancer and disruption of genomic integrity in F1 generation. Interestingly, TSA administration 1 and 24 h post-irradiation attenuated radiation-induced morphological damage and cellular apoptosis in testes. In male mice, TSA restored hematological parameters and micronuclei frequency to normal levels, restored sperm viability, and helped them overcome radiation-induced temporary sterility 5 weeks after the irradiation. Thus our results showed that TSA reduced the probability of radiation-induced hematologic cancers as well as genotoxicity and restored genomic integrity in the progenies of paternally exposed mice by reducing radiation-induced apoptosis in spermatogenic cells and restoring cell proliferation. This study suggested that TSA could be used as potential radiomitigator for male reproductive system.
Collapse
Affiliation(s)
- Teena Haritwal
- Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Namita Kalra
- Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Paban K Agrawala
- Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi 110054, India.
| |
Collapse
|
16
|
Rangan P, Mondino A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J Immunother Cancer 2022; 10:jitc-2021-004147. [PMID: 35882448 PMCID: PMC9330349 DOI: 10.1136/jitc-2021-004147] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
The gut microbiota and its metabolites have been shown to play a pivotal role in the regulation of metabolic, endocrine and immune functions. Though the exact mechanism of action remains to be fully elucidated, available knowledge supports the ability of microbiota-fermented short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, to influence epigenetic and metabolic cascades controlling gene expression, chemotaxis, differentiation, proliferation, and apoptosis in several non-immune and immune cell subsets. While used as preferred metabolic substrates and sources of energy by colonic gut epithelial cells, most recent evidence indicates that these metabolites regulate immune functions, and in particular fine-tune T cell effector, regulatory and memory phenotypes, with direct in vivo consequences on the efficacy of chemotherapy, radiotherapy and immunotherapy. Most recent data also support the use of these metabolites over the course of T cell manufacturing, paving the way for refined adoptive T cell therapy engineering. Here, we review the most recent advances in the field, highlighting in vitro and in vivo evidence for the ability of SCFAs to shape T cell phenotypes and functions.
Collapse
Affiliation(s)
- Priya Rangan
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Anna Mondino
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
17
|
Sriram S, Mehkri Y, Quintin S, Lucke-Wold B. Shared pathophysiology: Understanding stroke and Alzheimer's disease. Clin Neurol Neurosurg 2022; 218:107306. [PMID: 35636382 DOI: 10.1016/j.clineuro.2022.107306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease and stroke share several known vascular risk factors. The pathophysiology and whether one predisposes to the other is a topic of ongoing investigation. In this critical review, we highlight what is known about each pathway and the shared potential mechanisms. We offer insight into topics that warrant further investigation. We address topics of both neurodegeneration and secondary cascades. Furthermore, the concept of targeting secondary mechanisms early might be a viable treatment option for ongoing preventative measures. The review is intended to serve as a catalyst for further scientific inquiry into this important topic.
Collapse
Affiliation(s)
- Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Stephan Quintin
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | |
Collapse
|
18
|
Consalvi S, Tucciarone L, Macrì E, De Bardi M, Picozza M, Salvatori I, Renzini A, Valente S, Mai A, Moresi V, Puri PL. Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibro-adipogenic progenitors. EMBO Rep 2022; 23:e54721. [PMID: 35383427 PMCID: PMC9171680 DOI: 10.15252/embr.202254721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological treatment of Duchenne muscular dystrophy (DMD) with histone deacetylase inhibitors (HDACi) is currently being tested in clinical trials; however, pre-clinical studies indicated that the beneficial effects of HDACi are restricted to early stages of disease. We show that FAPs from late-stage mdx mice exhibit aberrant HDAC activity and genome-wide alterations of histone acetylation that are not fully reversed by HDACi. In particular, combinatorial H3K27 and/or H3K9/14 hypo-acetylation at promoters of genes required for cell cycle activation and progression, as well as glycolysis, are associated with their downregulation in late-stage mdx FAPs. These alterations could not be reversed by HDACi, due to a general resistance to HDACi-induced H3K9/14 hyperacetylation. Conversely, H3K9/14 hyper-acetylation at promoters of Senescence Associated Secretory Phenotype (SASP) genes is associated with their upregulation in late-stage mdx FAPs; however, HDACi could reduce promoter acetylation and blunt SASP gene activation. These data reveal that during DMD progression FAPs develop disease-associated features reminiscent of cellular senescence, through epigenetically distinct and pharmacologically dissociable events. They also indicate that HDACi might retain anti-fibrotic effects at late stages of DMD.
Collapse
Affiliation(s)
- Silvia Consalvi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Luca Tucciarone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Elisa Macrì
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Marco De Bardi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Mario Picozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Illari Salvatori
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), Rome Unit, Rome, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
19
|
Chen C, Liu Z, Liu J, Zhang W, Zhou D, Zhang Y. Case Report: Outcome and Adverse Events of Anti-PD-1 Antibody Plus Chidamide for Relapsed/Refractory Sézary Syndrome: Case Series and A Literature Review. Front Oncol 2022; 12:842123. [PMID: 35387123 PMCID: PMC8977601 DOI: 10.3389/fonc.2022.842123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sézary syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphoma with a poor prognosis and survival rate. Existing therapies for relapsed/refractory (R/R) SS have a low response rate with a short duration time. Herein, we presented three cases of R/R SS treated with the anti-PD-1 antibody and chidamide. Case 1 and case 2 showed the potential efficacy of this combination therapy with a long duration time. Case 2 and case 3 both showed that the patients developed acute and transient worsening of erythroderma and pruritus after anti-PD-1 antibody infusion, and this flare reaction was associated with transient decreased leukocytes and lymphocytes in peripheral blood. To the best of our knowledge, this is the first report of the anti-PD-1 antibody combined with chidamide for treatment of R/R SS. This report suggests that the combination therapy may be a new and effective treatment and that further clinical trials are needed to prove it and elucidate the mechanism of this combination therapy and its flare reaction.
Collapse
Affiliation(s)
- Chao Chen
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | - Zhaorui Liu
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Jie Liu
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, China
| | - Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | - Yan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
20
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Synthesis and biological evaluation of aminobenzamides containing purine moiety as class I histone deacetylases inhibitors. Bioorg Med Chem 2021; 56:116599. [DOI: 10.1016/j.bmc.2021.116599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/26/2023]
|
22
|
Dallavalle S, Musso L, Cincinelli R, Darwiche N, Gervasoni S, Vistoli G, Guglielmi MB, La Porta I, Pizzulo M, Modica E, Prosperi F, Signorino G, Colelli F, Cardile F, Fucci A, D'Andrea EL, Riccio A, Pisano C. Antitumor activity of novel POLA1-HDAC11 dual inhibitors. Eur J Med Chem 2021; 228:113971. [PMID: 34772529 DOI: 10.1016/j.ejmech.2021.113971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022]
Abstract
Hybrid molecules targeting simultaneously DNA polymerase α (POLA1) and histone deacetylases (HDACs) were designed and synthesized to exploit a potential synergy of action. Among a library of screened molecules, MIR002 and GEM144 showed antiproliferative activity at nanomolar concentrations on a panel of human solid and haematological cancer cell lines. In vitro functional assays confirmed that these molecules inhibited POLA1 primer extension activity, as well as HDAC11. Molecular docking studies also supported these findings. Mechanistically, MIR002 and GEM144 induced acetylation of p53, activation of p21, G1/S cell cycle arrest, and apoptosis. Oral administration of these inhibitors confirmed their antitumor activity in in vivo models. In human non-small cancer cell (H460) xenografted in nude mice MIR002 at 50 mg/kg, Bid (qd × 5 × 3w) inhibited tumor growth (TGI = 61%). More interestingly, in POLA1 inhibitor resistant cells (H460-R9A), the in vivo combination of MIR002 with cisplatin showed an additive antitumor effect with complete disappearance of tumor masses in two animals at the end of the treatment. Moreover, in two human orthotopic malignant pleural mesothelioma xenografts (MM473 and MM487), oral treatments with MIR002 and GEM144 confirmed their significant antitumor activity (TGI = 72-77%). Consistently with recent results that have shown an inverse correlation between POLA1 expression and type I interferon levels, MIR002 significantly upregulated interferon-α in immunocompetent mice.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Raffaella Cincinelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano, 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano, 20133, Italy
| | - Mario B Guglielmi
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Ilaria La Porta
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Maddalena Pizzulo
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Elisa Modica
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Federica Prosperi
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Giacomo Signorino
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Fabiana Colelli
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Francesco Cardile
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Alessandra Fucci
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Egildo Luca D'Andrea
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Assunta Riccio
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Claudio Pisano
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy.
| |
Collapse
|
23
|
Xi M, Guo S, Bayin C, Peng L, Chuffart F, Bourova-Flin E, Rousseaux S, Khochbin S, Mi JQ, Wang J. Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia. Front Med 2021; 16:442-458. [PMID: 34669156 DOI: 10.1007/s11684-021-0877-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is one of the most dangerous hematological malignancies, with high tumor heterogeneity and poor prognosis. More than 60% of T-ALL patients carry NOTCH1 gene mutations, leading to abnormal expression of downstream target genes and aberrant activation of various signaling pathways. We found that chidamide, an HDAC inhibitor, exerts an antitumor effect on T-ALL cell lines and primary cells including an anti-NOTCH1 activity. In particular, chidamide inhibits the NOTCH1-MYC signaling axis by down-regulating the level of the intracellular form of NOTCH1 (NICD1) as well as MYC, partly through their ubiquitination and degradation by the proteasome pathway. We also report here the preliminary results of our clinical trial supporting that a treatment by chidamide reduces minimal residual disease (MRD) in patients and is well tolerated. Our results highlight the effectiveness and safety of chidamide in the treatment of T-ALL patients, including those with NOTCH1 mutations and open the way to a new therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Mengping Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Shanshan Guo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Caicike Bayin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Lijun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Florent Chuffart
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France
| | - Ekaterina Bourova-Flin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France
| | - Sophie Rousseaux
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China. .,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France.
| | - Saadi Khochbin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China. .,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.
| |
Collapse
|
24
|
Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2021 update on diagnosis, risk-stratification, and management. Am J Hematol 2021; 96:1313-1328. [PMID: 34297414 PMCID: PMC8486344 DOI: 10.1002/ajh.26299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multi-disciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with systemic therapies, including biologic-response modifiers, histone deacetylase inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Alexandra C. Hristov
- Departments of Pathology and Dermatology, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Trilokraj Tejasvi
- Director Cutaneous Lymphoma program, Department of Dermatology, A. Alfred Taubman Health Care Center, Ann Arbor, Michigan, USA
| | - Ryan A. Wilcox
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Johnson AM, Bennett PV, Sanidad KZ, Hoang A, Jardine JH, Keszenman DJ, Wilson PF. Evaluation of Histone Deacetylase Inhibitors as Radiosensitizers for Proton and Light Ion Radiotherapy. Front Oncol 2021; 11:735940. [PMID: 34513712 PMCID: PMC8426582 DOI: 10.3389/fonc.2021.735940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
Significant opportunities remain for pharmacologically enhancing the clinical effectiveness of proton and carbon ion-based radiotherapies to achieve both tumor cell radiosensitization and normal tissue radioprotection. We investigated whether pretreatment with the hydroxamate-based histone deacetylase inhibitors (HDACi) SAHA (vorinostat), M344, and PTACH impacts radiation-induced DNA double-strand break (DSB) induction and repair, cell killing, and transformation (acquisition of anchorage-independent growth in soft agar) in human normal and tumor cell lines following gamma ray and light ion irradiation. Treatment of normal NFF28 primary fibroblasts and U2OS osteosarcoma, A549 lung carcinoma, and U87MG glioma cells with 5–10 µM HDACi concentrations 18 h prior to cesium-137 gamma irradiation resulted in radiosensitization measured by clonogenic survival assays and increased levels of colocalized gamma-H2AX/53BP1 foci induction. We similarly tested these HDACi following irradiation with 200 MeV protons, 290 MeV/n carbon ions, and 350 MeV/n oxygen ions delivered in the Bragg plateau region. Unlike uniform gamma ray radiosensitization, effects of HDACi pretreatment were unexpectedly cell type and ion species-dependent with C-12 and O-16 ion irradiations showing enhanced G0/G1-phase fibroblast survival (radioprotection) and in some cases reduced or absent tumor cell radiosensitization. DSB-associated foci levels were similar for proton-irradiated DMSO control and SAHA-treated fibroblast cultures, while lower levels of induced foci were observed in SAHA-pretreated C-12 ion-irradiated fibroblasts. Fibroblast transformation frequencies measured for all radiation types were generally LET-dependent and lowest following proton irradiation; however, both gamma and proton exposures showed hyperlinear transformation induction at low doses (≤25 cGy). HDACi pretreatments led to overall lower transformation frequencies at low doses for all radiation types except O-16 ions but generally led to higher transformation frequencies at higher doses (>50 cGy). The results of these in vitro studies cast doubt on the clinical efficacy of using HDACi as radiosensitizers for light ion-based hadron radiotherapy given the mixed results on their radiosensitization effectiveness and related possibility of increased second cancer induction.
Collapse
Affiliation(s)
- Alicia M Johnson
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Paula V Bennett
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Katherine Z Sanidad
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Anthony Hoang
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - James H Jardine
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Deborah J Keszenman
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States.,Laboratorio de Radiobiología Médica y Ambiental, Grupo de Biofisicoquímica, Centro Universitario Regional Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
| | - Paul F Wilson
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States.,Department of Radiation Oncology, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
26
|
Medwig-Kinney TN, Palmisano NJ, Matus DQ. Deletion of a putative HDA-1 binding site in the hlh-2 promoter eliminates expression in C. elegans dorsal uterine cells. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000449. [PMID: 34514358 PMCID: PMC8414078 DOI: 10.17912/micropub.biology.000449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
The helix-loop-helix transcription factor hlh-2 (E/Daughterless) has been shown to play an important role in regulating cell fate patterning, cell cycle, and basement membrane invasion in the context of the development of the C. elegans somatic gonad. Here, using CRISPR/Cas9 genome engineering, we generated a new hlh-2 allele (hlh-2(Δ-1303-702)) in the endogenous, GFP-tagged hlh-2 locus. This allele represents a deletion of a 601 bp region in the hlh-2 promoter that contains a putative binding site of the histone deacetylase hda-1 (HDAC) according to publicly available ChIP-sequencing data. Strikingly, we find that HLH-2 expression is virtually absent in the dorsal uterine cells of hlh-2(Δ-1303-702) animals compared to wild type controls. Levels of HLH-2 in the anchor cell and ventral uterine cells are only modestly reduced in the mutant; however, this does not seem to be functionally significant based on the lack of relevant phenotypes and expression levels of a downstream gene, NHR-67 (TLX/Tailless/NR2E1), in these cells. Taken together, these results support growing evidence that HDACs can potentially positively regulate transcription and provide a new reagent for studying hlh-2 regulation.
Collapse
Affiliation(s)
| | | | - David Q Matus
- Stony Brook University,
Correspondence to: David Q Matus ()
| |
Collapse
|
27
|
Whittle SB, Offer K, Roberts RD, LeBlanc A, London C, Majzner RG, Huang AY, Houghton P, Cordero EAS, Grohar PJ, Isakoff M, Bishop MW, Stewart E, Slotkin EK, Greengard E, Borinstein SC, Navid F, Gorlick R, Janeway KA, Reed DR, Hingorani P. Charting a path for prioritization of novel agents for clinical trials in osteosarcoma: A report from the Children's Oncology Group New Agents for Osteosarcoma Task Force. Pediatr Blood Cancer 2021; 68:e29188. [PMID: 34137164 PMCID: PMC8316376 DOI: 10.1002/pbc.29188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/01/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is the most common bone tumor in children and young adults. Metastatic and relapsed disease confer poor prognosis, and there have been no improvements in outcomes for several decades. The disease's biological complexity, lack of drugs developed specifically for osteosarcoma, imperfect preclinical models, and limits of existing clinical trial designs have contributed to lack of progress. The Children's Oncology Group Bone Tumor Committee established the New Agents for Osteosarcoma Task Force to identify and prioritize agents for inclusion in clinical trials. The group identified multitargeted tyrosine kinase inhibitors, immunotherapies targeting B7-H3, CD47-SIRPα inhibitors, telaglenastat, and epigenetic modifiers as the top agents of interest. Only multitargeted tyrosine kinase inhibitors met all criteria for frontline evaluation and have already been incorporated into an upcoming phase III study concept. The task force will continue to reassess identified agents of interest as new data become available and evaluate novel agents using this method.
Collapse
Affiliation(s)
- Sarah B. Whittle
- Texas Children’s Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Katharine Offer
- Joseph M. Sanzari Children’s Hospital, Hackensack Meridian Health, Hackensack, NJ
| | - Ryan D. Roberts
- Center for Childhood Cancer and Blood Disease, Nationwide Children’s Hospital, Columbus, OH
| | - Amy LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cheryl London
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - Robbie G. Majzner
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - Alex Y. Huang
- Case Western Reserve University School of Medicine and UH Rainbow Babies & Children’s Hospital, Cleveland, OH
| | - Peter Houghton
- Greehy Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX
| | - E. Alejandro Sweet Cordero
- Benioff Children’s Hospitals, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | | | - Michael Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT
| | - Michael W. Bishop
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Scott C. Borinstein
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Fariba Navid
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Damon R. Reed
- Johns Hopkins All Children’s Hospital, St. Petersburg, FL and Moffitt Cancer Center Department of Individualized Cancer Management, Tampa, FL
| | - Pooja Hingorani
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
28
|
Truong AS, Zhou M, Krishnan B, Utsumi T, Manocha U, Stewart KG, Beck W, Rose TL, Milowsky MI, He X, Smith CC, Bixby LM, Perou CM, Wobker SE, Bailey ST, Vincent BG, Kim WY. Entinostat induces antitumor immune responses through immune editing of tumor neoantigens. J Clin Invest 2021; 131:e138560. [PMID: 34396985 DOI: 10.1172/jci138560] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Although immune-checkpoint inhibitors (ICIs) have been a remarkable advancement in bladder cancer treatment, the response rate to single-agent ICIs remains suboptimal. There has been substantial interest in the use of epigenetic agents to enhance ICI efficacy, although precisely how these agents potentiate ICI response has not been fully elucidated. We identified entinostat, a selective HDAC1/3 inhibitor, as a potent antitumor agent in our immune-competent bladder cancer mouse models (BBN963 and BBN966). We demonstrate that entinostat selectively promoted immune editing of tumor neoantigens, effectively remodeling the tumor immune microenvironment, resulting in a robust antitumor response that was cell autonomous, dependent upon antigen presentation, and associated with increased numbers of neoantigen-specific T cells. Finally, combination treatment with anti-PD-1 and entinostat led to complete responses and conferred long-term immunologic memory. Our work defines a tumor cell-autonomous mechanism of action for entinostat and a strong preclinical rationale for the combined use of entinostat and PD-1 blockade in bladder cancer.
Collapse
Affiliation(s)
- Andrew S Truong
- Lineberger Comprehensive Cancer Center.,Department of Pharmacology
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center
| | | | | | | | | | | | - Tracy L Rose
- Lineberger Comprehensive Cancer Center.,Department of Medicine
| | | | | | | | | | - Charles M Perou
- Lineberger Comprehensive Cancer Center.,Department of Genetics.,Computational Medicine Program
| | - Sara E Wobker
- Lineberger Comprehensive Cancer Center.,Department of Pathology, and
| | | | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center.,Department of Medicine.,Computational Medicine Program.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center.,Department of Pharmacology.,Department of Medicine.,Department of Genetics
| |
Collapse
|
29
|
Peng Y, Tao H, Gao Y, Yang Y, Chen Z. Review and Prospect of Tissue-agnostic Targeted Strategies in Anticancer Therapies. Curr Top Med Chem 2021; 21:404-425. [PMID: 32543358 DOI: 10.2174/1568026620666200616143247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
Due to the increasing prevalence of cancer year by year, and the complexity and refractory nature of the disease itself, it is required to constantly innovate the development of new cancer treatment schemes. At the same time, the understanding of cancers has deepened, from the use of chemotherapy regimens with high toxicity and side effects, to the popularity of targeted drugs with specific targets, to precise treatments based on tumor characteristics rather than traditional anatomical location classification. In precision medicine, in the view of the specific cancer diseases and their biological characteristics, there is a great potential to develop tissue-agnostic targeted therapy with broad-spectrum anticancer significance. The present review has discussed tissue-agnostic targeted therapy based on the biological and genetic characteristics of cancers, expounded its theoretical basis and strategies for drug development. In addition, the feasible drug targets, FDA-approved drugs, as well as drug candidates in clinical trials have also been summarized. In conclusion, the "tissue-agnostic targeted therapy" is a breakthrough in anticancer therapies.
Collapse
Affiliation(s)
- Yu Peng
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yuanqing Gao
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Yang
- Xi'an Institute for Food and Drug Control, Xi'an Shaanxi 710054, China
| | - Zhiyong Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an Shaanxi 710003, China
| |
Collapse
|
30
|
Giardina SF, Valdambrini E, Warren JD, Barany F. PROTACs: Promising Approaches for Epigenetic Strategies to Overcome Drug Resistance. Curr Cancer Drug Targets 2021; 21:306-325. [PMID: 33535953 DOI: 10.2174/1568009621666210203110857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/26/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Epigenetic modulation of gene expression is essential for tissue-specific development and maintenance in mammalian cells. Disruption of epigenetic processes, and the subsequent alteration of gene functions, can result in inappropriate activation or inhibition of various cellular signaling pathways, leading to cancer. Recent advancements in the understanding of the role of epigenetics in cancer initiation and progression have uncovered functions for DNA methylation, histone modifications, nucleosome positioning, and non-coding RNAs. Epigenetic therapies have shown some promise for hematological malignancies, and a wide range of epigenetic-based drugs are undergoing clinical trials. However, in a dynamic survival strategy, cancer cells exploit their heterogeneous population which frequently results in the rapid acquisition of therapy resistance. Here, we describe novel approaches in drug discovery targeting the epigenome, highlighting recent advances the selective degradation of target proteins using Proteolysis Targeting Chimera (PROTAC) to address drug resistance.
Collapse
Affiliation(s)
- Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, Box 62, New York, NY, United States
| | - Elena Valdambrini
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, Box 62, New York, NY, United States
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Ave, Box 63, New York, NY, 10065, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, Box 62, New York, NY, United States
| |
Collapse
|
31
|
Effect of the HDAC Inhibitor on Histone Acetylation and Methyltransferases in A2780 Ovarian Cancer Cells. ACTA ACUST UNITED AC 2021; 57:medicina57050456. [PMID: 34066975 PMCID: PMC8151761 DOI: 10.3390/medicina57050456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
Background andObjective: Epigenetic modifications are believed to play a significant role in the development of cancer progression, growth, differentiation, and cell death. One of the most popular histone deacetylases inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, can directly activate p21WAF1/CIP1 gene transcription through hyperacetylation of histones by a p53 independent mechanism. In the present investigation, we evaluated the correlation between histone modifications and DNA methyltransferase enzyme levels following SAHA treatments in A2780 ovarian cancer cells. Materials and Methods: Acetylation of histones and methyltransferases levels were analyzed using RT2 profiler PCR array, immunoblotting, and immunofluorescence methods in 2D and 3D cell culture systems. Results: The inhibition of histone deacetylases (HDAC) activities by SAHA can reduce DNA methyl transferases / histone methyl transferases (DNMTs/HMTs) levels through induction of hyperacetylation of histones. Immunofluorescence analysis of cells growing in monolayers and spheroids revealed significant up-regulation of histone acetylation preceding the above-described changes. Conclusions: Our results depict an interesting interplay between histone hyperacetylation and a decrease in methyltransferase levels in ovarian cancer cells, which may have a positive impact on the overall outcomes of cancer treatment.
Collapse
|
32
|
Keenan EK, Zachman DK, Hirschey MD. Discovering the landscape of protein modifications. Mol Cell 2021; 81:1868-1878. [PMID: 33798408 PMCID: PMC8106652 DOI: 10.1016/j.molcel.2021.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Protein modifications modulate nearly every aspect of cell biology in organisms, ranging from Archaea to Eukaryotes. The earliest evidence of covalent protein modifications was found in the early 20th century by studying the amino acid composition of proteins by chemical hydrolysis. These discoveries challenged what defined a canonical amino acid. The advent and rapid adoption of mass-spectrometry-based proteomics in the latter part of the 20th century enabled a veritable explosion in the number of known protein modifications, with more than 500 discrete modifications counted today. Now, new computational tools in data science, machine learning, and artificial intelligence are poised to allow researchers to make significant progress in discovering new protein modifications and determining their function. In this review, we take an opportunity to revisit the historical discovery of key post-translational modifications, quantify the current landscape of covalent protein adducts, and assess the role that new computational tools will play in the future of this field.
Collapse
Affiliation(s)
- E Keith Keenan
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Derek K Zachman
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Division of Endocrinology, Metabolism, & Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
33
|
Zhao C, Tang C, Li C, Ning W, Hu Z, Xin L, Zhou HB, Huang J. Novel hybrid conjugates with dual estrogen receptor α degradation and histone deacetylase inhibitory activities for breast cancer therapy. Bioorg Med Chem 2021; 40:116185. [PMID: 33965842 DOI: 10.1016/j.bmc.2021.116185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Hormone therapy targeting estrogen receptors is widely used clinically for the treatment of breast cancer, such as tamoxifen, but most of them are partial agonists, which can cause serious side effects after long-term use. The use of selective estrogen receptor down-regulators (SERDs) may be an effective alternative to breast cancer therapy by directly degrading ERα protein to shut down ERα signaling. However, the solely clinically used SERD fulvestrant, is low orally bioavailable and requires intravenous injection, which severely limits its clinical application. On the other hand, double- or multi-target conjugates, which are able to synergize antitumor activity by different pathways, thus may enhance therapeutic effect in comparison with single targeted therapy. In this study, we designed and synthesized a series of novel dual-functional conjugates targeting both ERα degradation and histone deacetylase inhibiton by combining a privileged SERD skeleton 7-oxabicyclo[2.2.1]heptane sulfonamide (OBHSA) with a histone deacetylase inhibitor side chain. We found that substituents on both the sulfonamide nitrogen and phenyl group of OBHSA unit had significant effect on biological activities. Among them, conjugate 16i with N-methyl and naphthyl groups exhibited potent antiproliferative activity against MCF-7 cells, and excellent ERα degradation activity and HDACs inhibitory ability. A further molecular docking study indicated the interaction patterns of these conjugates with ERα, which may provide guidance to design novel SERDs or PROTAC-like SERDs for breast cancer therapy.
Collapse
Affiliation(s)
- Chenxi Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chu Tang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Changhao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wentao Ning
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiye Hu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Lilan Xin
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hai-Bing Zhou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
34
|
Mustafa S, Pawar JS, Ghosh I. Fucoidan induces ROS-dependent epigenetic modulation in cervical cancer HeLa cell. Int J Biol Macromol 2021; 181:180-192. [PMID: 33771548 DOI: 10.1016/j.ijbiomac.2021.03.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Fucoidan is a sulfated polysaccharide obtained from marine algae and known for various pharmacological activities. In this study, we investigated the effect of Fucoidan on cell viability, redox balance, cytoskeletal component F-actin, HDAC inhibition, autophagy, and senescence phenomenon in human cervical cancer HeLa cell line in comparison to positive control suberoylanilide hydroxamic acid by flow cytometry, fluorescence microscopy, and western blotting. Our observations revealed that Fucoidan exposure induces cytotoxicity in HeLa cells via ROS and mitochondrial superoxide generation and loss of ATP. Colorimetrical studies suggested that Fucoidan impairs the function of HDAC expression. Fucoidan treatment also contributes to the change in the granularity of cells, senescence-associated heterochromatin foci formation that leads to senescence in HeLa cells. Moreover, we visualize that Fucoidan exhibits autophagosomes formation with monodansylcadaverine, and flow cytometry analysis by acridine orange further substantiates that Fucoidan triggers autophagy in HeLa cells. Additionally, the changes in the expression of proteins p21, p16, BECN1, and HDAC1 were seen as markers of senescence, autophagy, and HDAC inhibition by FACS and immunoblotting. Molecular docking study validates Fucoidan-HDAC1 association in corroboration with the experimental data. Collectively, these mechanistic studies demonstrated that Fucoidan could be a therapeutic molecule for targeting HDACs in cervical cancer.
Collapse
Affiliation(s)
- Saad Mustafa
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jogendra Singh Pawar
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
35
|
Gediya P, Parikh PK, Vyas VK, Ghate MD. Histone deacetylase 2: A potential therapeutic target for cancer and neurodegenerative disorders. Eur J Med Chem 2021; 216:113332. [PMID: 33714914 DOI: 10.1016/j.ejmech.2021.113332] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Histone deacetylases (HDACs) have been implicated in a number of diseases including cancer, cardiovascular disorders, diabetes mellitus, neurodegenerative disorders and inflammation. For the treatment of epigenetically altered diseases such as cancer, HDAC inhibitors have made a significant progress in terms of development of isoform selective inhibitiors. Isoform specific HDAC inhibitors have less adverse events and better safety profile. A HDAC isoform i.e., HDAC2 demonstrated significant role in the development of variety of diseases, mainly involved in the cancer and neurodegenerative disorders. Discovery and development of selective HDAC2 inhibitors have a great potential for the treatment of target diseases. In the present compilation, we have reviewed the role of HDAC2 in progression of cancer and neurodegenerative disorders, and information on the drug development opportunities for selective HDAC2 inhibition.
Collapse
Affiliation(s)
- Piyush Gediya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Palak K Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India; Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
36
|
Ernst P, Heidel FH. Molecular Mechanisms of Senescence and Implications for the Treatment of Myeloid Malignancies. Cancers (Basel) 2021; 13:612. [PMID: 33557090 PMCID: PMC7913823 DOI: 10.3390/cancers13040612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Senescence is a cellular state that is involved in aging-associated diseases but may also prohibit the development of pre-cancerous lesions and tumor growth. Senescent cells are actively secreting chemo- and cytokines, and this senescence-associated secretory phenotype (SASP) can contribute to both early anti-tumorigenic and long-term pro-tumorigenic effects. Recently, complex mechanisms of cellular senescence and their influence on cellular processes have been defined in more detail and, therefore, facilitate translational development of targeted therapies. In this review, we aim to discuss major molecular pathways involved in cellular senescence and potential therapeutic strategies, with a specific focus on myeloid malignancies.
Collapse
Affiliation(s)
- Philipp Ernst
- Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany;
- Research Program “Else Kröner-Forschungskolleg AntiAge“, Jena University Hospital, 07747 Jena, Germany
| | - Florian H. Heidel
- Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
- Leibniz Institute on Aging, Fritz-Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|
37
|
Yundaeng C, Somta P, Chen J, Yuan X, Chankaew S, Chen X. Fine mapping of QTL conferring Cercospora leaf spot disease resistance in mungbean revealed TAF5 as candidate gene for the resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:701-714. [PMID: 33188437 DOI: 10.1007/s00122-020-03724-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
This paper reports fine mapping of qCLS for resistance to Cercospora leaf spot disease in mungbean and identified LOC106765332encoding TATA-binding-protein-associated factor 5 (TAF5) as the candidate gene for the resistance Cercospora leaf spot (CLS) caused by the fungus Cercospora canescens is an important disease of mungbean. A QTL mapping using mungbean F2 and BC1F1 populations developed from the "V4718" (resistant) and "Kamphaeng Saen 1" (KPS1; susceptible) has identified a major QTL controlling CLS resistance (qCLS). In this study, we finely mapped the qCLS and identified candidate genes at this locus. A BC8F2 [KPS1 × (KPS1 × V4718)] population developed in this study and the F2 (KPS1 × V4718) population used in a previous study were genotyped with 16 newly developed SSR markers. QTL analysis in the BC8F2 and F2 populations consistently showed that the qCLS was mapped to a genomic region of ~ 13 Kb on chromosome 6, which contains only one annotated gene, LOC106765332 (designated "VrTAF5"), encoding TATA-binding-protein-associated factor 5 (TAF5), a subunit of transcription initiation factor IID and Spt-Ada-Gcn5 acetyltransferase complexes. Sequence comparison of VrTAF5 between KPS1 and V4718 revealed many single nucleotide polymorphisms (SNPs) and inserts/deletions (InDels) in which eight SNPs presented in eight different exons, and an SNP (G4,932C) residing in exon 8 causes amino acid change (S250T) in V4718. An InDel marker was developed to detect a 24-bp InDel polymorphism in VrTAF5 between KPS1 and V4718. Analysis by RT-qPCR showed that expression levels of VrTAF5 in KPS1 and V4718 were not statistically different. These results indicated that mutation in VrTAF5 causing an amino acid change in the VrTAF5 protein is responsible for CLS resistance in V4718.
Collapse
Affiliation(s)
- Chutintorn Yundaeng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, 73140, Nakhon Pathom, Thailand.
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand.
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Sompong Chankaew
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
38
|
Synergistic Anticancer Activity of N-Hydroxy-7-(2-Naphthylthio) Heptanomide, Sorafenib, and Radiation Therapy in Patient-Derived Anaplastic Thyroid Cancer Models. Int J Mol Sci 2021; 22:ijms22020536. [PMID: 33430361 PMCID: PMC7825761 DOI: 10.3390/ijms22020536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is an undifferentiated and advanced form of thyroid cancer, accompanied with a high ratio of epigenetic adjustment, which occurs more than genetic mutations. In this study, we aimed to evaluate the synergistic anticancer effect (in vitro and in vivo) of the new combination of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA) and sorafenib with radiation therapy in pre-clinical models of ATC. The ATC cell lines, YUMC-A1 and YUMC-A2, were isolated from the current patients who were treated with HNHA and sorafenib, either as monotherapy or combination therapy. Synergistic anticancer effect of the combination therapy on the intracellular signaling pathways and cell cycle was assessed via flow cytometry and immunoblot analysis. To examine tumor shrinkage activity in vivo, an ATC cell line-derived mouse xenograft model was used. Results showed that the combination therapy of HNHA and sorafenib with radiation promoted tumor suppression via caspase cleavage and cell cycle arrest in patient-derived ATC. In addition, the combination therapy of HNHA and sorafenib with radiation was more effective against ATC than therapy with HNHA or sorafenib with radiation. Thus, the combination of HNHA and sorafenib with radiation may be used as a novel curative approach for the treatment of ATC.
Collapse
|
39
|
HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Rep 2021; 34:108638. [PMID: 33472068 DOI: 10.1016/j.celrep.2020.108638] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation levels are regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) that antagonistically control the overall balance of this post-translational modification. HDAC inhibitors (HDACi) are potent agents that disrupt this balance and are used clinically to treat diseases including cancer. Despite their use, little is known about their effects on chromatin regulators, particularly those that signal through lysine acetylation. We apply quantitative genomic and proteomic approaches to demonstrate that HDACi robustly increases a low-abundance histone 4 polyacetylation state, which serves as a preferred binding substrate for several bromodomain-containing proteins, including BRD4. Increased H4 polyacetylation occurs in transcribed genes and correlates with the targeting of BRD4. Collectively, these results suggest that HDAC inhibition functions, at least in part, through expansion of a rare histone acetylation state, which then retargets lysine-acetyl readers associated with changes in gene expression, partially mimicking the effect of bromodomain inhibition.
Collapse
|
40
|
Current Therapies in Nephrotic Syndrome: HDAC inhibitors, an Emerging Therapy for Kidney Diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
41
|
García S, Mercado-Sánchez I, Bahena L, Alcaraz Y, García-Revilla MA, Robles J, Santos-Martínez N, Ordaz-Rosado D, García-Becerra R, Vazquez MA. Design of Fluorescent Coumarin-Hydroxamic Acid Derivatives as Inhibitors of HDACs: Synthesis, Anti-Proliferative Evaluation and Docking Studies. Molecules 2020; 25:molecules25215134. [PMID: 33158250 PMCID: PMC7662212 DOI: 10.3390/molecules25215134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023] Open
Abstract
Coumarin-hydroxamic acid derivatives 7a-k were herein designed with a dual purpose: as antiproliferative agents and fluorescent probes. The compounds were synthesized in moderate yields (30-87%) through a simple methodology, biological evaluation was carried out on prostate (PC3) and breast cancer (BT-474 and MDA-MB-231) cell lines to determine the effects on cell proliferation and gene expression. For compounds 7c, 7e, 7f, 7i and 7j the inhibition of cancer cell proliferation was similar to that found with the reference compound at a comparable concentration (10 μM), in addition, their molecular docking studies performed on histone deacetylases 1, 6 and 8 showed strong binding to the respective active sites. In most cases, antiproliferative activity was accompanied by greater levels of cyclin-dependent kinase inhibitor p21, downregulation of the p53 tumor suppressor gene, and regulation of cyclin D1 gene expression. We conclude that compounds 7c, 7e, 7f, 7i and 7j may be considered as potential anticancer agents, considering their antiproliferative properties, their effect on the regulation of the genes, as well as their capacity to dock to the active sites. The fluorescent properties of compound 7j and 7k suggest that they can provide further insight into the mechanism of action.
Collapse
Affiliation(s)
- Santiago García
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Itzel Mercado-Sánchez
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Luis Bahena
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Yolanda Alcaraz
- Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (Y.A.); (J.R.)
| | - Marco A. García-Revilla
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Juvencio Robles
- Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (Y.A.); (J.R.)
| | - Nancy Santos-Martínez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (N.S.-M.); (D.O.-R.)
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (N.S.-M.); (D.O.-R.)
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Miguel A. Vazquez
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
- Correspondence: ; Tel.: +52-473-732-0006 (ext. 1419)
| |
Collapse
|
42
|
Høgh RI, Møller SH, Jepsen SD, Mellergaard M, Lund A, Pejtersen M, Fitzner E, Andresen L, Skov S. Metabolism of short-chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells. FASEB J 2020; 34:15531-15546. [PMID: 32996653 DOI: 10.1096/fj.202000162r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
SCFAs are primarily produced in the colon by bacterial fermentation of nondigestible carbohydrates. Besides providing energy, SCFAs can suppress development of colon cancer. The mechanism, however, remains elusive. Here, we demonstrate that the SCFA propionate upregulates surface expression of the immune stimulatory NKG2D ligands, MICA/B by imposing metabolic changes in dividing cells. Propionate-mediated MICA/B expression did not rely on GPR41/GPR43 receptors but depended on functional mitochondria. By siRNA-directed knockdown, we could further link phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in gluconeogenesis to propionate regulation of MICA/B expression. Moreover, knockdown of Rictor and specific mTOR inhibitors implicated mTORC2 activity with metabolic changes that control MICA/B expression. SCFAs are precursors to short-chain acyl-CoAs that are used for histone acylation thereby linking the metabolic state to chromatin structure and gene expression. Propionate increased the overall acetylation and propionylation and inhibition of lysine acetyltransferases (KATs) that are responsible for adding acyl-CoAs to histones reduced propionate-mediated MICA/B expression, suggesting that propionate-induced acylation increases MICA/B expression. Notably, propionate upregulated MICA/B surface expression on colon cancer cells in an acylation-dependent manner; however, the impact of mitochondrial metabolism on MICA/B expression was different in colon cancer cells compared with Jurkat cells, suggesting that continuous exposure to propionate in the colon may provide an enhanced capacity to metabolize propionate. Together, our findings support that propionate causes metabolic changes resulting in NKG2D ligand surface expression, which holds potential as an immune activating anticancer therapy.
Collapse
Affiliation(s)
- Rikke Illum Høgh
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Hedlund Møller
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Dam Jepsen
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Mellergaard
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Lund
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikala Pejtersen
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Fitzner
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Andresen
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Skov
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Kang DW, Hwang WC, Noh YN, Kang Y, Jang Y, Kim JA, Min DS. Phospholipase D1 is upregulated by vorinostat and confers resistance to vorinostat in glioblastoma. J Cell Physiol 2020; 236:549-560. [PMID: 32869317 PMCID: PMC7692931 DOI: 10.1002/jcp.29882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor and drug resistance remains a major barrier for therapeutics. Epigenetic alterations are implicated in GBM pathogenesis, and epigenetic modulators including histone deacetylase (HDAC) inhibitors are exploited as promising anticancer therapies. Here, we demonstrate that phospholipase D1 (PLD1) is a transcriptional target of HDAC inhibitors and confers resistance to HDAC inhibitor in GBM. Treatment of vorinostat upregulates PLD1 through PKCζ‐Sp1 axis. Vorinostat induces dynamic changes in the chromatin structure and transcriptional machinery associated with PLD1 promoter region. Cotreatment of vorinostat with PLD1 inhibitor further attenuates invasion, angiogenesis, colony‐forming capacity, and self‐renewal capacity, compared with those of either treatment. PLD1 inhibitor overcomes resistance to vorinostat in GBM cells intracranial GBM tumors. Our finding provides new insight into the role of PLD1 as a target of resistance to vorinostat, and PLD1 inhibitor might provide the basis for therapeutic combinations with improved efficacy of HDAC inhibitor.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Won Chan Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.,College of Pharmacy, Yonsei University, Incheon, South Korea
| | - Yu Na Noh
- Institute for Innovative Cancer Research, Biomedical Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Youra Kang
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon, South Korea
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Emerging evidence has shown that epigenetic derangements might drive and promote tumorigenesis in various types of malignancies and is prevalent in both B cell and T cell lymphomas. The purpose of this review is to explain how the epigenetic derangements result in a chromatin-remodeled state in lymphoma and contribute to the biology and clinical features of these tumors. RECENT FINDINGS Studies have explored on the functional role of epigenetic derangements in chromatin remodeling and lymphomagenesis. For example, the haploinsufficiency of CREBBP facilitates malignant transformation in mice and directly implicates the importance to re-establish the physiologic acetylation level. New findings identified 4 prominent DLBCL subtypes, including EZB-GC-DLBCL subtype that enriched in mutations of CREBBP, EP300, KMT2D, and SWI/SNF complex genes. EZB subtype has a worse prognosis than other GCB-tumors. Moreover, the action of the histone modifiers as well as chromatin-remodeling factors (e.g., SWI/SNF complex) cooperates to influence the chromatin state resulting in transcription repression. Drugs that alter the epigenetic landscape have been approved in T cell lymphoma. In line with this finding, epigenetic lesions in histone modifiers have recently been uncovered in this disease, further confirming the vulnerability to the therapies targeting epigenetic derangements. Modulating the chromatin state by epigenetic-modifying agents provides precision-medicine opportunities to patients with lymphomas that depend on this biology.
Collapse
Affiliation(s)
- Yuxuan Liu
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Yulissa Gonzalez
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Jennifer E Amengual
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA.
| |
Collapse
|
45
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
46
|
Zhou X, Dong G, Song T, Wang G, Li Z, Qin X, Du L, Li M. Environment-sensitive fluorescent inhibitors of histone deacetylase. Bioorg Med Chem Lett 2020; 30:127128. [DOI: 10.1016/j.bmcl.2020.127128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/02/2023]
|
47
|
HDAC3-ERα Selectively Regulates TNF-α-Induced Apoptotic Cell Death in MCF-7 Human Breast Cancer Cells via the p53 Signaling Pathway. Cells 2020; 9:cells9051280. [PMID: 32455774 PMCID: PMC7290399 DOI: 10.3390/cells9051280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) plays a significant role in inflammation and cancer-related apoptosis. We identified a TNF-α-mediated epigenetic mechanism of apoptotic cell death regulation in estrogen receptor-α (ERα)-positive human breast cancer cells. To assess the apoptotic effect of TNF-α, annexin V/ propidium iodide (PI) double staining, cell viability assays, and Western blotting were performed. To elucidate this mechanism, histone deacetylase (HDAC) activity assay and immunoprecipitation (IP) were conducted; the mechanism was subsequently confirmed through chromatin IP (ChIP) assays. Finally, we assessed HDAC3-ERα-mediated apoptotic cell death after TNF-α treatment in ERα-positive human breast cancer (MCF-7) cells via the transcriptional activation of p53 target genes using luciferase assay and quantitative reverse transcription PCR. The TNF-α-induced selective apoptosis in MCF-7 cells was negatively regulated by the HDAC3-ERα complex in a caspase-7-dependent manner. HDAC3 possessed a p53-binding element, thus suppressing the transcriptional activity of its target genes. In contrast, MCF-7 cell treatment with TNF-α led to dissociation of the HDAC3-ERα complex and substitution of the occupancy on the promoter by the p53-p300 complex, thus accelerating p53 target gene expression. In this process, p53 stabilization was accompanied by its acetylation. This study showed that p53-mediated apoptosis in ERα-positive human breast cancer cells was negatively regulated by HDAC3-ERα in a caspase-7-dependent manner. Therefore, these proteins have potential application in therapeutic strategies.
Collapse
|
48
|
Gluud M, Fredholm S, Blümel E, Willerslev-Olsen A, Buus TB, Nastasi C, Krejsgaard T, Bonefeld CM, Woetmann A, Iversen L, Litman T, Geisler C, Ødum N, Lindahl LM. MicroRNA-93 Targets p21 and Promotes Proliferation in Mycosis Fungoides T Cells. Dermatology 2020; 237:277-282. [PMID: 32335549 DOI: 10.1159/000505743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/04/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL), is a lymphoproliferative disorder characterized by proliferation of malignant T cells in a chronic inflammatory environment in the skin. The nature of MF is still not fully understood, but aberrant microRNA (miR) expression and function seem to play an important role in the pathogenesis and disease progression and have been proposed as a putative disease marker. Recent studies have reported aberrant expression of miR-93 in situin MF lesions and linked dysregulated miR-93 expression to advanced stages of MF. However, the pathophysiological role of miR-93 in MF is unknown. OBJECTIVE Here, we provide the first evidence that miR-93 targets the cell cycle regulator cyclin-dependent kinase inhibitor p21 and promotes growth of malignant T cells in MF. METHODS/RESULTS Thus, inhibition of miR-93 in MF patient-derived malignant T-cell lines increases expression of p21 and inhibition of malignant proliferation. Notably, treatment with the histone deacetylase inhibitor Vorinostat (SAHA) reduces miR-93 expression and enhances p21 expression in the malignant T cells. Importantly, transfection with an miR-93 mimic partly blocks SAHA-induced p21 expression. CONCLUSIONS we provide evidence that enhanced expression of the putative oncogenic miR, miR-93, represses the cell cycle inhibitor p21 and promotes proliferation of malignant T cells. Moreover, we demonstrate that SAHA triggers p21 expression - at least partly - through an inhibition of miR-93.
Collapse
Affiliation(s)
- Maria Gluud
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Fredholm
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Edda Blümel
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Thomas Litman
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark,
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| |
Collapse
|
49
|
He XT, Hu XF, Zhu C, Zhou KX, Zhao WJ, Zhang C, Han X, Wu CL, Wei YY, Wang W, Deng JP, Chen FM, Gu ZX, Dong YL. Suppression of histone deacetylases by SAHA relieves bone cancer pain in rats via inhibiting activation of glial cells in spinal dorsal horn and dorsal root ganglia. J Neuroinflammation 2020; 17:125. [PMID: 32321538 PMCID: PMC7175547 DOI: 10.1186/s12974-020-01740-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Robust activation of glial cells has been reported to occur particularly during the pathogenesis of bone cancer pain (BCP). Researchers from our group and others have shown that histone deacetylases (HDACs) play a significant role in modulating glia-mediated immune responses; however, it still remains unclear whether HDACs are involved in the activation of glial cells during the development of BCP. METHODS BCP model was established by intra-tibia tumor cell inoculation (TCI). The expression levels and distribution sites of histone deacetylases (HDACs) in the spinal dorsal horn and dorsal root ganglia were evaluated by Western blot and immunofluorescent staining, respectively. Suberoylanilide hydroxamic acid (SAHA), a clinically used HDAC inhibitor, was then intraperitoneally and intrathecally injected to rescue the increased expression levels of HDAC1 and HDAC2. The analgesic effects of SAHA administration on BCP were then evaluated by measuring the paw withdrawal thresholds (PWTs). The effects of SAHA on activation of glial cells and expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the spinal dorsal horn and dorsal root ganglia of TCI rats were further evaluated by immunofluorescent staining and Western blot analysis. Subsequently, the effects of SAHA administration on tumor growth and cancer cell-induced bone destruction were analyzed by hematoxylin and eosin (HE) staining and micro-CT scanning. RESULTS TCI caused rapid and long-lasting increased expression of HDAC1/HDAC2 in glial cells of the spinal dorsal horn and dorsal root ganglia. Inhibiting HDACs by SAHA not only reversed TCI-induced upregulation of HDACs but also inhibited the activation of glial cells in the spinal dorsal horn and dorsal root ganglia, and relieved TCI-induced mechanical allodynia. Further, we found that SAHA administration could not prevent cancer infiltration or bone destruction in the tibia, which indicated that the analgesic effects of SAHA were not due to its anti-tumor effects. Moreover, we found that SAHA administration could inhibit GSK3β activity in the spinal dorsal horn and dorsal root ganglia, which might contributed to the relief of BCP. CONCLUSION Our findings suggest that HDAC1 and HDAC2 are involved in the glia-mediated neuroinflammation in the spinal dorsal horn and dorsal root ganglia underlying the pathogenesis of BCP, which indicated that inhibiting HDACs by SAHA might be a potential strategy for pain relief of BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao-Fan Hu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chao Zhu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao Han
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chang-Le Wu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan-Yan Wei
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
50
|
Xu CL, Sang B, Liu GZ, Li JM, Zhang XD, Liu LX, Thorne RF, Wu M. SENEBLOC, a long non-coding RNA suppresses senescence via p53-dependent and independent mechanisms. Nucleic Acids Res 2020; 48:3089-3102. [PMID: 32030426 PMCID: PMC7102969 DOI: 10.1093/nar/gkaa063] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important biological tuners. Here, we reveal the role of an uncharacterized lncRNA we call SENEBLOC that is expressed by both normal and transformed cells under homeostatic conditions. SENEBLOC was shown to block the induction of cellular senescence through dual mechanisms that converge to repress the expression of p21. SENEBLOC facilitates the association of p53 with MDM2 by acting as a scaffold to promote p53 turnover and decrease p21 transactivation. Alternatively, SENEBLOC was shown to affect epigenetic silencing of the p21 gene promoter through regulation of HDAC5. Thus SENEBLOC drives both p53-dependent and p53-independent mechanisms that contribute to p21 repression. Moreover, SENEBLOC was shown to be involved in both oncogenic and replicative senescence, and from the perspective of senolytic agents we show that the antagonistic actions of rapamycin on senescence are dependent on SENEBLOC expression.
Collapse
Affiliation(s)
- Cheng Lin Xu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences and First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Ben Sang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences and First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Guang Zhi Liu
- Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
| | - Jin Ming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Lian Xin Liu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences and First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
- School of Environmental & Life Sciences, University of Newcastle, NSW 2258, Australia
| | - Mian Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences and First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China
| |
Collapse
|